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Global fractal transformations and global addressing
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Abstract. The attractor is a central object of an iterated function system (IFS), and fractal

transformations are the natural maps from the attractor of one IFS to the attractor of another.

This paper presents a global point of view, showing how to extend the domain of a fractal

transformation from an attractor with non-empty interior to the ambient space. Intimately

related is the extension of addressing from such an attractor to the set of points of the

ambient space. Properties of such global fractal transformations are obtained, and tilings

are constructed based on global addresses.
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1. Introduction

An iterated function system (IFS) is a standard method for the construction of

deterministic fractals, the attractor of the IFS (usually) being a fractal. A funda-

mental property of the attractor is that its points have addresses, an address being

a word in the alphabet ŒN � D ¹1; 2; : : : ; N º, where N is the number of functions

in the IFS. Addressing of points of the attractor is well known; see for example

[1], [15], [16]. A method, called masking, can be used to assign to each point of

the attractor a unique address. The natural maps from the attractor of one IFS to

the attractor of another are fractal transformations. Given attractors AF and AG

of two IFSs F and G with the same number of functions, a fractal transformation

is basically a transformation that takes each point in AF to a point in AG with

the same address. Fractal transformations between attractors were introduced by

M. Barnsley [4], although mappings between self-similar sets defined by pairing

points with the same address are implicit in early examples like the Cantor func-

tion (devil’s staircase) [14]. Fractal transformations have proved to be intriguing

mathematical objects with potential application to image processing; see [5], [6],

[7], [8], [9]. Hilbert’s space filing curve can be constructed as such a transforma-

tion; see Example 6.4. A fractal Fourier theory can be based on particular fractal

transformations [3]. The iPad app Frango Camera (Frango Studios Pty. Ltd) is a

recreational application.

Given that a fractal transformation T WAF ! AG takes one attractor to another,

it is natural to ask whether there is a natural mapping defined from the ambient

space of F to the ambient space of G for which T is just the restriction to the at-

tractor. More precisely, let F and G be IFSs on complete metric spaces X and Y,

respectively, and let T WAF ! AG be a fractal transformation from an attractor

with non-empty interior of F to the attractor of G. The new perspective in this

paper is of a global fractal transformation as a mapping X ! Y on the ambi-

ent spaces. In fact, given T WAF ! AG, there are global fractal transformations

T� WX! Y, where � ranges over an infinite parameter set, each such transforma-

tion T� agreeing with T on AF. Figure 1 shows (part of) a checker board pattern

on R
2 and (part of) its image under two such global fractal transformations of

the plane. Moreover, these particular fractal transformations are area preserving

homeomorphisms (see Example 7.3).

Inexorably linked to the extension of a fractal transformation to a global fractal

transformation is the extension of addressing from points of the attractor to points

on the ambient space. Applications of addressing of points of the attractor, with

respect to both the topology and dynamics of fractals, are numerous; see for

example [2], [12], [25]. An application of this global addressing that is developed

in this paper is the creation of tilings like those in Figures 9, 10, and 11.
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Figure 1. A checkerboard pattern in the plane and its image under two area preserving fractal

homeomorphisms of the plane.

1.1. Organization of the paper. Definitions and notation related to attractors

and their addressing are contained in Section 2. Masks and their corresponding

sections are the subject of Section 3, and fractal transformations are covered

Section 4. Precisely how a fractal transformation can be naturally extended from

the attractor with non-empty interior to the ambient space is explained in Section 4

(Definition 4.1). Equivalent formulations of such a global fractal transformation

are given by statement (2) of Theorem 5.3 and, in the case of a continuous fractal

transformation, by Corollary 6.10.

Fundamental properties of fractal transformations in the large is the subjects of

Sections 6 and 7. Section 6 concerns properties of continuous global fractal trans-

formations. Theorem 6.2 provides sufficient conditions for a global fractal trans-

formation to be continuous in terms of the address structure, and Theorem 6.12

provides conditions, in a special case of affine IFSs, in geometric terms. The-

orem 6.7 concerns global fractal homeomorphisms. If the attractors of IFSs F

and G are non-overlapping (defined in Sections 5), then the graph of a continuous
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fractal transformation is itself the attractor of an appropriately defined IFS (The-

orem 6.8), and the graph of a global fractal transformation has the simple form

given by Theorem 6.11. Although a global fractal transformation T depends on a

mask and on the parameter � , whether or not T is continuous is independent of

the mask and independent of � in the non-overlapping case (Corollary 6.3).

In Section 7 it is shown that, in the case that X D Y D R
d , under suitable con-

ditions, a global fractal transformation is independent of the mask, is continuous

and invertible almost everywhere, and is volume preserving (Theorem 7.1). This

result is used to produce area preserving fractal homeomorphisms of the plane

based on IFSs with triangular attractors (Corollary 7.2).

Global addressing is the subject of Section 5. This is used to create tilings

of X based on addresses, a scheme that extends and simplifies previous tiling

constructions. The basic idea, explained precisely by Theorem 8.3, is to define a

tile as the set of all points ofXwhose address begins with a given prefix. Examples

are given in Section 8.

2. Iterated function system, its attractor and coding map

In this paper an iterated function system (IFS) is denoted by

F D ¹XW f1; f2; : : : ; fN º;

where X is a complete metric space and each fnWX ! X, is a contraction with

a continuous inverse for n D 1; 2; 3; : : :N . Let H be the collection of nonempty

compact subsets of X and define F WH! H by

F.C / D
[

f 2F

f .C / (1)

for all C 2 H. Define F 0.C / D C and let F k.C / denote the k-fold composition

of F applied to C , namely, the union of fi1 ıfi2 ı � � � ıfik .C / over all finite words

i1i2 : : : ik of length k. It is a basic result due to Hutchinson [20] that, given such

an IFS F, there is a unique compact set A, called the attractor of F, such that

(1) F.A/ D A, and

(2) limk!1 F k.C / D A; for all C 2 H,

where the limit is with respect to the Hausdorff metric.
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Let ŒN � D ¹1; 2; 3; : : : ; N º. Let

I D ŒN �1

be the set of all infinite words �1�2�3 : : : over the alphabet ŒN �, and ŒN �� the set

of all finite words over the alphabet ŒN � (including the empty word). If � 2 ŒN ��,

then j� j denotes its length. To simplify the notation for composition of functions,

for all � D �1�2�3 : : : 2 I and k 2 ŒN �; let

� jk D �1�2�3 : : : �k f�jk D f�1
ı f�2

ı � � � ı f�k

 ��
� jk D �k�k�1 : : : �1 f �

�jk
D f�k

ı f�k�1
ı � � � ı f�1

:
(2)

