
J. Fractal Geom. 5 (2018), 279–337

DOI 10.4171/JFG/62

Journal of Fractal Geometry

© European Mathematical Society

C
m Eigenfunctions of Perron–Frobenius operators

and a new approach to numerical computation

of Hausdorff dimension:

applications in R
1

Richard S. Falk and Roger D. Nussbaum1

Abstract. We develop a new approach to the computation of the Hausdorff dimension of

the invariant set of an iterated function system or IFS. In the one dimensional case that

we consider here, our methods require only C 3 regularity of the maps in the IFS. The key

idea, which has been known in varying degrees of generality for many years, is to associate

to the IFS a parametrized family of positive, linear, Perron–Frobenius operators Ls . The

operators Ls can typically be studied in many different Banach spaces. Here, unlike most

of the literature, we study Ls in a Banach space of real-valued, Ck functions, k � 2.

We note that Ls is not compact, but has essential spectral radius �s strictly less than the

spectral radius �s and possesses a strictly positive Ck eigenfunction vs with eigenvalue

�s . Under appropriate assumptions on the IFS, the Hausdorff dimension of the invariant

set of the IFS is the value s D s� for which �s D 1. This eigenvalue problem is then

approximated by a collocation method using continuous piecewise linear functions. Using

the theory of positive linear operators and explicit a priori bounds on the derivatives of

the strictly positive eigenfunction vs , we give rigorous upper and lower bounds for the

Hausdorff dimension s�, and these bounds converge to s� as the mesh size approaches

zero.
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1. Introduction

Our interest in this paper is in finding rigorous estimates for the Hausdorff dimen-
sion of invariant sets for iterated function systems or IFS’s. The case of graph
directed IFS’s (see [42] and [41]) is also of great interest and can be studied by our
methods, but for simplicity we shall restrict attention here to the IFS case.

Let D � R be a nonempty compact set and �j WD ! D, 1 � j � m, a
contraction mapping, i.e., a Lipschitz mapping with Lipschitz constant Lip.�j /,
satisfying Lip.�j / WD cj < 1. If m < 1 and the above assumption holds, it
is known that there exists a unique, compact, nonempty set C � D such that
C D

Sm
j D1 �j .C /. The setC is called the invariant set for the IFS ¹�j W 1 � j � mº.

Although we shall eventually specialize, it may be helpful to describe initially
some functional analysis results in the generality of the previous paragraph. Let
H be a bounded, open subset of R, which is a finite union of open intervals, and
let C k. xH/ denote the real Banach space of C k real-valued maps, all of whose
derivatives of order � � k extend continuously to xH . For a given positive
integer N , assume that gj W xH ! .0;1/ are strictly positive CN functions for
1 � j � m < 1 and �j W xH ! xH , 1 � j � m, are CN maps and contractions.
For s > 0 and integers k, 0 � k � N , one can define a bounded linear map
Ls;k WC k. xH/ ! C k. xH/ by the formula

.Ls;kw/.x/ D

m
X

j D1

Œgj .x/�
sw.�j .x//: (1.1)

Linear maps like Ls;k are sometimes called positive transfer operators or Perron–
Frobenius operators and arise in many contexts other than computation of Haus-
dorff dimension: see, for example, [2]. If r.Ls;k/ denotes the spectral radius of
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Ls;k , then �s D r.Ls;k/ is positive and independent of k for 0 � k � N ; and �s is
an algebraically simple eigenvalue of Ls;k with a corresponding unique, normal-
ized strictly positive eigenfunction vs 2 CN . xH/. Furthermore, the map s 7! �s is
continuous. If �.Ls;k/ � C denotes the spectrum of the complexification of Ls;k,
�.Ls;k/ depends on k, but for 1 � k � N ,

sup¹jzjW z 2 �.Ls;k/ n ¹�sºº < �s: (1.2)

If k D 0, the strict inequality in (1.2) may fail. A more precise version of the above
result is stated in Theorem 4.1 of this paper and Theorem 4.1 is a special case of
results in [49]. The method of proof involves ideas from the theory of positive
linear operators, particularly generalizations of the Kreı̆n–Rutman theorem to
noncompact linear operators; see [35], [4], [56], [46], and [39]. We do not use the
thermodynamic formalism (see [52]) and often our operators cannot be studied in
Banach spaces of analytic functions.

The linear operators which are relevant for the computation of Hausdorff
dimension comprise a small subset of the transfer operators described in (1.1),
but the analysis problem which we shall consider here can be described in the
generality of (1.1) and is of interest in this more general context. We want to
find rigorous methods to estimate r.Ls;k/ accurately and then use these methods
to estimate s�, where, in our applications, s� will be the unique number s � 0

such that r.Ls;k/ D 1. Under further assumptions, we shall see that s� equals
dimH .C /, the Hausdorff dimension of the invariant set associated to the IFS. This
observation about Hausdorff dimension has been made, in varying degrees of
generality by many authors. See, for example, [7], [8], [6], [10], [11], [14], [21],
[23], [25], [24], [27], [28], [29], [30], [41], [40], [50], [52], [53], [54], and [57].

In the applications in this paper, we shall assume, for simplicity, that H is a
bounded open interval, that �j W xH ! xH is a CN contraction mapping, where
N � 3, (or more generally satisfies (H5.1)) and � 0

j .x/ ¤ 0 for all x 2 xH . In the
notation of (1.1), we define gj .x/ D j� 0

j .x/j. It is often natural to assume that H
is a finite union of open intervals, and our methods apply with no essential change
to this case.

Given the existence of a strictly positive CN eigenfunction vs for (1.1), we
show in Section 5 for 1 � p � 3, that one can obtain explicit upper and lower
bounds for the quantity Dpvs.x/

vs.x/
for x 2 xH , whereDp denotes the p-th derivative

of vs. Such bounds can also be obtained for p > 3, but calculations become
more onerous. In the important special case that �j .x/ is of the form .x C bj /

�1,
where bj > 0 and gj .x/ D j� 0

j .x/j, we obtain in Section 6 sharp estimates on

the quantity Dpvs.x/
vs.x/

for all p � 1 and all x 2 xH . These estimates play a crucial
role in allowing us to obtain rigorous upper and lower bounds for the Hausdorff
dimension.



282 R. S. Falk and R. D. Nussbaum

The basic idea of our numerical scheme is to cover xH by nonoverlapping inter-
vals of length h. We remark that our collection of intervals need not be a Markov
partition for our IFS; compare the use of Markov partitions in [43]. We then ap-
proximate the strictly positive, C 2 eigenfunction vs by a continuous piecewise
linear function. Using explicit bounds on the first and second derivatives of vs,
we are able to associate to the operator Ls;k , square matrices As and Bs, which
have nonnegative entries and also have the property that r.As/ � �s � r.Bs/. We
note that using a piecewise linear approximation to vs, as opposed to a piecewise
constant approximation, leads to a considerable increase in accuracy and speed of
convergence. A key role here is played by an elementary fact which is not as well
known as it should be. If M is a nonnegative matrix and w is a strictly positive
vector and Mw � �w, (coordinate-wise), then r.M/ � �. An analogous state-
ment is true if Mw � �w. We emphasize that our approach is robust and allows
us to study the case H � R when �j .�/, 1 � j � m, is only C 3.

If s� denotes the unique value of s such that r.Ls�
/ D �s�

D 1, so that
s� is the Hausdorff dimension of the invariant set for the IFS under study, we
proceed as follows. If we can find a number s1 such that r.Bs1

/ � 1, then, since
the map s 7! �s is decreasing, �s1

� r.Bs1
/ � 1, and we can conclude that

s� � s1. Analogously, if we can find a number s2 such that r.As2
/ � 1, then

�s2
� r.As2

/ � 1, and we can conclude that s� � s2. By choosing the mesh
size for our approximating piecewise polynomials to be sufficiently small, we can
make s1 � s2 small, providing a good estimate for s�. For a given s, r.As/ and
r.Bs/ are easily found by variants of the power method for eigenvalues, since (see
Section 7) the largest eigenvalue has multiplicity one and is the only eigenvalue
of its modulus.

If the coefficients gj .�/ and the maps �j .�/ in (1.1) are CN with N > 2, it
is natural to approximate vs.�/ by piecewise polynomials of degree N � 1. The
corresponding matrices As andBs may no longer have all nonnegative entries and
the arguments of this paper are no longer directly applicable. However, we hope
to prove in a future paper that inequalities like r.As/ � �s � r.Bs/ remain true
and lead to much improved upper and lower bounds for r.Ls/. Heuristic evidence
for this assertion is given in Table 3.2 of Section 3.2.

We illustrate our new approach by first considering in Section 3 the compu-
tation of the Hausdorff dimension of invariant sets in Œ0; 1� arising from classical
continued fraction expansions. In this much studied case, one defines �m D 1

xCm
,

for m a positive integer and x 2 Œ0; 1�; and for a subset B � N, one considers the
IFS ¹�mWm 2 Bº and seeks estimates on the Hausdorff dimension of the invariant
set C D C.B/ for this IFS. This problem has previously been considered by many
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authors. See [5], [7], [8], [21], [23], [25], [24], [28], [29], and [22]. In this case,
(1.1) becomes

.Ls;kw/.x/ D
X

m2B

� 1

x Cm

�2s

w
� 1

x Cm

�

; 0 � x � 1;

and one seeks a value s � 0 for which �s WD r.Ls;k/ D 1. Table 3.1 in
Section 3.2 gives upper and lower bounds for the value s such that �s D 1 for
various sets B. Jenkinson and Pollicott [29] use a completely different method
and obtain, when jBj is small, high accuracy estimates for dimH .C.B//, in which
successive approximations converge at a super-exponential rate. It is less clear
(see [28]) how well the approximation scheme in [29] or [28] works when jBj is
moderately large or when different real analytic functions O�j W Œ0; 1� ! Œ0; 1� are
used. Here, in the one dimensional case, we present an alternative approach with
much wider applicability that only requires the maps in the IFS to be C 3. As
an illustration, we consider in Section 3.3 perturbations of the IFS for the middle
thirds Cantor set for which the corresponding contraction maps areC 3, but notC 4.

It is also worth comparing the approach used in our paper with that used by
McMullen [43]. Superficially the methods seem different, but there are underlying
connections. We exploit the existence of a C k , strictly positive eigenfunction vs

of (1.1) with eigenvalue�s equal to the spectral radius ofLs;k; and we observe that
explicit bounds on derivatives of vs can be exploited to prove convergence rates
on numerical approximation schemes which approximate �s . McMullen does not
explicitly mention the operator Ls;k or the analogue of Ls;k for graph directed
iterated function systems, and he does not use C k , strictly positive eigenfunctions
of equations like (1.1). Instead, he exploits finite positive measures � which are
called F�invariant densities of dimension ı. If s� is a value of s for which the
above eigenvalue �s D 1, then in our context the measure � is an eigenfunction
of the Banach space adjoint .Ls�;0/

� with eigenvalue 1, and our s� corresponds to
ı above. Standard arguments using weak� compactness, the Schauder-Tychonoff
fixed point theorem, and the Riesz representation theorem imply the existence of
a regular, finite, positive, complete measure �, defined on a �-algebra containing
all Borel subsets of the underlying space xH and such that .Ls�;0/

�� D � and
R

vs d� D 1.
McMullen also uses refinements of Markov partitions, while our partitions,

both here and in a sequel [16] in which we consider two dimensional problems,
need not be Markov. However, in the end, both approaches generate (different)
n � n nonnegative matrices Ms , parametrized by a parameter s and both meth-
ods use the spectral radius of Ms to approximate the desired Hausdorff dimen-
sion s�. McMullen’s matrices are obtained by approximating certain nonconstant
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functions defined on a refinement of the original Markov partition by piecewise
constant functions defined with respect to this refinement. We approximate by
linear functions on each subset in our partition in dimension one and (see [16]) by
bilinear functions defined on each subset of our partition in dimension two. As we
show below, by exploiting estimates on higher derivatives of vs.�/, our methods
give explicit upper and lower bounds for s� and more rapid convergence to s� than
one obtains using piecewise constant approximations.

The square matrices As and Bs mentioned above and described in more detail
in Section 3 have nonnegative entries and satisfy r.As/ � �s � r.Bs/. To apply
standard numerical methods, it is useful to know that all eigenvalues � ¤ r.As/

of As satisfy j�j < r.As/ and that r.As/ has algebraic multiplicity one and
that corresponding results hold for r.Bs/. Such results are proved in Section 7
when the mesh size, h, is sufficiently small. Note that this result does not follow
from the standard theory of nonnegative matrices, since As and Bs typically
have zero columns and are not primitive. We also prove that r.As/ � r.Bs/ �

.1CC1h
2/r.As/, where the constant C1 can be explicitly estimated. In Section 8,

we prove that the map s 7! �s is log convex and strictly decreasing; and the same
result is proved for s 7! r.Ms/, where Ms is a naturally defined matrix such that
As � Ms � Bs.

In a subsequent paper [16], we consider the computation of the Hausdorff
dimension of some invariant sets arising for complex continued fractions. Suppose
that B is a subset of I1 D ¹mC ni Wm 2 N; n 2 Zº, and for each b 2 B, define
�b.z/ D .zCb/�1. Note that �b maps xG D

®

z 2 CW
ˇ

ˇz� 1
2

ˇ

ˇ � 1
2

¯

into itself. We are
interested in the Hausdorff dimension of the invariant set C D C.B/ for the IFS
¹�bW b 2 Bº. This is a two dimensional problem and we allow the possibility that
B is infinite. In general (contrast work in [29] and [28]), it does not seem possible
in this case to replace Ls;k, k � 2, by an operator ƒs acting on a Banach space
of analytic functions of one complex variable and satisfying r.ƒs/ D r.Ls;k/.
Instead, we work in C 2. xG/ and apply our methods to obtain rigorous upper and
lower bounds for the Hausdorff dimension dimH .C.B// for several examples. The
case B D I1 has been of particular interest and is one motivation for the paper
[16]. In [19], Gardner and Mauldin proved that d WD dimH .C.I1// < 2. In
Theorem 6.6 of [40], Mauldin and Urbanski proved that 1:2484 < d � 1:885, and
in [51], Priyadarshi proved that d � 1:78. We prove that 1:85550 � d � 1:85589.
A combination of the results in this paper plus the subsequent paper [16] can be
found in a preliminary version published on the arXiv [15].

Although many of the key results in the paper are described above, an outline
summarizing the sections may be helpful. In Section 2, we recall the definition of
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Hausdorff dimension and present some mathematical preliminaries. In Section 3,
we present the details of our approximation scheme for Hausdorff dimension,
explain the crucial role played by estimates on derivatives of order � 2 of vs,
and give the aforementioned estimates for Hausdorff dimension. We emphasize
that this is a feasibility study. We have limited the accuracy of our approximations
to what is easily found using the standard precision of Matlab and have run only
a limited number of examples, using mesh sizes that allow the programs to run
fairly quickly. In addition, we have not attempted to exploit the special features of
our problems, such as the fact that our matrices are sparse. Thus, it is clear that
one could write a more efficient code that would also speed up the computations.
However, the Matlab programs we have developed are available on the web at

http://www.math.rutgers.edu/~falk/hausdorff/codes.html

and we hope other researchers will run other examples of interest to them.
The theory underlying the work in Section 3 is deferred to Sections 4–8. In

Section 4 we describe some results concerning existence of Cm positive eigen-
functions for a class of positive (in the sense of order-preserving) linear operators.
In Section 5, we derive explicit bounds on the derivatives of the eigenfunction vs

ofLs and in Section 6, we show how much sharper bounds on the derivatives of the
eigenfunction can be obtained when the maps �b are Möbius transformations. In
Section 7, we verify some spectral properties of the approximating matrices which
justify standard numerical algorithms for computing their spectral radii. Finally,
in Section 8, we show the log convexity of the spectral radius r.Ls/, which we
exploit in our numerical approximation scheme.

