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Affine embeddings of Cantor sets on the line

Amir Algom1

Abstract. Let s 2 .0; 1/, and let F � R be a self similar set such that 0 < dimH F � s.

We prove that there exists ı D ı.s/ > 0 such that if F admits an affine embedding into a

homogeneous self similar set E and 0 � dimH E � dimH F < ı then (under some mild

conditions on E and F ) the contraction ratios of E and F are logarithmically commensu-

rable. This provides more evidence for Conjecture 1.2 of Feng, Huang, and Rao [7], that

states that these contraction ratios are logarithmically commensurable whenever F admits

an affine embedding into E (under some mild conditions). Our method is a combination

of an argument based on the approach of Feng, Huang, and Rao in [7] with a new result by

Hochman [10], which is related to the increase of entropy of measures under convolutions.
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1. Introduction

Let A;B � R. We say that A can be affinely embedded into B if there exists

an affine map gWR ! R, g.x/ D 
 � x C t for 
 ¤ 0; t 2 R, such that

g.A/ � B . The motivating problem of this paper to show that if A and B are

two Cantor sets and A can be affinely embedded into B , then the there should

be some arithmetic dependence between the scales appearing in the multiscale

structures ofA andB . This phenomenon is known to occur e.g. whenA andB are

two self similar sets satisfying the strong separation condition that are Lipschitz

equivalent, see the work of Falconer and Marsh [5]. Similarly, one expects that if

g is an affine self embedding of A into A (i.e. g.A/ � A) then the similarity ratio

of g should be arithmetically dependent on the scales appearing in the multiscale

structure of A. Evidence of the latter phenomenon is given e.g. by Logarithmic

Commensurability Theorem proved by Feng and Wang (Theorem 1.1 from [8]),

and the results of Hochman in [9].

1 Supported by ERC grant 306494.
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More specifically, we are interested in studying the following Conjecture,

formulated by Feng, Huang, and Rao in [7]. We remark that the exact definitions of

the notions we discuss are given in Section 2. Let F andE be two self similar sets

in Rd , generated by IFS’s ˆ D ¹�iºl
iD1 and ‰ D ¹ j ºm

j D1, respectively. Denote,

for 1 � i � l and 1 � j � m, the contraction ratio of �i by ˛i 2 .0; 1/ and of  j

by ǰ 2 .0; 1/.

Conjecture 1.1 ([7]). Suppose that E and F are totally disconnected and that

F can be affinely embedded into E. Then for every 1 � i � l there exists

ti;j 2 Q; ti;j � 0 such that

˛i D …m
j D1ˇ

ti;j

j

In particular, if ǰ D ˇ for all 1 � j � m then for every 1 � i � l

log ˛i

logˇ
2 Q:

Note that these arithmetic conditions on ˛i ; ǰ hold true whenˆ and‰ satisfy

the Strong Separation condition, and E and F are Lipschitz equivalent, by the re-

sults of Falconer and Marsh [5]. However, for Lipschitz embeddings no arithmetic

conditions are required. Indeed, Deng, Wen, Xiong, and Xi [2] proved if E and

F are attractors of IFS’s ˆ and‰ that satisfy the Strong Separation condition and

dimH F < dimH E then F can be Lipschitz embedded into E (where dimH F is

the Hausdorff dimension of F ).

In [7], Feng, Huang, and Rao exhibited several cases when the Conjecture

holds (and we shall soon recall them). The main result proved in this paper

provides more evidence for Conjecture 1.1. From this point and throughout the

rest of the paper, F and E are two self similar sets, that admit generating IFS’s ˆ

and ‰, respectively.

Theorem 1.2. For every 0 < s < 1 there exists ı D ı.s/ > 0 such that if

0 < dimH F � s, ˆ satisfies the OSC, ‰ is homogeneous and satisfies the SSC,

and

0 � dimH E � dimH F < ı

then F and E satisfy the statement of Conjecture 1.1.