Let d be the metric on I defined by

d.�; !/ D
´

2�min¹kW�k¤!kº if � ¤ !;

0 if � D !;
(3)

for all �; ! 2 I . In other words, � and ! are close if they agree on a large initial

segment. The shift map S W I ! I defined by

S.�1�2 : : : / D �2�3 : : :

is continuous with respect to this metric. The metric space .I; d/ is called the

code space for the attractor A of F, and the coding map � W I ! A is defined by

�.�/ D lim
k!1

f�jk.C /: (4)

It is well known that the limit is a single point in A independent of C 2 H, that �

is continuous and surjective. The set-valued inverse ��1.a/ comprises the set of

addresses of the point a 2 A.

3. Masks and sections

Sections and masks for an IFS F are prerequisite concepts in defining a fractal

transformation. A section of the coding map � W I ! A of F with attractor A is a

map � WA! I such that � ı � D id, the identity on X. A section � thus assigns to

each point of the attractor a unique address among its set of addresses. The set

�A WD �.A/

will be referred to as the address space of F with respect to the section � . It is

natural to require that the shift of an address in �A also be an address in �A (see

Example 3.1). More precisely, a section � of the coding map is shift invariant if

S.�A/ � �A.
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Example 3.1. Consider the IFS F D ¹RW f0.x/ D x=2; f1.x/ D x=2C 1=2º. We

use the indices 0 and 1 rather than 1 and 2 for reasons that will be clear below. The

attractor is the interval Œ0; 1� and

�.�1�2 : : : / D 1

2
�1 C

�1

2

�2

�2 C
�1

2

�3

�3 C � � �

for all binary words � 2 ¹0; 1º1. A section � of � assigns to each x 2 Œ0; 1� a base

2 decimal expansion of x (omitting the decimal point). For example, the set of

addresses of x D 1=2 is ��1.1=2/ D ¹0111 : : : ; 1000 : : : º. If �.1=2/ D 0111 : : :

and if � is shift invariant, then �.1=4/ D 00111 : : : and �.1=8/ D 000111 : : : , etc.

And if �.1=2/ D 1000 : : : and if � is shift invariant, then �.1=4/ D 01000 : : : and

�.1=8/ D 001000 : : : , etc.

A method for obtaining a shift invariant section for F is by way of a mask.

A mask for the attractor A of an IFS F D ¹XW f1; f2; : : : ; fN º is a partition

¹M1; M2; : : : ; MN º of A such that Mn � fn.A/ for all n 2 ŒN �. A mask defines a

dynamical system �WA! A, called a masked dynamical system, according to

�.x/ D f �1
n .x/ for x 2Mn;

for all n 2 ŒN �. The masked dynamical system determines a section � WA! I of

the coding map � W I ! A defined as follows:

.�.x//k D j if �k�1.x/ 2Mj .

A section � of � constructed in this manner is called a masked section. The

two sections in Example 3.1 are masked sections corresponding to the masks

¹Œ0; 1=2�; .1=2; 1� and ¹Œ0; 1=2/; Œ1=2; 1�.

The particular mask ¹M1; M2; : : : ; MN º, defined by

Mi D fi .A/ n
i�1
[

jD1

Mj ; i D 1; 2; : : : ; N;

is called the tops mask. In fact, it was the tops mask that was used when the concept

of fractal transformation was introduced [4]. The section � corresponding to the

tops mask is

�.x/ D max ��1.x/;

where the maximum is with respect to the lexicographic order on I with 1 > 2 >

3 > � � � > N .

In light of the following theorem, proved in [9], all sections in this paper are

assumed to be shift invariant.
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Theorem 3.2. A section � WA ! I is shift invariant if and only if it is a masked

section.

Let � 2 ŒN ��. It will be useful in Section 8 to understand which are the points

in the attractor A whose address in �A begins with � . The answer is provided by

Proposition 3.3 below. Define a nested sequence of partitions of A starting with a

mask M as follows. For each k � 0, define a partition M k D ¹M� W j� j D kº of A

recursively by letting M 1 DM and

M kC1 D ¹M�j DM� \ f�.Mj /W j� j D k; 1 � j � N º: (5)

Note that M� D ; is possible. The partition M k will be called the kthlevel mask.

Proposition 3.3. Given a mask M and the corresponding section � , if j� j D k,

then

M� D ¹a 2 AW �.a/jk D �º:

Proof. From the definition of section by way of the masked dynamical system, it

readily follows that

¹a 2 AW �.a/jk D �º D
k

\

jD1

f�jj�1.M�j
/:

A straightforward induction using formula (5) suffices to verify the last equality

above. �

4. Global fractal transformations

Definition 4.1. Let F D ¹XW f1; f2; : : : ; fN º and G D ¹YW g1; g2; : : : ; gN º be two

IFSs with attractors AF and AG, respectively. If �FWAF ! I is a section for

coding map �FW I ! AF, the fractal transformation associated with �F is the

map TFGWAF ! AG defined by

TFG D �G ı �F:

Let � 2 I be fixed. Call � full with respect to F if, for all x 2 X, there is a

k D k.x/ such that

f �
� jk

.x/ D f�k
ı f�k�1

: : : 2 f�1
.x/ 2 AF:



394 A. Vince

Note that, for � to be full with respect to F, it is necessary for AF to have

nonempty interior; this follows from the Baire Category Theorem. Conversely,

if AF has nonempty interior, then � is full for almost all � 2 I in the following

two senses [10].

(1) The full words are dense in the coding space I . In particular, a word � 2 I

is disjunctive if every finite word is a subword of � . For instance, the binary

Champernowne sequence 0100011011000001 : : :, formed by concatenating

all binary strings in lexicographic order, is disjunctive. The set of disjunctive

words is dense in I , and every disjunctive word is full.

(2) Define a word � 2 ŒN �1 to be a random word if there is a p > 0 such that

each �k ; k D 1; 2; : : : , is selected at random from ¹1; 2; : : : ; N º where the

probability that �k D n; n 2 ŒN �; is greater than or equal to p; independent

of the preceding outcomes. With probability 1 a random word � is full.