2. Preliminaries

We recall the definition of the Hausdorff dimension, dimH .K/, of a subset K �

R
N . To do so, we first define for a given s � 0 and each set K � R

N ,

H s
ı .K/ D inf

°

X

i

jUi j
s W ¹Uiº is a ı cover of K

±

;

where jU j denotes the diameter of U and a countable collection ¹Uiº of subsets
of RN is a ı-cover of K � R

N if K �
S

i Ui and 0 < jUi j < ı for all i . We then
define the s-dimensional Hausdorff measure

H s.K/ D lim
ı!0C

H s
ı .K/:

http://www.math.rutgers.edu/~falk/hausdorff/codes.html
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Finally, we define the Hausdorff dimension of K, dimH .K/, as

dimH .K/ D inf¹sWH s.K/ D 0º:

We now state the main result connecting Hausdorff dimension to the spectral
radius of the map defined by (1.1). To do so, we first define the concept of an
infinitesimal similitude (sometimes called a conformal map). Let .S; d/ be a
perfect metric space. If � WS ! S , then � is an infinitesimal similitude at t 2 S if
for any sequences .sk/k and .tk/k with sk ¤ tk for k � 1 and sk ! t , tk ! t , the
limit

lim
k!1

d.�.sk/; �.tk//

d.sk ; tk/
DW .D�/.t/

exists and is independent of the particular sequences .sk/k and .tk/k. Furthermore,
� is an infinitesimal similitude on S if � is an infinitesimal similitude at t for all
t 2 S .

This concept generalizes the concept of affine linear similitudes, which are
affine linear contraction maps � satisfying for all x; y 2 R

n

d.�.x/; �.y// D cd.x; y/; c ¤ 0:

In particular, the examples discussed in this paper, such as maps of the form
�.x/ D 1

xCm
, with m a positive integer, are infinitesimal similitudes. More

generally, if S is a compact subset of R
1 and � WS ! S extends to a C 1 map

defined on an open neighborhood of S in R
1, then � is an infinitesimal similitude.

Theorem 2.1 (Theorem 1.2 of [50]). Let �i WS ! S for 1 � i � N be infinitesimal
similitudes and assume that the map t 7! .D�i /.t / is a strictly positive Hölder
continuous function on S . Assume that �i is a Lipschitz map with Lipschitz
constant ci � c < 1 and let C denote the unique, compact, nonempty invariant
set such that

C D

N
[

iD1

�i .C /:

Further, assume that �i satisfy

�i .C / \ �j .C / D ;; for 1 � i; j � N; i ¤ j;

and are one-to-one on C . Then the Hausdorff dimension of C is given by the
unique �0 such that r.L�0

/ D 1.

For related results on the computation of Hausdorff dimension, we refer the
reader to the list of references near the bottom of p. 2.
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Finally, we state a result that is key to obtaining explicit upper and lower bounds
on the Hausdorff dimension. Although we give a proof to keep our presentation
self-contained, the following lemma is actually a special case of much more
general results concerning order-preserving, homogeneous cone mappings: see
Lemmas 9.1–9.4 on pp. 89–91 in [34] and also Lemma 2.2 in [36] and Theorem 2.2
in [38]. If, for w as in Lemma 2.2 below, we let D denote the positive diagonal
N � N matrix with diagonal entries wj , 1 � j � N , r.M/ D r.D�1MD/;
and Lemma 2.2 can also be obtained by applying Theorem 1.1 on p. 24 of [44] to
D�1MD.

Lemma 2.2. Let M be an N � N matrix with non-negative entries and w an N
vector with strictly positive components.

� If .Mw/k � �wk, k D 1; : : :N , then r.M/ � �.

� If .Mw/k � �wk, k D 1; : : :N , then r.M/ � �.

Proof. If .Mw/k � �wk , k D 1; : : :N , it easily follows that .M nw/k � �nwk

and so kM nwk1 � �nkwk1. Let e be a vector with all ei D 1. Then

kM nk1 D kM nek1 �
kM nwk1

kwk1
� �n:

Hence,
r.M/ D lim

n!1
kM nk

1=n

1 � �:

If .Mw/k � �wk, k D 1; : : :N , it easily follows that .M nw/k � �nwk . Let k
be chosen so that kM nk1 D

P

j .M
n/k;j . Since Œr.M/�n D r.M n/ � kM nk1,

min
j

wj Œr.M/�n � min
j

wj

X

j

.M n/k;j

�
X

j

.M n/k;j wj

D .M nw/k

� �nwk :

So,

min
j

wj �
h �

r.M/

in

wk :

If r.M/ > �, then letting n ! 1, we get that minj wj � 0, which contradicts the
fact that all wj > 0. Hence, r.M/ � �. �
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3. Examples

3.1. Continued fraction Cantor sets. We first consider the problem of comput-
ing the Hausdorff dimension of some Cantor sets arising from continued fraction
expansions. More precisely, given any number 0 < x < 1, we can consider its
continued fraction expansion

x D Œa1; a2; a3; : : :� D
1

a1 C
1

a2 C
1

a3 C � � �

;

where a1; a2; a3; : : : 2 N. We then consider the Cantor setEŒm1;:::;mp�, of all points
in Œ0; 1� where we restrict the coefficients ai to the values m1; : : : ; mp. A number
of papers (e.g., [7], [8], [21], [23], [25], and [29]) have considered this problem
in the case of the set E1;2, consisting of all points in Œ0; 1� for which each ai has
the value 1 or 2. In [29], a method is presented that computes this dimension to
25 decimal places. Computations are also presented in that paper and in [28] for
other choices of the values m1; : : : ; mp. In [5], the Hausdorff dimension of the
Cantor set E2;4;6;8;10 is computed to three decimal places (0.517).

Corresponding to the choices of mi , we associate contraction maps �m.x/ D
1

xCm
. A key fact is that the Cantor sets we consider can be generated as limit

points of sequences of these contraction maps. For example, the set E1:2 can be
generated using the maps �1.x/ D 1

xC1
and �2.x/ D 1

xC2
as the set of limit points

of sequences �m1
: : : �mn

.0/, for m1; m2; : : : 2 ¹1; 2º.

For w 2 C Œ0; 1�, we define

.Lsw/.x/ D

p
X

j D1

j� 0
mj
.x/jsw.�mj

.x//:

In fact, we can just as easily think of Ls as an operator on C Œ0; 
�1� or on
C Œ.1C�/�1; 
�1�, where 
 D minmj and � D maxmj . In the discussion below,
we will usually work on the interval Œ0; 
�1�.

Our computations are based on the following result, which we shall prove in
subsequent sections.
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Theorem 3.1. For all s > 0, Ls has a unique strictly positive eigenfunction vs

with Lsvs D �svs, where �s > 0 and �s D r.Ls/, the spectral radius of Ls.
Furthermore, the map s 7! �s is strictly decreasing and continuous, and for all
p > 0 and for all x 2 Œ0; 
�1�,

.2s/.2s C 1/ : : : .2s C p � 1/.2
�1 C �/�p

� .�1/p
DpŒvs.x/�

vs.x/

� .2s/.2s C 1/ : : : .2s C p � 1/
�p;

(3.1)

where 
 D minj mj and � D maxj mj . Finally, the Hausdorff dimension of the
Cantor set generated from the maps

�m1
, : : :, �mp

is the unique value of s with �s D 1.

Note that it follows easily from (3.1) when p D 1 and x1; x2 2 Œ0; 1� , that

vs.x2/ � vs.x1/ exp
�

2s
jx2 � x1j




�

: (3.2)

To see this, write

log
vs.x2/

vs.x1/
D log vs.x2/ � log vs.x1/

D

Z x2

x1

d

dx
log vs.x/ dx

D

Z x2

x1

v0
s.x/

vs.x/
dx;

apply the bound in (3.1), and exponentiate the result.

To obtain approximations of the dimension of the Cantor sets described in
this section, we first approximate a function f 2 C 2Œ0; 
�1� by a continuous,
piecewise linear function defined on a mesh of interval size h on Œ0; 
�1�. More
specifically, we approximate f .x/, xk � x � xkC1 by its piecewise linear
interpolant f I .x/ given by

f I .x/ D
xkC1 � x

h
f .xk/C

x � xk

h
f .xkC1/; xk � x � xkC1;

where the mesh points xk satisfy 0 D x0 < x1 � � � < xn D 
�1, with xkC1 � xk D

h D 1

n

.
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Notice that if w D .w0; : : : ;wn/ is a vector in R
nC1, we can associate a

continuous piecewise linear function wI W Œ0; 
�1� ! R defined with respect to
the partition 0 D x0 < x1 < � � � < xn D 
�1 of Œ0; 
�1� by

wI .y/ D
ŒxrC1 � y�

h
.w/r C

Œy � xr �

h
.w/rC1; y 2 Œxr ; xrC1�; 0 � r < n:

This notation will be used below and will play an important role in our argument.
Our goal is to construct .n C 1/ � .n C 1/ matrices As and Bs which have

nonnegative entries and satisfy

r.As/ � r.Ls/ � r.Bs/;

where r.As/ (respectively, r.Bs/) denotes the spectral radius of As (respectively,
Bs). Furthermore, the entries .As/ij and .Bs/ij of As and Bs satisfy (for n large)

0 � .Bs/ij � .As/ij � Ch2;

where C is a constant which can be estimated explicitly and is independent of n.
Standard results for the error in linear interpolation on an interval Œa; b� (e.g.,

see Theorem 3.2 of [1]) assert that for x 2 Œa; b�, there exists � D �.x/ 2 .a; b/

such that

f I .x/ � f .x/ WD
b � x

b � a
f .b/C

x � a

b � a
f .a/ � f .x/

D
1

2
.b � x/.x � a/f 00.�/:

In the notation above, if x 2 Œ0; 
�1� and xr � x � xrC1 for some r , 0 � r < n,
we shall apply this error estimate with a D xr and b D xrC1, so � 2 .xr ; xrC1/.

We can also use results from Theorem 3.1 to bound the interpolation error.
Letting f .x/ D vs.x/, we obtain from Theorem 3.1 that

2s.2s C 1/.2
�1 C �/�2vs.�/ � v00
s .�/ � 2s.2s C 1/
�2vs.�/:

Using (3.2), and the fact that j� � xr j � h for � 2 Œxr ; xrC1�, we have

vs.xr/ exp
�

� 2s
h




�

� vs.xr / exp
�

� 2s
j� � xr j




�

� vs.�/

� vs.xr / exp
�

2s
j� � xr j




�

� vs.xr / exp
�

2s
h




�

:
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Similarly,

vs.xrC1/ exp
�

� 2s
h




�

� vs.�/ � vs.xrC1/ exp
�

2s
h




�

:

Taking a suitable convex combination of these results, we get for y 2 Œxr ; xrC1�,

vI
s .y/ exp

�

� 2s
h




�

� vs.�/ � vI
s .y/ exp

�

2s
h




�

:

Using the interpolation error estimate, we then get for xr � y � xrC1,

ŒxrC1 � y�Œy � xr �s.2s C 1/.2
�1 C �/�2 exp
�

� 2s
h




�

vI
s .y/

� vI
s .y/ � vs.y/

� ŒxrC1 � y�Œy � xr �s.2s C 1/
�2 exp
�

2s
h




�

vI
s .y/:

Using this estimate, we have precise upper and lower bounds on the error in the
interval Œxr ; xrC1� that only depend on the function values of vs at xr and xrC1.
For y 2 Œxr ; xrC1�, define error functionals

err1.y/ D ŒxrC1 � y�Œy � xr �s.2s C 1/
�2 exp
�

2s
h




�

;

err2.y/ D ŒxrC1 � y�Œy � xr �s.2s C 1/.2
�1 C �/�2 exp
�

� 2s
h




�

:

Note that err1.y/ and err2.y/ depend on the subinterval in which y lies, although
this is not reflected directly in the notation.

It then follows that for all y 2 Œxr ; xrC1�,

Œ1 � err1.y/�vI
s .y/ � vs.y/ � Œ1 � err2.y/�vI

s .y/:

For a fixed k, 0 � k � n, if we replace y in the above inequality by �mj
.xk/ and

sum over j , we obtain
p

X

j D1

j� 0
mj
.xk/j

sŒ1 � err1.�mj
.xk//�v

I
s .�mj

.xk//

�

p
X

j D1

j� 0
mj
.xk/j

svs.�mj
.xk//

D .Lsvs/.xk/

D r.Ls/vs.xk/

�

p
X

j D1

j� 0
mj
.xk/j

s Œ1� err2.�mj
.xk//�v

I
s .�mj

.xk//:
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Motivated by the above inequality, we now define .nC 1/ � .nC 1/ matrices
As and Bs which have nonnegative entries and satisfy the property that r.As/ �

r.Ls/ � r.Bs/. Letting w be a vector in RnC1, we define .Bsw/k and .Asw/k, the
kth component of Bsw and Asw respectively, by

.Bsw/k D

p
X

j D1

j� 0
mj
.xk/j

s Œ1� err2.�mj
.xk//� w

I .�mj
.xk//;

.Asw/k D

p
X

j D1

j� 0
mj
.xk/j

s Œ1� err1.�mj
.xk//� w

I .�mj
.xk//:

Because of the fact that in all of our previous definitions, we take 0 � k � n,
we shall also do so in our definitions of As and Bs , so that these matrices
have row and columns, numbered 0 through n. In the above definitions, if
�mj

.xk/ 2 Œxrj
; xrj C1�, (the subinterval also depends on k, but we have omitted

this dependence in the notation, thinking of k as fixed), then applying the previous
definition of wI .y/,

wI .�mj
.xk// D

xrj C1 � �mj
.xk/

h
wrj

C
�mj

.xk/ � xrj

h
wrj C1:

To understand these formulas, note that wI .�mj
.xk// is just a linear combina-

tion of two components of the vector w, namely wrj
and wrj C1, where xrj

and
xrj C1 are the endpoints of the subinterval to which �mj

.xk/ belongs. Determining
this subinterval for 1 � j � p and 0 � k � n are the first calculations we need
to make. In the case p D 1, there is only one term in the sum (when j D 1), and
since .Bsw/k D

Pn
iD0.Bs/k;iwi , we then have

.Bs/k;rj
D j� 0

mj
.xk/j

s Œ1 � err2.�mj
.xk/�

Œxrj C1 � �mj
.xk/�

h
;

.Bs/k;rj C1 D j� 0
mj
.xk/j

s Œ1 � err2.�mj
.xk/�

Œ�mj
.xk/ � xrj

�

h
;

.Bs/k;i D 0; i ¤ rj ; rj C 1:

If p > 1, then for each j D 2; : : : ; p, we modify the entries in the kth row
of the matrix Bs, according to which subinterval the points �mj

.xk/ lie. If the
subinterval is disjoint from the previous subintervals, then we need to modify the
corresponding two columns of the kth row of the matrix Bs , which introduces
two new nonzero entries. If it coincides with a previous subinterval, then we
simply add to the coefficients in the two corresponding columns. We perform this
procedure for each xk ; k D 0; : : : ; n, thus generating the nC 1 rows of the matrix
Bs . The entries of the matrix As are generated in a similar fashion.
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An example, where we simplify the presentation by working on the interval
Œ0; 1� instead of Œ0; 
�1�, is when h D 1

4
, so that we have x0 D 0, x1 D 1

4
,

x2 D 1
2
, x3 D 3

4
, and x4 D 1. We only show the computations for Bs, which

is a 5� 5 matrix, since the computations for As are similar. If we consider p D 2,
�m1

.x/ D 1
xC3

and �m2
.x/ D 1

xC5
, then

�m1
.x0/D

1

3
; �m1

.x1/D
4

13
; �m1

.x2/D
2

7
;

�m1
.x3/D

4

15
; �m1

.x4/D
1

4
;

�m2
.x0/D

1

5
; �m2

.x1/D
4

21
; �m2

.x2/D
2

11
;

�m2
.x3/D

4

23
; �m2

.x4/D
1

6
:

Note that in this case, �m1
.xk/ 2

�

1
4
; 1

2

�

and �m2
.xk/ 2

�

0; 1
4

�

, for k D 0; : : : ; 4.
Although �m1

.x4/ is also in
�

1
4
; 1

2

�

, there is no ambiguity, since the only nonzero
coefficient multiplies w1 and the coefficient is the same with either choice of
subinterval.

