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On transfer operators on the circle with trigonometric weights

Xianghong Chen and Hans Volkmer

Abstract. We study spectral properties of the transfer operators L defined on the circle

T D R=Z by

.Lu/.t/ D 1

d

d�1
X

iD0

f
� t C i

d

�

u
� t C i

d

�

; t 2 T

where u is a function on T. We focus in particular on the cases f .t/ D j cos.�t/jq and

f .t/ D j sin.�t/jq , which are closely related to some classical Fourier-analytic questions.

We also obtain some explicit computations, particularly in the case d D 2. Our study

extends work of Strichartz [11] and Fan and Lau [3].
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1. Introduction

Let T D R=Z and identify it with Œ0; 1� in the usual way. For integers d � 2, let

F be the d -adic Bernoulli map

F WT �! T; t 7�! d � t mod 1:

Let f be a function (weight) on T. Consider the weighted transfer operator L

associated to F :

.Lu/.t/ D 1

d

X

s2F �1.t/

f .s/u.s/

D 1

d

d�1
X

iD0

f
� t C i

d

�

u
� t C i

d

�

; t 2 T

where u is a function on T. Such operators are also called Ruelle (or Ruelle-

Perron-Frobenius) operators. They can also be defined associated to more general

maps and on more general spaces (cf. Hennion [6] and Baladi [2] for more

background).

In this paper, we study spectral properties of L as an operator acting on C.T/,

the space of continuous functions on T. When f � 1, this question has been

extensively studied, especially in the case d D 2 (cf. Vepštas [12] and references

therein). For more general weights f , there are Perron-Frobenius type theorems

that describe spectral properties of L (cf. [2, Theorem 1.5]). However, such

theorems often require f to be strictly positive, which is not met by the main

examples we are interested in:

.c/ f .t/ D j cos.�t/jq .s/ f .t/ D j sin.�t/jq

where q > 0. In Section 2, we develop Perron-Frobenius type theorems for trans-

fer operators L with such ‘degenerate’ weights (more precisely, weights that have

exactly one zero on T). The theorems are derived using notions of quasicompact-

ness and Kreı̆n property, which we verify by exploiting the specific structure of the

Bernoulli map F ; see also Fan and Lau [3] for similar treatments. As a corollary,

we conclude that the operator L satisfies classical Perron-Frobenius theorems in

all cases of d and .c/=.s/, except for the case d D 2 and .c/.

In Section 3, we study in more detail the spectral properties of L in the non-

exceptional cases. When q is an even integer, we obtain explicit computations of

�.L/ (the spectral radius of L) by reducing to a finite-dimensional problem. When

q is not an even integer, evaluating �.L/ is more difficult. We derive in this case
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estimations of �.L/, particularly for d D 3 (note that when d is odd, .c/ and .s/ are

equivalent). As an application, we obtain asymptotic behavior of some integrals

of the form

In D
Z

T

n�1
Y

j D0

f .d j t /dt; as n ! 1:

In particular, we extend a result of Strichartz [11] concerning the Fourier transform

of the middle-third Cantor set. We also study geometric properties of the function

L1, as well as asymptotic behavior of �.L/ as q ! 1. For the latter question

it turns out that one needs to distinguish the case when d is even and f is given

by .s/.

In Section 4, we give a detailed account of the exceptional case d D 2 and .c/.

Using an explicit formula for the iterates Ln1, we find the spectral radius and

eigenfunctions of L explicitly (see also Fan and Lau [3] for related results), and

obtain geometric properties of Ln1 for n � 1 (especially for q � 1 and even q’s).

The spectral problem in this case is closely related to the case f � 1 mentioned

above, and has to do with the Hurwitz zeta functions.

In Section 5, we study the spectral problem on Lebesgue spaces. In Section 6,

we give an application to Fourier multipliers.

2. Quasicompact transfer operators

Let f WR ! R be a continuous nonnegative 1-periodic function, and let d � 2 be

an integer. We consider the transfer operator

.Lu/.t/ D 1

d

d�1
X

iD0

f
� t C i

d

�

u
� t C i

d

�

: (1)

Let T D Œ0; 1� with 0 and 1 identified (circle). Let C.T/ be the Banach space

of continuous complex-valued functions on T endowed with the maximum norm

k � k1. Then LW C.T/ ! C.T/ is a bounded linear operator. Moreover, L is

positive in the sense that u � 0 implies Lu � 0.

Define a map F WT ! T by F.t/ D d � t mod 1. Then we can write

.Lu/.t/ D 1

d

X

s2F �1.t/

f .s/u.s/; t 2 T:

For each n 2 N, set

fn.t / D
n�1
Y

j D0

f .F j .t //:
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Then

.Lnu/.t/ D 1

d n

X

s2F �n.t/

fn.s/u.s/: (2)

Let 0 < ˛ � 1. Consider the Banach space C ˛.T/ of Hölder continuous

functions uWT ! C with the norm

kuk˛ D sup
s¤t

ju.s/ � u.t/j
js � t j˛ C kuk1:

If f 2 C ˛.T/ then L˛u D Lu defines a bounded linear operator L˛W C ˛.T/ !
C ˛.T/.

Let T be a bounded linear operator on a Banach space X . We denote its spectral

radius by �.T /. T is called quasicompact if there exists a compact operator K on

X such that �.T � K/ < �.T /. If T is quasicompact and � 2 C is in the spectrum

of T with j�j > �.T � K/, then � is an eigenvalue of T .