It will be assumed henceforth that � is full. Define

K D K.x/ D min¹kW f �
� jk

.x/ 2 AFº:

Now let TFGWAF ! AG be the fractal transformation associated with a section

�F , and define
yTFGWX �! Y;

yTFG.x/ D g�.� jK/ ı TFG ı f ��
� jK

.x/:
(6)

The map yTFG will be called the global fractal transformation with respect to � .

Note that there is a global fractal transformation yTFG for each � 2 I that is full

with respect to F.

5. Addressing points of X

Fix � D �1�2�3 : : : 2 I throughout this section, and introduce the notation

�.� jk/ D �.�1�2�3 : : : �k/ D .��1/.��2/.��3/ : : : .��k/:

Define

I D ¹�.� jk/� W k � 0; � 2 I; �k ¤ �1º

which will be called the global code space or �-code space to emphasis its

dependence on � . The global code space is a compact metric space with respect to
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the metric given in (3). Extend the notation of Equation 2 as follows. For j 2 ŒN �

and ˛ 2 I:

f�j D .fj /�1 f˛jk D f˛1
ı f˛2

ı � � � ı f˛k

For example, f�.� jk/ D f �1
�1
ı f �1

�2
ı � � � ı f �1

�k
.

Let F be an IFS with attractor A. In this section the domain of the coding map

� W I ! A of Equation (4) is extended from I to I and the domain of a section

� WA ! I is extended from A to X. The notation O� and O� will be used for the

extended versions. To do this define

O�.˛/ D lim
k!1

f˛jk.C /;

for all ˛ 2 I, where C 2 H. The limit exists and is independent of C because,

by the definition of I, there is a nonnegative integer j such that S j .˛/ 2 I; which

means that we can write

O�.˛/ D f˛jj .�.S j .˛//:

The map

O� W I �! X

will be called the global coding map of F. If the attractor A of an IFS F has

nonempty interior and � is full, then the global coding map O� W I! X is continuous

and surjective.

Definition 5.1. Let F be an IFS with attractor A. Fix a � 2 I that is full with

respect to F, and fix a mask for A with corresponding section � WA ! I . For

x 2 X, recall the notation in Definition 4.1:

K D K.x/ D min¹kW a WD f �
� jk

.x/ 2 Aº:

Define O� WX! I by the following concatenation:

O�.x/ D �.� jK/�.a/:

Clearly O� is an extension of � , i.e., O�.x/ D �.x/ for x 2 A. It is easy to check that

O�.x/ 2 I for all x 2 X. Thus O� provides a unique address in I to each point of X.

The map O� will be called a global section or �-section of the global coding map

O� W I! X. The set

�X D O�.X/

will be called the address space of F with respect to O� .
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Example 5.2. Consider the IFS F D ¹RW f0.x/ D x=2; f1.x/ D x=2 C 1=2º of

Example 3.1, whose attractor is the interval Œ0; 1�. As discussed in Example 3.1,

a section � W Œ0; 1� ! I , in this case, is obtained by letting �.x/ be the binary

decimal expansion of x (without the decimal point) for all x 2 Œ0; 1�. Actually

there are two shift invariant sections, depending on whether �.1=2/ D 1000 : : :

or �.1=2/ D 0111 : : :. For this example let � D 010101 : : : 2 I , which is full

with respect to F. Using Definition 5.1 and a little calculation, a global section

(�-section) O� WR! I can be obtained:

O�.x/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

.�0� 1/n�1

if x 2
�

� 2
3
.4n � 1/;�2

3
.4n�1 � 1/

�

; n D 1; 2; 3; : : : ;

�.x/

if x 2 Œ0; 1�;

.�0� 1/n.�0/�2

if x 2
�

1
3
.4n C 2/; 1

3
.4nC1 C 2/

�

; n D 0; 1; 2; : : : ;

where

�1 D �
� 1

4n

�

x � 2

3

�

C 2

3

�

and �2 D �
� 1

4n

�x

2
� 1

3

�

C 1

3

�

:

If e is the base of the natural logarithm, for example, then

O�.e/ D .�0/.�1/.�0/�..eC 2/=8/

D .�0/.�1/.�0/110101101111110 : : : :

The following theorem shows that the global fractal transformation yT WX! Y

satisfies the same property that defines the fractal transformation T WAF ! AG.

Theorem 5.3. Let F be an IFS with global coding map O�FW I ! X, and global

section O�FWX ! I. Let G be an IFS with the same number of functions as F

and with global coding map O�GW I! Y. If TFG is a corresponding global fractal

transformation, then

(1) O�F ı O�F D id, and

(2) yTFG D O�G ı O�F:
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Proof. Concerning statement (1), assume that x 2 X and that a 2 AF is the point

in Definition 5.1. Further let �F.a/ D � . We have

O�F ı O�F.x/ D lim
j!1

f�.� jK/.�F.a/jj /.A/

D f�.� jK/ lim
j!1

f�F.a/jj .A/

D f�.� jK/ ı �F ı �F.a/

D f�.� jK/.a/

D f�.� jK/ ı f ��
� jK

.x/

D x:

Concerning statement (2), for all x 2 X we have

yT .x/ D g�.� jK/ ı T ı f ��
� jK

.x/

D g�.� jK/ ı �G ı �F ı f ��
� jK

.x/

D g�.� jK/ ı �G ı �F.a/

D O�G.�.� jK/�F.a//

D O�G ı O�F.x/: �

The following lemma will be helpful in the next section. For a set B , its closure

is denoted by xB and its interior by Bo. The attractor A of F is non-overlapping if

.f .A/ \ f 0.A//o D ; for all distinct f; f 0 2 F.

Lemma 5.4. If the attractor A of an IFS is non-overlapping and �X is the address

space with respect to a �-section, then �X D I.

Proof. It is proved in [3] that, if A is non-overlapping and if D is the set of words

� 2 I such that �.�/ has a unique address, the D is dense in I . Assume that

˛ D �.� jk/! 2 I. To show that ˛ 2 �X, let �1; �2; �2; : : : be a sequence of

words in D such that limn!1 �n D !. Then ˛n D �.� jk/�n ! ˛ as n ! 1.

Since !1 ¤ �k, it is also the case that �n
1 ¤ �k for n sufficiently large. If it can be

shown that ˛n 2 �X, then ˛ 2 �X, which completes the proof.