We next compute wI .�mj
.xk// and err2.�mj

.xk//.

wI .�m1
.xk// D

x2 � �m1
.xk/

h
w1 C

�m1
.xk/ � x1

h
w2;

wI .�m2
.xk// D

x1 � �m2
.xk/

h
w0 C

�m2
.xk/ � x0

h
w1;

err2.�m1
.xk//

D Œx2 � �m1
.xk/�Œ�m1

.xk/ � x1�s.2s C 1/.2
�1 C �/�2 exp
�

� 2s
h




�

;

err2.�m2
.xk//

D Œx1 � �m2
.xk/�Œ�m2

.xk/ � x0�s.2s C 1/.2
�1 C �/�2 exp
�

� 2s
h




�

:

Combining these results, we find that for k D 0; : : : ; 4,

.Bs/k;0 D
1

h
.j� 0

m2
.xk/j

sŒ1 � err2.�m2
.xk//�Œx1 � �m2

.xk/�/;

.Bs/k;1 D
1

h
.j� 0

m1
.xk/j

sŒ1 � err2.�m1
.xk//�Œx2 � �m1

.xk/�

C j� 0
m2
.xk/j

sŒ1 � err2.�m2
.xk//�Œ�m2

.xk/ � x0�/;
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.Bs/k;2 D
1

h
j� 0

m1
.xk/j

s Œ1� err2.�m1
.xk//�Œ�m1

.xk/ � x1�;

.Bs/k;3 D .Bs/k;4 D 0:

Returning to the general case, note that since erri .y/ D O.h2/ for i D 1; 2,
all of the entries of As and Bs will be nonnegative, provided h is sufficiently
small. However, the example given above is typical and shows that, in general,
the entries of As and Bs will not all be strictly positive. If we define a vector w by
wk D vs.xk/, then wI .y/ D vI

s .y/ for all y 2 Œ0; 1�, and our previous inequalities
show that for 0 � k � n,

.Asw/k � r.Ls/vs.xk/ D r.Ls/wk ; .Bsw/k � r.Ls/vs.xk/ D r.Ls/wk :

Since wk D vs.xk/ > 0 for k D 0; : : : ; n, we can apply Lemma 2.2 in Section 2
about nonnegative matrices to see that

r.As/ � r.Ls/ � r.Bs/:

As described in Section 1, if s� denotes the unique value of s such that r.Ls�
/ D

�s�
D 1, then s� is the Hausdorff dimension of the setEŒm1;:::;mp�. If we can find a

number s1 such that r.Bs1
/ � 1, then r.Ls1

/ � r.Bs1
/ � 1, and we can conclude

that s� � s1. Analogously, if we can find a number s2 such that r.As2
/ � 1, then

r.Ls2
/ � r.As2

/ � 1, and we can conclude that s� � s2. By choosing the mesh
sufficiently fine, we can make s1 � s2 small, providing a good estimate for s�.

We can also reduce the number of computations by first iterating the maps �mi

to produce a smaller initial domain that we need to approximate. For example,
if we seek the Hausdorff dimension of the set E1;2, since �1.Œ0; 1�/ D

�

1
2
; 1

�

and
�2.Œ0; 1�/ D

�

1
3
; 1

2

�

, the maps �1 and �2 map
�

1
3
; 1

�

7!
�

1
3
; 1

�

, so we can restrict the
problem to this subinterval. Further iterating, we see that �1

��

1
3
; 1

��

D
�

1
2
; 3

4

�

and
�2

��

1
3
; 1

��

D
�

1
3
; 3

7

�

. Hence the maps �1 and �2 map
�

1
3
; 3

7

�

[
�

1
2
; 3

4

�

to itself and
we can further restrict the problem to this domain.

3.2. Continued fraction Cantor sets – numerical results. In this section, we
report in Table 3.1 the results of the application of the algorithm described above
to the computation of the Hausdorff dimension of a sample of continued fraction
Cantor sets. Where the true value was known to sufficient accuracy, it is not hard
to check that the rate of convergence as h is refined is O.h2/, which corresponds
to the theoretical result described in Remark 7.3. The upper and lower errors are
computed based on the results reported in [29]. For the last five entries, we do
not have independent results for the true solution correct to a sufficient number
of decimal places to compute the upper and lower errors, but our results give an
interval which must contain the true solution.
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Although the theory developed above does not apply to higher order piece-
wise polynomial approximation, since one cannot guarantee that the approximate
matrices have nonnegative entries, we also report in Table 3.2 and Table 3.3 the
results of higher order piecewise polynomial approximation to demonstrate the
promise of this approach. In this case, we only provide the results for Bs, which
does not contain any corrections for the interpolation error. In a future paper we
hope to prove that rigorous upper and lower bounds for the Hausdorff dimension
can also be obtained when higher order piecewise polynomial approximations are
used.

Table 3.1. Computation of Hausdorff dimension s of some continued fraction Cantor sets.

Set h lower s upper s low err up err

E[1,2] 0.00010 0.53128050509989 0.53128050644980 1.18e�09 1.73e�10

0.00005 0.53128050598142 0.53128050632077 2.96e�10 4.36e�11

E[1,3] 0.00010 0.45448907685942 0.45448907780427 8.02e�10 1.42e�10

0.00005 0.45448907745903 0.45448907769761 2.03e�10 3.58e�11

E[1,4] 0.00010 0.41118272409575 0.41118272491153 6.79e�10 1.37e�10

0.00005 0.41118272460331 0.41118272480924 1.71e�10 3.44e�11

E[2,3] 0.00010 0.33743678074485 0.33743678082457 6.12e�11 1.85e�11

0.00005 0.33743678079023 0.33743678081090 1.58e�11 4.84e�12

E[2,4] 0.00010 0.30631276799370 0.30631276807670 5.91e�11 2.39e�11

0.00005 0.30631276803924 0.30631276805816 1.35e�11 5.37e�12

E[10,11] 0.00020 0.14692123539045 0.14692123539103 3.38e�13 2.43e�13

0.00005 0.14692123539076 0.14692123539080 1.92e�14 1.40e�14

E[100,10000] 0.00040 0.05224659263866 0.05224659263866 2.21e�15 3.50e�15

0.00010 0.05224659263866 0.05224659263866 1.73e�16 2.71e�16

E[2,4,6,8,10] 0.00010 0.51735703083073 0.51735703098246

0.00005 0.51735703091123 0.51735703094801

E[1,. . . ,10] 0.00010 0.92573758921886 0.92573759153175

0.00005 0.92573759066470 0.92573759124295

E[1,3, 5, . . . , 33] 0.00010 0.77051600758209 0.77051600898599

0.00005 0.77051600843322 0.77051600878460

E[2, 4, 6, . . . , 34] 0.00010 0.63347197012177 0.63347197028753

0.00005 0.63347197021161 0.63347197025258

E[1, . . . ,34] 0.00010 0.98041962337899 0.98041962562238

0.00005 0.98041962476506 0.98041962532582

Table 3.2. Computation of Hausdorff dimension s of E[1,2] using higher order piecewise
polynomials.

degree h s error

1 0.01 0.531282991861209 2.49 e�06

2 0.02 0.531280509905738 3.63 e�09

4 0.04 0.531280506277707 5.07 e�13

5 0.05 0.531280506277198 2.44 e�15
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Table 3.3. Computation of Hausdorff dimension s of E[2,4,6,8,10] using piecewise cubic
polynomials.

h s

0.100 0.517357031893604

0.050 0.517357031040157

0.020 0.517357030941730

0.010 0.517357030937109

0.005 0.517357030937029

0.002 0.517357030937019

0.001 0.517357030937018

In the computations shown using higher order piecewise polynomials, since
the number of unknowns for a continuous, piecewise polynomial of degree k
on n uniformly spaced subintervals of width h is given by kn C 1, to get a fair
comparison, we have adjusted the mesh sizes so that each computation involves the
same number of unknowns. For this problem, the eigenfunction vs is smooth and
the computations show a dramatic increase in the accuracy of the approximation
as the degree of the approximating piecewise polynomial is increased.

3.3. An example with less regularity. For 0 � a � 1, we consider the maps

�1.x/ D
1

3C 2a
.x C ax

7=2/; �2.x/ D
1

3C 2a
.x C ax

7=2/C
2C a

3C 2a
; (3.3)

which map the unit interval to itself. Both these maps 2 C 3.Œ0; 1�/, but …

C 4.Œ0; 1�/. We note that because of the lack of regularity, the methods of [29]
and [28] cannot be applied. When a D 0, these maps become

�1.x/ D
x

3
; �2.x/ D

x

3
C
2

3
;

and the corresponding Cantor set has Hausdorff dimension

ln 2

ln 3
� 0:630929753571458:

Our computations, shown in Table 3.4, are based on the following result, which
we shall prove in subsequent sections.

Table 3.4. Computation of Hausdorff dimension s of less regular examples.

a h lower s upper s upper s - lower s

0.00 0.0001 0.630929753571456 0.630929753571458 2.00e�15

0.25 0.0001 0.691029100877742 0.691029110502742 9.63e�09

0.50 0.0001 0.733474573000780 0.733474622222678 4.92e�08

0.75 0.0001 0.767207065889322 0.767207292955631 2.27e�07

1.00 0.0001 0.796726361744928 0.796727861914648 1.50e�06
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Theorem 3.2. Let

.Lsw/.x/ D

2
X

j D1

j� 0
j .x/j

sw.�j .x//;

where �1 and �2 are given by (3.3), and we have not indicated the dependence on
a in our notation. For all s > 0, Ls has a unique (up to normalization) strictly
positive C 2 eigenfunction vs with Lsvs D rsvs, where rs > 0 and rs D r.Ls/,
the spectral radius of Ls . Furthermore, the map s 7! rs is strictly decreasing and
continuous, and for all x1; x2 2 Œ0; 1�, we have the estimate

0 <
v00

s .x/

vs.x/
�

h

sG2.a/C
2s2C1.a/

2�.a/

1 � �.a/
C
sC1.a/E2.a/

1� �.a/

i

Œ1� �.a/2��1;

where �.a/, C1.a/, E2.a/, C2.a/, and G2.a/ are given by (5.28), (5.29), (5.30),
(5.31), and (5.32), respectively, and a is as in (3.3). Finally, the Hausdorff
dimension of the Cantor set generated from the maps �1 and �2 is the unique value
of s with rs D r.Ls/ D 1.

4. Existence of C
m positive eigenfunctions

In this section we shall describe some results concerning existence of Cm posi-
tive eigenfunctions for a class of positive (in the sense of order-preserving) linear
operators. We shall later indicate how one can often obtain explicit bounds on
derivatives of the positive eigenfunctions. As noted above, such estimates play
a crucial role in our numerical method and therefore in obtaining rigorous esti-
mates of Hausdorff dimension for invariant sets associated with iterated function
systems. The methods we shall describe can also be applied to the important case
of graph directed iterated function systems, but for simplicity we shall restrict our
attention in this paper to a class of linear operators arising in the iterated function
system case.

The starting point of our analysis is Theorem 5.5 in [49], which we now
describe for a simple case. IfH is a bounded open subset of R andm is a positive
integer, Cm. xH/ will denote the set of real-valued Cm maps wWH ! R such that
all derivativesDkwwith 0 � k � m extend continuously to xH . HereDkw D dkw

dxk

and Cm. xH/ is a real Banach space with

kwk D sup¹jDkw.x/jW x 2 H; 0 � k � mº:
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Let B denote a finite index set with jBj D p. For b 2 B, we assume

(H4.1) gb 2 Cm. xH/ for all b 2 B and gb.x/ > 0 for all x 2 xH and all b 2 B;

(H4.2) �bWH ! H is a Cm map for all b 2 B.

In (H4.1) and (H4.2), we always assume that m � 1.

We define

ƒWCm. xH/ �! Cm. xH/

by

.ƒ.w//.x/ D
X

b2B
gb.x/w.�b.x//: (4.1)

For integers � � 1, we define

B� WD ¹! D .j1; : : : j�/W jk 2 B for 1 � k � �º:

For ! D .j1; : : : j�/ 2 B�, we define

!� D !;

!��1 D .j1; : : : j��1/;

!��2 D .j1; : : : j��2/;

:::

!1 D j1:

We define

�!��k
.x/ D .�j��k

ı �j��k�1
ı � � � ı �j1

/.x/;

so

�!.x/ WD �!�
.x/ D .�j�

ı �j��1
ı � � � ı �j1

/.x/:

For ! 2 B�, we define g!.x/ inductively by

g!.x/D gj1
.x/ if ! D .j1/ 2 B WD B1,

g!.x/D gj2
.�j1

.x//gj1
.x/ if ! D .j1; j2/ 2 B2,

g!.x/D gj�
.�!j��1

.x//g!��1
.x/ if ! D .j1; j2; : : : j�/ 2 B�.
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If is not hard to show (see [48], [5], and [49]) that

.ƒ�.w//.x/ D
X

!2B�

g!.x/w.�!.x//: (4.2)

It is easy to prove (see [49]) thatƒ defines a bounded linear map of Cm. xH/ !

Cm. xH/. We shall let yƒ denote the complexification of ƒ and let �.yƒ/ denote the
spectrum of yƒ. We shall define �.ƒ/ D �.yƒ/. If all the functions gb and �b are
CN , then we can considerƒ as a bounded linear operatorƒmWCm. xH/ ! Cm. xH/

for 1 � m � N , but one should note that in general �.ƒm/ will depend on m.
To obtain a useful theory for ƒ, we need a further crucial assumption.

(H4.3) There exists a positive integer � and a constant � < 1 such that for all
! 2 B� and all x; y 2 H , j�!.x/ � �!.y/j � �jx � yj.

If we define c D �
1=� < 1, it follows from (H4.3) that there exists a constant

M such that for all ! 2 B� and all � � 1,

j�!.x/ � �!.y/j � Mc� jx � yj for all x; y 2 H: (4.3)

The following theorem is a special case of Theorem 5.5 in [49].

