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Abstract. We determine the walk dimension of the Sierpiński gasket without using diffu-

sion. We construct non-local regular Dirichlet forms on the Sierpiński gasket from regular

Dirichlet forms on the Sierpiński graph whose suitable boundary is the Sierpiński gasket.
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1. Introduction

It is well known that the Brownian motion in R
n is associated with the Dirichlet

form
8

ˆ

ˆ

<

ˆ

ˆ

:

E.u; u/ D
Z

Rn

jru.x/j2dx;

DŒE� D W 1;2.Rn/;

and the symmetric stable process in R
n of index ˇ is associated with the Dirichlet

form
8

ˆ

ˆ

<

ˆ

ˆ

:

E.u; u/ D cn;ˇ

Z

Rn

Z

Rn

.u.x/ � u.y//2

jx � yjnCˇ
dxdy;

DŒE� D B
ˇ=2
2;2 .Rn/;

(1)

where cn;ˇ > 0 is some normalizing constant. It is also known that ˇ can take

arbitrary value in .0; 2/. The symmetric stable process in R
n of index ˇ can be

obtained from the Brownian motion in R
n by subordination technique, using the

fact that the generator of the former is .��/ˇ=2 while the Laplace operator �� is

the generator of the latter.

The main problem to be addressed in this paper is the range of the index of

jump processes on more general spaces, notably, on fractals. We first define what

we mean by index in a general setting.

Let .M; d/ be a locally compact separable metric space and � be a Radon mea-

sure on M . Denote by B.x; r/ metric balls in .M; d/ and assume that .M; d; �/ is

˛-regular in the sense that �.B.x; r// � r˛ for all x 2 M and r 2 .0; diam.M//.

In particular, the Hausdorff dimension of M is equal to ˛ and the measure � is

equivalent to the Hausdorff measure of dimension ˛ (see [8]).

Inspired by (1), consider the following quadratic form

8

ˆ

ˆ

<

ˆ

ˆ

:

E.u; u/ D
Z

M

Z

M

.u.x/ � u.y//2

d.x; y/˛Cˇ
�.dx/�.dy/;

F D ¹u 2 L2.M I �/WE.u; u/ < C1º;
(2)

where ˇ > 0 is so far arbitrary. By a general theory of Dirichlet form from [7], in

order for .E;F/ to be related to a jump process on M , .E;F/ has to be a regular

Dirichlet form on L2.M I �/. In particular, F has to be dense in L2.M I �/. In fact,

it can happen that F D ¹0º or F consists of constant functions (for example, if

M D R
n and ˇ � 2, then F D ¹0º).



Sierpiński gasket 421

In all known examples, the range of ˇ for which .E;F/ is a regular Dirichlet

form on L2.M I �/ is an interval .0; dw/ for some dw 2 Œ0; C1�. We refer to this

value of dw as the walk dimension of metric measure space .M; d; �/.

In fact, the walk dimension is an invariant of the metric space .M; d/. For

example, the walk dimension of R
n is equal to 2 for all n. On most fractal

spaces the walk dimension is strictly larger than 2. For example, on SG we have

dw D log 5= log 2.

To determine the walk dimension dw , a common method is to use the diffusion

on M and its sub-Gaussian heat kernel estimate. Indeed, assume that a diffusion

(corresponding to a local Dirichlet form) is constructed on M and its heat kernel

pt .x; y/ (equivalently, the transition density) satisfies the following sub-Gaussian

estimate

pt .x; y/ � C

t
˛


exp
�

� c
�d.x; y/

t

�
1

�1
�

at least for a bounded range of time t and for all x; y 2 M . Such estimates are

known for many fractals, see for example, [2], [3], and [11]. Here the parameter ˛

is the Hausdorff dimension of .M; d/ as above and the parameter  is called the

walk dimension of the diffusion. For example, for Sierpiński gasket (SG) we have

 D log 5= log 2 and for Sierpiński carpet  � 2:097 (the exact value of  in this

case is not known). Denote by L the positive definite generator of this diffusion.

Then, for all ı 2 .0; 1/, the operator Lı generates a jump process with a jump

kernel

J.x; y/ � d.x; y/�.˛Cˇ/;

where ˇ D ı (see [12]). Hence, ˇ can take all values in .0; /. Using sub-

Gaussian heat kernel estimate, one shows that for ˇ >  , F consists of constant

functions see [15]. Hence the walk dimension  of the diffusion coincides with

the walk dimension dw of the metric measure space. In particular, for SG we have

dw D log 5=log 2.

The purpose of this paper is to provide an alternative method to determine this

value of the walk dimension of SG without using diffusion. We hope that this

method will apply also to more general settings thus providing a direct way of

determination of the range of the index.

Let M D K be Sierpiński gasket (SG) in R
2 endowed with metric d.x; y/ D

jx �yj and measure � D � normalized Hausdorff measure on K. Let .EK ;FK/ be

given by equation (2) where ˛ D log 3= log 2 is Hausdorff dimension of SG and

ˇ > 0 is some parameter.
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Our approach is based on a recent paper [10] of S.-L. Kong, K.-S. Lau, and

T.-K. Wong. They introduced conductances with parameter � 2 .0; 1/ on the

Sierpiński graph X to obtain a random walk (and a corresponding energy form)

on X and showed that the Martin boundary of that random walk is homeomorphic

to K. Let xX be the Martin compactification of X . It was also proved in [10] that

the energy form on X induces an energy form on K Š xXnX of the form (2) with

ˇ D � log �= log 2. However, no restriction on ˇ was established, so that above

energy form on K does not have to be a regular Dirichlet form.

In this paper, we establish the exact restriction on � (hence on ˇ) under which

.EK ;FK/ is a regular Dirichlet form on L2.KI �/. Our method is as follows.

Firstly, we introduce a measure m on X to obtain a regular Dirichlet form

.EX ;FX/ on L2.X I m/ associated with above random walk on X . Then we extend

this Dirichlet form to an active reflected Dirichlet form .Eref;Fref
a / on L2.X I m/

which is not regular, though.

Secondly, we regularize .Eref;Fref
a / on L2.X I m/ using the theory of [6]. The

result of regularization is a regular Dirichlet form .E xX ;F xX/ on L2. xX I m/ that is

an extension of .EX ;FX/ on L2.X I m/. By [6], regularization is always possible,

but we show that the regularized form “sits” on xX provided � > 1=5 which is

equivalent ˇ < ˇ� WD log 5= log 2.

Thirdly, we take trace of E xX to K and obtain a regular Dirichlet form .EK;FK/

on L2.KI �/ of the form (2).

If ˇ > ˇ�, then we show directly that FK consists only of constant functions.

Hence we conclude that dw D ˇ� D log 5= log 2. This approach allows to detect

the critical value dw of the index ˇ of the jump process without construction of

diffusion.

So far this approach has been realized on SG but we plan to extend this method

to a large family of fractals.

This paper is organized as follows. In Section 2, we review basic construc-

tions of Sierpiński gasket K and Sierpiński graph X . In Section 3, we give a

transient reversible random walk Z on X . In Section 4, we construct a regular

Dirichlet form EX on X and its corresponding symmetric Hunt process ¹Xt º. We

prove that the Martin boundaries of ¹Xtº and Z coincide. We show that EX is

stochastically incomplete and ¹Xt º goes to infinity in finite time almost surely.

In Section 5, we construct active reflected Dirichlet form .Eref;Fref
a / and show

that FX ¤ F
ref
a , hence E

ref is not regular. In Section 6, we construct a regular

Dirichlet form .E xX ;F xX/ on L2. xX I m/ which is a regular representation of Dirich-

let form .Eref;Fref
a / on L2.X I m/, where xX is the Martin compactification of X .
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In Section 7, we take trace of the regular Dirichlet form .E xX ;F xX/ on L2. xX I m/

to K to have a regular Dirichlet form .EK ;FK/ on L2.KI �/ with the form (2).

In Section 8, we show that FK consists of constant functions if � 2 .0; 1=5/ or

ˇ 2 .ˇ�; C1/. Hence dw D ˇ� D log 5= log 2.

2. Sierpiński gasket and Sierpiński graph

In this section, we review basic constructions of Sierpiński gasket (SG) and

Sierpiński graph. SG can be defined in many ways. We give related ones. Let p0 D
.0; 0/; p1 D .1; 0/; p2 D �

1
2
;

p
3

2

�

, fi .x/ D .x C pi /=2, x 2 R
2, i D 0; 1; 2. Then

SG is the unique nonempty compact set K satisfying K D f0.K/[f1.K/[f2.K/.

Let V1 D ¹p0; p1; p2º, VnC1 D f0.Vn/ [ f1.Vn/ [ f2.Vn/ for all n � 1, then ¹Vnº
is an increasing sequence of finite sets such that K is the closure of

S1
nD1 Vn. See

Figure 1.