The following theorem is proved in [10, pp. 3–4]. In [10, Proposition 1] it is

assumed that f is positive while we assume here that f is nonnegative. However

positivity of f is not used on pp. 3–4 of [10]. See also [6].

Theorem 2.1. Let 0 � f 2 C ˛.T/ for some 0 < ˛ � 1. Then �.L/ D �.L˛/.

Furthermore, if �.L/ > 0, then L˛ is quasicompact.

For each n 2 N, set

hn D Ln1: (3)

Define

rn D min
t2T

hn.t /; Rn D max
t2T

hn.t /: (4)

It is easy to show that

rmCn � rmrn; RmCn � RmRn:

Therefore, the limits

r D lim
n!1

.rn/1=n D sup
n

.rn/1=n; R D lim
n!1

.Rn/1=n D inf
n

.Rn/1=n (5)

exist. In particular, for every n 2 N we have

r1=n
n � r � R � R1=n

n : (6)

Moreover, since Rn D kLnkC.T/!C.T/, by Gelfand’s formula, R D �.L/.
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Theorem 2.2. Let w 2 C.T/ be a unit, that is, w.t/ > 0 for all t 2 T. Then

min
t2T

.Lw/.t/

w.t/
� r � R � max

t2T

.Lw/.t/

w.t/
: (7)

Proof. We define a bounded linear operator S on C.T/ by

.Su/.t/ D 1

w.t/
L.wu/.t/;

a sequence of functions
Qhn D Sn1;

and sequences of numbers

Qrn D min
t2T

Qhn.t /; zRn D max
t2T

Qhn.t /:

Since S is positive, we obtain for every n 2 N

. Qrn/1=n � lim
n!1

. Qrn/1=n DW Qr � zR WD lim
n!1

. zRn/1=n � . zRn/1=n:

Since w is a unite, there are constants a; b > 0 such that

a � w.t/ � b

for all t 2 T. This implies

ahn.t / D .Lna/.t/ � w.t/ Qhn.t / � .Lnb/.t/ D bhn.t /:

From this we obtain

rn � b

a
Qrn; Qrn � b

a
rn; Rn � b

a
zRn; zRn � b

a
Rn:

Thus

r D Qr; R D zR:

Now (7) follows from

Qr1 � Qr D r � zR D R � zR1: �

We say that L is a Kreı̆n operator if, for all u 2 C.T/ such that u.t/ � 0 for all

t 2 T but u.t0/ > 0 for at least one t0 2 T, there is n 2 N such that Lnu is a unit.

Note that n may depend on u. It is easy to show that a Kreı̆n operator carries units

to units (cf. [1, Lemma 5.2]). It follows from (2) that if f .t/ > 0 for all t then L

is a Kreı̆n operator, Also, if f vanishes on an interval of positive length, then L

cannot be a Kreı̆n operator.
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Lemma 2.3. Suppose f has exactly one zero in Œ0; 1/. If fn has four zeros that

form an arithmetic progression with step size d �n, then d D 2 and f
�

1
2

�

D 0.

Proof. Let s0 C Z be the set of zeros of f . Suppose that ti D t C id �n is a zero

of fn for i D 0; 1; 2; 3. Then there exist integers 0 � ki � n � 1, and integers ji

such that

ti D d �ki .s0 C ji /; i D 0; 1; 2; 3: (8)

We will assume that k0 D max¹k0; k1; k2; k3º (the other cases are mentioned at

the end of the proof.) Clearly, k0 > k1. Since we can replace s0 by s0 C j with

any integer j , we will assume that j1 D 0 in order to simplify the notation. From

t1 � t0 D t2 � t1 D d �n, we obtain

d �k1s0 � d �k0.s0 C j0/ D d �n; d �k2.s0 C j2/ � d �k1s0 D d �n:

Eliminating s0 from these equations, we find

.1 � j0d n�k0/.d k0�k1 � d k0�k2/ D .1 � j2d n�k2/.1 � d k0�k1/:

This is an equation involving only integers. Since n > k2, k0 > k1, the right-hand

side is not divisible by d . Therefore, we must have k0 D k2. But this is impossible

when d > 2. So we must have d D 2 and k0 D k2 D n � 1.

Now suppose that d D 2 and k0 D k2 D n � 1. Without loss of generality we

take j0 D 0, j2 D 1. Since t1 � t0 D t3 � t2 D 2�n we obtain

2n�k1.s0 C j1/ D 2s0 C 1; 2n�k3.s0 C j3/ D 2s0 C 3:

Eliminating s0 this gives

.3 � j32n�k3/.2n�k1�1 � 1/ D .1 � j12n�k1/.2n�k3�1 � 1/:

It is clear that k1 < n � 1, k3 < n � 1. Therefore, the equation yields that

2n�k3�2 � 3 � 2n�k1�2 C 1 is an even integer. This implies that k1 D n � 2 or

k3 D n � 2. If k1 D n � 2 then 2s0 C 1 D 4.s0 C j1/, which implies that s0 � 1
2

is

an integer. If k3 D n � 2, we have the same conclusion.

If k2 D max¹k0; k1; k2; k3º, the proof is almost the same. We again obtain

k0 D k2 D n � 1 and d D 2 after the first part of the proof. The other two cases

can be reduced to the treated ones by replacing s0 by �s0. �
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Lemma 2.4. Suppose f has exactly one zero s0 2 Œ0; 1/. Then L is a Kreı̆n

operator unless s0 D 1
2

and d D 2.