We remark that we have not worked out an effective estimate on the size of ı,

though this is possible.
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As we mentioned earlier, in [7], Feng, Huang, and Rao proved several cases

when Conjecture 1.1 holds, which we now wish to discuss. We denote by C� the

attractor of the IFS ¹� � x; � � x C 1 � �º (this is the central � Cantor set). Recall

that a Pisot number is an algebraic integer > 1 whose algebraic conjugates are all

inside the unit disc. For example, all integers greater than 1 are Pisot numbers, as

is
p
2 � 1. The following was proved in [7].

(1) Conjecture 1.1 is valid when E has a generating IFS ‰ with the strong

separation condition that has uniform contraction ratio ˇ, and dimH E < 1
2

(no conditions on F , or on the contraction ratios ˛i ; 1 � i � l associated

with its generating IFS ˆ, are required).

(2) If ˛ � ˇ <
p
2� 1 then Conjecture 1.1 is valid for C˛ and Cˇ .

(3) Assume � D 1
˛

is a Pisot number > 2. Let E � R be a self similar set

generated by the IFS ‰ D ¹ iºm
j D1, 2 � m < � , that has uniform contraction

ratio ˇ 2 Z.�/ (the ring of � over Z). Then Conjecture 1.1 is valid for any

self similar set F .

Moreover, if F is a self similar set generated by an IFS with contraction ratio

˛i ; 1 � i � l , that can be affinely embedded intoE, then 1
˛i

is a Pisot number

for i D 1; : : : ; l .

The main idea behind the proof of item 1 was to show that if F can be affinely

embedded intoE but
log ˛i

log ˇ
… Q for some 1 � i � l , then the set ¹jx�yjW x; y 2 Eº

contains a non-degenerate interval. Similarly, the first step towards the proof of

the item 2 involves using the self similarity structure of C˛; Cˇ to prove that if
log ˛

log ˇ
… Q and C˛ has an affine embedding into Cˇ , then for every � 2 .0; 1�2˛

˛
�

there exist c 2 Cˇ such that � � C˛ C c � Cˇ . Item 3 uses ideas from harmonic

analysis.

Let us now briefly survey our methods. The proof of our main result consists

of two steps. The first is to show that, assuming the conditions of our main result,

if F can be affinely embedded into E then there exists a set† consisting of affine

embeddings ofF intoE, such that dimH † � 1 (where we identify†with a subset

of R2 – see the beginning of Section 2.1). To do this, we employ an analogue of

the argument used in [7] to prove case 1 above.

The second step involves an application of Theorem 6 from the recent paper of

Hochman [10]. The variant of this Theorem relevant to the present work roughly

says that if F supports a "nice" measure (e.g. a self similar measure of the same

dimension), and F admits a big set of affine embeddings intoE (e.g. of Hausdorff

dimension at least 1), then there exists a measure � supported on E with entropy

dimension> dimH F Cı.s/, where ı.s/ > 0 depends only on the choice of s such

that dimH F � s < 1. See exact definitions and statements in Section 2.2.
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Let us end this introduction by stating two Corollaries that follow from The-

orem 1.2. First, if one assumes that E D F , then slightly modifying of the proof

of Theorem 1.2 we obtain the following version of the Logarithmic Commensu-

rability Theorem proved by Feng and Wang (Theorem 1.1 from [8]). Our version

is actually weaker than the Theorem by [8], since we only treat the case when

0 < dimH F < 1 and F admits an IFS ˆ with the SSC, whereas they only require

that ˆ satisfies the OSC, and also treat the case dimH F D 1.