Theorem 4.1. Let H be a bounded open subset of R, which is a finite union of
open intervals. Let X D Cm. xH/ and assume that (H4.1), (H4.2), and (H4.3) are
satisfied (wherem � 1 in (H4.1) and (H4.2)) and thatƒWX ! X is given by (4.1).
If Y D C. xH/, the Banach space of real-valued continuous functions wW xH ! R

and LWY ! Y is defined by (4.1), then r.L/ D r.ƒ/ > 0, where r.L/ denotes the
spectral radius ofL and r.ƒ/ denotes the spectral radius ofƒ. If �.ƒ/ denotes the
essential spectral radius of ƒ (see [38],[48],[50], and [46]), then �.ƒ/ � cmr.ƒ/

where c D �
1=� is as in (4.3). There exists v 2 X such that v.x/ > 0 for all x 2 xH

and

ƒ.v/ D rv; r D r.ƒ/:

There exists r1 < r such that if � 2 �.ƒ/ n ¹rº, then j�j � r1; and r D r.ƒ/ is an
isolated point of �.ƒ/ and an eigenvalue of algebraic multiplicity 1. If u 2 X and
u.x/ > 0 for all x 2 xH , there exists a real number su > 0 such that

lim
k!1

�1

r
ƒ

�k

.u/ D suv; (4.4)

where the convergence in (4.4) is in the Cm topology on X .
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Remark 4.1. If l is an integer satisfying 0 � l � m, where m � 1 is as in (H4.1)
and (H4.2), it follows from (4.4) that

lim
k!1

�1

r

�k

Dlƒk.u/ D suD
lv; (4.5)

and

lim
k!1

�1

r

�k

ƒk.u/ D suv; (4.6)

where the convergence in (4.5) and (4.6) is in the topology of C. xH/, the Banach
space of continuous functions wW xH ! R.

It follows from (4.5) and (4.6) that for any integer l with 0 � l � m,

lim
k!1

.Dlƒk.u//.x/

ƒk.u/.x/
D
.Dl .v//.x/

v.x/
; (4.7)

where the convergence in (4.7) is uniform in x 2 xH . If we choose u.x/ D 1 for
all x 2 xH , it follows from (4.2) that for all integers l with 0 � l � m, we have

lim
k!1

Dl.
P

!2Bk
g!.x//

P

!2Bk
g!.x/

D
Dlv.x/

v.x/
; (4.8)

where the convergence in (4.8) is uniform in x 2 xH . We shall use (4.8) in our

further work to obtain explicit bounds on sup
® jDlv.x/j

v.x/
W x 2 xH

¯

.

5. Estimates for derivatives of vs: mappings of form (1.1)

Throughout this section, we shall assume for simplicity that H D .a1; a2/ is a
bounded, open interval, although it is frequently natural to take H to be the finite
union of disjoint intervals. B will denote a finite index set. For b 2 B and some
integer m � 1, we assume

(H5.1) For each b 2 B, gb 2 Cm. xH/, �b 2 Cm. xH/, gb.x/ > 0 for all x 2 xH and
�b.H/ � H . There exist an integer � � 1 and a real number � < 1 such
that for all ! 2 B� WD ¹.b1; b2; : : : ; b�/W bj 2 B for 1 � j � �º and for all
x; y 2 xH , j�!.x/� �!.y/j � �jx �yj, where �! WD �b�

ı �b��1
ı � � � ı �b1

for ! D .b1; b2; : : : ; b�/ 2 B�.
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As in Section 4, we define Y D C. xH/ and Xm D Cm. xH/. Assuming (H5.1),
we define for s � 0, a bounded linear operator LsWY ! Y by

.Lsw/.x/ D
X

b2B
Œgb.x/�

sw.�b.x//: (5.1)

As in Section 4, Ls.Xm/ � Xm and Ls jXm
defines a bounded linear map of Xm to

Xm which we denote byƒs . Theorem 4.1 is now directly applicable (replace gb.x/

in Theorem 4.1 by Œgb.x/�
s) and yields information about �.ƒs/. In particular,

r.Ls/ D r.ƒs/ > 0 and there exists a unique (to within normalization) strictly
positive, Cm eigenfunction vs of ƒs with eigenvalue �s D r.ƒs/.

If ! D .b1; b2; : : : ; bp/ 2 Bp, recall that we define g!.x/ by

g!.x/ D gbp
.�bp�1

ı�bp�2
ı� � �ı�b1

.x// : : : gb3
..�b2

ı�b1
/.x//gb2

..�b1
.x//gb1

.x/;

and

.Lp
s w/.x/ D

X

!2Bp

Œg!.x/�
sw.�!.x//: (5.2)

Notice that Lp
s is of the same form as Ls and Theorem 4.1 is also directly

applicable to Lp
s . Since vs is also an eigenfunction of Lp

s , we can also work
with (5.2) instead of (5.1): Bp is an index set corresponding to B, g! , ! 2 Bp,
corresponds to gb, b 2 B, and �! , ! 2 Bp, corresponds to �b , b 2 B.

If m is as in (H5.1) and k is a positive integer with k � m, we defineD D d
dx

,
so .Df /.x/ D f 0.x/ and .Dkf /.x/ D f .k/.x/. We are interested in obtaining
estimates for

sup
° jDkvs.x/j

vs.x/
W x 2 xH

±

: (5.3)

We note that the estimates we shall give below can be refined as in Section 6
of [15], but for simplicity we shall omit these refinements.

First observe that Hypothesis (H5.1) implies that there exist constants M > 0

and c D �
1=� (so c < 1) such that for all integers � � 1 and all ! 2 B� , (4.3) is

satisfied.

If � is as in (H5.1), we define a constant C1 by

C1 D sup
° jg0

!.x/j

g!.x/
W! 2 B�; x 2 xH

±

: (5.4)



302 R. S. Falk and R. D. Nussbaum

A calculation shows that for all ! 2 B� , � � 1,

DŒg!.x/
s �

Œg!.x/�s
D s

g0
!.x/

g!.x/
; (5.5)

so

sup
° jDŒg!.x/

s �j

Œg!.x/�s
W! 2 B�; x 2 xH

±

D sC1:

We begin by considering (5.3) for the case k D 1. In our applications, we shall
only need the case s > 0, so we shall restrict our attention to this case.

Theorem 5.1. Assume that (H5.1) is satisfied, let �, m, and � be as in (H5.1) and
let C1 be as in (5.4), For s > 0, let vs denote the unique (to within normalization)
strictly positive eigenfunction of ƒs WD Ls jXm

. Then we have

sup
° jv0

s.x/j

vs.x/
W x 2 xH

±

�
C1s

1� �
WD M1: (5.6)

If ı 2 ¹0; 1º and .�1/ı g0
!.x/

g!.x/
� 0 for all ! 2 B� , all � � 1 and all x 2 xH , then

.�1/ıv0
s.x/ � 0 for all x 2 xH and all s > 0.

Proof. Recall from Section 4 that vs is (after normalization) also the unique
eigenfunction of ƒ�

s with eigenvalue r�, where r D r.ƒs/ and r� is the spectral
radius of ƒ�

s . Define yM1 by

yM1 D sup
° jv0

s.x/j

vs.x/
W x 2 xH

±

:

We shall prove that yM1 � M1. For notational convenience we write for ! 2 B�

f!.x/ D Œg!.x/�
svs.�!.x//:

Then we see that
ˇ

ˇ

ˇ

ˇ

�sv
0
s.x/

�svs.x/

ˇ

ˇ

ˇ

ˇ

D
j�sv

0
s.x/j

�svs.x/
D

ˇ

ˇ

P

!2B�
f 0

!.x/
ˇ

ˇ

P

!2B�
f!.x/

�

P

!2B�
jf 0

!.x/j
P

!2B�
f!.x/

: (5.7)

A calculation shows that

f 0
!.x/

f!.x/
D s

g0
!.x/

g!.x/
C
v0

s.�!.x//�
0
!.x/

vs.�!.x//
;

so
jf 0

!.x/j

f!.x/
� sC1 C yM1�
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and
P

!2B�
jf 0

!.x/j
P

!2B�
f!.x/

� sC1 C yM1�: (5.8)

Taking the maximum of the left hand side of (5.7), we deduce from (5.7)

and (5.8) that

yM1 � sC1 C yM1� (5.9)

and (5.9) implies that

yM1 �
sC1

1� �
D M1: �

Throughout the remainder of this section, C1 will be as in (5.4) and M1 will
be as in (5.6). Assuming that m and � are as in (H5.1) and m � 2, it will also be
convenient to define constants C2, E2, and K2 by

C2 D sup
° jg00

!.x/j

gw.x/
W! 2 B�; x 2 xH

±

; (5.10)

E2 D sup
°

j� 00
!.x/jW! 2 B�; x 2 xH

±

;

K2 D sup
° jg00

!.x/gw.x/ � .1 � s/Œg0
!.x/�

2j

Œg!.x/�2
W! 2 B�; x 2 xH

±

:

Notice that we always have the estimate K2 � C2 C j1 � sjC 2
1 , but sometimes

more precise estimates for K2 can be obtained.

Theorem 5.2. Assume that (H5.1) is satisfied withm � 2 and let�,m, and � be as
in (H5.1). Assume that s > 0 and let C1, M1, C2, E2, and K2 be as defined above.
Let vs denote the unique (to within normalization) strictly positive eigenfunction
of ƒsWXm ! Xm with eigenvalue r.ƒs/. Then we have

sup
° jv00

s .x/j

vs.x/
W x 2 xH

±

� M2; (5.11)

where

M2 WD
sK2 C 2sC1M1� CM1E2

1 � �2
: (5.12)
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Proof. As in the proof of Theorem 5.1, for! 2 B�, let f!.x/ D Œg!.x/�
svs.�!.x//

and observe that
ˇ

ˇ

ˇ

ˇ

�sv
00
s .x/

�svs.x/

ˇ

ˇ

ˇ

ˇ

D
j�sv

00
s .x/j

�svs.x/
D

ˇ

ˇ

P

!2B�
f 00

! .x/
ˇ

ˇ

P

!2B�
f!.x/

�

P

!2B�
jf 00

! .x/j
P

!2B�
f!.x/

: (5.13)

A calculation shows that

f 00
! .x/

f!.x/
D

h

s.s � 1/
�g0

!.x//

g!.x/

�2

C s
g00

!.x/

g!.x/

i

C 2s
hg0

!.x/

g!.x/

v0
s.�!.x//�

0
!.x/

vs.�!.x//

i

C
hv00

s .�!.x//

vs.�!.x//
.� 0

!.x//
2 C

v0
s.�!.x//

vs.�!.x//
.� 00

!.x//
i

:

(5.14)

If we define yM2 D sup
® jv00

s .x/j
vs.x/

W x 2 xH
¯

, we obtain from (5.14) that

jf 00
! .x/j

f!.x/
� sK2 C 2sŒC1M1��C yM2�

2 CM1E2; (5.15)

and using (5.15) and (5.13), we see that

yM2 � sK2 C 2sC1M1� CM1E2 C yM2�
2;

which implies that yM2 � M2 (defined in (5.12)). �

Remark 5.1. If one has obtained bounds for sup
® jDj vs.x/j

vs.x/
W x 2 xH

¯

for 1 � j � k,
it is not hard to show that the kind of argument in the proof of Theorem 5.2 can

be used to estimate sup
® jDkC1vs.x/j

vs.x/
W x 2 xH

¯

.

Rather than give a formal proof of the general case, we shall restrict ourselves

here to obtaining an estimate for sup
® jD3vs.x/j

vs.x/
W x 2 xH

¯

. To state our theorem, it
will be convenient to introduce further constants C3, E3, and K3:

C3 D sup
° jD3g!.x/j

gw.x/
W! 2 B�; x 2 xH

±

;

E3 D sup
°

jD3�!.x/jW! 2 B�; x 2 xH
±

;

K3 D sup
° 1

Œg!.x/�3
.j.s � 1/.s � 2/Œg0

!.x/�
3

C 3.s � 1/g!.x/g
0
!.x/g

00
!.x/

C Œg!.x/�
2g000

! .x/j/
±

;

where the supremum is taken over ! 2 B� and x 2 xH .
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A crude estimate for K3 in terms of C1, C2, and C3 can be given:

K3 � js � 1jjs � 2jC 3
1 C 3js � 1jC1C2 C C3:

However, better estimates are frequently available.

Theorem 5.3. Assume that (H5.1) is satisfied with m � 3 and let �, m, and � be
as in (H5.1). Assume that s > 0 and let C1, M1, C2, E2, K2, M2, C3, E3, and
K3 be as defined above. If vs is the normalized strictly positive eigenfunction of
ƒs WXm ! Xm with eigenvalue r.ƒs/, then we have

sup
° jD3vs.x/j

vs.x/
W x 2 xH

±

� M3; (5.16)

where

.1� �3/M3

D .sK3 C 3sK2M1� C 3sC1.M2�
2 CM1E2/C 3M2�E2 CM1E3/ WD S:

Proof. Again set f!.x/ D Œg!.x/�
svs.�!.x// and define

yM3 D sup
° jD3vs.x/j

vs.x/
W x 2 xH

±

:

As in the proof of Theorem 5.2, we find that

D3vs.x/

vs.x/
D

P

!2B�
D3f!.x/

P

!2B�
f!.x/

: (5.17)

A calculation shows that

D3f!.x/

f!.x/
D
D3Œg!.x/

s �

g!.x/s
C 3

D2Œg!.x/
s �

g!.x/s
DŒvs.�!.x//�

vs.�!.x//

C 3
DŒg!.x/

s �

g!.x/s
D2Œvs.�!.x//�

vs.�!.x//
C
D3Œvs.�!.x//�

vs.�!.x//
:

Further tedious calculations give

jD3Œg!.x/
s �j

g!.x/s
� sK3;

3
jD2Œg!.x//

s�j

g!.x/s
jDŒvs.�!.x//�j

vs.�!.x//
� 3sK2M1�;

3
jDŒg!.x/

s�j

g!.x/s
jD2Œvs.�!.x//�j

vs.�!.x//
� 3sC1.M2�

2 CM1E2/;

jD3Œvs.�!.x//�j

vs.�!.x//
� 3M2�E2 CM1E3 C yM3�

3:
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It follows that jD3f!.x/j � .S C yM3�
3/f!.x/, where S is as in the statement of

Theorem 5.3. This proves that the absolute value of the right side of (5.17) is less
than or equal to S C yM3�

3. Taking the supremum of the left hand side of (5.17)

for x 2 xH gives yM3 � S C yM3�
3, which implies (5.16). �

Theorems 5.1–5.3 are crude. If one has more information about the coefficients
gb.�/ and the maps �b.�/, b 2 B, one can frequently obtain much sharper results.
An example is provided by the following theorem.