Figure 1. Sierpiński gasket

Let W0 D ¹;º, Wn D ¹w D w1 : : : wnW wi D 0; 1; 2; i D 1; : : : ; nº for all

n � 1 and W D S1
nD0 Wn. An element w D w1 : : : wn 2 Wn is called a

finite word with length n and we denote jwj D n for all n � 1. ; 2 W0 is

called empty word and we denote its length j;j D 0, we use the convention that

zero length word is empty word. An element in W is called a finite word. Let

W1 D ¹w D w1w2 : : : W wi D 0; 1; 2; i D 1; 2; : : :º be the set of all infinite

sequences with elements in ¹0; 1; 2º, then an element w 2 W1 is called an infinite

word. For all w D w1 : : : wn 2 W with n � 1, we write fw D fw1
ı � � � ı fwn
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and we write f; D id. It is obvious that Kw D fw.K/ is a compact set for all

w 2 W . For all w D w1w2 : : : 2 W1, we write Kw D T1
nD0 Kw1:::wn

, since

Kw1:::wnC1
� Kw1:::wn

for all n � 0 and diam.Kw1:::wn
/ ! 0 as n ! C1, we

have Kw � K is a one-point set. On the other hand, for all x 2 K, there exists

w 2 W1 such that ¹xº D Kw . But this w in not unique. For example, for the

midpoint x of the segment connecting p0 and p1, we have ¹xº D K100::: D K011:::,

where 100 : : : is the element w D w1w2 : : : 2 W1 with w1 D 1; wn D 0 for all

n � 2 and 011 : : : has similar meaning.

By representation of infinite words, we can construct Sierpiński graph. First,

we construct a triple tree. Take the root o as the empty word ;. It has three child

nodes, that is, the words in W1, 0; 1; 2. Then the nodes 0; 1; 2 have child nodes,

that is, the words in W2, 0 has child nodes 00; 01; 02, 1 has child nodes 10; 11; 12,

2 has child nodes 20; 21; 22. In general, each node w1 : : : wn has three child nodes

in WnC1, that is, w1 : : : wn0; w1 : : : wn1; w1 : : : wn2 for all n � 1. We use node

and finite word interchangeable hereafter. For all n � 1 and node w D w1 : : : wn,

the node w1 : : : wn�1 is called the father node of w and denoted by w�. We obtain

vertex set V consisting of all nodes. Next, we construct edge set E, a subset of

V � V . Let
´

Ev D ¹.w; w�/; .w�; w/W w 2 Wn; n � 1º;
Eh D ¹.w1; w2/W w1; w2 2 Wn; w1 ¤ w2; Kw1

\ Kw2
¤ ;; n � 1º;

and E D Ev [ Eh. Ev is the set of all vertical edges and Eh is the set of all

horizontal edges. Then X D .V; E/ is Sierpiński graph, see Figure 2. We write

X for simplicity.

;

0

1

2

00 2202 20

01 21

10 12

11

Figure 2. Sierpiński graph
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For all x; y 2 V , if .x; y/ 2 E, then we write x � y and say that y is a

neighbor of x. It is obvious that � is an equivalence relation. A path in X is a

finite sequence � D Œx0; : : : ; xn� with distinct nodes and x0 � x1; : : : ; xn�1 � xn,

n is called the length of the path. For all x; y 2 V , let d.x; y/ be the graph metric,

that is, the minimum length of all paths connecting x and y, if a path connecting

x and y has length d.x; y/, then this path is called geodesic. Hereafter, we write

x 2 X to mean that x 2 V . It is obvious that X is a connected and locally finite

graph, that is, for all x; y 2 X with x ¤ y, there exists a path connecting x and

y, for all x 2 X , the set of its neighbors ¹y 2 X W x � yº is a finite set. We write

Sn D ¹x 2 X W jxj D nº, Bn D Sn
iD0 Si as sphere and closed ball with radius n.

Roughly speaking, for all n � 1, Sn looks like some disconnected triangles, see

Figure 3 for S3, and Vn looks like some connected triangles, see Figure 4 for V3.

We define a mapping ˆnW Sn ! Vn as follows. For all n � 2, w D w1 : : : wn 2 Wn,

write pw D pw1:::wn
D fw1:::wn�1

.pwn
/. Write p1; p2; p3 for n D 1 and

w D 0; 1; 2, respectively. By induction, we have Vn D S

w2Wn
pw for all n � 1.

Define ˆn.w/ D pw . Then ˆn is onto and many pairs of points are mapped into

same points, such as ˆ3.001/ D ˆ3.010/. This property can divide the edges in

Sn into two types. For an arbitrary edge in Sn with end nodes x; y, it is called of

type I if ˆn.x/ ¤ ˆn.y/ such as the edge in S3 with end nodes 000 and 001, it is

called of type II if ˆn.x/ D ˆn.y/ such as the edge in S3 with end nodes 001 and

010. By induction, it is obvious there exist only these two types of edges on each

sphere Sn.

000 001 010 011 100 101 110 111

002 012 102 112

020 021 120 121

022 122

200
201 210

211

202 212

220 221

222

Figure 3. S3
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p000 p001 D p010 p011 D p100 p101 D p110 p111

p222

p002 D p020 p112 D p121

p012 D p021 p102 D p120

p022 D p200 p122 D p211

p201 D p210

p202 D p220 p212 D p221

Figure 4. V3

Sierpiński graph is a hyperbolic graph, see [13, Theorem 3.2]. For arbitrary

graph X , choose a node o as root, define graph metric d as above, write jxj D
d.o; x/. For all x; y 2 X , define Gromov product

jx ^ yj D 1

2
.jxj C jyj � d.x; y//:

X is called a hyperbolic graph if there exists ı > 0 such that for all x; y; z 2 X ,

we have

jx ^ yj � min ¹jx ^ zj; jz ^ yjº � ı:

It is known that the definition is independent of the choice of root o. For a

hyperbolic graph, we can introduce a metric as follows. Choose a > 0 such that

a0 D e3ıa � 1 <
p

2 � 1. For all x; y 2 X , define

�a.x; y/ D
´

exp .�ajx ^ yj/; if x ¤ y;

0; if x D y;

then �a satisfies

�a.x; y/ � .1 C a0/ max ¹�a.x; z/; �a.z; y/º for all x; y; z 2 X:

This means �a is an ultra-metric not a metric. But we can define

�a.x; y/ D inf
°

n
X

iD1

�a.xi�1; xi/W x D x0; : : : ; xn D y; xi 2 X;

i D 0; : : : ; n; n � 1
±

;
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for all x; y 2 X . �a is a metric and equivalent to �a. So we use �a rather than

�a for simplicity. It is known that a sequence ¹xnº � X with jxnj ! C1 is

a Cauchy sequence in �a if and only if jxm ^ xnj ! C1 as m; n ! C1.

Let yX be the completion of X with respect to �a, then @hX D yXnX is called

the hyperbolic boundary of X . By [18, Corollary 22.13], yX is compact. It

is obvious that hyperbolicity is only related to the graph structure of X . We

introduce a description of hyperbolic boundary in terms of geodesic rays. A

geodesic ray is a sequence Œx0; x1; : : :� with distinct nodes, xn � xnC1 and path

Œx0; : : : ; xn� is geodesic for all n � 0. Two geodesic rays � D Œx0; x1; : : :� and

� 0 D Œy0; y1; : : :� are called equivalent if limn!C1 d.yn; �/ < C1, where

d.x; �/ D infn�0 d.x; xn/. There exists a one-to-one correspondence between

the family of all equivalent geodesic rays and hyperbolic boundary as follows.

By [18, Proposition 22.12(b)], equivalence geodesic rays is an equivalence

relation. By [18, Lemma 22.11], for all geodesic ray � D Œx0; x1; : : :�, for all u 2 X ,

there exist k; l � 0, u D u0; : : : ; uk D xl , such that, Œu; u1; : : : ; uk ; xlC1; xlC2; : : :�

is a geodesic ray. It is obvious that this new geodesic ray is equivalent to � , hence

we can take a geodesic ray in each equivalence class of the form � D Œx0; x1; : : :�,

jxnj D n, xn � xnC1 for all n � 0. By [18, Proposition 22.12(c)], we can define a

one-to-one mapping � from the family of all equivalent geodesic rays to hyperbolic

boundary, � W Œx0; x1; : : :� 7! the limit � of ¹xnº in �a. By above, we can choose

Œx0; x1; : : :� of the form jxnj D n, xn � xnC1 for all n � 0, we say that Œx0; x1; : : :�

is a geodesic ray from o to �.

For y 2 yX , x 2 X , we say that y is in the subtree with root x if x lies on the

geodesic path or some geodesic ray from o to y. And if y is in the subtree with

root x, then it is obvious that jx ^ yj D jxj, �a.x; y/ D e�ajxj if x ¤ y. For more

detailed discussion of hyperbolic graph, see [18, Chapter IV, IV.22].

[13, Theorem 3.2, Theorem 4.3, Proposition 4.4] showed that for a general class

of fractals satisfying open set condition (OSC), we can construct an augmented

rooted tree which is a hyperbolic graph and the hyperbolic boundary is Hölder

equivalent to the fractal through canonical mapping. In particular, SG satisfies

OSC, Sierpiński graph is an augmented rooted tree hence hyperbolic. The canon-

ical mapping ˆ can be described as follows.

For all � 2 @hX , there corresponds a geodesic ray in the equivalence class

corresponding to � through the mapping � of the form Œx0; x1; : : :� with jxnj D n

and xn � xnC1 for all n � 0, then there exists an element w 2 W1 such that

w1 : : : wn D xn for all n � 1. Then ¹ˆ.�/º D Kw and

jˆ.�/ � ˆ.�/j � �a.�; �/log 2=a for all �; � 2 @hX: (3)
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3. Random walk on X

In this section, we give a transient reversible random walk on X from [10]. Let

cW X � X ! Œ0; C1/ be conductance satisfying

c.x; y/ D c.y; x/;

�.x/ D
X

y2X

c.x; y/ 2 .0; C1/;

c.x; y/ > 0 () x � y;

for all x; y 2 X . Let P.x; y/ D c.x; y/=�.x/, x; y 2 X , then P is a transi-

tion probability satisfying �.x/P.x; y/ D �.y/P.y; x/ for all x; y 2 X . We

construct a reversible random walk Z D ¹Znº on X with transition probability

P . We introduce some related quantities. Let P .0/.x; y/ D ıxy , P .nC1/.x; y/ D
P

z2X P.x; z/P .n/.z; y/ for all x; y 2 X , n � 0. Define

G.x; y/ D
1

X

nD0

P .n/.x; y/; x; y 2 X;

then G is the Green function of Z and Z is called transient if G.x; y/ < C1 for

all or equivalent for some x; y 2 X . Define

F.x; y/ D PxŒZn D y for some n � 0�;

that is, the probability of ever reaching y starting from x. By Markov property,

we have

G.x; y/ D F.x; y/G.y; y/:

For a more detailed discussion of general theory of random walk, see [18, Chap-

ter I, I.1].