Corollary 1.3. Let F � R be a self similar set that admits a homogeneous

generating IFSˆ, with uniform contraction ratio ˛, that satisfies the SSC. Assume

0 < dimH F < 1. If g.x/ D � � x C t; � ¤ 0; t 2 R satisfies g.F / � F then

log ˛

log j�j 2 Q

We say that F can be C 1 embedded into E if g.F / � E for some C 1-diffeo-

morphism gWR ! R. We denote the set of all C 1-diffeomorphisms gWR ! R by

diff1.R/. To derive the second Corollary, let us first recall the following Theorem,

that relates the notions of affine embedding and C 1 embedding for self similar

sets. The Theorem below is stated in the form that is relevant to this present work

(but not the most general form).

Theorem 1.4 ([7]). Suppose both ˆ and ‰ satisfy the OSC. Then F can be C 1

embedded into E if and only if F can be affinely embedded into E. Furthermore,

if F can not be affinely embedded into E then

sup
g2diff1.R/

dimH g.F / \E < dimH F

Thus, combining Theorem 1.4 with Theorem 1.2, yields the following corollary.

Corollary 1.5. Suppose that F and E satisfy the conditions of Theorem 1.2.

Suppose that there exists a map � 2 ˆwith contraction ratio ˛ such that
log ˛

log ˇ
… Q,

where ˇ is the uniform contraction ratio of maps in ‰. Then

sup
g2diff1.R/

dimH g.F / \E < dimH F
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2. Preliminaries

2.1. Self similar sets. LetG denote the group of similarities of the real line, and

S � G the set of contracting similarities. Then we can naturally identify G and S

with subsets of R2, as

G D ¹gWR �! RW g.x/ D ˛ � x C t; .˛; t / 2 R2 � ¹0º � Rº;

S D ¹gWR �! RW g.x/ D ˛ � x C t; .˛; t / 2 .0; 1/ � Rº:

As we are working in R,G in fact consists of all the invertible affine maps R ! R.

Let ˆ D ¹�iºl
kD1

; l 2 N; l � 2 be a family of contractions �i WRd ! Rd ,

d � 1. The family ˆ is called an iterated function system, abbreviated “IFS,”

the term being coined by Hutchinson [12], who defined them and studied some of

their fundamental properties. In particular, he proved that there exists a unique

compact ; ¤ F � Rd such that F D
Sl

iD1 �i .F /. F is called the attractor of ˆ,

and ˆ is called a generating IFS for F.

A set F � R will be called self similar if there exists a generating IFSˆ for F

such that ˆ � S . If this IFS has the additional property that all the maps � 2 ˆ

share the same contraction ratio, then we say that ˆ is a homogeneous generating

IFS for ˆ. We shall always assume, throughout this paper, that our self similar

sets satisfy 0 < dimH F < 1, where dimH F denotes the Hausdorff dimension

of F.

For an IFS ˆ D ¹�iºl
iD1 and its attractor F , a cylinder set is a set of the form

�i1 ı � � � ı �ik .F /, where �i 2 ˆ for all i and k 2 N. Writing I D .i1; : : : ; ik/ 2
¹0; : : : ; lºk, we use the notation �i1 ı � � � ı �ik D �I . Thus, cylinder sets have the

form �I .F /; I 2 ¹0; : : : ; lº�, and jI j denotes the length of the word I .

We say that an IFS ˆ satisfies the open set condition, abbreviated “OSC,”

if there exists some ; ¤ U � Rd such that U is open, i ¤ j H) �i.U / \
�j .U / D ; and U �

Sl
iD1 �i .U /. We say that an IFS ˆ satisfies the strong

separation condition, abbreviated “SSC,” if i ¤ j H) �i .F /\ �j .F / D ;. It is

straightforward to verify that if ˆ satisfies the SSC then it also satisfies the OSC.
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2.2. Growth of entropy dimension of measures. The objective of this subsec-

tion is to state some of the results of the upcoming paper [10], that are key to the

proof of Theorem 1.2. We do not aim at explaining why these results are true;

we leave that to [10]. We only quote what we need and proceed to the proof of

Theorem 1.2, using these results as a black box.