Theorem 5.4. Assume that (H5.1) is satisfied with m � 2. Assume also that
� 0

b
.u/ � 0, � 00

b
.u/ � 0, g0

b
.u/ � 0, g00

b
.u/ � 0, and

g00
b.u/gb.u/ � .1� s/Œg0

b.u/�
2 � 0 (5.18)

for all b 2 B, for all u 2 H , and for a given positive real number s. If vs is the
strictly positive Cm eigenfunction of ƒs, it follows that for all u 2 xH

v0
s.u/ � 0 and v00

s .u/ � 0:

If, in addition, there exists a set F � xH ( possibly empty) such that for all
u 2 xH nF and all b 2 B, g0

b
.u/ > 0 and strict inequality holds in (5.18), then for

all u 2 xH n F ,
v0

s.u/ > 0 and v00
s .u/ > 0:

Proof. For � � 1, let ! D .b1; b2; : : : ; b�/ denote a fixed element of B� and
for 0 � k � �, define �0.x/ D x, �1.x/ D �b1

.x/ and generally �k.x/ D

.�bk
ı �bk�1

ı � � � ı �b1
.x//. We leave to the reader the simple proof that � 0

k
.x/ � 0

and � 00
k
.x/ � 0 for all x 2 xH and 0 � k � �. Using (5.5), a straightforward

calculation yields

DŒg!.x/
s�

g!.x/s
D s

g0
!.x/

g!.x/
D s

��1
X

kD0

g0
bkC1

.�k.x//�
0
k
.x/

gbkC1
.�k.x//

� s
g0

b1
.x/

gb1
.x/

� 0: (5.19)

Using (4.8) and taking the limit as � ! 1, we conclude that v0
s.x/

vs.x/
� 0 for all

x 2 xH . If, in addition, there exists a set F as in the statement of Theorem 5.4 and
if x … F , it follows that

inf
°

s
g0

b
.x/

gb.x/
W b 2 B

±

WD sı1.x/ > 0;

so (5.19) then implies that

DŒg!.x/
s �

g!.x/s
� sı1.x/:

Again using (4.8) and letting � ! 1, we conclude that v0
s.x/ � sı1.x/ > 0 for

all x 2 xH n F .
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For ! D .b1; b2; : : : ; b�/ 2 B� , we obtain from (5.19) that

DŒg!.x/
s� D sg!.x/

s

��1
X

j D0

g0
bj C1

.�j .x//�
0
j .x/

gbj C1
.�j .x//

WD sg!.x/
s

��1
X

j D0

Tj .x/

and DŒg!.x/� D g!.x/
P��1

j D0 Tj .x/. A calculation now gives

D2Œg!.x/
s� D sD

h

g!.x/
s

��1
X

j D0

Tj .x/
i

D s
h

sg!.x/
s
�

��1
X

j D0

Tj .x/
�2

C g!.x/
s

��1
X

j D0

D.Tj .x//
i

:

(5.20)

Because Tj .x/ � 0 for all x 2 xH and 1 � j � � � 1,

�

��1
X

j D0

Tj .x/
�2

�

��1
X

j D0

.Tj .x//
2 D

��1
X

j D0

Œg0
bj C1

.�j .x//�
2.� 0

j .x//
2

Œgbj C1
.�j .x//�2

:

A calculation gives

��1
X

j D0

D.Tj .x// D

��1
X

j D0

Œg00
bj C1

.�j .x//.�
0
j .x//

2 C g0
bj C1

.�j .x//�
00
j .x/�gbj C1

.�j .x//

Œgbj C1
.�j .x//�2

�

��1
X

j D0

ŒTj .x/�
2:

(5.21)

Combining (5.20) and (5.21) and noticing that all terms in the summation are
nonnegative, we find that

D2Œg!.x/
s �

� sŒg!.x/�
s

��1
X

j D0

.g00
bj C1

.�j .x//gbj C1
.�j .x// � .1� s/Œg0

bj C1
.�j .x//�

2/

.� 0
j .x//

2Œgbj C1
.�j .x//�

�2:

(5.22)

Since we assume that g00
b
.u/gb.u/ � .1 � s/Œg0

b
.u/�2 � 0 for all u 2 xH and

b 2 B, we find that for all ! 2 B� , x 2 xH , D2Œg!.x/
s� � 0. Letting � ! 1 and

using (4.8), we derive that v00
s .x/ � 0 for all x 2 xH .
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If a set F � H exists such that strict inequality holds in (5.18) for all b 2 B

and all x 2 xH nF , then by only taking the term j D 0 in the summation in (5.22),
we find that there is a number ı2.xI s/ > 0 for x 2 xH n F and s > 0 such that

D2Œg!.x/
s �

g!.x/s
� ı2.xI s/:

Again, using (4.8) and letting � ! 1, this implies that for x 2 xH n F ,

v00
s .x/

vs.x/
� ı2.xI s/ > 0;

which completes the proof. �

Remark 5.2. An examination of the proof of Theorem 5.4 shows that we have
proved that for all x 2 xH , for all � � 1, and for all ! 2 B� , � 0

!.x/ � 0, � 00
!.x/ � 0,

g0
!.x/ � 0, g00

!.x/ � 0, and D2Œg!.x/
s � � 0. Because

D2Œg!.x/
s � D sg!.x/

s�2.g00
!.x/g!.x/ � .1� s/Œg0

!.x/�
2/;

we also see that g00
!.x/g!.x/ � .1 � s/Œg0

!.x/�
2 � 0 for all ! 2 B� , all � � 1, and

all x 2 xH . If the constants C1, C2, M1, �, and E2 are defined as above in this
section, one obtains immediately that for all x 2 xH ,

0 �
v0

s.x/

vs.x/
�

C1s

1� �
:

An examination of the proof of Theorem 5.2 yields the following refinement
of (5.11) and (5.12).

0 �
v00

s .x/

vs.x/
�

h

sG2 C 2s2C 2
1

�

1 � �
C sC1E2

1

1 � �

ih 1

1 � �2

i

; (5.23)

where

G2 D max
°g00

!.x/g!.x/ � .1� s/Œg0
!.x/�

2

g!.x/2
W! 2 B�; x 2 xH

±

: (5.24)

Example. To illustrate the methods of this section, we consider a simple example
which nevertheless has some interest because of a failure of smoothness which
makes techniques in [29] inapplicable. We shall always assume that 0 � a � 1

and define

�1.x/ D
1

3C 2a
.x C ax

7=2/; �2.x/ D �1.x/C
2C a

3C 2a
;
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so �j W Œ0; 1� ! Œ0; 1�, �1.0/ D 0, and �2.1/ D 1. For simplicity we suppress
the dependence of �j .x/ on a in our notation. If B D ¹1; 2º and a > 0 and
! D .j1; j2; : : : ; j�/ 2 B� , notice thatD3�!.x/ is defined and Hölder continuous
for all x 2 Œ0; 1�; but if j1 D 1, D4�!.x/ is not defined at x D 0. Using
that 0 � a � 1, one can check that 0 < � 0

j .x/ < 1 for 0 � x � 1; and it
follows that there exists a unique compact, nonempty set Ja � Œ0; 1� such that
Ja D �1.Ja/ [ �2.Ja/. Note that J0 is the middle thirds Cantor set.

For a 2 Œ0; 1� fixed, and 0 < s, let X D C 2Œ0; 1� and Y D C Œ0; 1�, and define

g1.x/ WD g2.x/ WD g.x/ WD � 0
1.x/ D

1

3C 2a

�

1C
7

2
ax

5=2

�

:

As in Section 1, define ƒs WX ! X and Ls WY ! Y by the same formula:

.ƒs.w//.x/ D g.x/s Œw.�1.x//C w.�2.x//�: (5.25)

Theorem 4.1 implies that r.Ls/ D r.ƒs/; and it follows, for example, from
theorems in [50] that the Hausdorff dimension of Ja is the unique value of s,
0 < s � 1, for which r.ƒs/ D 1.

If w 2 Y is a nonnegative function, we have that

.Ls.w//.x/ �
� 1

3C 2a

�s

Œw.�1.x//C w.�2.x//�

�
�1

5

�s

Œw.�1.x//C w.�2.x//�:

If u.x/ D 1 for 0 � x � 1, it follows that

Ls.u/ �
�1

5

�s

.2u/;

which implies that r.Ls/ � 2
�

1
5

�s
. If log denotes the natural logarithm and

0 � s <
log.2/

log.5/
� 0:4307, it follows that r.Ls/ > 1. Thus if one is only interested

in s with r.Ls/ � 1, one may restrict attention to s � log.2/

log.5/
.

In order to apply Theorem 5.4, we must determine a range of s > 0 such that

g00.x/g.x/ � .1 � s/Œg0.x/�2 > 0; 0 < x � 1: (5.26)

The other hypotheses of Theorem 5.4 can be trivially verified. A calculation gives,
for 0 < x � 1 that

g00.x/g.x/ � .1� s/Œg0.x/�2

D
1

.3C 2a/2

�7a

2

��5

2

�

x
1=2

h�3

2

�

C
�7a

2

��

� 1C
5

2
s
�

x
5=2

i

:
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Assuming that a > 0 and noting that 0 < u WD x
5=2 � 1 if and only if 0 < x � 1,

we see that (5.26) is satisfied if and only if

�3

2

�

C
�7a

2

��

� 1C
5

2
s
�

u > 0 for 0 � u � 1;

which is equivalent to

�3

2

�

C
�7a

2

��

� 1C
5

2
s
�

> 0:

The latter inequality is certainly satisfied for 0 < a � 3
7

and s > 0; and if
3
7

� a � 1, the inequality is satisfied for s > 2
5

�

1 � 3
7a

�

. Thus we conclude
that for 0 � a � 1, 0 < x � 1, and s > 0, (5.26) is satisfied if and only if

s >
2

5

h

1 �
3

7a

i

: (5.27)

It follows from Theorem 5.4 that if 0 < a � 1, s > 0 and (5.27) is satisfied, then
v0

s.x/ > 0 and v00
s .x/ > 0 for 0 < x � 1.

It remains to apply Theorems 5.1 and 5.2 to our example. We assume, in the
notation of (H5.1) that � D 1 and m � 2. The eigenfunction vs.�/ for (5.25)

depends on the parameter a, although this is not indicated in our notation, and,
of course our various constants depend on a. Since � 0

j .x/ D g.x/, the constant
� D �.a/ in (H5.1) is given by

�.a/ D max¹g.x/W 0 � x � 1º D
2C 7a

6C 4a
< 1: (5.28)

The constant C1 D C1.a/ in Theorem 5.1 is defined by

C1 D C1.a/ D sup
°h7a

2

5

2
x

3=2

ih

1C
7a

2
x

5=2

i�1

W 0 � x � 1
±

D sup
°h7a

2

5

2
u3

ih

1C
7a

2
u5

i�1

W 0 � u � 1
±

:

An elementary but tedious calculus argument, which we leave to the reader, yields

C1.a/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

7a

2

5

2

h

1C
7

2
a
i�1

for 0 < a �
3

7
;

7a

2

� 3

7a

�3=5

for
3

7
� a � 1:

(5.29)



Computation of Hausdorff Dimension 311

It follows from Theorems 5.1 and (4.3) that for 0 < x � 1,

0 <
v0

s.x/

vs.x/

� sC1.a/Œ1� �.a/��1

D sC1.a/
6C 4a

4� 3a
WD M1.a/:

An easy calculation also yields that

max¹� 00
1 .x/W 0 � x � 1º D

7a

2

5

6C 4a
WD E2.a/: (5.30)

By definition (see (5.10) with � D 1) we have that

C2 WD C2.a/ D sup
°g00.x/

g.x/
W 0 � x � 1

±

D
15

4
sup

°7a

2
x

1=2

h

1C
7a

2
x

5=2

i�1

W 0 � x � 1
±

D
15

4
sup

°7a

2
u

h

1C
7a

2
u5

i�1

W 0 � u � 1
±

;

and a simple calculus exercise yields

C2.a/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

15

4

7a

2

h

1C
7a

2

i�1

for 0 < a �
1

14
;

3
�1

4

�1=5�7a

2

�4=5

for
1

14
� a � 1:

(5.31)

Using (5.23) and (5.24), we now find that for 8
35
< s � 1, 0 < a � 1, and

0 < x � 1, we have

0 <
v00

s .x/

vs.x/
�

h

sG2.a/C
2s2C1.a/

2�.a/

1 � �.a/
C
sC1.a/E2.a/

1� �.a/

i

�

1� �.a/2
��1

;

where �.a/,C1.a/,E2.a/, andC2.a/ are given by (5.28), (5.29), (5.30), and (5.31),
respectively, and G2.a/ is given by

G2.a/ D max
0�x�1

g00.x/g.x/ � .1� s/Œg0.x/�2

g.x/2
< C2.a/: (5.32)

Equation (5.27) implies that G2.a/ > 0 for 0 < a � 1 if we assume that
8

35
< s � 1.
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6. Estimates for derivatives of vs: the case of Möbius transformations

When the maps �b, b 2 B are Möbius transformations, one can obtain much

sharper estimates for max
®

Dkvs.x/
vs.x/

W x 2 xH
¯

than were available in Section 5.
We shall be interested in the one dimensional case, and our maps will even-

tually be of the form �b.x/ WD 1
xCb

, where b > 0. The special case where B

is a subset of the positive integers has been of great interest because of connec-
tions with continued fractions. See, for example, [5], [7], [8], [10], [11], [20], [21],
[23], [24], and [25]. However, for our immediate purposes, nothing is gained by
restricting to B � N.

Lemma 6.1. Let B denote a finite collection of complex numbers b such that
Re.b/ � 
 > 0 for all b 2 B. For b 2 B, defineMb D

�

0 1
1 b

�

and �b.z/ D 1
zCb

for
Re.z/ � 0. Let bj , j � 1, denote a sequence of elements of B. Then for n � 1, we
have

Mb1
Mb2

: : :Mbn
D

�

An�1 An

Bn�1 Bn

�

(6.1)

and

Mbn
Mbn�1

: : :Mb1
D

�

An�1 Bn�1

An Bn

�

;

where A0 D 0, A1 D 1, B0 D 1, B1 D b1 and for n � 2,

AnC1 D An�1 C bnC1An and BnC1 D Bn�1 C bnC1Bn: (6.2)

If

G WD ¹z 2 CW Re.z/ � 0º

and

D
�1 WD ¹z 2 CW jz � 
�1j � 
�1º;

then for all b 2 B,
�b.G/ � D
�1 : (6.3)

Also, we have for all z 2 G, .�b1
ı �b2

ı � � � ı �bn
/.z/ 2 D
�1 and

.�b1
ı �b2

ı � � � ı �bn
/.z/ D

An�1z C An

Bn�1z C Bn

; (6.4)

and

.�bn
ı �bn�1

ı � � � ı �b1
/.z/ D

An�1z C Bn�1

Anz C Bn

: (6.5)
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For all n � 0, Bn ¤ 0 and Re
�BnC1

Bn

�

� 
 , while for all n � 1, An ¤ 0 and

Re
�AnC1

An

�

� 
 . For all b; c 2 B, �b ı �c jG is a Lipschitz map (with respect to the
Euclidean norm on C) and

j�b.�c.z// � �b.�c.w//j �
1

4
2
jz �wj; for all z; w 2 G: (6.6)

Proof.

Mb1
D

�

0 1

1 b1

�

D

�

A0 A1

B0 B1

�

:

We argue by induction and assume that (6.1) is satisfied for some n � 1. Then we
obtain

Mb1
Mb2

: : :Mbn
MbnC1

D

�

An�1 An

Bn�1 Bn

��

0 1

1 bnC1

�

D

�

An An�1 C bnC1An

Bn Bn�1 C bnC1Bn

�

D

�

An AnC1

Bn BnC1

�

;

which completes the inductive proof. The formula for Mbn
Mbn�1

: : :Mb1
follows

by taking the transpose of the formula for Mb1
Mb2

: : :Mbn
.

Equations (6.4) and (6.5) are now standard results for Möbius transformations.
If z 2 G, zCb 2 ¹wW Re.w/ � 
º. A standard exercise shows that the mapw 7! 1

w

takes the set ¹wW Re.w/ � 
º into D
�1 , and this establishes (6.3).
Notice that B0 D 1 and B1 D b1 so B0 and B1 are nonzero and Re

�

B1

B0

�

� 
 .
We argue by induction and assume that we have proved Bj ¤ 0 for 0 � j � n and

Re
�Bj C1

Bj

�

� 
 for 0 � j � n � 1. We then obtain that

Re
�BnC1

Bn

�

D Re
�Bn�1

Bn

�

C Re.bnC1/ � Re
�Bn�1

Bn

�

C 
:

Writing ˇ D Bn

Bn�1
, so Re.ˇ/ � 
 , we see that

Re
�Bn�1

Bn

�

D Re
� 1

ˇ

�

D Re
� Ň

jˇj2

�

�



jˇj2
;

so

Re
�BnC1

Bn

�

D 

�

1C
ˇ

ˇ

ˇ

Bn�1

Bn

ˇ

ˇ

ˇ

2�

> 


and BnC1 ¤ 0.
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The proof that An ¤ 0 for all n � 1 and Re
� AnC1

An

�

� 
 for all n � 1 follows
by a similar induction argument and is left to the reader.