To show that ˛n 2 �X, let an D �.�n/ and xn D f�.� jk/.an/. By the

definition of the global section, O�.xn/ D ˛n unless f ����
� jk�1

.xn/ 2 A. But in this

case an 2 f�k
.A/, which implies that an has an address that begins with �k . On

the other hand, for n sufficiently large, �n is an address of an that does not begin

with �k . This contradicts the fact that �n 2 D for all n. �
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6. Continuity of global fractal transformations

Let F D ¹XW f1; f2; : : : ; fN º and G D ¹YW g1; g2; : : : ; gN º. It is assumed through-

out this section that the word � 2 I is full with respect to F, that �F is a section

of F, and that O�F is a corresponding global �-section. Let TFGWAF ! AG be

the fractal transformation associated with �F and yTFGWX ! Y the global fractal

transformation associated with O�F.

For an IFS F, let PF D ¹��1
F

.x/W x 2 AFº, which is a partition of the code

space I . Similarly, let yPF D ¹ O��1
F .x/W x 2 Xº, which is a partition of the global

code space I. A partition P is finer than a partition Q if for each part X in P there

is a part Y in Q such that X � Y .

Lemma 6.1. If PF is a finer partition than PG, then yPF is a finer partition than yPG.

Proof. Assume that O�F.˛/ D O�F.ˇ/. Letting ˛ D �.� jk/� and ˇ D �.� jj /!,

we have x WD O�F.�.� jk/�/ D O�F.�.� jj /!/, where j � k and �; ! 2 I . Then

�F.�/ D f �
� jk

.x/

D f�k
ı � � � ı f�j C1

ı f �
� jj

.x/

D f�k
ı � � � ı f�j C1

.�F.!//

D �F.�k : : : �jC1!/:

Because � and �k : : : �jC1! are in the same set of partition PF, they are also in

the same set of PG. Therefore

O�G.˛/ D O�G.�.� jk/�/

D g�.� jk/.�G.�//

D g�.� jk/.�G.�k : : : �jC1!//

D O�G.�.� jj /!/

D O�G.ˇ/: �

Theorem 6.2. (1) If PF is a finer partition than PG, then the global fractal

transformation yTFGWX! Y is continuous.

(2) If TFGWAF ! AG is continuous and the attractor of F is non-overlapping,

then PF is a finer partition than PG.
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Proof. The proof of statement (1) follows along similar lines as [4, Theorem 1].

Assume that PF is a finer partition than PG. By Lemma 6.1, yPF is a finer partition

than yPG. Consider the following maps:

I
O�F��! X

yT�! Y:

Because � and O�F ı O�F.�/ belong to the same set in PF, they also belong to

the same set in PG. Therefore yT ı O�F.˛/ D O�G ı O�F ı O�F.˛/ D O�G.˛/ for all

˛ 2 I. Since O�G is continuous, so is yT ı O�F. From the facts that I is compact,

O�F is continuous, and yT ı O�F is continuous, it follows by standard topological

arguments that yT is continuous.

Concerning statement (2), assume that T D TFG is continuous and that the

attractor of F is non-overlapping. We first show that T ı �F.�/ D �G.�/ for

� 2 �AF
. Let � 2 �AF

, say � D �F.a/ where a 2 AF. Then

T ı �F.�/ D �G ı �F ı �F ı �F.a/ D �G ı �F.a/ D �G.�/:

But since the attractor of F is non-overlapping, we have �X D I by Lemma 5.4; in

particular �AF
D I . Since the two continuous functions T ı �F and �G agree on

�AF
, they also agree on I . Now if �F.�/ D �F.!/, then �G.�/ D T ı �F.�/ D

T ı �F.!/ D �G.!/. �

Corollary 6.3. If the attractor of F is non-overlapping, then the following hold.

(1) A global fractal transformation yTFGWX! Y is continuous if and only if PF

is a finer partition than PG.

(2) Whether or not yTFG is continuous is independent of the mask and independent

of � .

Proof. Statement (1) comes directly from Theorem 6.2, and statement (2) follows

from statement (1) because the partitions PF and PG do not depend on the mask

nor on � . �

Example 6.4 (a continuous map from R onto R
2). Let

F D
°

RW fi.x/ D x C i � 1

4
; i D 1; 2; 3; 4

±

;

G D ¹R2W gi ; i D 1; 2; 3; 4º:
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where the four functions in G are the similitudes taking the square ABCD in

Figure 2 to the four smaller squares abcd . The attractor of F is the unit interval

Œ0; 1� and the attractor of G is the unit square Œ0; 1�2. In [3, Example 3.5] it is shown

that the fractal transformation TFG is the Hilbert space filling curve (shown on the

left in Figure 2), i.e. Hilbert’s continuous function h from the interval Œ0; 1� onto

Œ0; 1�� Œ0; 1�. For any � 2 I that is full with respect to F, the corresponding global

fractal transformation yTFG is a continuous map from R onto R
2.

Figure 2. The Hilbert space filling curve is a fractal transformation.

Theorem 6.5. If F and G have non-overlapping attractors and TFG is continuous,

then T D TFG satisfies the following commutative diagram for all n 2 ŒN �:

AF AF

AG AG:

 !fn

 !T  ! T

 !
gn

(7)

Proof. Let x 2 AF and � D �F.x/ and ! D �F.fn.x//. Since

�F.n�/ D fn.�F.�// D fn.x/ D �F.!/

the words n� and ! lie in the same part of the partition PF. By Theorem 6.2 they

also lie in the same part of the partition PG. Therefore

T ı fn.x/ D �G ı �F ı fn.x/

D �G.!/

D �G.n�/

D gn ı �G.�/
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D gn ı �G ı �F.x/

D gn ı T .x/: �

Lemma 6.6. Let F and G be IFSs with the same number N of functions. Assume

that TFGWAF ! AG is bijective and continuous. Let aF 2 AF and aG D TFG.aF /.

For all n 2 ŒN �, if g�1
n .aG/ 2 AG, then f �1

n .aF / 2 AF.