Here, we take some specific random walk called �-return ratio random walk

introduced in [10], that is,

c.x; x�/
X

yWy�Dx

c.x; y/
D P.x; x�/

X

yWy�Dx

P.x; y/
D � 2 .0; C1/ for all x 2 X with jxj � 1:

For all n � 0, x 2 Sn; y 2 SnC1, we take c.x; y/ the same value denoted by

c.n; n C 1/ D c.n C 1; n/. Then

� D c.n � 1; n/

3c.n; n C 1/
;
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that is,

c.n; n C 1/ D c.n � 1; n/

3�
D � � � D 1

.3�/n
c.0; 1/:

Take c.0; 1/ D 1, then c.n; n C 1/ D 1=.3�/n. Moreover, [10, Definition 4.4] gave

restrictions to conductance of horizontal edges. For all n � 1, x; y 2 Sn, x � y,

let

c.x; y/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

C1

.3�/n
; if the edge with end nodes x; y is of type I;

C2

.3�/n
; if the edge with end nodes x; y is of type II;

where C1; C2 are some positive constants.

[10, Proposition 4.1, Lemma 4.2] showed that if � 2 .0; 1/, then Z is transient

and

G.o; o/ D 1

1 � �
; (4)

F.x; 0/ D �jxj for all x 2 X: (5)

For a transient random walk, we can introduce Martin kernel given by

K.x; y/ D G.x; y/

G.o; y/
;

and Martin compactification xX , that is, the smallest compactification such that

K.x; �/ can be extended continuously for all x 2 X . Martin boundary is given by

@M X D xXnX . Then Martin kernel K can be defined on X � xX .

[10, Theorem 5.1] showed that the Martin boundary @M X , the hyperbolic

boundary @hX and SG K are homeomorphic. Hence the completion yX of X

with respect to �a and Martin compactification xX are homeomorphic. It is always

convenient to consider yX rather than xX . We use @X to denote all these boundaries.

We list some general results of Martin boundary for later use.

Theorem 3.1 ([18, Theorem 24.10]). Let Z be transient, then ¹Znº converges to a

@M X-valued random variable Z1, Px-a.s. for all x 2 X . The hitting distribution

of ¹Znº or the distribution of Z1 under Px, denoted by �x , satisfies

�x.B/ D
Z

B

K.x; �/d�o for all Borel measurable set B � @M X;

that is, �x is absolutely continuous with respect to �o with Radon-Nikodym deriv-

ative K.x; �/.
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For all �o-integrable function ' on @M X , we have

h.x/ D
Z

@M X

'd�x D
Z

@M X

K.x; �/'d�o; x 2 X;

is a harmonic function on X . It is called the Poisson integral of ', denoted by H'.

[10, Theorem 5.6] showed that the hitting distribution �o is normalized Haus-

dorff measure on K. We write � for �o for simplicity.

Using conductance c, we construct an energy on X given by

EX.u; u/ D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2:

In [16], Silverstein constructed Naïm kernel ‚ on xX � xX using Martin kernel

to induce an energy on @X given by

E@X .u; u/ D EX.Hu; Hu/ D 1

2
�.o/

Z

@X

Z

@X

.u.x/ � u.y//2‚.x; y/�.dx/�.dy/;

for all u 2 L2.@M X I �/ with E@X.u; u/ < C1.

[10, Theorem 6.3] calculated Naïm kernel forcefully

‚.x; y/ � 1

jx � yj˛Cˇ
; (6)

where ˛ D log 3= log 2 is Hausdorff dimension of SG, ˇ D � log �= log 2 2
.0; C1/, � 2 .0; 1/. No message of upper bound for ˇ of walk dimension

appeared in their calculation.

4. Regular Dirichlet form on X

In this section, we construct a regular Dirichlet form EX on X and its correspond-

ing symmetric Hunt process ¹Xtº. We prove that the Martin boundaries of ¹Xt º
and Z coincide. We show that EX is stochastically incomplete and ¹Xt º goes to

infinity in finite time almost surely.

Let mW X ! .0; C1/ be a positive function given by

m.x/ D
� c

3�

�jxj
; x 2 X;

where c 2 .0; �/ � .0; 1/. Then m can be regarded as a measure on X . Note that

m.X/ D
X

x2X

m.x/ D
1

X

nD0

3n �
� c

3�

�n

D
1

X

nD0

� c

�

�n

< C1;
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we have m is a finite measure on X . We construct a symmetric form on L2.X I m/

given by
8

ˆ

<

ˆ

:

EX .u; u/ D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2;

FX D the .EX /1-closure of C0.X/;

where C0.X/ is the set of all functions with finite support. It is obvious that

.EX ;FX/ is a regular Dirichlet form on L2.X I m/. By [7, Theorem 7.2.1], it

corresponds to a symmetric Hunt process on X . Roughly speaking, this process

is a variable speed continuous time random walk characterized by holding at one

node with time distributed to exponential distribution and jumping according to

random walk. For some discussion of continuous time random walk, see [14,

Chapter 2]. We give detailed construction as follows.

Let .�;F;P/ be a probability space on which given a random walk ¹Ynº with

transition probability P and initial distribution � and a sequence of independent

exponential distributed random variables ¹Snº with parameter 1, that is, PŒSn 2
dt � D e�tdt . Assume that ¹Snº is independent of ¹Ynº. Let ˛.x/ D �.x/=m.x/,

x 2 X . For all n � 1, let Tn D Sn=˛.Yn�1/, Jn D T1 C � � � C Tn, J0 D 0. Then Tn

is called the n-th holding time and Jn is called the n-th jumping time. Let

Xt D
´

Yn if Jn � t < JnC1 for some n � 0;

@ otherwise;

where @ is death point. This construction is similar to that of Poisson process and it

is called variable speed continuous time random walk in some literature. ¹Xtº is a

symmetric Hunt process with initial distribution � . By calculating the generators

of EX and ¹Xtº, we have ¹Xtº is the symmetric Hunt process corresponding to

EX .

By the construction of ¹Xt º in terms of ¹Ynº, the Martin boundary of ¹Xt º
is the same as the Martin boundary of Z. Indeed, by Dirichlet form theory, the

Green function of ¹Xt º is given by

g.x; y/ D G.x; y/

�.y/
for all x; y 2 X:

Hence the Martin kernel of ¹Xtº is given by

k.x; y/ D g.x; y/

g.o; y/
D G.x; y/=�.y/

G.o; y/=�.y/
D G.x; y/

G.o; y/
D K.x; y/ for all x; y 2 X:

Hence the Martin boundaries of ¹Xtº and Z coincide. Moreover, EX is transient.
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Theorem 4.1. .EX ;FX/ on L2.X I m/ is stochastically incomplete.

We prove stochastic incompleteness by considering lifetime � D P1
nD1 Tn D

limn!C1 Jn. This quantity is called the ( first) explosion time in [14, Chapter 2,

2.2]. We need a proposition for preparation.

Proposition 4.2. The jumping times Jn are stopping times of ¹Xtº for all n � 0.

Proof. Let ¹Ftº be the minimum completed admissible filtration with respect to

¹Xt º. It is obvious that J0 D 0 is a stopping time of ¹Xtº. Assume that Jn is a

stopping time of ¹Xt º, then for all t � 0, we have

¹JnC1 � tº D
[

s2Q;
s�t

.¹Jn � tº \ ¹Xs ¤ XJn
º/ 2 Ft ;

hence JnC1 is a stopping time of ¹Xt º. By induction, it follows that Jn are stopping

times of ¹Xtº for all n � 0. �

Proof of Theorem 4.1. By equation (5), we have

Eo� D Eo

1
X

nD1

Tn

D
1

X

nD1

Eo

h Sn

˛.Yn�1/

i

D
1

X

nD1

EoŒSn�Eo

h 1

˛.Yn�1/

i

D
1

X

nD1

Eo

m

�
.Yn�1/

D
1

X

nD0

Eo

m

�
.Yn/

D
1

X

nD0

X

x2X

m.x/

�.x/
P .n/.o; x/

D
X

x2X

m.x/

�.x/
G.o; x/

D
X

x2X

m.x/

�.x/

�.x/G.x; o/

�.o/
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D
X

x2X

m.x/G.x; o/

�.o/

D
X

x2X

m.x/F.x; o/G.o; o/

�.o/

D G.o; o/

�.o/

1
X

nD0

3n �
� c

3�

�n

� �n

D G.o; o/

�.o/

1
X

nD0

cn:

Since c 2 .0; �/ � .0; 1/, we have Eo� < C1, PoŒ� < C1� D 1.