Proof. Let u 2 C.T/ be nonnegative but not identically zero, Choose n so large

that u.t/ > 0 for md �n � t � .m C 4/d �n for some integer m, 0 � m � d n � 4.

We claim that .Lnu/.t/ > 0 for all t 2 T. In fact, by Lemma 2.3, if t 2 T then

among the four points ti D d �n.t C m C i/, i D 0; 1; 2; 3, at least one satisfies

fn.ti/ > 0. Then (2) implies .Lnu/.t/ � fn.ti /u.ti / > 0. �

If d D 2 and f
�

1
2

�

D 0 then L is not a Kreı̆n operator: if u.0/ D 0 then

.Lnu/.0/ D 0 for all n 2 N.

Theorem 2.5 (see also [3]). Suppose that L is a Kreı̆n operator. Then the

following statements hold.

(a) R > 0.

(b) If Lv D �v with v ¤ 0 and j�j D R, then there is a constant � 2 R such that

e�i�v is a unit.

(c) L has no eigenvalue � on the circle j�j D R except possibly � D R.

(d) If R is an eigenvalue of L, then its algebraic multiplicity is 1.

(e) If 0 � f 2 C ˛.T/, then L˛ is quasicompact, r D R, and R is an eigenvalue

of L˛ of algebraic multiplicity 1 with a unit eigenfunction.

Proof. (a) Since L is a Kreı̆n operator, h1 D L1 is a unit, so 0 < r1 � R.

(b) Lv D �v implies z WD Ljvj � Rjvj � 0. Suppose that z is not identically

zero. Then there is n 2 N such that Lnz and w WD Lnjvj are units. It follows that

there is ı > 0 such that

.Lnz/.t/ D .Lw/.t/ � Rw.t/ � ıw.t/; t 2 T:

Applying Theorem 2.2, we obtain the contradiction

R C ı � min
t2T

.Lw/.t/

w.t/
� R:

Therefore, z D 0 and

Ljvj D Rjvj: (9)
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Then

jLnvj D Rnjvj D Lnjvj D w:

Therefore, jvj is a unit. We claim that there is a constant � 2 R such that

e�i�v.t/ > 0 for all t . Suppose this is not true. Since Ljvj D jLvj, there is

n 2 N and 1 � i < j � d n such that v.s/
v.t/

62 .0; 1/ for all s 2 In;i , t 2 In;j .

Since L is a Kreı̆n operator, f does no vanish on an interval of positive length.

Then also fn does not vanish on an interval of positive length. Therefore, there is

s 2 In;i , t 2 In;j with .t � s/d �n 2 Z such that fn.s/ ¤ 0, fn.t / ¤ 0. Hence,

by (2), j.Lnv/.s/j < .Lnjvj/.s/, which is a contradiction. Therefore, the claim is

proved.

(c) follows from (b).

(d) Suppose that R is an eigenvalue of L. By (b), each corresponding eigen-

function is a constant multiple of a unit. It follows that the geometric multiplic-

ity of the eigenvalue R is 1. Now assume that there are u; w 2 C.T/ such that

Lu � Ru D w, Lw D Rw, where w is a unit. We may assume that u is a unit.

There is ı > 0 such that ıu � w. Then Theorem 2.2 leads to the contradiction

R C ı � min
t2T

.Lu/.t/

u.t/
� R:

This shows that the algebraic multiplicity of the eigenvalue R is 1.

(e) Since �.L/ D R > 0, it follows from Theorem 2.1 that L˛ is quasicompact.

Then L˛ has an eigenvalue � on the circle j�j D R. By (c), R is an eigenvalue

of L˛ . There is a corresponding unit eigenfunction. Now r D R follows from

Theorem 2.2. �

Theorem 2.6 (see also [3]). Suppose that 0 � f 2 C ˛.T/ and that L is

a Kreı̆n operator. Let P be the spectral projection onto the eigenspace of L˛

corresponding to the eigenvalue R.

(a) The sequence R�nLn
˛ converges to P as n ! 1 with respect to the operator

norm.

(b) The sequence R�nhn converges in C ˛.T/ to an eigenfunction of L˛ corre-

sponding to the eigenvalue R.

Proof. (a) By Theorem 2.5, L˛ is quasicompact and the eigenvalue R of L˛ is

an isolated point of its spectrum. Therefore, there exists the spectral projection

P onto the one-dimensional root subspace belonging to the eigenvalue R. The

Banach space C ˛.T/ is a direct sum of the subspaces P C ˛.T/ and .1�P /C ˛.T/.
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Both subspaces are invariant under L˛ . On P C ˛.T/, L˛ acts as R times the

identity. Set S WD R�1.1 � P /L˛. By Theorem 2.5, the spectral radius of S

is less than 1 so Sn converges to 0 as n ! 1 in the operator norm. We have

R�nLn
˛ D Sn C P which implies statement (a).