LetP.X/ denote the space of Borel probability measure supported onX�Rd .

We first recall the definition of entropy dimension of a measure. Let

Dn D
°h k

2n
;
k C 1

2n

�±

k2Z

denote the level n dyadic partition of R. Let

H.�;E/ D �
X

E2E

�.E/ log �.E/

denote the Shannon entropy of a probability measure � 2 P.R/ with respect to a

partition E of R. Then the entropy dimension of � is defined as

dime � D lim
n!1

1

n
H.�;Dn/:

If the above limit does not exist, we define the upper entropy dimension dime� by

taking lim sup. Note that if � is a self similar measure then this limit exists (see

e.g. [10] Proposition 2). We also note that if � 2 P.R/ is supported on a set Y

then

dimBY � dime� � dimH� (1)

where dimBY is the upper box dimension of Y , and

dimH� D inf¹dimAWA is Borel ; �.A/ > 0º

Note that if F is the attractor of an IFS that satisfies the OSC then there exists

a self similar measure � supported on F such that dimH� D dimH F . We shall

call this measure a self similar measure of maximal dimension. See [4],[13], [1]

for more details.

Next, let v 2 P.G/ and � 2 P.R/ be compactly supported probability

measures. Then �:� 2 P.R/ is defined as the push forward of � � � via the

action map .g; x/ 7! g.x/, from G � R to R. Note that this is a smooth map

defined on an open subset of R2 �R, so �:� is a Borel probability measure on R.

This concept brings us to Theorem 6 from [10] (which is actually a consequence

of the more general results from [11]), that shall be used as a black box. Note that

we state the version of the Theorem that we require, but certainly not the most

general form.
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Theorem 2.1 ([10]). Let s 2 .0; 1/, then there exists some ı D ı.s/ > 0 such that

the following property holds.

Let � 2 P.R/ and � 2 P.G/ be compactly supported measures. Suppose that

� is a self similar measure of maximal dimension with respect to some IFS that

satisfies the OSC, and that its attractor F satisfies 0 < dimH F � s. Suppose in

addition that dime� � 1. Then

dime�:� � dimH F C ı:

We remark that to obtain Theorem 2.1 from Theorem 6 of [10], one assumes

the conditions of Theorem 2.1 and plugs into Theorem 6

� D 1� s:

3. Proof of Theorem 1.2 and Corollary 1.3

Proof of Theorem 1.2. Let s 2 .0; 1/, and let F and E be real self similar sets,

generated by the IFS’s ˆ and ‰ respectively. Assume ‰ satisfies the SSC and is

homogeneous, and that ˆ satisfies the OSC. Denote the contraction ratios of the

maps in ˆ by ˛i ; 1 � i � l , and the uniform contraction ratio of the maps in ‰ by

ˇ. Assume 0 < dimH F � s < 1 and let ı D ı.s/ > 0 be as in the conclusion of

Theorem 2.1, and assume

0 � dimH E � dimH F < ı: (2)

Suppose that g.F / � E is an affine embedding. Suppose, towards a contrac-

tion, that we have
log ˛i

log ˇ
… Q, for some 1 � i � l . Without the loss of generality,

suppose i D 1. To make notation easier, denote ˛ D ˛1, so that
log ˛

log ˇ
… Q.

Step 1. We first claim that there exists a compact set† � G of affine embeddings

of F into E such that p1.†/ contains an interval, where p1WR2 ! R is the

projection p1.x; y/ D x (recall that we are identifying G with a subset of R2).