For all x 2 X , let n D jxj, note that P .n/.o; x/ > 0, by Proposition 4.2 and

strong Markov property, we have

Eo� � EoŒ�1¹XJn Dxº�

D EoŒEoŒ�1¹XJn DxºjXJn
��

D EoŒ1¹XJnDxºEoŒ�jXJn
��

D EoŒ1¹XJnDxºEXJn
Œ���

D P .n/.o; x/ExŒ��:

Hence Ex� < C1, PxŒ� < C1� D 1 for all x 2 X , EX is stochastically

incomplete. �

By [18, Proposition 1.17(b)], for a transient random walk Z on X , for all finite

set A � X , we have PxŒZn 2 A for infinitely many n� D 0 for all x 2 X . Roughly

speaking, a transient random walk will go to infinity almost surely. For variable

speed continuous time random walk ¹Xtº on X , we have following theorem.

Theorem 4.3. ¹Xtº goes to infinity in finite time almost surely, that is,

PxŒlim
t"�

jXt j D C1; � < C1� D 1 for all x 2 X:

Proof. There exists �0 with Px.�0/ D 1 such that �.!/ < C1 for all ! 2 �0.

For all m � 1, we have PxŒYn 2 Bm for infinitely many n� D 0, hence there exists

�m with Px.�m/ D 1 such that for all ! 2 �m, there exist N D N.!/ � 1,

for all n � N , Yn.!/ … Bm. Hence Px

�

�0 \ T1
mD1 �m

� D 1. For all

! 2 �0 \ T1
mD1 �m, we have Jn.!/ � JnC1.!/ < �.!/ < C1. For all

m � 1, since ! 2 �m, there exists N D N.!/ � 1, for all n > N , we have

Yn.!/ … Bm. By definition, Xt .!/ D Yn.!/ if Jn.!/ � t < JnC1.!/. Letting
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T D JN.!/.!/, for all t > T there exists n � N such that Jn.!/ � t < JnC1.!/,

hence Xt .!/ D Yn.!/ 62 Bm, that is, limt"�.!/jXt .!/j D C1. We obtain the

desired result. �

5. Active reflected Dirichlet space .Eref;Fref
a

/

In this section, we construct active reflected Dirichlet form .Eref;Fref
a / and show

that FX ¤ F
ref
a , hence E

ref is not regular.

Reflected Dirichlet space was introduced by Chen [4]. This is a generalization

of reflected Brownian motion in Euclidean space. He considered abstract Dirichlet

form instead of constructing reflection path-wisely from probabilistic viewpoint.

More detailed discussion is incorporated into his book with Fukushima [5, Chap-

ter 6].

Given a regular transient Dirichlet form .E;F/ on L2.X I m/, we can do reflec-

tion in two ways:

� The linear span of F and all harmonic functions of finite “E-energy”;

� All functions that are “locally” in F and have finite “E-energy.”

We use the second way which is more convenient. Recall the Beurling–Deny

decomposition. Since .E;F/ is regular, we have

E.u; u/ D 1

2
�c

<u>.X/ C
Z

X�Xnd

.u.x/ � u.y//2J.dxdy/ C
Z

X

u.x/2k.dx/

for all u 2 Fe , here we use the convention that all functions in Fe are quasi-

continuous. By this formula, we can define

yE.u; u/ D 1

2
�c

<u>.X/ C
Z

X�Xnd

.u.x/ � u.y//2J.dxdy/ C
Z

X

u.x/2k.dx/

for all u 2 Floc. We give the definition of reflected Dirichlet space as follows. [5,

Theorem 6.2.5] gave

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

F
ref D ®

uW finite m-a.e., there exists ¹unº � Floc
yE-Cauchy;

un ! u; m-a.e. on X
¯

;

yE.u; u/ D limn!C1 yE.un; un/:
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Let �ku D ..�k/ _ u/ ^ k, k � 1, then [5, Theorem 6.2.13] gave

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

F
ref D ®

uW juj < C1; m-a.e.; �ku 2 Floc for all k � 1;

supk�1
yE.�ku; �ku/ < C1¯

;

E
ref.u; u/ D limk!C1 yE.�ku; �ku/:

Let Fref
a D F

ref \ L2.X I m/, then .Fref
a ;Eref/ is called active reflected Dirich-

let space. [5, Theorem 6.2.14] showed that .Eref;Fref
a / is a Dirichlet form on

L2.X I m/.

Return to our case, since

EX .u; u/ D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2 for all u 2 FX ;

EX has only jumping part, we have

yEX .u; u/ D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2 for all u 2 .FX /loc:

By the definition of local Dirichlet space

.FX /loc D ¹uW for all G � X relatively compact open,

there exists v 2 FX such that u D v; m-a.e. on Gº:

For all G � X relatively compact open, we have G is a finite set, for all function

u on X , let v.x/ D u.x/, x 2 G, v.x/ D 0, x 2 XnG, then v 2 C0.X/ � FX and

u D v on G, hence .FX /loc D ¹uW u is a finite function on Xº. We have

F
ref D

°

uW ju.x/j < C1 for all x 2 X;

sup
k�1

1

2

X

x;y2X

c.x; y/.�ku.x/ � �ku.y//2 < C1
±

:

By monotone convergence theorem,

1

2

X

x;y2X

c.x; y/.�ku.x/ � �ku.y//2 " 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2;

hence

sup
k�1

1

2

X

x;y2X

c.x; y/.�ku.x/ � �ku.y//2 D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2;
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and

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

F
ref D

°

uW finite function;
1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2 < C1
±

;

E
ref.u; u/ D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2:

F
ref
a D

°

u 2 L2.X I m/W 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2 < C1
±

:

Indeed, we can show that .Eref;Fref
a / is a Dirichlet form on L2.X I m/ directly. In

general, .Eref ;Fref
a / on L2.X I m/ is not regular, FX ¤ F

ref
a . This is like H 1

0 .D/ ¤

H 1.D/. We need to show FX ¤ F
ref
a , otherwise reflection is meaningless. Then

we do regular representation of .Eref;Fref
a / on L2.X I m/ to enlarge the space X to

Martin compactification xX and Martin boundary @X will appear.

Theorem 5.1. FX ¤ F
ref
a , hence E

ref is not regular.

Proof. Since m.X/ < C1, we have 1 2 F
ref
a and E

ref.1; 1/ D 0, by [7,

Theorem 1.6.3], Eref is recurrent, by [7, Lemma 1.6.5], Eref is conservative or

stochastically complete. Since EX is transient and stochastically incomplete, we

have FX ¤ F
ref
a . Note that Eref is not regular, there is no corresponding Hunt

process, but recurrent and conservative properties are still well-defined, see [7,

Chapter 1, 1.6]. �

6. Regular representation of .Eref ;Fref
a

/

In this section, we construct a regular Dirichlet form .E xX ;F xX/ on L2. xX I m/ which

is a regular representation of Dirichlet form .Eref;Fref
a / on L2.X I m/, where xX is

the Martin compactification of X and m is given as above.

Recall .1
2
D; H 1.D// on L2.D/ is not regular, .1

2
D; H 1.D// on L2. xD; 1D.dx//

is a regular representation. Our construction is very simple and similar to this case.

Let
8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

E xX.u; u/ D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2;

F xX D
°

u 2 C. xX/W
X

x;y2X

c.x; y/.u.x/ � u.y//2 < C1
±

:

We show that .E xX ;F xX/ is a regular Dirichlet form on L2. xX I m/.
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Theorem 6.1. If � 2 .1=5; 1=3/, then .E xX ;F xX/ is a regular Dirichlet form on

L2. xX I m/.

First, we need a lemma.

Lemma 6.2. If � < 1=3, then for all u on X with

C D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2 < C1;

u can be extended continuously to xX .

Proof. Since yX is homeomorphic to xX , we consider yX instead. For all � 2 @X ,

take geodesic ray Œx0; x1; : : :� with jxnj D n, xn � xnC1 for all n � 0 such that

xn ! � in �a. Then

ju.xn/ � u.xnC1/j �
s

2C

c.xn; xnC1/
D

p
2C .

p
3�/n;

since � < 1=3, we have ¹u.xn/º is a Cauchy sequence, define

u.�/ D lim
n!C1

u.xn/:

First, we show that this is well-defined. Indeed, for all equivalent geodesic rays

Œx0; x1; : : :� and Œy0; y1; : : :� with jx0j D jy0j D 0, by [18, Proposition 22.12(a)],

for all n � 0, d.xn; yn/ � 2ı. Take an integer M � 2ı, then for arbitrary fixed

n � 0, there exist z0 D xn; : : : ; zM D yn with jzi j D n for all i D 0; : : : ; M ,

zi D ziC1 or zi � ziC1 for all i D 0; : : : ; M � 1, we have

ju.xn/ � u.yn/j �
M �1
X

iD0

ju.zi / � u.ziC1/j

�
M �1
X

iD0

s

2C

c.zi ; ziC1/

� M

s

2C

min ¹C1; C2º .
p

3�/n:

Since � < 1=3, letting n ! C1, we have ju.xn/ � u.yn/j ! 0, u.�/ is well-

defined and

ju.�/ � u.xn/j �
1

X

iDn

ju.xi / � u.xiC1/j �
1

X

iDn

p
2C .

p
3�/n D

p
2C

1 �
p

3�
.
p

3�/n:
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Next, we show that the extended function u is continuous on yX . We only need

to show that for all sequence ¹�nº � @X with �n ! � 2 @X in �a, we have

u.�n/ ! u.�/. Since @X with �a is Hölder equivalent to K with Euclidean metric

by equation (3), we use them interchangeably, ¹�nº � K and �n ! � 2 K in

Euclidean metric.

For all " > 0, there exists M � 1 such that .
p

3�/M < ". Take w 2 WM such

that � 2 Kw , there are at most 12 numbers of Qw 2 WM , Qw ¤ w such that Qw � w,

see Figure 5. Indeed, if we analyze geometric property of SG carefully, we will

see there are at most 3.