(b) We have R�nhn D R�nLn
˛1 ! P1 as n ! 1. Since

1 � R�nRn � kR�nhnk˛ ! kP1k˛;

we have P1 ¤ 0. �

We consider now the following problem that was the original motivation for

this paper. Let f WR ! C be a bounded measurable and 1-periodic function, and

let d � 2 be an integer. For n 2 N, define as before

fn.t / D
n�1
Y

j D0

f .d j t /:

The problem is to find the behavior of the sequence of integrals

In.f / D
Z 1

0

fn.t / dt

as n ! 1. In particular, we want to find c.f / defined by

c.f / D lim sup
n!1

jIn.f /j1=n: (10)

The sequence In is related to the bounded linear operator

.T x/.t/ D f .t/x.d � t / (11)

which maps L2.T/ to itself. Note that

fn D T n1

and

In.f / D hT n1; 1i (12)

with the inner product h�; �i in L2.T/. In particular,

jInj � kT nk

and

c.f / � lim
n!1

kT nk1=n D �.T /: (13)

We show that c.f / is equal to the spectral radius of a transfer operator under

suitable assumptions on f . See also [3] for related results.



360 X. Chen and H. Volkmer

Theorem 2.7. Suppose that 0 � f 2 C ˛.T/ for some 0 < ˛ � 1, and that the

transfer operator L defined by (1) is a Kreı̆n operator. Then r D c.f / D R D
�.L/, where r; R are defined in (5). Moreover, we can replace lim sup by lim in

definition (10).

Proof. The adjoint T � of T agrees with the operator L when considered as an

operator on L2.T/. Let hn; rn; Rn be defined by (3) and (4). It follows from (12)

that

In D h1; hni D
Z 1

0

hn.t / dt:

Thus

r1=n
n � I 1=n

n � R1=n
n :

By Theorem 2.5(e), the sequences r
1=n
n and R

1=n
n converge to the same limit

r D R. Therefore, the sequence I
1=n
n converges and we obtain r D c.f / D R. �

Using Theorem 2.7 in connection with (6) or Theorem 2.2 we can estimate

c.f /. We will look at some examples in the next section.

We mention two special classes of functions f for which c.f / can be calcu-

lated explicitly.

1) Suppose that f is a step function such that f .t/ D fi D const for i�1
d

� t <
i
d

, i D 1; : : : ; d . Then it is easy to show that

In.f / D
�Z 1

0

f .t/ dt

�n

:

Therefore,

c.f / D
ˇ

ˇ

ˇ

ˇ

Z 1

0

f .t/ dt

ˇ

ˇ

ˇ

ˇ

:

If f is any nonnegative bounded measurable 1-periodic function, we may intro-

duce two step function g; h defined by

g.t/ D inf
°

f .s/W i � 1

d
� s <

i

d

±

for
i � 1

d
� t <

i

d
;

h.t/ D sup
°

f .s/W i � 1

d
� s <

i

d

±

for
i � 1

d
� t <

i

d
:

Then we obtain the estimate

In.g/ � In.f / � In.h/ (14)

and so
Z 1

0

g.t/ dt � c.f / �
Z 1

0

h.t/ dt: (15)
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2) Let f be any bounded measurable 1-periodic function with Fourier expan-

sion

f .t/ D
X

k2Z

ake2�ikt :

We represent the operator T by an infinite matrix in the orthonormal basis

¹e2�ikt ºk2Z. The matrix of T is

.ak�d`/k;`2Z : (16)

In this notation k is the row index and ` is the column index. If we write

fn.t / D
X

k2Z

ak;ne2�ikt ;

then we obtain the coefficients ak;nC1 from ak;n by application of T , so

ak;nC1 D
X

`2Z

ak�d` a`;n:

Note that In D a0;n.

In particular, suppose that f .t/ is a trigonometric polynomial of degree N , so

f .t/ D
N

X

kD�N

ake2�ikt :

We set

K WD
�

N � 1

d � 1

�

:

Consider the central 2K C 1 by 2K C 1 submatrix B of T consisting of rows

�K � k � K and columns �K � ` � K. Notice that all entries in the rows

�N � k � N outside the central submatrix vanish. Therefore, we obtain the

recursion

ak;nC1 D
K

X

`D�K

ak�d` a`;n if �K � k � K.

Hence we can calculate In D a0;n by computing the powers of the matrix B . It is

clear that

c.f / � �.B/ (17)

but it is not immediately clear whether we have equality in (17). It depends on

how the constant function 1 is represented in a Jordan basis of B (whether the

basis vectors associated with largest eigenvalue of B contribute to the expansion

of 1.)
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The situation is clear if the matrix B is nonnegative and primitive (Bp is a

positive matrix for some p 2 N.) Then the spectral radius of B is a simple

positive eigenvalue and we can use Theorem 8.5.1 in [7] to show that there is

equality in (17). Suppose that ak > 0 for all k D �N; �N C 1; : : : ; N . Then all

entries in the main diagonal, the subdiagonal and superdiagonal of B are positive.

Therefore, B is primitive.

If we have symmetry a�k D ak then we can replace the matrix B by a K C 1

by K C 1 matrix C whose entries are

ci;0 D ai ; ci;j D ai�dj C aiCdj if 0 � i � K, 1 � j � K.

See the next section for examples.

3. The special cases f .t/ D j cos.�t/jq and f .t/ D j sin.�t/jq

In this section we consider the functions

f .t/ D j cos.�t/jq; Qf .t/ D j sin.�t/jq where q > 0:

We set

c.q/ WD c.f /; Qc.q/ WD c. Qf /:

Obviously, 0 � c.q/; Qc.q/ � 1. Note that f; Qf 2 C ˛.T/ with ˛ D min.q; 1/. By

Lemma 2.4, L is a Kreı̆n operator except when f .t/ D j cos.�t/jq and d D 2.