Proof. Let bG D g�1
n .aG/ and, since TFG is surjective, let bF 2 AF such that

TFG.bF / D bG . If cF D fn.bF /, then by diagram (7) we have

TFG.cF / D gn ı TFG ı f �1
n .cF /

D gn ı TFG.bF /

D gn.bG/

D aG

D TFG.aF /:

Since TFG is injective, cF DaF and hence f �1
n .aF /Df �1

n .cF /DbF 2AF. �

Theorem 6.7. Let yTFG be a global fractal transformation associated with the �-

section O�F. If PF D PG, then yTFGWX ! Y is a homeomorphism and there is a

�-section O�G with respect to which

. yTFG/�1 D yTGF:

Proof. By Theorem 6.2, the transformation TFG is continuous, and since PF D
PG, the fractal transformation TFGWAF ! AG is a bijection. If TFG is the

fractal transformation corresponding to shift invariant section �F of F, then �G D
�F ı .TFG/�1 is a shift invariant section of G. Let O�G be the associated �-section of

G. It follows from Lemma 6.6 that O�F.x/ D O�G. yTFG.x// for all x 2 X. Therefore

yTGF ı yTFG.x/ D O�F ı O�G. yTFG.x// D O�F ı O�F.x/ D x;

which implies that .TFG/�1 D TGF. By Theorem 6.2, yTGF is also continuous and

hence yTFG is a homeomorphism. �

Theorem 6.8. If the fractal transformation TFGWAF ! AG is continuous and

the attractor of F is non-overlapping, then the graph G � AF � AG of TFG is the

attractor of the IFSH D ¹X�YW h1; h2; : : : ; hN º, where hi .x; y/ D .fi .x/; gi.y//

for i D 1; 2; : : : ; N .
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Proof. Denote TFG by T , and let .x; T .x//; x 2 AF be an arbitrary point of G. If

�F is the section of �F for T and � D �F.x/, then

.x; T .x// D .�F ı �F.x/; �G ı �F.x// D .�F.�/; �G.�// D �H.�/ 2 AH:

The last equality follows from

�H.�/ D lim
k!1

h�jk.B/

D lim
k!1

.f�jk.B/; g�jk.B//

D .�F.�/; �G.�//;

for any nonempty compact set B .

Conversely, let .�F.�/; �G.�// be an arbitrary point in AH, i.e., � 2 I is

arbitrary. If x D �F.�/, then T .x/ D �G ı �F ı �F.�/. It now suffices to show

that �G ı �F ı�F D �G, so that .�F.�/; �G.�// D .x; T .x// is a point of G. Since

T is assumed continuous and the attractor of F is non-overlapping PF is a finer

partition than PG by statement (2) of Theorem 6.2. Since � and �F.x/ are in the

same part of PF, they are also in the same part of PG. Therefore

�G.�/ D �G.�F.x// D �G ı �F ı �F.�/: �

Example 6.9 (Graphs of Fractal Transformations). For

F D ¹RW x=3; x=3C 1=3; x=3C 2=3º
and

g D ¹RW x=4; x=2C 1=4; x=4C 3=4º;

the fractal transformation TFG is a homeomorphism by Theorem 6.7, and by

Theorem 6.8 its graph is the attractor of the IFS

H D ¹R2W .x=3; y=4/; .x=3C 1=3; y=2C 1=4/; .x=3C 2=3; y=4C 3=4/º:

The graph of TFG, i.e., the attractor AH, is shown in Figure 3.

For F D ¹RW x=2; x=2 C 1=2º and gr D ¹RW rx; rx C .1 � r/º, where

0 < r < 1; r ¤ 1=2, the fractal transformation TFG is not continuous. For

r < 1=2, the attractor of G is totally disconnected, and for r > 1=2 the attractor of

G is overlapping. These two cases are shown in Figure 4 for r D 1=3 and r D 2=3.

According to the next result, Definition 4.1 of global fractal transformation can

be simplified in the continuous case; it is not necessary to take the minimum k such

that f �
� jk

.x/ 2 AF.
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Figure 3. The graph of a fractal homeomorphism on Œ0; 1�.

Corollary 6.10. If yTFG is continuous and the attractor of F is non-overlapping,

then the global fractal transformation yTFGWX! Y is given by

yTFG.x/ D g�.� jk/ ı TFG ı f �
� jk

.x/

for any k D k.x/ such that f �
� jk

.x/ 2 AF.

Proof. That the definition holds for any k � K follows from

g�.� jkC1/ ı TFG ı f ����
� jkC1

D g�.� jk/ ı g�1
�kC1
ı TFG ı f�kC1

ı f �
� jk

D g�.� jk/ ı TFG ı f �
� jk

;

the last equality following from diagram (7). �

Theorem 6.11. If the attractor of F is non-overlapping and yTFGWX ! Y is

continuous, then the graph of yTFG is ¹. O�F.�/; O�G.�//W � 2 Iº.
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Figure 4. A fractal transformation from the interval to the Cantor set (top) and a fractal

transformation from the interval to an overlapping attractor (bottom).
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Proof. Let G be the graph of yT D yTFG, and assume that .x; y/ 2 G. If ˛ D O�F.x/,

then by Theorem 5.3 we have

x D O�F ı O�F.x/ D O�F.˛/;

y D yT .x/ D O�G ı O�F.x/ D O�G.˛/:

Therefore G � ¹. O�F.�/; O�G.�//W � 2 �X � Iº.
In the other direction, let x D O�F.˛/ and y D O�G.˛/ for some ˛ 2 I. Then

yT . O�F.˛// D O�G ı O�F ı O�F.˛/ D O�G.˛/;

the last equality for the following reason. Because yT is continuous, its restriction

T to AF is also continuous and therefore, by statement (2) of Theorem 6.2, PF is

a finer partition than PG. This implies, by Lemma 6.1, that yPF is a finer partition

than yPG. Hence, O�F. O�Fı O�F.˛// D O�F.˛/ implies O�G. O�Fı O�F.˛// D O�G.˛/. �

6.1. Fractal homeomorphisms based on an IFS with triangular attractor. It

would be convenient if the criterion of Theorem 6.2 for continuity in terms of

the code space structure could be replaced by a geometric criterion. This is done

below for the special case where both IFSs are affine, i.e. the functions are affine

functions.

Let ABC be a triangle and � a triangulation of ABC . This means that the

intersection of any two triangles in � is either empty, a single point, or a side

of both triangles. Let V denote the set of all vertices of �. (There may be

vertices that lie on the sides of ABC .) Call the triangulation � colored if there is a

coloring cWV ! ¹1; 2; 3º such that vertices that are adjacent in � receive different

colors. In other words, the vertices in any triangle in � receives all three colors.

Furthermore, it is required that c.A/ D 1; c.B/ D 2; c.C / D 3.