Kw

Figure 5. A neighborhood of Kw

Let U D S

QwW Qw2WM ; Qw�w K Qw [ Kw , there exists N � 1 for all n > N , �n 2 U .

For all n > N . If �n 2 Kw , then

ju.�n/�u.�/j � ju.�n/�u.w/jCju.�/�u.w/j � 2
p

2C

1 �
p

3�
.
p

3�/M <
2
p

2C

1 �
p

3�
":

If �n 2 K Qw , Qw 2 KM , Qw � w, then

ju.�n/ � u.�/j � ju.�n/ � u. Qw/j C ju. Qw/ � u.w/j C ju.w/ � u.�/j

� 2
p

2C

1 �
p

3�
.
p

3�/M C
s

2C

min ¹C1; C2º .
p

3�/M

<
� 2

p
2C

1 �
p

3�
C

s

2C

min ¹C1; C2º
�

":

Hence

ju.�n/ � u.�/j <
� 2

p
2C

1 �
p

3�
C

s

2C

min ¹C1; C2º
�

";

for all n > N . limn!C1 u.�n/ D u.�/. The extended function u is continuous

on yX . �
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Proof of Theorem 6.1. Since C0.X/ � F xX is dense in L2. xX I m/, we have E xX is a

symmetric form on L2. xX I m/.

We show closed property of E xX . Let ¹ukº � F xX be an .E xX/1-Cauchy se-

quence. Then there exists u 2 L2. xX I m/ such that uk ! u in L2. xX I m/, hence

uk.x/ ! u.x/ for all x 2 X . By Fatou’s lemma, we have

1

2

X

x;y2X

c.x; y/..uk � u/.x/ � .uk � u/.y//2

D 1

2

X

x;y2X

c.x; y/ lim
l!C1

..uk � ul /.x/ � .uk � ul /.y//2

� lim
l!C1

1

2

X

x;y2X

c.x; y/..uk � ul /.x/ � .uk � ul /.y//2

D lim
l!C1

E xX.uk � ul ; uk � ul /:

Letting k ! C1, we have

1

2

X

x;y2X

c.x; y/..uk � u/.x/ � .uk � u/.y//2 ! 0;

and
1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2 < C1:

By Lemma 6.2, u can be extended continuously to xX , hence u 2 C. xX/, u 2 F xX .

E xX is closed.

It is obvious that E xX is Markovian. Hence E xX is a Dirichlet form on L2. xX I m/.

Since xX is compact, we have C0. xX/ D C. xX/. To show E xX is regular, we need

to show C0. xX/ \ F xX D C. xX/ \ F xX D F xX is .E xX/1-dense in F xX and uniformly

dense in C0. xX/ D C. xX/. F xX is trivially .E xX/1-dense in F xX . We need to show

that F xX is uniformly dense in C. xX/. Since xX is compact, we have F xX is a sub

algebra of C. xX/. By Stone-Weierstrass theorem, we only need to show that F xX
separates points. The idea of our proof is from classical construction of local

regular Dirichlet form on SG.

For all p; q 2 xX with p ¤ q, we only need to show that there exists v 2 F xX
such that v.p/ ¤ v.q/. If p 2 X , then let v.p/ D 1 and v.x/ D 0 for all

x 2 Xn¹pº, then
X

x;y2X

c.x; y/.v.x/ � v.y//2 < C1:
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By Lemma 6.2, v can be extended to a function in C. xX/, still denoted by v, hence

v 2 F xX . Moreover, v.q/ D 0 ¤ 1 D v.p/. If q 2 X , then we have the proof

similar to the above.

If p; q 2 xXnX D @X D K, then there exists sufficiently large m � 1 and

w.1/; w.2/ 2 Sm with p 2 Kw.1/ , q 2 Kw.2/ and Kw.1/ \ Kw.2/ D ;, hence

w.1/ 6� w.2/. Let v D 0 in Bm and

v.w.1/0/ D v.w.1/1/ D v.w.1/2/ D 1:

For all w 2 SmC1n¹w.1/0; w.1/1; w.1/2º, let

v.w/ D
´

1 if w � w.1/0 or w � w.1/1 or w � w.1/2;

0 otherwise;

then

v.w.2/0/ D v.w.2/1/ D v.w.2/2/ D 0:

In the summation
P

x;y2SmC1
c.x; y/.v.x/ � v.y//2, horizontal edges of type

II make no contribution since v takes same values at end nodes of each such

edge. Assume that we have constructed v on Bn such that in the summation
P

x;y2Si
c.x; y/.v.x/ � v.y//2, i D m C 1; : : : ; n, horizontal edges of type II

make no contribution, that is, v takes same values at end nodes of each edge. We

construct v on SnC1 as follows.

Consider
P

x;y2Sn
c.x; y/.v.x/ � v.y//2, nonzero terms all come from edges

of smallest triangles in Sn. Pick up one such triangle in Sn, it generates three

triangles in SnC1, nine triangles in SnC2, . . . . See Figure 6.

a b

c

a b

c

x x

z

z

y

y

Figure 6. Generation of triangles

We only need to assign values of v on the three triangles in SnC1 from the

values of v on the triangle in Sn. As in Figure 6, x; y; z are values of v at

corresponding nodes to be determined from a; b; c. The contribution of this one
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triangle in Sn to
P

x;y2Sn
c.x; y/.v.x/ � v.y//2 is

A1 D C1

.3�/n
Œ.a � b/2 C .b � c/2 C .a � c/2�:

The contribution of these three triangles in SnC1 to
P

x;y2SnC1
c.x; y/.v.x/ �

v.y//2 is

A2 D C1

.3�/nC1

�

.a � x/2 C .a � z/2 C .x � z/2

C .b � x/2 C .b � y/2 C .x � y/2

C .c � y/2 C .c � z/2 C .y � z/2
�

:

Consider A2 as a function of x; y; z, by elementary calculation, A2 takes minimum

value when
8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

x D 2a C 2b C c

5
;

y D a C 2b C 2c

5
;

z D 2a C b C 2c

5
;

and

A2 D C1

.3�/nC1
� 3

5
Œ.a � b/2 C .b � c/2 C .a � c/2�

D 1

5�

� C1

.3�/n
Œ.a � b/2 C .b � c/2 C .a � c/2�

�

D 1

5�
A1:

By construction, horizontal edges of type II in SnC1 make no contribution to

X

x;y2SnC1

c.x; y/.v.x/ � v.y//2

and
X

x;y2SnC1

c.x; y/.v.x/ � v.y//2 D 1

5�

X

x;y2Sn

c.x; y/.v.x/ � v.y//2:

Since � > 1=5,
1

X

nD0

X

x;y2Sn

c.x; y/.v.x/ � v.y//2 < C1;

this is the contribution of all horizontal edges to
P

x;y2X c.x; y/.v.x/ � v.y//2.
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We consider the contribution of all vertical edges. For all n � m, by construction

vjSnC1
is uniquely determined by vjSn

, hence the contribution of vertical edges

between Sn and SnC1 is uniquely determined by vjSn
. As above, we pick one

smallest triangle in Sn and consider the contribution of the vertical edges con-

necting it to SnC1. There are nine vertical edges between Sn and SnC1 connecting

this triangle. These nine vertical edges make contribution

A3 D 1

.3�/n

�

.a � x/2 C .a � z/2 C .a � a/2

C .b � x/2 C .b � y/2 C .b � b/2

C .c � y/2 C .c � z/2 C .c � c/2
�

D 14

25C1

� C1

.3�/n
Œ.a � b/2 C .b � c/2 C .a � c/2�

�

D 14

25C1

A1:

Hence

X

x2Sn;

y2SnC1

c.x; y/.v.x/ � v.y//2 D 14

25C1

X

x;y2Sn

c.x; y/.v.x/ � v.y//2;

and

1
X

nD0

X

x2Sn;

y2SnC1

c.x; y/.v.x/ � v.y//2 < C1

()
1

X

nD0

X

x;y2Sn

c.x; y/.v.x/ � v.y//2 < C1:

Since � > 1=5, we have both summations converge and

X

x;y2X

c.x; y/.v.x/ � v.y//2 < C1:

By Lemma 6.2, v can be extended to a function in C. xX/, still denoted by v, hence

v 2 F xX . Since v is constructed by convex interpolation on XnBmC1, we have

v.p/ D 1 ¤ 0 D v.q/.

Therefore, .E xX ;F xX/ is a regular Dirichlet form on L2. xX I m/. �
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Theorem 6.3. E xX on L2. xX I m/ is a regular representation of Eref on L2.X I m/.

Regular representation theory was developed by Fukushima [6] and incorpo-

rated into his book [7, Appendix, A4].

Proof. We only need to construct an algebraic isomorphism ˆW .Fref
a /b ! .F xX/b

such that for all u 2 .Fref
a /b

kukL1.XIm/ D kˆ.u/kL1. xXIm/;

.u; u/X D .ˆ.u/; ˆ.u// xX ;

E
ref.u; u/ D E xX.ˆ.u/; ˆ.u//:

(7)

Indeed, for all u 2 .Fref
a /b, we have

P

x;y2X c.x; y/.u.x/ � u.y//2 < C1, by

Lemma 6.2, define ˆ.u/ as the continuous extension of u to xX . Since Eref , E xX
have the same expression for energy and m.@X/ D 0, equation (7) is obvious. �

Theorem 6.4. .EX ;FX/ on L2.X I m/ is part form of .E xX ;F xX/ on L2. xX I m/ on X .