Notice that det.Mb1
Mb2

: : :Mbn
/ D .�1/n, so

d

dz
.�b1

ı �b2
ı � � � ı �bn

/.z/ D
.�1/n

.Bn�1z C Bn/2
D

.�1/n

B2
n�1

�

z C Bn

Bn�1

�2
: (6.7)

If we can prove that
ˇ

ˇB2
n�1

�

z C Bn

Bn�1

�2ˇ

ˇ � L for all z 2 G, it will follow that for
all z; w 2 G,

j.�b1
ı �b2

ı � � � ı �bn
/.z/ � .�b1

ı �b2
ı � � � ı �bn

/.w/j �
1

L
jz �wj: (6.8)

However, for n � 2 and z 2 G,
ˇ

ˇ

ˇ

ˇ

z C
Bn

Bn�1

ˇ

ˇ

ˇ

ˇ

� Re
�

z C
Bn

Bn�1

�

� Re
� Bn

Bn�1

�

D Re
�Bn�2

Bn�1

C bn

�

D Re
�Bn�1

Bn�2

� jBn�2j2

jBn�1j2
C Re.bn/

� 

jBn�2j2

jBn�1j2
C 
:

This implies that

ˇ

ˇ

ˇ
B2

n�1

�

z C
Bn

Bn�1

�2ˇ

ˇ

ˇ
� jBn�1j2
2

�

1C
jBn�2j2

jBn�1j2

�2

D 
2jBn�2j2
� jBn�1j2

jBn�2j2
C 2C

jBn�2j2

jBn�1j2

�

:

(6.9)

Using (6.7) and (6.9), we see that for z 2 G and n � 2,
ˇ

ˇ

ˇ

ˇ

d

dz
.�b1

ı �b2
ı � � � ı �bn

/.z/

ˇ

ˇ

ˇ

ˇ

� .4
2jBn�2j2/�1;

with strict inequality unless jBn�1j D jBn�2j, and this implies (6.8), with

L WD 4
2jBn�2j2:
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If we take n D 2, so Bn�2 D 1, we find that for any two elements b1 and b2 in
C and for all z; w 2 G, we have

j�b1
.�b2

.z// � �b1
.�b2

.w//j �
1

4
2
jz � wj:

Taking b1 D b and b2 D c, we obtain (6.6). �

For the remainder of this section we shall restrict ourselves to the case in
Lemma 6.1 that B is a subset of the positive reals and b � 
 > 0 for all b 2 B.

Lemma 6.2. Let B denote a finite set of positive reals such that b � 
 > 0 for
all b 2 B and let notation be as in Lemma 6.1. If bj , j � 1 denotes a sequence of
elements of B, then for all n � 0, Bn > 0 and BnC1

Bn
� 
 and for all n � 1, An > 0

and AnC1

An
� 
 and Bn

An
� 
 . For all k � 0, we have

B2k � .1C 
2/k and B2kC1 � 
.1C 
2/k : (6.10)

For all ! D .b1; b2; : : : ; b2m/ 2 B2m, m � 1, and z; w 2 G, we have

j.�b1
ı�b2

ı� � �ı�b2m
/.z/�.�b1

ı�b2
ı� � �ı�b2m

/.w/j � .1C
2/�2mjz�wj (6.11)

and

j�!.z/ � �!.w/j � .1C 
2/�2mjz � wj: (6.12)

Proof. Using (6.2) it is an easy induction argument (left to the reader) to prove
that An > 0 for all n � 1 and Bn > 0 for all n � 0. It then follows immediately
from Lemma 6.1 that AnC1

An
� 
 for n � 1 and BnC1

Bn
� 
 for n � 0.

Since B1 D b1 � 
 and A1 D 1, we see that B1

A1
� 
 . Arguing by induction,

assume that we have proved that Bj

Aj
� 
 for 1 � j � n. Then we obtain

BnC1

AnC1

D
Bn�1 C bnC1Bn

An�1 C bnC1An

�
An�1
 C bnC1An


An�1 C bnC1An

D 
;

which completes the inductive argument.

We next claim that for all k � 0, the first inequality in (6.10) holds. For k D 0,
this is immediate, since B0 D 1. We argue by induction and assume that we have
proved the first inequality in (6.10) for some k � 0. We have that

B2kC1 D B2k�1 C b2kC1B2k � B2k�1 C 
B2k ;
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and this implies that

B2kC2 D B2k C b2kC2B2kC1

� B2k C 
B2kC1

� B2k C 
B2k�1 C 
2B2k

� .1C 
2/B2k

� .1C 
2/kC1:

This completes the induction argument.
Since B1 D b1 � 
 , and B2kC1 D B2k�1 C b2kB2k � 
.1C 
2/k for k � 1,

we obtain the second part of (6.10).
For z 2 H , we obtain from Lemma 6.1 that

ˇ

ˇ

ˇ

ˇ

d

dz
.�b1

ı �b2
ı � � � ı �b2m

/.z/

ˇ

ˇ

ˇ

ˇ

� jB2m�1z C B2mj�2 (6.13)

and
ˇ

ˇ

ˇ

ˇ

d

dz
�!.z/

ˇ

ˇ

ˇ

ˇ

WD

ˇ

ˇ

ˇ

ˇ

d

dz
.�b2m

ı �b2m�1
ı � � � ı �b1

/.z/

ˇ

ˇ

ˇ

ˇ

� jA2mz C B2mj�2: (6.14)

Because B2m�1, A2m, and B2m are positive, Re.B2m�1z C B2m/ � Re.B2m/ �

.1C 
2/m and Re.A2mz C B2m/ � Re.B2m/ � .1C 
2/m. This implies that for
all z 2 H ,

jB2m�1z C B2mj�2 � .1C 
2/�2m and jA2mz C B2mj�2 � .1C 
2/�2m:

(6.15)

Using (6.13), (6.14), and (6.15), we obtain (6.11) and (6.12). �

Remark 6.1. Given ! D .b1; b2; : : : ; bn/ 2 Bn, we have defined �! D �bn
ı

�bn�1
ı � � � ı �b1

(to conform to notation used in [50]). However, we could also
have defined Q�! D �b1

ı �b2
ı � � � ı �bn

, which is perhaps more natural. Similarly,
we have defined g!.z/ by

gbn
.�bn�1

ı�bn�2
ı� � �ı�b1

.z//gbn�1
.�bn�2

ı�bn�3
ı� � �ı�b1

.z//: : : gb2
.�b1

.z//gb1
.z/:

However, we could have defined

Qg!.z/Dgb1
.�b2

ı�b3
ı� � �ı�bn

.z//gb2
.�b3

ı�b4
ı� � �ı�bn

.z//: : : gbn�1
.�bn

.z//gbn
.z/:

We leave to the reader the verification that

.ƒn
sf /.z/ D

X

!2Bn

Œg!.z/�
sf .�!.z// D

X

!2Bn

Œ Qg!.z/�
sf . Q�!.z//:



Computation of Hausdorff Dimension 317

Theorem 6.3. Let B be a finite set of positive reals such that b � 
 > 0 for all
b 2 B. For such b and all x � 0, define �b.x/ D .x C b/�1. If A � 
�1, define
H D ¹x 2 RW 0 < x < Aº, so �b. xH/ � Œ0; 
�1�. Assume that m is a positive
integer and gbW Œ0; A� ! R is a Cm function such that gb.x/ > 0 for all x 2 Œ0; A�.
Let X D Xm denote the Banach space Cm. xH/ and for s > 0 define

.ƒsf /.x/ D
X

b2B
Œgb.x/�

sf .�b.x//:

Then all the hypotheses of Theorem 4.1 are satisfied, soƒs has a unique (to within
normalization) strictly positive eigenfunction vs 2 X with eigenvalue r.ƒs/ > 0.
Furthermore, in our usual notation, for 1 � j � m and x 2 Œ0; A�,

Djvs.x/

vs.x/
D lim

n!1

P

!2Bn
Djg!.x/

P

!2Bn
g!.x/

: (6.16)

Proof. Theorem 6.3 follows from Theorem 4.1 and Remark 4.1 once we verify that
conditions (H4.1), (H4.2), and (H4.3) in Section 4 are satisfied. Conditions (H4.1)
and (H4.2) are obviously satisfied. Also, it follows from (6.11) or (6.12) in
Lemma 6.2 that for all x; y 2 Œ0; A� and all b1; b2 2 B,

j�b1
.�b2

.x// � �b1
.�b2

.y//j � .1C 
2/�2jx � yj;

which verifies (H4.3) with � D 2 and � D .1C 
2/�2. �

Notice that if gb.�/ is C1 on Œ0; A�, Theorem 6.3 implies that vs.�/ is C1 on
Œ0; A� and (6.16) holds for all j � 1.

We are interested in Theorem 6.3 in the special case that gb.x/ D j� 0
b
.x/js D

.x C b/�2s . In this case, it is easy to verify that for � � 1,

.ƒ�
s f /.x/ D

X

!2B�

j� 0
!.x/j

sf .�!.x//:

If ! D .b1; b2; : : : ; b�/ 2 B� and Aj and Bj are as defined in Lemma 6.1, recall
that

Œg!.x/�
s D j� 0

!.x/j
s D .A�x C B�/

�2s D A�2s
�

�

x C
B�

A�

��2s

:

If 1 � j � m, it follows that

Dj Œg!.x/�
s

Œg!.x/�s
D
Dj

��

x C
B�

A�

��2s�

�

x C
B�

A�

��2s

D .�1/j .2s/.2s C 1/ : : : .2s C j � 1/
�

x C
B�

A�

��j

:

(6.17)
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Lemma 6.2 implies that B�

A�
� 
 for all � � 1. On the other hand, if

� D max¹bW b 2 Bº, a calculation gives

B1

A1

D b1 � � and
B2

A2

D b1 C b�1
2 � � C 
�1:

LetK D �C 
�1 and, arguing inductively, assume that we have proved, for some
n � 2, that

Bj

Aj

� K; 1 � j � n: (6.18)

Then we obtain

BnC1

AnC1

D
Bn�1 C bnC1Bn

An�1 C bnC1An

�
KAn�1 CKbnC1An

An�1 C bnC1An

D K;

which proves that (6.18) holds for all n. It follows that for 0 � x � A and � � 1,
we have

.K C A/�j �
�

x C
B�

A�

��j

� 
�j : (6.19)

Using (6.19) in (6.17), we obtain for 0 � x � A and � � 1,

.2s/.2s C 1/ : : : .2s C j � 1/.K C A/�j

� .�1/j
Dj Œg!.x/�

g!.x/

� .2s/.2s C 1/ : : : .2s C j � 1/
�j :

(6.20)

Thus we have proved the following corollary of Theorem 6.3.

Corollary 6.4. Let B be a finite set of positive real numbers and define 
 D

min¹bW b 2 Bº, � D max¹bW b 2 Bº, andK D 
�1 C�. Let A be any real number
with A � 
�1 and for any positive integer m, define X D Xm D Cm.Œ0; A�/. For
s > 0 define a bounded linear operator ƒsWXm ! Xm by

.ƒsf /.x/ D
X

b2B
.x C b/�2sf .�b.x//;

where �b.x/ D .x C b/�1. Then ƒs has a unique (to within normalization)
strictly positive eigenfunction vs 2 Xm and vs is actually infinitely differentiable.
Furthermore, for integers j � 1, we have the estimates

.2s/.2s C 1/ : : : .2s C j � 1/.K C A/�j

� .�1/j
Dj Œvs.x/�

vs.x/

� .2s/.2s C 1/ : : : .2s C j � 1/
�j ; x 2 Œ0; A�:

(6.21)
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Proof. Equation (6.21) follows from (6.16) and (6.20) by letting n ! 1, where
! 2 Bn. �

Remark 6.2. Suppose that assumptions and notation are as in Corollary 6.4, so
vs W Œ0; A� 7! R is strictly positive and vs 2 Cm.Œ0; A�/. Then vs.�/ has an analytic,
complex-valued extension toH D ¹z 2 CW Re.z/ > 0º. The idea of the proof is to
consider the linear operator

.Rsf /.z/ D
X

b2B
.z C b/�2sf .Œz C b��1/;

where f is an element of an appropriate Banach space of complex analytic
functions f .�/ defined on

®

z 2 CW
ˇ

ˇz � A
2

ˇ

ˇ < A
2

¯

WD D and continuous on xD.
Since we shall not use this analyticity result, we omit the proof, but its interest

for us is precisely that in more general situations, it does not seem possible to study
our problem in a Banach space of analytic functions. Suppose that B is a finite
set of complex numbers as in Lemma 6.1 and �b.z/ D .z C b/�1 for b 2 B and
Re.z/ � 0. IfA > 
�1 andD is as above, one can prove that ¹�b.z/W z 2 xD; b 2 Bº

is contained in a compact subset of D. For m � 2 and s > 0, one defines

ƒs WCm. xD/ �! Cm. xD/

by
.ƒsf /.z/ D

X

b2B
jz C bj�2sf .�b.z//;

(note .zCb/�2s has been replaced by jzCbj�2s), andƒs has a unique, normalized
eigenfunction vs.�/ such that vs.z/ > 0 for all z 2 xD. The eigenvalue of
vs is r.ƒs/, the spectral radius of ƒs . In the context of complex continued
fractions (see [19], [40], [50], and [51]), one wants to estimate r.ƒs/. However
z 7! jz C bj�2s and z 7! vs.z/ are C1, but not complex analytic on D. If B is
not contained in R, in general there does not seem to be a natural bounded linear
operator in a Banach space of analytic functions with spectral radius r.ƒs/. In this
generality, the linear operatorRs can still be defined in a Banach space of analytic
functions, but will almost always have spectral radius less than r.ƒs/.

7. Computing the spectral radius of As and Bs

In previous sections, we have constructed matrices As and Bs such that r.As/ �

r.Ls/ � r.Bs/. The .n C 1/ � .n C 1/ matrices As and Bs have nonnegative
entries, so the Perron–Frobenius theory for such matrices implies that r.Bs/ is
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an eigenvalue of Bs with corresponding nonnegative eigenvector, with a similar
statement forAs . One might also hope that standard theory (see [44]) would imply
that r.Bs/, respectively r.As/, is an eigenvalue of Bs with algebraic multiplicity
one and that all other eigenvalues z of Bs (respectively, of As) satisfy jzj < r.Bs/

(respectively, jzj < r.As/). Indeed, this would be true if Bs were primitive, i.e.,
if Bk

s had all positive entries for some integer k. However, typically Bs has many
zero columns and Bs is neither primitive nor irreducible (see [44]); and the same
problem occurs for As. Nevertheless, the desirable spectral properties mentioned
above are satisfied for bothAs andBs. Furthermore Bs has an eigenvector ws with
all positive entries and with eigenvalue r.Bs/; and if x is any .n C 1/ � 1 vector
with all positive entries,

lim
k!1

Bk
s .x/

kBk
s .x/k

D
ws

kwsk
;

where the convergence rate is geometric. Of course, corresponding theorems hold
forAs. Such results justify standard numerical algorithms for approximating r.Bs/

and r.As/.
In this section, we shall prove these assertions. The basic point is simple.