If � is a colored triangulation of ABC and �0 is a colored triangulation of

triangle A0B 0C 0, then � and �0 are said to be combinatorially equivalent, denoted

�0 � �, if there is a bijection �WV ! V 0 from the vertex set V of � to the vertex

set V 0 of �0 that preserves colors, edges, and triangles. Thus � can be thought

of as acting on the set of vertices, the set of edges, and the set of triangles of the

triangulation. The colored triangulations (although the colors are not shown) in

Figure 5 are combinatorially equivalent triangulations.

Denote the set of triangles of triangulation � by ¹t1; t2; : : : ; tN º. Given a

colored triangulation � of ABC , define an IFS F� D ¹f1; f2; : : : ; fN º, where

fn; n D 1; 2; : : : ; N; is the unique affine function that takes ABC onto triangle tn,

preserving the colors of the three vertices.
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Figure 5. Four combinatorially and area equivalent triangulations.

Theorem 6.12. Assume that � and �0 are colored triangulations of ABC and

A0B 0C 0, respectively and � � �0. If F� and F�0 are the corresponding IFSs

as described above, where each triangle tn 2 ¹t1; t2; : : : ; tN º. corresponds to

triangle t 0n in ¹t 01; t 02; : : : ; t 0N º under the combinatorial equivalence, then the fractal

transformation yTF�F�0 WR2 ! R
2 is a fractal homeomorphism.

Proof. If the boundary of the triangle ABC is denoted by @4, then using

the Hutchinson operator F defined by Equation (1), the points, sides, and tri-

angles determined by F.@4/ is the original colored triangulation �. More-

over, @4; F.@4/; F 2.@4/; : : : is an infinite sequence of colored triangulations

of ABC , each a subdivision of the previous. Similarly @4; G.@4/; G2.@4/; : : :

is an infinite sequence of colored triangulations of A0B 0C 0, and it is clear that

F n.@4/ � Gn.@4/ for n D 0; 1; 2; : : : . Therefore, if ABC is denoted N and

A0B 0C 0 is denoted N
0 and if �; ! 2 I , then f�jk.N/ \ f!jk.N/ ¤ ; if and only if

g�jk.N0/\g!jk.N0/ ¤ ;. Hence
T1

kD1 f�jk.N/\
T1

kD1 f!jk.N/ ¤ ; if and only if
T1

kD1 g�jk.N0/ \
T1

kD1 g!jk.N0/ ¤ ;. But �F.�/ D
T1

kD1 f�jk.N/, and likewise

for �F.!/; �G.�/ and �G.!/. This implies that �F.�/ D �F.!/ if and only if

�G.�/ D �G.!/. By Theorem 6.7, the global fractal transformation yTF�F�0 is a

fractal homeomorphism. �
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Example 6.13. Consider the four combinatorially equivalent triangulations ap-

pearing in Figure 5. Taking distinct pairs, there are six corresponding non-identity

global fractal transformations of the form yTF�F�0 . It is a consequence of Theo-

rem 6.12 that each of these six is a homeomorphism; three are inverses of the other

three.

7. Volume preserving fractal transformations

All IFSs in this section are on R
d . Let � denote Lebesgue measure on R

d , i.e.,

volume. Two transformations on R
d will, in this section, be consider the same

if they coincide except on a set of measure 0. Let F D ¹Rd W f1; f2; : : : ; fN º and

G D ¹Rd W g1; g2; : : : ; gN º. Throughout this section it is assumed that �F is a

section of F, that TFGWAF ! AG is the fractal transformation associated with �F,

that � 2 I is full with respect to F and G, and that yTFGWRd ! Rd is the global

fractal transformation associated with � . In addition it is assumed that

(1) the attractors of F and G are non-overlapping;

(2) �.AF/ D �.AG/;

(3) for every n 2 ŒN �, the functions fn.x/ D Ln.x/Can and gn.x/ D L0n.x/Ca0n
are affine such that the linear parts satisfy j det Lnj D j det L0nj.

Theorem 7.1. Under the assumptions above,

(1) yTFGWRd ! R
d is independent of the particular mask (equivalently the

corresponding section) used;

(2) yTFG is continuous almost everywhere;

(3) yTFG is bijective almost everywhere and . yTFG/�1 D yTGF;

(4) yTFG is volume preserving, i.e., �. yTGF.X// D �.X/ for all measurable sets

X � R
d .

Proof. We first show that Lebesgue measure is the unique normalized invariant

measure of F. This means that, for any measurable set B ,

�.B/ D
N

X

nD1

pn�.f �1
n .B//;
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where the domain of each fn is restricted to AF and pn D j det Lnj. If

¹M1; : : : ; MN º is the mask, then

N
X

nD1

pn�.f �1
n .B// D

N
X

nD1

pn�
�

f �1
n

�

N
[

iD1

.B \Mi /
��

D
N

X

nD1

N
X

iD1

pn�.f �1
n .B \Mi //

D
N

X

nD1

pn�.f �1
n .B \Mn//

D
N

X

nD1

�.fn.f �1
n .B \Mn///

D
N

X

nD1

�.B \Mn/

D �.B/:

The fact that �.f �1
n .Mi / D 0 for n ¤ i in a non-overlapping attractor is used to

justify the first equality on the second line above. Likewise, the Lebesgue measure

is the unique normalized invariant measure of G with the same values of the pn.

For k � 1, let

Xk D f�.� jk/.AF/ n f�.� jk�1/.AF/ and Yk D g�.� jk/.AG/ n g�.� jk�1/.AG/:

Since � is full with respect to both F and G, we have
S

k�1 Xk D
S

k�1 Yk D Rd .

Also, for x 2 Xk ,

TFG.x/ D g�.� jk/ ı TFG ı f �
� jk

.x/:

By [3, Proposition 2.5 and Theorem 2.4], the fractal transformation TFGWAF !
AG satisfies statements (1–4) of the theorem, statement (4) for the invariant mea-

sures on F and G, which in this case is Lebesgue measure. Since corresponding

functions fn and gn have the same determinant, they scale volume identically;

therefore the global fractal transformation yTFG also satisfies statements (1–4). �

7.1. Area preserving homeomorphisms of a triangle to itself. This continues

the discussion in Subsection 6.1. If two colored triangulations � and �0 of the

same triangle ABC are combinatorially equivalent and pairs of triangles that

correspond under the combinatorial equivalence have equal area, then call � and

�0 area equivalent, denoted � � �0. The result below follows immediately from

Theorems 6.12 and 7.1.
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Corollary 7.2. If � � �0, then yTF�F�0 is an area preserving homeomorphism.