Proof. By [5, Theorem 3.3.9], since X � xX is an open subset and F xX is a special

standard core of .E xX ;F xX/ on L2. xX I m/, we have

.F xX /X D ¹u 2 F xX W supp.u/ � Xº D ¹u 2 F xX W u 2 C0.X/º D C0.X/:

Since FX is the .EX /1-closure of C0.X/, we have part form of .E xX ;F xX/ on

L2. xX I m/ on X is exactly .EX ;FX/ on L2.X I m/. �

From probabilistic viewpoint, .EX ;FX/ on L2.X I m/ corresponds to absorbed

process ¹Xtº and .E xX ;F xX/ on L2. xX I m/ corresponds to reflected process ¹ xXt º.
By [5, Theorem 3.3.8], ¹Xtº is part process of ¹ xXtº on X which can be described

as follows.

Let

�X D inf ¹t > 0W xXt … Xº D inf ¹t > 0W xXt 2 @Xº D �@X ;

then

Xt D
´ xXt ; 0 � t < �X ;

@; t � �X ;

and

� D �X D �@X :
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7. Trace form on @X

In this section, we take trace of the regular Dirichlet form .E xX ;F xX/ on L2. xX I m/

to K to have a regular Dirichlet form .EK ;FK/ on L2.KI �/ with the form (2).

First, we show that � is of finite energy with respect to E xX , that is,
Z

xX

ju.x/j�.dx/ � C

q

.E xX/1.u; u/ for all u 2 F xX \ C0. xX/ D F xX ;

where C is some positive constant. Since �.@X/ D 1, we only need to show that

Theorem 7.1.
� Z

xX

ju.x/j2�.dx/

�1=2

� C

q

.E xX/1.u; u/ for all u 2 F xX : (8)

We need some preparation.

Theorem 7.2 ([1, Theorem 1.1]). Suppose that a reversible random walk ¹Znº is

transient, then for all f with

D.f / D 1

2

X

x;y2X

c.x; y/.f .x/ � f .y//2 < C1;

we have ¹f .Zn/º converges almost surely and in L2 under Px for all x 2 X .

For all f with D.f / < C1, under Po, ¹f .Zn/º converges almost surely and

in L2 to a random variable W , that is

f .Zn/ �! W; Po-a.s.; EoŒ.f .Zn/ � W /2� �! 0;

then W is a terminal random variable. By Theorem 3.1, Zn ! Z1,Po-a.s. By [19,

Corollary 7.65], W is of the form W D '.Z1/, Po-a.s., where ' is a measurable

function on @X , we define a map f 7! ', this is the operation of taking boundary

value in some sense.

Let D D ¹f W D.f / < C1º. The Dirichlet norm of f 2 D is given by

kf k2 D D.f /C�.o/f .o/2. Let D0 be the family of all functions that are limits in

the Dirichlet norm of functions with finite support. We have the following Royden

decomposition.

Theorem 7.3 ([17, Theorem 3.69]). For all f 2 D, there exist unique harmonic

Dirichlet function fHD and f0 2 D0 such that f D fHD C f0. Moreover,

D.f / D D.fHD/ C D.f0/.
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Lemma 7.4 ([1, Lemma 2.1]). For all f 2 D0, x 2 X , we have

�.x/f .x/2 � D.f /G.x; x/:

Furthermore, there exists a superharmonic function h 2 D0 such that h � jf j
point wise and D.h/ � D.f /.

Proof of Theorem 7.1. Since F xX � C. xX/, for all u 2 F xX , it is trivial to take

boundary value just as uj@X . We still use notions f; '. We have

f .Zn/ �! '.Z1/; Po-a.s.; EoŒ.f .Zn/ � '.Z1//2� �! 0:

Under Po, the hitting distribution of ¹Znº or the distribution of Z1 is �, normal-

ized Hausdorff measure on K,
Z

@X

j'j2d� D EoŒ'.Z1/2� D lim
n!C1

EoŒf .Zn/2�:

We only need to estimate EoŒf .Zn/2� in terms of

D.f / C .f; f / D 1

2

X

x;y2X

c.x; y/.f .x/ � f .y//2 C
X

x2X

f .x/2m.x/:

By Theorem 7.3, we only need to consider harmonic Dirichlet functions and

functions in D0.

For all f 2 D,

1
X

kD0

EoŒ.f .ZkC1/ � f .Zk//2�

D
1

X

kD0

EoŒEoŒ.f .ZkC1/ � f .Zk//2jZk ��

D
1

X

kD0

EoŒEZk
Œ.f .Z1/ � f .Z0//2��

D
1

X

kD0

X

x2X

P .k/.o; x/ExŒ.f .Z1/ � f .Z0//2�

D
X

x;y2X

�

1
X

kD0

P .k/.o; x/
�

P.x; y/.f .x/ � f .y//2

D
X

x;y2X

G.o; x/
c.x; y/

�.x/
.f .x/ � f .y//2
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D
X

x;y2X

�.x/G.x; o/

�.o/

c.x; y/

�.x/
.f .x/ � f .y//2

D
X

x;y2X

F.x; o/G.o; o/

�.o/
c.x; y/.f .x/ � f .y//2

� G.o; o/

�.o/

X

x;y2X

c.x; y/.f .x/ � f .y//2

D 2G.o; o/

�.o/
D.f /:

Let f be a harmonic Dirichlet function, then ¹f .Zn/º is a martingale. For all

n � 1

EoŒf .Zn/2� D Eo

h�

n�1
X

kD0

.f .ZkC1/ � f .Zk// C f .Z0/
�2i

D
n�1
X

kD0

EoŒ.f .ZkC1/ � f .Zk//2� C f .o/2

�
1

X

kD0

EoŒ.f .ZkC1/ � f .Zk//2� C f .o/2

� 2G.o; o/

�.o/
D.f / C f .o/2;

hence

EoŒfHD.Zn/2� � 2G.o; o/

�.o/
D.fHD/ C fHD.o/2: (9)

Let f 2 D0. Let h be as in Lemma 7.4. Then h � 0. Since h is superharmonic,

we have

EoŒh.ZkC1/ � h.Zk/jZ0; : : : ; Zk� � 0;

hence

EoŒh.ZkC1/2 � h.Zk/2�

D EoŒ.h.ZkC1/ � h.Zk//2� C 2EoŒh.Zk/.h.ZkC1/ � h.Zk//�

D EoŒ.h.ZkC1/ � h.Zk//2� C 2EoŒEoŒh.Zk/.h.ZkC1/ � h.Zk//jZ0; : : : ; Zk��

D EoŒ.h.ZkC1/ � h.Zk//2� C 2EoŒh.Zk/EoŒh.ZkC1/ � h.Zk/jZ0; : : : ; Zk��

� EoŒ.h.ZkC1/ � h.Zk//2�:
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We have

EoŒh.Zn/2� D
n�1
X

kD0

EoŒh.ZkC1/2 � h.Zk/2� C h.o/2

�
n�1
X

kD0

EoŒ.h.ZkC1/ � h.Zk//2� C G.o; o/

�.o/
D.h/

�
1

X

kD0

EoŒ.h.ZkC1/ � h.Zk//2� C G.o; o/

�.o/
D.h/

� 2G.o; o/

�.o/
D.h/ C G.o; o/

�.o/
D.h/

D 3G.o; o/

�.o/
D.h/;

hence

EoŒf .Zn/2� � EoŒh.Zn/2� � 3G.o; o/

�.o/
D.h/ � 3G.o; o/

�.o/
D.f /:

We have

EoŒf0.Zn/2� � 3G.o; o/

�.o/
D.f0/: (10)

Combining equations (9) and (10),

EoŒf .Zn/2� D EoŒ.fHD.Zn/ C f0.Zn//2�

� 2EoŒfHD.Zn/2 C f0.Zn/2�

� 2
�2G.o; o/

�.o/
D.fHD/ C fHD.o/2 C 3G.o; o/

�.o/
D.f0/

�

� 2
�5G.o; o/

�.o/
D.f / C .f .o/ � f0.o//2

�

� 2
�5G.o; o/

�.o/
D.f / C 2f .o/2 C 2f0.o/2

�

� 2
�5G.o; o/

�.o/
D.f / C 2

1

m.o/
f .o/2m.o/ C 2

G.o; o/

�.o/
D.f0/

�

� 2
�7G.o; o/

�.o/
D.f / C 2

1

m.o/

X

x2X

f .x/2m.x/
�

� max
°14G.o; o/

�.o/
;

4

m.o/

±�

D.f / C
X

x2X

f .x/2m.x/
�

:
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Let C 2 D max
®

14G.o;o/
�.o/

; 4
m.o/

¯

be a constant only depending on conductance c

and measure m, we have
Z

@X

j'j2d� D lim
n!C1

EoŒf .Zn/2� � C 2.D.f / C
X

x2X

f .x/2m.x//:

In the notion of u, we obtain equation (8). �

Second, we obtain a regular Dirichlet form on L2.@X I �/ by abstract theory of

trace form. More detailed discussion of trace form, see [5, Chapter 5, 5.2] and [7,

Chapter 6, 6.2]. We introduce some results used here.

Taking trace with respect to a regular Dirichlet form corresponds to taking

time-change with respect to corresponding Hunt process. Taking trace is realized

by smooth measure. The family of all smooth measures is denoted by S . Taking

time-change is realized by positive continuous additive functional, abbreviated as

PCAF. The family of all PCAFs is denoted by AC
c . The family of all equivalent

classes of AC
c and the family S are in one-to-one correspondence, see [7, Theo-

rem 5.1.4].