Write g.x/ D 
 � x C b. Let

� D min
i¤j

d. i .E/;  j .E//

then � > 0 by the assumption that ‰ has the SSC. Denote c D 
 � diam.F /. Fix

p;N such that ˇp < �
c

and
log ˛

log ˇ
�N > p.
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Then for all n 2 N with n > N we have

g.�1n.F // � g.F / � E:

Note that

�1n.F / D ˛n � F C en; en 2 R:

Hence we have

g.�1n.F // D 
 � ˛n � F C 
 � en C b � E:

Let ln D
� log ˛

log ˇ
� n

�

, where for x 2 R, Œx� denotes its floor integer value. Then

diam.
 � ˛n � F C 
 � en C b/ D ˛n � 
 � diam.F /

D ˛n � c

D ˇ
log ˛

log ˇ
�n � c

D ˇ
log ˛

log ˇ
�n�p � ˇp � c

< ˇ
log ˛

log ˇ
�n�p � � � ˇln�p � �

< ˇln�p�1 � �:

(3)

Note that we have

E D
[

I2¹1;:::;mºln�p

 I .E/;

and by the definition of �,

min
I¤J;I;J 2¹1;:::;mºln�p

d. I .E/;  J .E// D ˇln�p�1 � �:

Therefore, by equation (3) and since


 � ˛n � F C 
 � en C b � E

it follows that 
 �˛n �F C
 �en Cb intersects a unique  I .E/ for jI j D ln �p; I 2
¹1; : : : ; mºln�p. Therefore, for some rn 2 R


 � ˛n � F C 
 � en C b �  I .E/ D ˇln�p �E C rn:
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Finally, we obtain

ˇ
pC

®

log ˛

log ˇ
�n

¯

� 
 � F C 
 � en C b � rn
ˇln�p

� E (4)

where for x 2 R we define ¹xº as the fractional part of x (so that x D Œx�C ¹xº).
Taking limits with respect to n in equation (4), and recalling our assumption

towards a contradiction that
log ˛

log ˇ
… Q, we claim that for every � 2 ŒˇpC1 �
; ˇp �
�

there exists some t 2 R such that � � F C t � E (where we assume without the

loss of generality that 
 > 0, otherwise � 2 Œˇp � 
; ˇpC1 � 
� and we proceed in

a similar manner). Moreover, the set of these t ’s that we obtain is bounded (as a

subset of R).

This can be seen by fixing some element f 2 F , and observing equation (4)

along a sequence nk such that ˇ
pC

®

log ˛

log ˇ
�nk

¯

! �. We obtain


 � enk
C b � rnk

˛lnk
�p

2 E � ˇpC
®

log ˛

log ˇ
�nk

¯

� f

It follows that

 �enk

Cb�rnk

˛
lnk

�p is a bounded sequence as k ! 1, and hence has

a converging sub-sequence, with limit that shall be denoted t . Taking the limit

in (4) along this sub-sequence, we see that � � F C t � E. That the set t ’s that we

obtain is bounded follows since by this proof, these are elements in the interval

ŒminE � ˇp � 
 � maxF;maxE � ˇpC1 � 
 � minF �:

Let A � G denote the set of the embeddings that we obtain by this procedure.

Then A is a bounded subset of G, which is a subset of R2, and the projection

of A onto the x-axis (which corresponds to the similarity ratios) is the interval

ŒˇpC1 � 
; ˇp � 
�. Therefore, † D cl.A/ (the closure of A) is a compact subset

of G such that p1.†/ � p1.A/, so p1.†/ contains an interval. This finishes the

proof of Step 1.

Step 2. We now apply the machinery of [10]. Let � be a self similar measure

of maximal dimension supported on F (recall that we are assuming that ˆ, the

generating IFS for F , satisfies the OSC). Let � be the (normalized) Lebesgue

measure on the interval we found to be contained in p1.†/. Apply Theorem 1.20

from [13] to obtain a compactly supported measure � 2 P.†/ such that p1� D
� ıp�1

1 D � . Therefore, dimH� � 1. Thus, By equation (1), dime� � 1. Then �:�

is a probability measure supported on the image of † � F under the action map

.g; x/ 7! g.x/. Therefore, �:� is supported onE. Since� is a self similar measure
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of maximal dimension supported on F , 0 < dimH F � s, and dime� � 1, we may

apply Theorem 2.1. We thus obtain that

dimBE � dime�:� � dimH F C ı;

where ı D ı.s/ > 0, by another application of equation (1).