This is an exceptional case that will be considered in the next section. Except for

this case we can apply Theorems 2.5 and 2.7.

If d is odd, then In.f / D In. Qf /, and consequently c.f / D c. Qf /. In fact, in

this case the transfer operators weighted by f and Qf are conjugate to each other.

Theorem 3.1. The functions c.q/ and Qc.q/ are convex and nonincreasing in q > 0.

Moreover,

lim
q!1

c.q/ D 1

d
; lim

q!1
Qc.q/ D

8

ˆ

<

ˆ

:

1

d
if d is odd,

0 if d is even,

and

lim
q!0C

c.q/ D lim
q!0C

Qc.q/ D 1:
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Figure 1. A graph of c.q/ for 0 < q < 6, when d D 3.

Figure 2. A graph of Qc.q/ for 0 < q < 20, when d D 2.
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Proof. Monotonicity of c.q/ and Qc.q/ are clear. Convexity follows from Hölder’s

inequality and Young’s inequality. By looking at the function h1 associated with f ,

we see that R1 D maxt2Œ0;1� h1.t / converges to d �1 as q ! 1. So

lim sup
q!1

c.q/ � d �1:

If we use an estimate of the form f .t/ � 1 � t
a

for 0 � t � a for some a 2 .0; 1/

depending on q, then we can estimate

fn.t / �
n�1
Y

j D0

�

1 � d j t

a

�

� exp
�

� .ln 4/
d n � 1

d � 1

t

a

�

for 0 � t � a

2d n�1
:

It then follows from (10) that c.q/ � d �1 for all q > 0. Hence

lim
q!1

c.q/ D d �1:

When treating Qc.q/, we may assume that d is even. The proof is similar to the

preceding one. To determine the limit of Qc.q/ as q ! 1, we use c. Qf / � R
1=2
2 .

To show the limits as q ! 0C, it suffices to show that

c.q/1=q � 1

2
; Qc.q/1=q � 1

2

for all q > 0. To this end, let g.t/ D j cos.�t/j (or j sin.�t/j). By Jensen’s

inequality, we have

I 1=q
n D

�Z 1

0

jgn.t /jqdt

�1=q

� exp

�Z 1

0

ln jgn.t /jdt

�

for all q > 0. On the other hand, since

Z 1

0

ln j cos.�t/jdt D
Z 1

0

ln j sin.�t/jdt D ln
�1

2

�

;

we have
Z 1

0

ln jgn.t /jdt D
n�1
X

j D0

Z 1

0

ln jg.d j t /jdt D n ln
�1

2

�

:

Thus, for any q > 0,

c.q/1=q .or Qc.q/1=q/ D lim
n!1

I 1=.nq/
n � 1

2
:

This completes the proof. �
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3.1. The case f .t/ D cos2N .�t/, d D 3. For N 2 N, consider the trigonomet-

ric polynomial

f .t/ D cos2N .�t/:

The degree of f is N and, for �N � k � N ,

ak D 2�2N

�

2N

k C N

�

> 0:

We use the method 2) from Section 2. If N D 1; 2, then K D 0 and so c.2/ D 1
2

and c.4/ D 3
8

(note that this recovers a result of Strichartz [11]). If N D 3, then

K D 1 and

C D 1

64

�

20 2

15 6

�

:

So

c.6/ D �.C / D 1

64
.13 C

p
79/ D 0:342003 : : : :

If N D 4, then K D 1 and

C D 1

256

�

70 16

56 29

�

:

It follows that

c.8/ D �.C / D 1

512
.99 C 9

p
65/ D 0:335078 : : : :

When N � 5, the formulas for c.2N / become more complicated, but c.2N / is

easy to compute numerically. For example, we obtain

c.10/ D 0:333691 : : : :

See also [4] for closely related results.

The same method can be used to determine c.2N / for other values of d .

3.2. The case f .t/ D j sin.�t/j, d D 3. Even if f is not a trigonometric

polynomial, we can still use matrix methods to estimate c.f /. As an example,

consider

f .t/ D j sin.�t/j: (18)

The Fourier coefficients of f are

ak D � 2

�

1

.2k � 1/.2k C 1/
; k 2 Z:
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Note that a0 > 0 but all other ak are negative. Let N 2 N. We estimate

f .t/ �
N

X

kD�N

ake2�ikt C 2

�

1
X

kDN C1

2

.2k � 1/.2k C 1/

so we have

f .t/ � h.t/;

where

h.t/ D 2

�

1

2N C 1
C

N
X

kD�N

ake2�ikt :

Using

c.f / � c.h/ � �.C /

we get upper bounds for c.f / D c.1/ (when d D 3):

N �.C /

1 0.848826

2 0.763943

3 0.737463

4 0.717381

5 0.704696

10 0.678384

20 0.663593

30 0.658613

50 0.654552

100 0.651436

As far as we know the exact value of c.1/ is not known. We conjecture that

c.1/ D 0:648314 : : : :

We also obtain

g.t/ � f .t/

where

g.t/ D � 2

�

1

2N C 1
C

N
X

kD�N

ake2�ikt :

Since a0 > 0 and all other ak < 0, we can easily show that g.t/ � 0. Therefore,

we have

c.g/ � c.f /:

However, the trigonometric polynomial g does not have positive coefficients, so

we do not know whether c.g/ D �.C /. Therefore, we do not obtain lower bounds

by this method. For N D 100, one would get �.C / D 0:645194 : : : :
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Somewhat surprisingly, the functions hn associated with (18) can be repre-

sented in a fairly explicit way. If

u.t/ D cos .�as/ ; s D t � 1
2
;

then

.Lu/.t/ D 1

6

�

1 C 2 cos
�

3
.1 C a/

�

cos
�

3
.1 C a/s

C 1

6

�

1 C 2 cos
�

3
.1 � a/

�

cos
�

3
.1 � a/s:

Iterating this formula, we see that hn is a sum of 2n�1 many terms of the form

A cos.�as/

where A > 0 and a D 1
3

˙ 1
9

˙ 1
27

˙ � � � ˙ 1
3n 2

�

0; 1
2

�

. It follows that

rn D hn.0/; Rn D hn

�1

2

�

:

By (5),

.hn.0//1=n � c.f / �
�

hn

�1

2

��1=n

:

For example, if n D 1 we get the bounds

1

3

p
3 � c.f / � 2

3
:

Since 0 < a < 1
2
, we have

Rn �
p

2rn:

Therefore,

.Rn/1=n � 21=.2n/.rn/1=n:

In agreement with Theorem 2.7, we get

r D R D c.f /:

We also find that

.Rn/1=n � .rn/1=n � .Rn/1=n.1 � 2�1=.2n// � 2

3
.1 � 2�1=.2n//:

For example, if n D 10, then c.f / is enclosed in the interval Œ.rn/1=n; .Rn/1=n� of

length at most 2
3
.1 � 2�1=20/ D 0:0277 : : : (the actual length is 0:008390 : : : .)
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By numerical computation, we get the following bounds:

n .hn.0//1=n .hn.1
2
//1=n

1 0.577350 0.666666

2 0.615672 0.656538

3 0.626102 0.653844

4 0.631603 0.652453

5 0.634908 0.651623

10 0.641576 0.649967

15 0.643815 0.649415

3.3. Properties of hn.t/ when f .t/ D j sin.�t/jq . If we use r
1=n
n and R

1=n
n

to bound c.f /, we are faced with the problem to compute the maximum and

minimum values of the function hn. Therefore, it is of interest to discuss the

behavior of the function hn. Consider

f .t/ D j sin.�t/jq; d � 2:

Then we have

h1.t / D 1

d

d�1
X

iD0

ˇ

ˇ

ˇ sin
�

�
t C i

d

�ˇ

ˇ

ˇ

q

; 0 � t � 1:

Note that h1.t / D h1.1 � t /. For this function we have the following result.

Lemma 3.2. (a) If q D 2; 4; 6; : : : ; 2.d � 1/, then

h1.t / � 1

2q

�

q
q=2

�

:

(b) Define the intervals

Qk D
´

.2.k � 1/; 2k/ if k D 1; : : : ; d � 1,

.2.d � 1/; 1/ if k D d .

Then for q 2 Qk we have

.�1/k�1h0
1.t / > 0; 0 < t <

1

2
:
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Proof. (a) follows from the matrix representation of T �, the adjoint of the ma-

trix (16).

(b) We differentiate h1.t / to get

d 2

�q
h0

1.t / D
d

X

j D1

s
q
j cj ; 0 < t < 1; (19)

where

sj D sin
�

�
t C j � 1

d

�

; cj D cot
�

�
t C j � 1

d

�

:

By (a), the left-hand side of (19) is zero for q D 2; 4; : : : ; 2.d � 1/. Therefore, we

obtain a linear system Vc D b, where V is a d � d generalized Vandermonde

matrix with entries s
qi

j in the i th row and j th column, where q1 D q and

qi D 2.i � 1/ for i D 2; 3; : : : ; d . The column vector c has components ci ,

and the column vector b has first component d2

�q
h0

1.t / and all other components

equal to 0. Suppose that 0 < t < 1
2

and q 2 Qk for some k D 1; 2; : : : ; d . Then

both s1; s2; : : : ; sd and q1; q2; : : : ; qd are mutually distinct. It is known (cf. [5,

page 76]) that this implies that det V ¤ 0, and det V > 0 if s1 < s2 < � � � < sd

and q1 < q2 < � � � < qd . If we solve the linear system Vc D b for c by Cramer’s

rule we find that c1 has the same sign as .�1/k�1h0
1.t /. Since c1 > 0, we have

.�1/k�1h0
1.t / > 0 when 0 < t < 1

2
and q 2 Qk. �

Using the bounds r1 � c.f / � R1 together with Lemma 3.2, one can deduce

for d D 3

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

2

3

�

p
3

2

�q

� c.q/ � 1

3
C 2

3

�1

2

�q

if 0 < q � 2 or q � 4;

1

3
C 2

3

�1

2

�q

� c.q/ � 2

3

�

p
3

2

�q

if 2 � q � 4:

Note also that Lemma 3.2(a) implies

c.q/ D Qc.q/ D 1

2q

�

q

q=2

�

when q D 2; 4; 6; : : : ; 2.d � 1/:

We would like to extend Lemma 3.2 to h2; h3; : : : . Based on computer exper-

iments we conjecture the following.