Example 7.3 (An Infinite Family of Area Preserving Fractal Homeomorphisms).

Figure 6 shows an infinite family �r ; �0r of area equivalent triangulations, where

the positive real r is as shown in the figure. If we start with a checkerboard pattern

on the plane, part of which is shown in the top panel of Figure 1, then its image

under the fractal transformation yTF�F�0 is illustrated in the bottom panel, with

r D 0:55 in the left figure and r D 0:6 in the right figure.

r r

r r

r r

Figure 6. Area equivalent triangulations.

Example 7.4 (another family of area preserving fractal homeomorphisms). Fig-

ure 5 shows four area equivalent colored triangulations. Three area preserving

fractal homeomorphisms T WABC ! ABC (and three inverses) can be produced

from these 4 triangulations according to Corollary 7.2, and from each of these

three, an area preserving fractal homeomorphism yT WR2 ! R
2 for each � 2 I

that is full with respect to F and G. The four area equivalent colored triangula-

tions were found by solving a system of 7 quadratic equations in 7 unknowns, as

explained in the paragraph below.

In general, there is no loss of generality is assuming that ABC is an equilateral

triangle or an isosceles right triangle (as in Figures 5 and 6) because, for any

triangle T , there is an area preserving affine map taking T onto an equilateral

triangle (isosceles right triangle). Given a triangulation �, it is possible to search

algebraically for possible triangulations �0 such that �0 � � by solving a system

of quadratic equations where the unknowns are the coordinates of the vertices of

�0 and the equations are obtained by setting the area of a triangle in �0 equal to

the area of its corresponding triangle in �. It is routine to show that the number

of equations equals the number of unknowns. Therefore, according to Bezout’s

theorem, unless there are infinitely many solutions, there are at most 2N�1 possible

�0 such that �0 � �, where N is the number of triangles in the triangulation.
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Questions arise concerning the prevalence of pairs �; �0 such that � � �0.

Although the computing time quickly becomes prohibitive with increasing N , a

few examples appear to indicate that, for many triangulations �, there is at least

one triangulation �0 ¤ � such that �0 � �, and often several distinct �0 such

that �0 � �.

Conjecture 7.5. There is no triangulation � such that there are infinitely many

distinct �0 with �0 � �.

8. Using global addressing to create tilings

Let X be a complete metric space. A tile is a compact subset of X. A tiling T of

X is a countable set of tiles with the property that .t \ t 0/o D ; for all t ¤ t 0 2 T

and [¹t W t 2 Tº D X. Tilings of X will be constructed from an IFS by basically

defining a tile as the set of points whose global address begins with a given initial

segment.

For j 2 ŒN �, define a j -tree as a rooted tree such that

(1) every non-leaf node except the root has N children, and these children are

labeled bijectively with ŒN �, and

(2) the root has N � 1 children, and these children are labeled bijectively with

ŒN � n ¹j º.

Given � 2 I , define W D .W0; W1; W2; : : : / to be a �-sequence of trees if W0 is

the tree consisting of a single node, the root, and Wk ; k � 1; is a �k-tree. Figure 7

shows the first four terms W1; W2; W3; W4 of a .2121 : : :/-sequence of trees (the

trivial tree W0 is omitted).

Figure 7. The first four terms W1; W2; W3; W4 of a �-sequence of trees, where � D 2121 : : : :



Global fractal transformations and global addressing 411

Example 8.1. The depth of a leaf in a rooted tree is the length (number of edges) of

the unique path from the root to the leaf. Given � 2 I , let W D .W0; W1; W2; : : : /

be the �-sequence of trees with the property that the depth of every leaf of Wk is

exactly k. This sequence will be referred to as the standard �-sequence.

Fix � 2 I and fix a �-sequence W of trees. For any k � 0 and any node u of

Wk , we will use the following notation:

�.u/ D �1�2 : : : �j ;

˛.u/ D .�� jk/�.u/;

where �1�2 : : : �j 2 ŒN �� is obtained by listing, in order, the labels on the nodes on

the unique path from the root of Wk to u. For the rightmost leaf u in the rightmost

tree in Figure 7, for example, �.u/ D 222 and ˛.u/ D .�2/.�1/.�2/.�1/222.

Now fix an IFS F with attractor A and section � . Let O� be the corresponding

�-section, where � is full with respect to F. For each �-sequence W of rooted

trees, a tiling T D T.�;W/ of X can be constructed as follows. Let L denote the

set of all leaves of all the trees in W, and for u 2 L let

S.u/ D ¹˛.u/!W! 2 I º

In other words, S.u/ is the set of all words in the global code space that begin with

˛.u/, and t .u/, defined formally below, is the set of all points in X whose global

address begins with ˛.u/.

Definition 8.2. Let
t .u/ D ¹xW O�.x/ 2 S.u/º;

T.�;W/ D ¹t .u/Wu 2 Lº;
Given a mask ¹M1; M2; : : : ; MN º for the attractor A of F, let

M j D ¹M� W j� j D j º

be the j th level mask as defined in Section 3. If u is a leaf of Wk , define

t 0.u/ D f�.� jk/.M�.u// n f�.� jk�1/.A/;

T
0.�;W/ D ¹t 0.u/Wu 2 Lº:

Call T.�;W/ and T
0.�;W/ both .�;W/-tilings. The same terminology is used for

both because, by the following theorem, they are the same tiling.
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Theorem 8.3. If a mask ¹M1; M2; : : : ; MN º for the attractor of an IFS F is chosen

so that .Mi \ Mj /o D ; for all i ¤ j , then T.�;W/ is a tiling of X for any

� that is full with respect to F and for any �-sequence W of trees. Moreover

T.�;W/ D T
0.�;W/.

Proof. Each tile t .u/ is clearly compact.

To show that [¹t .u/Wu 2 Lº D X, let x 2 X. Let P D ¹S.u/Wu 2 Lº.
From the definition of a �-sequence of trees, it follows that P is a partition of I.

Therefore there is a leaf u such that O�.x/ 2 S.u/; hence x 2 t .u/.