Although As and Bs both map the cone K of nonnegative vectors in R
nC1 into

itself, K is not the natural cone in which such matrices should be studied.
To outline our method of proof, it is convenient to describe, at least in the finite

dimensional case, some classical theorems concerning linear maps LWRN ! R
N

which leave a cone C � R
N invariant. Recall that a closed subsetC ofRN is called

a closed cone if (i) axCby 2 C whenever a � 0, b � 0, x 2 C and y 2 C and (ii) if
x 2 Cn¹0º, then �x … C. If C is a closed cone, C induces a partial ordering on R

N

denoted by �C (or simply �, if C is obvious) by u �C v if and only if v � u 2 C.
If u; v 2 C, we shall say that u and v are comparable (with respect to C) and
we shall write u �C v if there exist positive scalars a and b such that v �C au

and u �C bv. Comparable with respect to C partitions C into equivalence classes
of comparable elements. We shall henceforth assume that int.C/, the interior of
C, is nonempty. Then an easy argument shows that all elements of int.C/ are
comparable. Generally, if x0 2 C and Cx0

WD ¹x 2 CW x �C x0º, all elements of
Cx0

are comparable.
Following standard notation, if u; v 2 C are comparable elements, we define

M
�u

v
IC

�

D inf¹ˇ > 0Wu � ˇvº;

m
�u

v
IC

�

D M
�v

u
IC

��1

D sup¹˛ > 0W ˛v � uº:
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If u and v are comparable elements of Cn¹0º, we define Hilbert’s projective metric
d.u; vIC/ by

d.u; vIC/ D log
�

M
�u

v
IC

��

C log
�

M
�v

u
IC

��

:

We make the convention that d.0; 0IC/ D 0. If x0 2 C n ¹0º, then for all
u; v; w 2 Cx0

, one can prove that (i) d.u; vIC/ � 0, (ii) d.u; vIC/ D d.v; uIC/,
and (iii) d.u; vIC/C d.v; wIC/ � d.u; wIC/. Thus d restricted to Cx0

is almost
a metric, but d.u; vIC/ D 0 if and only if v D tu for some t > 0 and generally,
d.su; tvIC/ D d.u; vIC/ for all u; v 2 Cx0

and all s > 0 and t > 0. If k � k is any
norm on R

N and S WD ¹u 2 int.C/W kuk D 1º (or, more generally, if x0 2 C n ¹0º

and S D ¹x 2 Cx0
W kxk D 1º, then d.�; �IC/, restricted to S � S , gives a metric on

S ; and it is known that S is a complete metric space with this metric.
With these preliminaries we can describe a special case of the Birkhoff-Hopf

theorem. We refer to [3], [26], and [55] for the original papers and to [12] and [13]
for an exposition of a general version of this theorem and further references to the
literature. We remark that P. P. Zabreiko, M. A Krasnosel0skij, Y. V. Pokornyi,
and A. V. Sobolev independently obtained closely related theorems; and we refer
to [34] for details. If C is a closed cone as above, S D ¹x 2 int.C/W kxk D 1º, and
LWRN ! R

N is a linear map such thatL.int.C// � int.C/, we define�.LIC/, the
projective diameter of L by

�.LIC/ D sup¹d.Lx; LyIC/W x; y 2 C and Lx �C Lyº

D sup¹d.Lx; LyIC/W x; y 2 int.C/º:

The Birkhoff-Hopf theorem implies that if � WD �.LIC/ < 1, then L is a
contraction mapping with respect to Hilbert’s projective metric. More precisely,
if we define � D tanh.1

4
�/ < 1, then for all x; y 2 C n ¹0º such that x �C y, we

have

d.Lx; LyIC/ � �d.x; yIC/;

and the constant � is optimal.
If we define ˆWS ! S by ˆ.x/ D L.x/

kL.x/k , it follows that ˆ is a contraction
mapping with a unique fixed point v 2 S , and v is necessarily an eigenvector of
L with eigenvector r.L/ WD r D the spectral radius of L. Furthermore, given
any x 2 int.C/, there are explicitly computable constants M and c < 1 (see
Theorem 2.1 in [12]) such that for all k � 1,













Lk.x/

kLk.x/k
� v













� Mck I
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and the latter inequality is exactly the sort of result we need. Furthermore, it is
proved in Theorem 2.3 of [12] that r D r.L/ is an algebraically simple eigenvalue
of L and that if �.L/ denotes the spectrum of L and q.L/ denotes the spectral
clearance of L,

q.L/ WD sup
° jzj

r.L/
W z 2 �.L/; z ¤ r.L/

±

;

then q.L/ < 1 and q.L/ can be explicitly estimated.
IfAs, Bs, andLs are as in Section 3, it remains to find a suitable cone as above.

For the remainder of this section, Œa; b�will denote a fixed, closed bounded interval
and s a fixed nonnegative real. For a given positive integer n � 2 and for integers
j , 0 � j � n, we shall write h D b�a

n
and xj D a C jh. C will denote a fixed

constant and we shall always assume at least that

C
h

4
� 1: (7.1)

In our applications, C will depend on s, but we shall not indicate this dependence
in our notation. If wW ¹xj W 0 � j � nº ! R, one can extend w to a piecewise
linear map wI W Œa; b� ! R by defining

wI .x/ D
x � xj

h
wj C1 C

xj C1 � x

h
wj ; for xj � x � xj C1; 0 � j < n; (7.2)

where we have written wj D w.xj /.
We shall denote by Xn (or X , if n is obvious), the real vector space of maps

wW ¹xj W 0 � j � nº ! R; obviously Xn is linearly isomorphic to R
nC1, and we

shall consider As, Bs, and Ls as maps of Xn to Xn. Note that in applying the
results described above, we set N D n C 1. For a given real M > 0, we shall
denote by KM � Xn the closed cone with nonempty interior given by

KM D ¹w 2 XnW wj C1 � wj exp.Mh/ and wj � wj C1 exp.Mh/; 0 � j < nº:

(7.3)

The reader can verify that if w D .w0;w1; : : : ;wn/ 2 KM n ¹0º, then wj > 0 for
0 � j � n.

If KM � Xn are as above, suppose that LWXn ! Xn is a linear map and
that there exists M 0, 0 < M 0 < M , such that L.KM n ¹0º/ � KM 0 n ¹0º. After
correcting the typo in the formula for d2.f; g/ on p. 286 of [37], it follows from
Lemma 2.12 on p. 284 of [37] that

sup¹d.f; gIKM /W f; g 2 KM 0 n ¹0ºº � 2 log
�M CM 0

M �M 0

�

C 2M 0.b � a/ < 1:
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This implies that �.LIKM / < 1, which in turn implies that L has a normalized
eigenvector v 2 KM 0 with positive eigenvalue r D r.L/ D the spectral radius of
L. Furthermore, r has algebraic multiplicity 1, q.L/ < 1, and

lim
k!1













Lk.x/

kLk.x/k
� v













D 0 for all x 2 KM n ¹0º.

Thus it suffices to prove for appropriate maps L that L.KM n ¹0º/ � KM 0 n ¹0º for
some M 0 < M .

If xj , 0 � j � n are as above, define a map

QW Œa; b� �!
h

0;
h2

4

i

by

Q.u/ D .xj C1 � u/.u � xj /; for xj � u � xj C1; 0 � j < n:

Lemma 7.1. Assume that ˇ 2 KM0
n ¹0º for some M0 > 0, that 0 < h � 1 and

that h and C satisfy (7.1). Let � W Œa; b� ! Œa; b� and define Ǒ
s 2 Xn by

Ǒ
s.xk/ D

h

1C
1

2
CQ.�.xk//

i

Œˇ.xk/�
s:

Then Ǒ
s 2 KM1

, where M1 D sM0 C 1Ch
2

� M0 C 1.

Proof. Define  2 Xn by

 .xk/ D 1C
1

2
CQ.�.xk//

and suppose we can prove that  2 K 1Ch
2

. For notational convenience define

b.xk/ D Œˇ.xk/�
s. Then for 0 � k < n, we obtain

 .xk/b.xk/ �  .xkC1/ exp
� Œ1C h�h

2

�

b.xkC1/ exp.sM0h/

D  .xkC1/b.xkC1/ exp.M1h/;

and the same calculation gives

 .xkC1/b.xkC1/ � exp.M1h/ .xk/b.xk/;

which implies that xk 7!  .xk/b.xk/ is an element of KM1
.
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Define ı D 1Ch
2

. Since .xk/ > 0 for 0 � k � n, one can check that .�/ 2 Kı

if and only if, for 0 � k < n,

j log. .xkC1// � log. .xk//j D
ˇ

ˇ

ˇ log
� .xkC1/

 .xk/

�
ˇ

ˇ

ˇ � ıh:

Given xk and xkC1 with 0 � k < n, write � D �.xk/ and � D �.xkC1/.
Define u WD 1

2
CQ.�.xk// and v D 1

2
CQ.�.xkC1//, so  .xk/ D 1 C u and

 .xkC1/ D 1C v. Because u and v both lie in the interval
�

0; Ch2

8

�

, (7.1) implies
that ju � vj � h

2
, juj � h

2
and jvj � h

2
. It follows that

j log. .xk// � log. .xkC1//j D j log.1C u/ � log.1C v/j D

ˇ

ˇ

ˇ

ˇ

Z 1Cu

1Cv

�1

t

�

dt

ˇ

ˇ

ˇ

ˇ

:

Because 0 � 1
t

� 1

1� h
2

� 1C h for all t 2 Œ1C v; 1C u�, we obtain

j log. .xk// � log. .xkC1//j � .1C h/ju � vj � .1C h/
h

2
;

which proves the lemma. �

Lemma 7.2. Let assumptions and notation be as in Lemma 7.1. Let ı denote
a fixed positive real and s a fixed nonnegative real. Assume, in addition that
� W Œa; b� ! Œa; b� is a Lipschitz map with Lip.�/ � c < 1 and that, for h D b�a

n

and M1 as in Lemma 7.1, exp.�ŒM1 C ı�h/ � 1Cc
2

and M > 0 is such that
exp.Mh/ � 2. Define a linear map LsWXn ! Xn by

Ls.w/.xk/ WD wI .�.xk// Ǒ
s.xk/; 0 � k � n:

Then, if KM � Xn is defined by (7.3), Ls.KM / � KM �ı .

Proof. For a fixed k, 0 � k < n, recall we have defined � D �.xk/ and
� D �.xkC1/. We must prove that if h and M satisfy the above constraints and
w 2 KM , then

wI .�/ Ǒ
s.xk/ � exp.ŒM � ı�h/wI .�/ Ǒ

s.xkC1/;

wI .�/ Ǒ
s.xkC1/ � exp.ŒM � ı�h/wI .�/ Ǒ

s.xk/:

Using Lemma 7.1, we see that xk 7! Ǒ
s.xk/ is an element of KM1

, so the above
inequalities will be satisfied if

wI .�/ � exp.ŒM �M1 � ı�h/wI .�/; (7.4)

wI .�/ � exp.ŒM �M1 � ı�h/wI .�/: (7.5)
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For notational convenience, we write M2 D M1 C ı. By interchanging the roles
of � and �, we can assume that � � �, and it suffices to prove that (7.4) and (7.5)

are satisfied for M and h as in the statement of the Lemma. Define j D n � 1 if
� � xn�1 and otherwise define j to be the unique integer, 0 � j < n � 1, such
that xj � � < xj C1. Because 0 � � � � � ch < h, there are only two cases to
consider: either (i) xj � � � � or (ii) xj �1 < � < xj and xj � � < xj C1.

We first assume that we are in case (i), so �; � 2 Œxj ; xj C1� and 0 � ��� � ch,
Using (7.2), we see that (7.4) is equivalent to proving

.xj C1 � �/wj C .� � xj /wj C1

� exp.ŒM �M2�h/Œ.xj C1 � �/wj C .� � xj /wj C1�:
(7.6)

Subtracting .xj C1 ��/wj C .��xj /wj C1 from both sides of (7.6) shows that (7.6)

will be satisfied if

.� � �/Œwj C1 � wj �

� Œexp.ŒM �M2�h/ � 1�Œ.xj C1 � �/wj C .� � xj /wj C1�:
(7.7)

Equation (7.7) will certainly be satisfied if wj C1 � wj , so we can assume that
wj C1 � wj > 0 and 1 < wj C1

wj
� exp.Mh/. If we divide both sides of (7.7) by wj

and recall that � � � � ch, we see that the left hand side of (7.7) is dominated by
chŒexp.Mh/ � 1�, while the right hand side of (7.7) is � Œexp.ŒM �M2�h/� 1�h,
Thus, (7.7) will be satisfied if

c �
exp.ŒM �M2�h/ � 1

exp.Mh/ � 1
D exp.�M2h/C

exp.�M2h/ � 1

exp.Mh/ � 1
: (7.8)

If h > 0 is chosen so that exp.�M2h/ � 1Cc
2

, a calculation shows that (7.8) will

be satisfied ifM �
log.2/

h
, where log denotes the natural logarithm. Thus, if h > 0

satisfies (7.1), M �
log.2/

h
, and exp.�M2h/ � 1Cc

2
, (7.4) is satisfied in case (i).

Under the same conditions on h andM , an exactly analogous argument shows that
(in case (i)), (7.5) is also satisfied.

We next consider case (ii), so � 2 Œxj ; xj C1�, � 2 Œxj �1; xj � and 0 � ��� � ch.
It follows that � � xj D c1h and xj � � D c2h, where c1 � 0, c2 � 0, and
c1 C c2 � c < 1. As before, we need to show that inequalities (7.4) and (7.5) are
satisfied. Inequality (7.5) takes the form

wI .�/ D
� � xj �1

h
wj C

xj � �

h
w.xj �1/

� exp.ŒM �M2�h/
h� � xj

h
wj C1 C

xj C1 � �

h
w.xj /

i

;

(7.9)
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which is equivalent to

.� � xj �1/C .xj � �/
w.xj �1/

wj

� exp.ŒM �M2�h/
h

.� � xj /
wj C1

wj

C .xj C1 � �/
i

:

(7.10)

Since w.xj �1/

wj
� exp.Mh/, wj C1

wj
� exp.�Mh/, xj � � D c2h and � � xj D c1h,

(7.10) will be satisfied if

.1 � c2/C c2 exp.Mh/ � exp.ŒM �M2�h/Œc1 exp.�Mh/C .1 � c1/�: (7.11)

Because c2 � c � c1, we have

.1� c2/C c2 exp.Mh/ � .1� c C c1/C .c � c1/ exp.Mh/;

and inequality (7.11) will be satisfied if

.1C c1 � c/C .c � c1/ exp.Mh/ � exp.�M2h/Œc1 C .1� c1/ exp.Mh/�: (7.12)

A necessary condition that (7.12) be satisfied is that exp.�M2h/ � c�c1

1�c1
. Since

c�c1

1�c1
� c and c < 1Cc

2
, we choose h D b�a

n
> 0 sufficiently small that

exp.�M2h/ �
1C c

2
: (7.13)

For this choice of h, (7.12) will be satisfied if

.1C c1 � c/C .c � c1/ exp.Mh/ �
1C c

2
Œc1 C .1� c1/ exp.Mh/�;

which is equivalent to
�

1C
c1

2

�

.1� c/ �
h

.1C c1/
1� c

2

i

exp.Mh/: (7.14)

Since 2Cc1

1Cc1
� 2, (7.14) will be satisfied if

2 � exp.Mh/: (7.15)

Thus (7.9) will be satisfied if h satisfies (7.13) and, for this h, M satisfies (7.15).
Inequality (7.4) will be satisfied in case (ii) if

.� � xj /
wj C1

wj

C .xj C1 � �/ � exp.ŒM �M2�h/
h

.�� xj �1/C .xj � �/
w.xj �1/

wj

i

:

(7.16)

The same reasoning as above shows that if h > 0 satisfies (7.13) and M then
satisfies (7.15), (7.16) will be satisfied. Details are left to the reader. �



Computation of Hausdorff Dimension 327

Theorem 7.3. Let N denote a positive integer. For 1 � j � N , assume that
�j W Œa; b� ! Œa; b� is a Lipschitz map with Lip.�j / � c < 1, c independent of j .
For 1 � j � N , assume that ǰ 2 KM0

n ¹0º � Xn, where M0 is independent
of j . For j � 1, let Cj be a real number with jCj j � C , where C is independent
of j ; and for a fixed s � 0, define Ǒ

j;s 2 Xn by

Ǒ
j;s.xk/ D

h

1C
1

2
CjQ.�j .xk//

i

Œ ǰ .xk/�
s; 0 � k � n:

Let ı > 0 be a given real number and for j � 1 define a linear mapLj;sWXn ! Xn

by
.Lj;sw/.xk/ D Ǒ

j;s.xk/w
I .�j .xk//; 0 � k � n;

and a linear map Ls WXn ! Xn by Ls D
PN

j D1Lj;s. Assume that h D b�a
n

� 1

and Ch
4

� 1 and define M2 D M1 C ı. Assume also that exp.�M2h/ � 1Cc
2

and that M 2 R is such that exp.Mh/ � 2. Then we have that Ls.KM n ¹0º/ �

KM �ı n ¹0º.