Conjecture 3.3. Lemma 3.2(b) is true for every hn, n 2 N.
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We obtain sharper lower and upper bounds for c.f / when we choose w.t/ D
hn.t / in (7). More precisely, we get

min
t2Œ0;1�

hnC1.t /

hn.t /
� c.f / � max

t2Œ0;1�

hnC1.t /

hn.t /
: (20)

Here we are faced with the problem to determine the extrema of the quotients
hnC1.t/

hn.t/
. Computer calculations suggest the following.

Conjecture 3.4. Let d D 3. If 0 < q < 2 and n is odd, then
hnC1.t/

hn.t/
attains its

maximum at t D 0 and its minimum at t D 1
2
. If 0 < q < 2 and n is even, then

hnC1.t/

hn.t/
attains its maximum at t D 1

2
and its minimum at t D 0. If 2 < q < 4,

then
hnC1.t/

hn.t/
attains its maximum at t D 0 and its minimum at t D 1

2
. If q > 4,

then
hnC1.t/

hn.t/
attains its maximum at t D 1

2
and its minimum at t D 0.

If we believe these conjectures then c.f / would lie between
rnC1

rn
and

RnC1

Rn

for every n. In the case d D 3 we get the following estimates for c.1/:

n lower bound upper bound

1 0.577350 0.666666

2 0.646564 0.656538

3 0.648297 0.648396

We see that these bounds are much better than those from Section 3.2. Unfor-

tunately, we used conjecture 3.4 but for small n it can be proved by direct compu-

tation.

4. The case f .t/ D j cos.�t/jq , d D 2

In the exceptional case

f .t/ D j cos.�t/jq; d D 2

we can obtain more explicit computations. See also [3] for related results.

4.1. The integrals In. Using the identity

n�1
Y

j D0

cos.2j t / D sin.2nt /

2n sin.t /
;
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we can write

fn.t / D 1

2qn

j sin.�2nt /jq
j sin.�t/jq : (21)

Therefore,

In D 1

2qn

Z 1

0

j sin.�2nt /jq
j sin.�t/jq dt D 1

2qn�1

Z 1=2

0

j sin.�2nt /jq
j sin.�t/jq dt: (22)

Theorem 4.1. For d D 2, we have

c.q/ D lim
n!1

I 1=n
n D

8

ˆ

<

ˆ

:

2�q if 0 < q � 1,

1

2
if q > 1.

Proof. Substituting u D 2nt in (22), we get

In D 1

2n�1

Z 2n�1

0

j sin.�u/jq
2qnj sin.�2�nu/jq du:

Using
2

�
t � sin t � t; 0 � t � �

2
;

we find

��q

2n�1

Z 2n�1

0

j sin.�u/jq
uq

du � In � 2�q

2n�1

Z 2n�1

0

j sin.�u/jq
uq

du: (23)

If q > 1, the integral
Z 1

0

j sin.�u/jq
uq

du (24)

converges. Therefore, the statement of the theorem follows for q > 1. If q D 1,

the integral (24) diverges and the integrals in (23) behave like ln.2n/. Since n1=n

converges to 1 as n ! 1, we obtain the statement of the theorem when q D 1. If

0 < q < 1, the integrals in (23) behave like 2n.1�q/ which implies the statement

of the theorem for 0 < q < 1. �

4.2. Spectral radius. By (2), we have

hn.t / D 1

2n

2n�1
X

kD0

fn

� t C k

2n

�

:

Combining with (21), we get

hn.t / D j sin.�t/jq
2n2qn

2n�1
X

kD0

1

j sin.�2�n.t C k//jq : (25)
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By estimating the sum in (25) we obtain the following result.

Theorem 4.2. For f .t/ D j cos.�t/jq, d D 2, we have

r D 1

2
for all q > 0

and

R D

8

ˆ

<

ˆ

:

2�q if 0 < q � 1,

1

2
if q > 1.

Proof. Using only the term with k D 0 in (25), we obtain, for 0 � t � 1
2
,

hn.t / � 1

2n

1

2qn

j sin.�t/jq
j sin.�2�nt /jq � 1

2n

2q

�q
:

This inequality together with hn.0/ D 2�n proves r D 1
2
. The proof of the formula

for R is elaborated in Section 4.4. �

4.3. Eigenfunctions. Let ˛ D min¹1; qº. By Theorem 2.1, the spectral radii of L

and L˛ agree, and L˛ is quasicompact. Since L is also a positive operator, � D R

must be an eigenvalue, so there must exist a corresponding eigenfunction. But L

is not a Kreı̆n operator (cf. [1]), so we do not know whether the eigenfunction is

unique (up to a constant factor) or whether it is positive on T.

We want to find nontrivial solutions u 2 C.T/ to the equation Lu D �u,

particularly for � D R. Interestingly, we can find these eigenfunctions fairly

explicitly. In fact, if we substitute

u.t/ D j sin.�t/jqg.t/

in Lu D �u, we find

1
2
g

�

1
2
t
�

C 1
2
g

�

1
2
.t C 1/

�

D �g.t/ where � D 2q�: (26)

Note that g.t/ will usually be continuous only on the open interval .0; 1/. Much is

known about equation (26) (cf. [12]). Clearly, g.t/ D 1 is a solution to (26) with