We fix a regular Dirichlet form .E;F/ on L2.EI m/ and its corresponding Hunt

process X D ¹Xt º.
� First, we introduce basic setup of time-change. Given a PCAF A 2 AC

c ,

define its support F , then F is quasi closed and nearly Borel measurable.

Define the right-continuous inverse � of A, let {Xt D X�t
, then {X is a right

process with state space F and called the time-changed process of X by A.

� Second, we introduce basic setup of trace form. For arbitrary non-polar,

quasi closed, nearly Borel measurable, finely closed set F , define hitting

distribution HF of X for F as follows:

HF g.x/ D Ex Œg.X�F
/1�F <C1�; x 2 E; g is nonnegative Borel function.

By [5, Theorem 3.4.8], for all u 2 Fe, we have HF juj.x/ < C1, q.e. and

HF u 2 Fe. Define

{Fe D FejF ; {E.ujF ; vjF / D E.HF u; HF v/; u; v 2 Fe :

Two elements in {Fe can be identified if they coincide q.e. on F . We still need

a measure on F . Let

SF D ¹� 2 S W the quasi support of � D F º;
where the quasi support of a Borel measure is the smallest (up to q.e. equiv-

alence) quasi closed set outside which the measure vanishes. Let � 2 SF ,
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by [5, Theorem 3.3.5], two elements of {Fe coincide q.e. on F if and only if

they coincide �-a.e.. Define {F D {Fe \L2.F I �/. Then .{E; {F/ is a symmetric

form on L2.F I �/.

� Third, the relation of trace form and time-change process is as follows. Given

A 2 AC
c or equivalently � 2 S , let F be the support of A, then F satisfies

the conditions in the second setup and by [5, Theorem 5.2.1(i)], � 2 SF . We

obtain .{E; {F/ on L2.F I �/. By [5, Theorem 5.2.2], the regular Dirichlet form

corresponding to {X is exactly .{E; {F/ on L2.F I �/.

We have F � supp.�/ q.e., but the point is that F can be strictly contained

in supp.�/ q.e., usually we indeed need a trace form on supp.�/. [5] provided a

solution not for all smooth measures, but some subset

VS D ¹�W positive Radon measure charging no E-polar setº:

For non-E-polar, quasi closed subset F of E, let

VSF D ¹� 2 VS W the quasi support of � is F º:

Note that if � 2 VSF , it may happen that supp.�/ ¥ F q.e. We want some � 2 VSF

such that supp.�/ D F q.e., see [5] gave a criterion as follows.

Lemma 7.5 ([5, Lemma 5.2.9(ii)]). Let F be a non-E-polar, nearly Borel, finely

closed set. Let � 2 VS satisfy �.EnF / D 0. Assume the 1-order hitting distribution

H 1
F .x; �/ of X for F is absolutely continuous with respect to � for m-a.e. x 2 E.

Then � 2 VSF .

Corollary 7.6 ([5, Corollary 5.2.10]). Let F be a closed set. If there exists � 2 VSF

such that the topological support supp.�/ D F , then for all � 2 VSF , we have .{E; {F/

is a regular Dirichlet form on L2.F I �/.

Roughly speaking, given a positive Radon measure � charging no E-polar set,

let F D supp.�/. First check Lemma 7.5 to have � 2 VSF , then the quasi support

of � is F and the support of corresponding PCAF A can be taken as F . Second, by

Corollary 7.6, the time-changed process {X of X by A corresponds to the regular

Dirichlet form .{E; {F/ on L2.F I �/.

Return to our case, � is a probability measure of finite energy integral, hence

� is a positive Radon measure charging no E xX -polar set. We need to check

absolutely continuous condition in Lemma 7.5. We give a theorem as follows.
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Theorem 7.7. The hitting distributions of ¹ xXtº and ¹Znº for @X coincide.

Proof. Recall that ¹Xt º is characterized by random walk ¹Ynº and jumping times

¹Jnº, ¹Xt º is part process of ¹ xXtº on X and � D �X D �@X < C1, Px-a.s. for all

x 2 X .

First, we show that jumping times Jn are stopping times of ¹ xXtº for all n � 0.

Let ¹Ft º and ¹Ftº be the minimum completed admissible filtration with respect

to ¹Xt º and ¹ xXtº, respectively. By Proposition 4.2, Jn are stopping times of ¹Xt º.
Since for all Borel measurable set B � xX , we have

¹Xt 2 Bº D ¹ xXt 2 B \ Xº \ ¹t < �º 2 xFt ;

Ft � xFt for all t � 0. Jn are stopping times of ¹ xXtº for all n � 0.

Then, since Jn " � D �@X , by quasi left continuity of ¹ xXt º, we have for all

x 2 X

PxŒ lim
n!C1

xXJn
D xX�@X

; �@X < C1� D PxŒ�@X < C1�;

that is,

PxŒ lim
n!C1

xXJn
D xX�@X

� D 1:

Note that Jn < � D �@X , we have xXJn
D XJn

D Yn, hence

PxŒ lim
n!C1

Yn D xX�@X
� D 1:

Hence the hitting distributions of ¹ xXt º and ¹Znº for @X coincide under Px for all

x 2 X . �

By Theorem 7.7, the hitting distribution of ¹ xXtº for @X under Px is exactly �x,

hence

H@Xg.x/ D ExŒg. xX�@X
/1¹�@X <C1º�

D ExŒg. xX�@X
/�

D
Z

@X

gd�x

D
Z

@X

K.x; �/gd�

D Hg.x/;

(11)

for all x 2 X and nonnegative Borel function g.
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By Theorem 7.7 and Theorem 3.1, � satisfies the condition of Lemma 7.5 with

F D supp.�/ D @X . By above remark, we obtain a regular Dirichlet form {E on

L2.@X I �/.

Third, we obtain explicit representation of {E as follows.

Theorem 7.8. We have

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

{E.u; u/ �
Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/ < C1;

{F D
²

u 2 C.K/W
Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/ < C1

³

;

where ˇ 2 .˛; ˇ�/.

To prove this theorem, we need some preparation.

Lemma 7.9. If � < 1=3, then for all u 2 C.@X/ D C.K/ with

Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/ < C1;

let v 2 C. xX/ be the extended function of Hu in Lemma 6.2, we have vj@X D u.

We need a calculation result from [10, Theorem 5.3] as follows:

K.x; �/ � �jxj�jx^�j
�1

2

�� log 3

log 2
jx^�j

D �jxj
� 3

�

�jx^�j
; (12)

where x 2 X and � 2 @X .

Proof. By estimate of Naïm kernel, we have

X

x;y2X

c.x; y/.Hu.x/ � Hu.y//2 < C1;

hence Lemma 6.2 can be applied here and v is well-defined. We only need to

show that for all ¹xnº � X and � 2 @X with xn ! �, then Hu.xn/ ! u.�/ as

n ! C1. Indeed, since

Hu.x/ D
Z

@X

K.x; �/u.�/�.d�/ D
Z

@X

u.�/�x.d�/ D ExŒu.Z1/�;



452 A. Grigor’yan and M. Yang

we have

H1.x/ D
Z

@X

K.x; �/�.d�/ D 1 for all x 2 X .

Then

jHu.xn/ � u.�/j D
ˇ

ˇ

ˇ

ˇ

Z

@X

K.xn; �/u.�/�.d�/ � u.�/

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z

@X

K.x; �/.u.�/ � u.�//�.d�/

ˇ

ˇ

ˇ

ˇ

�
Z

@X

K.xn; �/ju.�/ � u.�/j�.d�/:

Since u 2 C.@X/, for all " > 0, there exists ı > 0 such that for all �; � 2 @X with

�a.�; �/ < ı, we have ju.�/ � u.�/j < ". Assume that ju.x/j � M < C1 for all

x 2 @X , then

jHu.xn/ � u.�/j
�

Z

�a.�;�/<ı

K.xn; �/ju.�/ � u.�/j�.d�/

C
Z

�a.�;�/�ı

K.xn; �/ju.�/ � u.�/j�.d�/

< "

Z

�a.�;�/<ı

K.xn; �/�.d�/ C 2M

Z

�a.�;�/�ı

K.xn; �/�.d�/

� " C 2M

Z

�a.�;�/�ı

K.xn; �/�.d�/:

There exists N � 1 such that for all n > N , we have �a.xn; �/ < ı=2, then for all

�a.�; �/ � ı

�a.xn; �/ � �a.�; �/ � �a.xn; �/ � ı � ı

2
D ı

2
:

By equation (12), we have

K.xn; �/ � �jxnj
� 3

�

�jxn^�j

D �jxnjejxn^�j log. 3
�

/

D �jxnje�ajxn^�j 1
a

log. �
3

/
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D �jxnj�a.xn; �/
1
a

log. �
3

/

D �jxnj

�a.xn; �/
1
a

log. 3
�

/
:

Since �a and �a are equivalent, there exists some positive constant C independent

of xn and � such that

K.xn; �/ � C
�jxnj

ı
1
a log. 3

�
/
:

Hence

jHu.xn/ � u.�/j � " C 2M

Z

�a.�;�/�ı

C
�jxnj

ı
1
a

log. 3
�

/
�.d�/ � " C 2MC

�jxnj

ı
1
a

log. 3
�

/
;

letting n ! C1, we have jxnj ! C1, hence

lim
n!C1

jHu.xn/ � u.�/j � "

for all " > 0. Since " > 0 is arbitrary, we have limn!C1 Hu.xn/ D u.�/. �

Theorem 7.10. .F xX /e D F xX , here we use the convention that functions in

extended Dirichlet spaces are quasi continuous.