However, by e.g. [6] Theorem 2.13, we have that since E is a self similar set,

dimH E D dimB E D dimBE � dimH F C ı

This implies that dimH E � dimH F � ı, contradicting equation (2). This proves

that
log ˛i

log ˇ
2 Q for all i , concluding the proof. �

Proof of Corollary 1.3. Assume now thatE D F is a self similar set generated by

the homogeneous IFS ˆ with the SSC and uniform contraction ratio ˛. Suppose

g.x/ D 
 � x C b is an affine map gWR ! R such that g.F / � F . We prove that
log ˛

log j
 j
2 Q.

Suppose towards a contradiction that
log ˛

log j
 j
… Q. The idea is to follow in the

lines of the proof of Theorem 1.2, showing that (as in Step 1) this implies that we

can find a compact subset † � G such that p1.†/ contains an interval, and for

every g 2 †, g.F / � F . Then we apply (as in Step 2) Theorem 2.1 to obtain

that dimBF � dimH F C ı, where ı D ı.dimH F / > 0. Since F is self similar,

dimH F D dimBF , thus we have dimH F � dimH F C ı, a contradiction.

For brevity, we sketch the proof of the fact that we can find a compact subset

† � G such that p1.†/ contains an interval and for every g 2 †, g.F / � F . We

may assume 
 > 0, since otherwise the similarity ratio of g2 D g ı g is 
2 > 0,

and g2.F / � g.F / � F . It is clearly sufficient to prove the result for 
2 > 0, so

we assume without the loss of generality that 
 > 0.

Let

� D min
i¤j

d.�i .F /; �j .F //;

so � > 0 by the assumption that ˆ has the SSC. Denote c D 
 � diam.F /. Fix

p;N such that ˛p < �
c

(note that we may assume j
 j < 1, since j
 j D 1 already

contradicts
log ˛

log j
 j
… Q) and

log 


log ˛
�N > p.

Then for all n 2 N with n > N we have, for some bnC1 2 R where b1 D b,

gnC1.F / D 
nC1F C bnC1 � F:

Let ln D
� log 


log ˛
� n

�

. Then

diam.
nC1 � F C b/ D 
n � 
 � diam.F / D 
n � c < ˛ln�p� < ˛ln�p�1�:
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By the definition of �, we see that 
nC1 � F C b intersects a unique �I .F / for

jI j D ln � p; I 2 ¹1; : : : ; lºln�p. Therefore, for some rn 2 R


nC1 � F C bnC1 � �I .F / D ˛ln�p � F C rn:

Finally, we obtain


 � ˛pC¹
log 


log ˛
�nº � F C bnC1 � rn

˛ln�p
� F: (5)

It follows that, by taking limits in (5) and recalling the assumption
log ˛

log 

… Q,

that there exists a subset † � G such that for every g 2 † we have g.F / � F ,

and the projection of † to the x-axis is the interval Œ
 � ˛pC1; 
 � ˛p�.

As explained in the beginning of this proof, applying Theorem 2.1, we obtain

dimH F � dimH F C ı for ı D ı.dimH F / > 0, a contradiction. This concludes

the proof. �

4. Concluding remarks

(1) It is natural to ask what can one say about conjecture 1.1 in higher dimension.

Similarly, one may ask (see Open Question 2 in [8]) about a generalization of

Corollary 1.3 in higher dimension for self affine sets (for self similar sets there is

a corresponding result in [3] in Rd ). This is a more delicate situation, though it is

tractable in some cases. We shall address these problems in future works.

(2) Another natural question that arises by observing Conjecture 1.1 is the

following: let E and F be totally disconnected self similar sets; can one give a

sufficient condition that ensures that there exists an affine embedding of F intoE?
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