Proof. Lemma 7.1 implies that xk 7! Ǒ
j;s.xk/ is an element ofKM1

, whereM1 D

sM0 C 1Ch
2

. Under our hypotheses, Lemma 7.2 implies that Lj;s.KM n ¹0º/ �

KM �ı n ¹0º, so Ls.KM n ¹0º/ � KM �ı n ¹0º. �

Our next theorem follows immediately from Theorem 7.3 and the remarks at
the beginning of this section.

Theorem 7.4. Let notation and assumptions be as in Theorem 7.3. Then Ls has
an eigenfunction v 2 KM �ı n ¹0º, kvk D 1, with eigenvalue r > 0. If yLs denotes
the complexification of Ls, r is an eigenvalue of yLs of algebraic multiplicity one;
and if Lsw D �w for some w 2 KM n ¹0º, � D r , and w is a positive multiple of
v. If z is an eigenvalue of yLs and z ¤ r , then jzj < r . If x 2 KM n ¹0º,

lim
k!1













Lk.x/

kLk.x/k
� v













D 0

and the convergence rate is geometric.

Remark 7.1. With the aid of Theorem 7.3, we could also have used the theory of
u0-positive linear operators (see [33] and [34]) to derive Theorem 7.4.

Remark 7.2. Since the linear maps As and Bs are both of the form of the map
Ls in Theorem 7.3, Theorem 7.4 implies the desired spectral properties of As and
Bs . With greater care it is possible to use results in [12] to estimate the spectral
clearance q.Ls/ of Ls.
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Remark 7.3. We claim that there is a constant E, which can be easily estimated,
such that, for h D b�a

n
sufficiently small,

r.Bs/ � r.As/.1CEh2/:

(Of course we already know that r.As/ � r.Bs/.) For a fixed s � 0, let ǰ .�/

and �j .�/ be as in Theorem 7.3. We know that As and Bs are of the form of Ls in
Theorem 7.3, so we can write, for 0 � k � n,

.Asw/.xk/ D

N
X

j D1

h

1C
Cj

2
Q.�j .xk//

i

Œ ǰ .xk/�
swI .�j .xk/;

.Bsw/.xk/ D

N
X

j D1

h

1C
Dj

2
Q.�j .xk//

i

Œ ǰ .xk/�
swI .�j .xk/:

We assume that h � 1 and C h
4

� 1, where C is a positive constant such that
max.jCj j; jDj j/ � C for 1 � j � N . We assume also that for 1 � j � N ,
Cj � Dj . Let K D ¹w 2 XnW w.xk/ � 0 for 0 � k � nº, so As.K/ � K and
Bs.K/ � K. Define � � 1 by

�Dsup
°h

1C
Dj

2
Q.�j .xk//

ih

1C
Cj

2
Q.�j .xk//

i�1

W 1�j � N; 0�k� N
±

� 1:

Then for all w 2 K and 0 � k � n, .Bs.w//.xk/ � �.As.w//.xk/, which
implies that r.Bs/ � �r.As/. Since Q.u/ � h2

4
, a little thought shows that

� �
�

1C Ch2

8

��

1� Ch2

8

��1
� 1CEh2, which gives the desired estimate.

8. Log convexity of the spectral radius of ƒs

Throughout this section we shall assume that hypotheses (H4.1), (H4.2), and (H4.3)
in Section 4 are satisfied and we shall also assume thatH is a bounded, open, sub-
set of R. As in Section 4, we shall write X D Cm. xH/ and Y D C. xH/. For s 2 R,
we define ƒsWX ! X and LsWY ! Y by

.ƒs.w//.x/ D
X

b2B
Œgb.x/�

sw.�b.x//; (8.1)

.Ls.w//.x/ D
X

b2B
Œgb.x/�

sw.�b.x//: (8.2)

Theorem 4.1 implies that r.ƒs/ is an algebraically simple eigenvalue of ƒs for
s 2 R and that sup¹jzjW z 2 �.ƒs/; z ¤ r.ƒs/º < r.ƒs/, where �.ƒs/ denotes the
spectrum of ƒs.
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Let yX denote the complexification ofX , so yX is the Banach space of Cm maps
f WH ! C such that x 7! .Dkf /.x/ extends continuously to xH for all 0 � k � m.
For s 2 C one can define

yƒsW yX �! yX

by

.yƒs.w//.x/ D
X

b2B
.gb.x//

sw.�b.x// WD
X

b2B
exp.s log gb.x//w.�b.x//:

The reader can verify that s 7! yƒs 2 L. yX; yX/ is an analytic map. Because r.yƒs/

is an algebraically simple eigenvalue of yƒs for s 2 R and sup¹jzjW z 2 �.ƒs/,
z ¤ r.ƒs/º < r.ƒs/, it follows from the kind of argument used on pp. 227f of [45]
that there is an open neighborhood U of R in C and the map s 2 U 7! r.yƒs/ is
analytic on U .

Theorem 8.1. Assume that hypotheses (H4.1), (H4.2), and (H4.3) are satisfied
with m � 1 and that H � R is a bounded, open set. For s 2 R, let ƒs and Ls

be defined by (8.1) and (8.2). Then we have that s 7! r.ƒs/ is log convex, i.e.,
s 7! log.r.ƒs// is convex on Œ0;1/.

Proof. Because Theorem 4.1 implies that r.Ls/ D r.ƒs/ for all real s, it suffices
to take s0 < s1, and 0 < t < 1 and prove that

r.L.1�t/s0Cts1
/ � r.Ls0

/1�tr.Ls1
/t :

We shall use an old trick (see [47] and the references therein). Let vsj
.x/, j D 0; 1

denote the strictly positive eigenfunction of Lsj
which is ensured by Theorem 4.1.

Then Lsj
vsj

D r.Lsj
/vsj

. For a fixed t , 0 < t < 1, define st D .1 � t /s0 C t s1

and

wt .x/ D Œvs0
.x/�1�t Œvs1

.x/�t :

Then, using Hölder’s inequality, we find that

.Lst
.wt //.x/ D

X

b2B
Œgb.x/

s0vs0
.x/�1�t Œgb.x/

s1vs1
.x/�t

�
�

X

b2B
gb.x/

s0vs0
.x/

�1�t � X

b2B
gb.x/

s1vs1
.x/

�t

D Œr.Ls0
/1�tr.Ls1

/t �wt .x/:

(8.3)
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Because wt .x/ > 0 for all x 2 xH , a standard argument (see Lemma 5.9 in [50])
shows that

r.Lst
/ D lim

k!1
kLk

st
k

1=k D lim
k!1

kLk
st
.wt /k

1=k: (8.4)

Using inequalities (8.3) and (8.4), we see that r.Lst
/ � r.Ls0

/1�t r.Ls1
/t . �

In general, if V is a convex subset of a vector space X , we shall call a map
f WV ! Œ0;1/ log convex if (i) f .x/ D 0 for all x 2 V or (ii) f .x/ > 0 for all
x 2 V and x 7! log.f .x// is convex. Products of log convex functions are log
convex, and Hölders inequality implies that sums of log convex functions are log
convex.

Results related to Theorem 8.1 can be found in [47], [31], [32], [9], [18], and [17].
Note that the terminology super convexity is used to denote log convexity in
[31] and [32], presumably because any log convex function is convex, but not
conversely. Theorem 8.1, while adequate for our immediate purposes, can be
greatly generalized by a different argument that does not require existence of
strictly positive eigenfunctions. This generalization (which we omit) contains
Kingman’s matrix log convexity result in [32] as a special case.

In our applications, the map s 7! r.Ls/ will usually be strictly decreasing
on an interval Œs1; s2� with r.Ls1

/ > 1 and r.Ls2
/ < 1, and we wish to find the

unique s� 2 .s1; s2/ such that r.Ls�
/ D 1. The following hypothesis ensures that

s 7! r.Ls/ is strictly decreasing for all S .

(H8.1) Assume that gb.�/, b 2 B satisfy the conditions of (H4.1). Assume also
that there exists an integer � � 1 such that g!.x/ < 1 for all ! 2 B� and
all x 2 xH .

Theorem 8.2. Assume hypotheses (H4.1), (H4.2), (H4.3), and (H8.1) are satisfied.
Then the map s 7! r.ƒs/, s 2 R, is strictly decreasing and real analytic and
lims!1 r.ƒs/ D 0.

Proof. If Ls WC. xH/ ! C. xH/ is given by (4.1), it is a standard result that r.L�
s / D

.r.Ls//
� and r.ƒ�

s / D .r.ƒs//
� for all integers � � 1, and Theorem 4.1 implies

that r.Ls/ D r.ƒs/. Thus it suffices to prove that for some positive integer �,
s 7! r.L�

s / is strictly decreasing and lims!1 r.L�
s / D 0.

Suppose that K denotes the set of nonnegative functions in C. xH/ and
AWC. xH/ ! C. xH/ is a bounded linear map such that A.K/ � K. If there ex-
ists w 2 C. xH/ such that w.x/ > 0 for all x 2 xH and if .A.w//.x/ � aw.x/

for all x 2 xH , it is well-known (and easy to verify) that r.A/ � a, where r.A/
denotes the spectral radius of A. In our situation, we take � D �, where � is as
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in (H8.1), and A D .Ls/
�. If s < t and vs is the strictly positive eigenfunction

for .Ls/
�, (H8.1) implies that there is a constant c < 1, c D c.s; t /, such that

cg!.x/
s � g!.x/

t for all ! 2 B� and x 2 H . Thus we find that

cr.Ls/
�vs.x/ D

X

!2B�

cg!.x/
svs.�!.x//

�
X

!2B�

g!.x/
tvs.�!.x//

D .L
�
t .vs//.x/:

It follows that r.Lt /
� � c.s; t /r.Ls/

�, so r.Lt / < r.Ls/, for s < t . Because
0 < g!.x/ < 1 for all x 2 xH and ! 2 B�, it is also easy to see that
limt!1 k.Lt /

�kD0; and since k.Lt /
�k�r.L

�
t /, we get limt!1 r.L

�
t /D0. �

Remark 8.1. It is easy to construct examples for which (H8.1) is satisfied for some
� > 1, but not satisfied for � D 1. The functions �1.x/ WD 9

xC1
and �2.x/ WD 1

xC2

both map the closed interval xH D
�

1
11
; 9

�

into itself. There is a unique nonempty
compact set J � xH such that J D �1.J / [ �2.J /. For s 2 R, define

LsWC. xH/ �! C. xH/

by

.Lsw/.x/ WD

2
X

j D1

jD�j .x/j
sw.�j .x// WD

2
X

j D1

gj .x/
sw.�j .x//;

where D WD d
dx

. The Hausdorff dimension of J is the unique s D s�, 0 < s� < 1,
such that r.Ls/ D 1. Our previous remarks show that

.L2
sw/.x/ D

2
X

j D1

2
X

kD1

jD.�j ı �k/.x/j
sw.�j ı �k/.x//:

One can check that (H8.1) is not satisfied for � D 1, but is satisfied for � D 2.

Remark 8.2. Assume that the assumptions of Theorem 8.2 are satisfied and define
 .x/ D log.r.Ls// D log.r.ƒs// (where log denotes the natural logarithm),
so s 7!  .s/ is a convex, strictly decreasing function with  .0/ > 1 (unless
jBj D p D 1) and lims!1  .s/ D �1. We are interested in finding the
unique value of s such that  .s/ D 0. In general suppose that  W Œs1; s2� ! R

is a continuous, strictly decreasing, convex function such that  .s1/ > 0 and
 .s2/ < 0, so there exists a unique s D s� 2 .s1; s2/ with  .s�/ D 0. If t1 and
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t2 are chosen so that s1 � t1 < t2 � s� and tkC1 is obtained from tk�1 and tk
by the secant method, an elementary argument show that limk!1 tk D s�. If
s� � t2 < t1 < s2 and s1 � t3, a similar argument shows that limk!1 tk D s�.
If  2 C 3, elementary numerical analysis implies that the rate of convergence is

faster than linear (D 1C
p

5
2

). In our numerical work, we apply these observations,
not directly to  .s/ D log.r.ƒs//, but to convex decreasing functions which
closely approximate log.r.ƒs//.

One can also ask whether the maps s 7! r.Bs/ and s 7! r.As/ are log convex,
where As and Bs are the previously described approximating matrices for Ls.
An easier question is whether the map s 7! r.Ms/ is log convex, where As and
Bs are obtained from Ms by adding error correction terms. We shall prove that
s 7! r.Ms/ is log convex.

First, we need to recall a useful theorem of Kingman [32]. LetM.s/ D .aij .s//

be an m � m matrix whose entries aij .s/ are either strictly positive for all s in a
fixed interval J or are identically zero for all s 2 J . Assume that s 7! aij .s/ is
log convex on J for 1 � i; j � m. Under these assumptions, Kingman [32] has
proved that s 7! r.Ms/ is log convex.

Let n � 2 be a positive integer, and for a < b given real numbers, define
xk D a C kh, �1 � k � n C 1, h D b�a

n
. Let Xn denote the vector space of

real valued maps wW ¹xkW 0 � k � nº ! R, so Xn is a real vector space linearly
isomorphic to R

nC1. As usual, if w 2 Xn, extend w to a map wI W Œa; b� ! R by
linear interpolation, so

wI .u/ D
u � xk

h
w.xkC1/C

xkC1 � u

h
w.xk/; xk � u � xkC1; 0 � k � n:

For 1 � j � N , assume that �j W Œa; b� ! Œa; b� are given maps and assume that
gj W Œa; b� ! .0;1/ are given positive functions. For s 2 R, define a linear map
Ms WXn ! Xn by

Msw.xk/ D

N
X

j D1

Œgj .xk/�
sf I .�j .xk//; 0 � k � n;

so if w.xk/ � 0 for 0 � k � n, g.xk/ � 0 for 0 � k � n. We can write
Msw.xk/ D

Pn
mD0 akm.s/w.xm/, where for 0 � k, m � n,

akm.s/ D
X

j;xm�1��j .xk/�xm

Œgj .xk/�
s Œ�j .xk/ � xm�1�

h

C
X

j;xm��j .xk/�xmC1

Œgj .xk/�
s ŒxmC1 � �j .xk/�

h
:
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If, for a given k andm, there is no j , 1 � j � N , with xm�1 � �j .xk/ � xmC1, we
define akm D 0. Since the sum of log convex functions is log convex, s 7! akm.s/

is log convex on R. It follows from Kingman’s theorem that s 7! r.Ms/ is log
convex, where r.Ms/ denotes the spectral radius of Ms .
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