Proof. It is obvious that .F xX /e � F xX . For all u 2 .F xX/e, by definition, there

exists an E xX -Cauchy sequence ¹unº � F xX that converges to u m-a.e.. Hence

un.x/ ! u.x/ for all x 2 X . By Fatou’s lemma, we have

1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2 D 1

2

X

x;y2X

lim
n!C1

c.x; y/.u.x/ � u.y//2

� lim
n!C1

1

2

X

x;y2X

c.x; y/.un.x/ � un.y//2

D lim
n!C1

E xX.un; un/

< C1:

By Lemma 6.2, ujX can be extended to a continuous function v on xX . Since u; v

are quasi continuous on xX and u D v; m-a.e., we have u D v q.e., we can take u

as v. Hence u can be taken continuous, u 2 F xX , .F xX /e � F xX . �
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Remark 7.11. It is proved in [9, Proposition 2.9] that a result of above type holds

in much more general frameworks.

Proof of Theorem 7.8. By equations (11) and (6),

{E.uj@X ; uj@X / D E xX.H@Xu; H@Xu/ D E xX.Hu; Hu/

D 1

2

X

x;y2X

c.x; y/.Hu.x/ � Hu.y//2

�
Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/;

and

{F D .F xX/ej@X \ L2.@X I �/ D F xX j@X \ L2.@X I �/

D
°

uj@X 2 L2.@X I �/W u 2 C. xX/;
X

x;y2X

c.x; y/.u.x/ � u.y//2 < C1
±

D
°

uj@X W u 2 C. xX/;
X

x;y2X

c.x; y/.u.x/ � u.y//2 < C1
±

:

For all uj@X 2 {F, we have H@Xu D Hu 2 .F xX /e D F xX , uj@X 2 C.@X/ D C.K/

and

Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/ � 1

2

X

x;y2X

c.x; y/.Hu.x/ � Hu.y//2

D E xX .Hu; Hu/

< C1;

that is, {F � RHS. On the other hand, for all u 2 RHS, we have Hu satisfies

1

2

X

x;y2X

c.x; y/.Hu.x/ � Hu.y//2 �
Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/ < C1:

By Lemma 6.2, Hu can be extended to a continuous function v on xX , then

v 2 C. xX/, by Lemma 7.9, we have vj@X D u.

1

2

X

x;y2X

c.x; y/.v.x/ � v.y//2 D 1

2

X

x;y2X

c.x; y/.Hu.x/ � Hu.y//2 < C1;

hence v 2 F xX , u 2 {F, RHS � {F. �
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Then we have following corollary.

Corollary 7.12. Let
8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

EK.u; u/ D
Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/;

FK D
²

u 2 L2.KI �/W
Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/ < C1

³

:

If ˇ 2 .˛; ˇ�/, then .EK;FK/ is a regular Dirichlet form on L2.KI �/.

Proof. Let
8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

EK.u; u/ D
Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/;

FK D
²

u 2 C.K/W
Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/ < C

³

:

By Theorem 7.8, if ˇ 2 .˛; ˇ�/, then .EK ;FK/ is a regular Dirichlet form on

L2.KI �/. We only need to show that

FK D
²

u 2 L2.KI �/W
Z

K

Z

K

.u.x/ � u.y//2

jx � yj˛Cˇ
�.dx/�.dy/ < C1

³

:

Indeed, it is obvious that FK � RHS. On the other hand, since ˇ 2 .˛; ˇ�/,

by [8, Theorem 4.11 (iii)], RHS can be embedded into a Hölder space with pa-

rameter .ˇ � ˛/=2, hence the functions in RHS can be modified to be continuous,

RHS � FK . �

Remark 7.13. A more general result is proved in [12].

8. Triviality of FK when ˇ 2 .ˇ�; C1/

In this section, we show that FK consists of constant functions if � 2 .0; 1=5/ or

ˇ 2 .ˇ�; C1/. Hence dw D ˇ� D log 5= log 2.

Theorem 8.1. If � < 1=5, then for all continuous function u on xX with

C D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2 < C1; (13)

we have uj@X is constant.
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Proof. By Lemma 6.2, equation (13) implies that ujX can be extended continu-

ously to xX which is exactly u on xX . Assume that uj@X is not constant. First, we

consider
X

x;y2Sn

c.x; y/.u.ˆn.x// � u.ˆn.y///2:

By the proof of Theorem 6.1, we have
X

x;y2SnC1

c.x; y/.u.ˆnC1.x// � u.ˆnC1.y///2

� 1

5�

X

x;y2Sn

c.x; y/.u.ˆn.x// � u.ˆn.y///2:

Since uj@X is continuous on @X and uj@X is not constant, there exists N � 1 such

that
X

x;y2SN

c.x; y/.u.ˆN .x// � u.ˆN .y///2 > 0:

Since � < 1=5, for all n � N ,
X

x;y2Sn

c.x; y/.u.ˆn.x// � u.ˆn.y///2

� 1

.5�/n�N

X

x;y2SN

c.x; y/.u.ˆN .x// � u.ˆN .y///2 �! C1;

as n ! C1. Next, we consider the relation between
X

x;y2Sn

c.x; y/.u.x/ � u.y//2 and
X

x;y2Sn

c.x; y/.u.ˆn.x// � u.ˆn.y///2:

Indeed
X

x;y2Sn

c.x; y/.u.x/ � u.y//2

�
X

x;y2Sn

c.x; y/
�ju.x/ � u.ˆn.x//j

C ju.ˆn.x// � u.ˆn.y//j C ju.ˆn.y// � u.y/j�2

� 3
X

x;y2Sn

c.x; y/
�

.u.x/ � u.ˆn.x///2

C .u.ˆn.x// � u.ˆn.y///2 C .u.ˆn.y// � u.y//2
�

D 3
X

x;y2Sn

c.x; y/.u.ˆn.x// � u.ˆn.y///2

C 3
X

x;y2Sn

c.x; y/..u.x/ � u.ˆn.x///2 C .u.ˆn.y// � u.y//2/:
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For all x 2 Sn, there are at most 3 elements y 2 Sn such that c.x; y/ > 0 and for

all x; y 2 Sn, c.x; y/ � max ¹C1; C2º=.3�/n. By symmetry,

X

x;y2Sn

c.x; y/..u.x/ � u.ˆn.x///2 C .u.ˆn.y// � u.y//2/

D 2
X

x;y2Sn

c.x; y/.u.x/ � u.ˆn.x///2

� 6
X

x2Sn

max ¹C1; C2º
.3�/n

.u.x/ � u.ˆn.x///2:

For all x 2 Sn, there exists a geodesic ray Œx0; x1; : : :� with jxk j D k, xk � xkC1

for all k � 0 and xn D x, xk ! ˆn.x/ as k ! C1. For distinct x; y 2 Sn,

the corresponding geodesic rays Œx0; x1; : : :�, Œy0; y1; : : :� satisfy xk ¤ yk for all

k � n. Then

1

.3�/n
.u.x/ � u.ˆn.x///2 � 1

.3�/n

�

1
X

kDn

ju.xk/ � u.xkC1/j
�2

D
�

1
X

kDn

1

.3�/n=2
ju.xk/ � u.xkC1/j

�2

D
�

1
X

kDn

.3�/.k�n/=2 1

.3�/k=2
ju.xk/ � u.xkC1/j

�2

�
1

X

kDn

.3�/k�n

1
X

kDn

1

.3�/k
.u.xk/ � u.xkC1//2

D 1

1 � 3�

1
X

kDn

c.xk ; xkC1/.u.xk/ � u.xkC1//2;

hence

X

x2Sn

1

.3�/n
.u.x/ � u.ˆn.x///2

� 1

1 � 3�

X

x2Sn

1
X

kDn

c.xk ; xkC1/.u.xk/ � u.xkC1//2

� 1

1 � 3�

�1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2
�

D 1

1 � 3�
C:
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We have

X

x;y2Sn

c.x; y/..u.x/ � u.ˆn.x///2 C .u.ˆn.y// � u.y//2/ � 6 max ¹C1; C2º
1 � 3�

C;

and
X

x;y2Sn

c.x; y/.u.x/ � u.y//2

� 3
X

x;y2Sn

c.x; y/.u.ˆn.x// � u.ˆn.y///2 C 18 max ¹C1; C2º
1 � 3�

C:

Similarly, we have
X

x;y2Sn

c.x; y/.u.ˆn.x// � u.ˆn.y///2

� 3
X

x;y2Sn

c.x; y/.u.x/ � u.y//2 C 18 max ¹C1; C2º
1 � 3�

C:

Since

lim
n!C1

X

x;y2Sn

c.x; y/.u.ˆn.x// � u.ˆn.y///2 D C1;

we have

lim
n!C1

X

x;y2Sn

c.x; y/.u.x/ � u.y//2 D C1:

Therefore

C D 1

2

X

x;y2X

c.x; y/.u.x/ � u.y//2 D C1;

contradiction! Hence uj@X is constant. �

Theorem 8.2. If � 2 .0; 1=5/ or ˇ 2 .ˇ�; C1/, then .EK ;FK/ on L2.KI �/ is

trivial, that is, FK consists of constant functions. Hence walk dimension of SG

dw D ˇ� D log 5= log 2.

Proof. For all u 2 FK , let v D Hu on X , then we have

1

2

X

x;y2X

c.x; y/.v.x/ � v.y//2 < C1:

Since � < 1=5 < 1=3, by Lemma 6.2, v on X can be extended continuously to xX
still denoted by v. By Lemma 7.9, we have vj@X D u. By Theorem 8.1, we have

vj@X is constant, hence u is constant. FK consists of constant functions. �
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