It remains to show that distinct tiles do not overlap (intersection has empty

interior). Again because P is a partition of I, the sets in ¹t .u/Wu 2 Lº are pairwise

disjoint. It is therefore sufficient to show that the closures of two distinct such sets

do not overlap. By Proposition 3.3, if u is a leaf of Wk , then

t .u/ D f�.� jk/.M�.u// nZ D f�.� jk/.M�.u// n f� jk�1.A/;

where Z is the set of points z 2 f�.� jk/.M�.u// such that O�.z/ does not begin with

�.� jk/. The last equality above is a consequence of Definition 5.1 of the global

section. This proves that T.�;W/ D T
0.�;W/ and also that the closure of t .u/,

and the closure of t .u0/ do not overlap if u ¤ u0. This is because t .u/\ t .u0/ D ;
and the closures overlapping would contradict the assumption that distinct sets in

the mask closures ¹M1; M2; : : : ; MN º do not overlap. �

Corollary 8.4. If the attractor A of an IFS F is non-overlapping, then the tiling

T.�;W/ can be expressed in the following simplified form, independent of the

mask:
t .u/ D f˛.u/.A/;

T D ¹t .u/Wu 2 Lº:

Most of the fractal tilings that appear in textbooks and recreational mathemat-

ics websites, although not defined that way, are .�;W/-tilings.

Example 8.5 (Rauzy tribonacci tilings). Let F D ¹CW f1.z/; f2.z/; f3.z/º where

f1.z/ D ˇz f2.z/ D ˇ2z C ˇ f3.z/ D ˇ3z C ˇ2 C ˇ;

where ˇ is a complex root of z3 � z2 � z � 1. The attractor A of F is the well

studied Rauzy tribonacci fractal [13], [22]. The images of A under the maps

f1; f2; f3 are compact sets similar to A with scaling ratios ˇ; ˇ2; ˇ3, respectively.

Since A is non-overlapping, Corollary 8.4 can be used to construct tilings. Take
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a �-sequence W of rooted trees defined as follows. For a leaf u, let e.u/ denote

the sum of the labels on the unique path between the root and u, and let e�.u/

denote the same sum minus the label at u. For k � 1, let e.k/ be the sum of

the first k terms of � . A rooted labeled tree Wk is uniquely determined by the

following requirement: u is a leaf of Wk if and only if e.u/ � e.k/ > e�.u/.

As an example, take � D 123123 : : :. The terms W1; W2 in W are shown in

Figure 8. In W2, consider the second leaf from the left u. For that leaf we have

k D 2; e.k/ D 3; e.u/ D 4; e�.u/ D 2, and clearly e.u/ � e.k/ > e�.u/.

A portion of the resulting .�;W/-Rauzy tiling T.�;W/ is illustrated in Figure 9.

There are exactly three tiles in T.�;W/ up to congruence.

Figure 8. The terms W1 and W2 in the .123123 : : :/-sequence of trees in the construction of

the Rauzy tiling in Example 8.5.

Figure 9. A portion of a Rauzy tiling of the plane in Example 8.5.



414 A. Vince

Example 8.6 (self-similar, quasiperiodic polygonal tilings). The .�;W/-tiling in

Figure 10 was obtained using a �-sequence W constructed in a somewhat similar

manner to that of Example 8.5; see [11] for the precise construction. Using this

method it is possible to construct many tilings T, like the one in Figure 10, with

the following properties.

(1) There are finitely many polygonal tiles in T up to congruence.

(2) The tiling T is self-similar: there is a similitude � of the plane with scaling

ratio greater than 1 such that, for every t 2 T, its inflated image �.t/ is the

union of tiles in T.

(3) The tiling is quasiperiodic (or repetitive): for any patch U of tiles in T, there

is a number R such that any disk of radius R contains, up to congruence,

a copy of U .

This example and the others in [11] are a generalization of tilings by rep-tiles,

the term coined by S. W. Golomb [18] and popularized by M. Gardner [17]. The

subject of self-similarity and quasiperiodicity of tilings gained impetus with the

discovery of quasicrystals [24] for which D. Shechtman was awarded the Nobel

Prize for chemistry in 2011; see [23] for a history and mathematical exposition.

Figure 10. A self-similar polygonal .�;W/-tiling.
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Example 8.7 (tiling by Robinson triangles). In Examples 8.5 and 8.6, the attrac-

tors are non-overlapping. This is an example of a tiling from an overlapping at-

tractor. Let A be the isosceles triangle on the left in Figure 11, with sides of length

1; R; R, where R D .1C
p

5/=2 (the golden ratio), and angles �=5; 2�=5; 2�=5.

The tile A and the obtuse triangle B in the tiling on the right in Figure 11, with

sides of length 1; 1; R and angles �=5; �=5; 3�=5, are due to R. M. Robinson and

are cited in [19].

Figure 11. A .�;W/-tiling from an overlapping IFS; see Example 8.7.

Consider the IFS F D ¹CW f1; f2; f3º where

f1.z/ D re3i� Nz C e�i�=2 f2.z/ D re4i�z C e�i�=2 f3.z/ D r Nz;

and r D .
p

5 � 1/=2 (the reciprocal of the golden ratio) and � D �=5. The three

functions f1; f2; f3 are similitudes with the same scaling ratio r . The attractor ofF

is A, the triangle shown at the left in Figure 11. The first similitude takes the triangle

A onto the green triangle; the second takes A onto the triangle that is the union of

the two yellow tones; the third takes A onto the triangle that is the union of the two

brown tones. To be exact, the first and third functions are orientation reversing,

while the second is orientation preserving. Notice that the intersection of the

second and third small isosceles triangles has nonempty interior; the attractor is

overlapping. Let M D ¹M1; M2; M3º be the tops mask. More precisely, M1 and

M2 are the green and yellowish acute triangles, respectively, and M3 is the obtuse

brown triangle at the top in the figure. The �-sequence W of trees used in the

.�;W/-tiling at the right in Figure 11, is the standard sequence (see Example 8.1).

The second formulation of Definition 8.2 was used to create this picture. There are
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tilings by copies of the Robinson triangles A and B that are equivalent to Penrose

tilings by kites and darts [19], [21], but this is not one of them. In a Penrose tiling

by Robinson tiles, the intersection of any two abutting triangles is a common edge,

which is not the case in this example. We would expect that much of the theory in

this paper can be extended, although notationally cumbersome, to graph IFSs. In

this context, the Penrose tilings would be an example.
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