� D 1. Therefore, u.t/ D j sin.�t/jq is an eigenfunction of L corresponding to the

eigenvalue � D 2�q . If 0 < q � 1, then this is an eigenfunction corresponding to

the spectral radius eigenvalue R. Furthermore, g.t/ D Bn.t / with Bn.t / denoting

a Bernoulli polynomial, is also a solution to (26) corresponding to � D 2�n. This

gives us many more eigenfunctions of L, but they do not give us eigenfunctions

corresponding to the eigenvalue � D R if q > 1.
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Using an idea from [12], we find eigenfunctions corresponding to � D R when

q > 1. For s > 1, consider the Hurwitz zeta function

�.s; t / D
1

X

kD0

1

.t C k/s
; 0 < t < 1: (27)

It is easy to check that g.t/ D �.s; t / is a solution to (26) with � D 2s�1. If we let

G.t/ D G.s; t / WD g.t/ C g.1 � t /; 0 < t < 1: (28)

Then G.t/ is also a solution to (26) and has symmetry G.t/ D G.1 � t /. If s � q,

then

u.t/ D j sin.�t/jqG.t/

is a continuous eigenfunction of L corresponding to the eigenvalue � D 2s�q�1.

In particular, choosing s D q, we obtain an eigenfunction corresponding to the

eigenvalue R D 1
2
.

Suppose q � 2 is an even integer. Let s D 2; 3; : : : ; q. Consider

zG.t/ D �.s; t / C .�1/s�.s; 1 � t / D
1

X

kD�1

1

.t C k/s
:

Since

� cot.�t/ D lim
N !1

N
X

kD�N

1

t C k
;

we obtain

zG.t/ D .�1/s�1�

.s � 1/Š

� d

dt

�s�1

cot.�t/; (29)

and correspondingly the eigenfunctions

u.t/ D j sin.�t/jq zG.t/:

Obviously, these eigenfunctions are trigonometric polynomials. For example, if

q D s D 2, we obtain the eigenfunction

u.t/ D j sin.�t/j2 zG.t/ D j sin.�t/j2G.t/ D �2;

and, if q D s D 4, then

u.t/ D �4

3
.cos.2�t/ C 2/: (30)
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We can also find these eigenfunctions in a different way. The space of trigono-

metric polynomials
PK

kD�K cke2�ikt with K D q�2
2

is an invariant subspace of

L. The matrix representation of the restriction of L to this invariant subspace with

respect to the basis ¹e2�ikt º is

B D .a2`�k/�K�k;`�K ;

where the ak denote the Fourier coefficients in

j cos.�t/jq D
K

X

kD�K

ake2�ikt :

For example, if q D 4 then

B D

2

6

4

1
4

1
16

0

1
4

3
8

1
4

0 1
16

1
4

3

7

5

This matrix is nonnegative and primitive. Its largest eigenvalue is 1
2
, which

follows from the fact that the column sums are all equal to 1
2
. An eigenvector

corresponding to the eigenvalue � D 1
2

is Œ1; 4; 1�T . Therefore,

u.t/ D cos.2�t/ C 2

is an eigenfunction of L for q D 4 corresponding to the eigenvalue � D 1
2
. Apart

from a constant factor, this is the same eigenfunction we found in (30). This is

true in general. The eigenfunctions of the form u.t/ D j sin.�t/jq zG.t/ with zG
from (29) with s D 2; 3; : : : ; q match the eigenfunctions obtained from the matrix

B . In particular, we see that the matrix B has eigenvalues 1
2
; 1

4
; : : : ; 2�qC1.

In Section 4.5, we study in more detail the trigonometric polynomials obtained

from (29).

4.4. Convergence of hn.t/. The following proposition shows that, after appro-

priately normalized, the function hn converges to the eigenfunctions we found in

Section 4.3 corresponding to � D R.

Proposition 4.3. The following limits hold in C q.T/.

(a) If 0 < q < 1, then

lim
n!1

2qnhn.t / D
�

�

1
2

� q
2

�

p
��

�

1 � q
2

� j sin.�t/jq:
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(b) If q D 1, then

lim
n!1

2n

n
hn.t / D 2 ln 2

�
j sin.�t/j:

(c) If 1 < q < 1, then

lim
n!1

2nhn.t / D ��qj sin.�t/jqG.q; t/:

where G.q; t/ is given by (28).

Proof. We show here the pointwise convergence of hn. The norm convergence

can be shown by slight refinements of the argument.

(a) By (25), we have

hn.t / D j sin.�t/jq
2n2qn

2n�1
X

kD0

1

j sin.�2�n.t C k//jq :

Since
Z 1

0

1

j sin.�x/jq dx D
�

�

1
2

� q
2

�

p
��

�

1 � q
2

� ;

to prove the statement it suffices to show that

lim
n!1

1

2n

2n�1
X

kD0

1

j sin.�2�n.t C k//jq D
Z 1

0

1

j sin.�x/jq dx:

However, this follows easily by treating the left-hand side as a Riemann sum, using

the monotonicity of the integrand and the assumption that q < 1.

(c) Similar as in the proof of (a), we only need to show that

lim
n!1

1

2qn

2n�1
X

kD0

1

j sin.�2�n.t C k//jq D ��qG.q; t/:

By symmetry, this reduces to showing

lim
n!1

1

2qn

2n�1�1
X

kD0

1

j sin.�2�n.t C k//jq D ��q

1
X

kD0

1

.t C k/q
:

However, this follows easily from the basic limit

lim
x!0

sin x

x
D 1

and the fact that the series on the right-hand side is convergent.
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(b) By symmetry, it suffices to show that

lim
n!1

1

n2n

2n�1�1
X

kD0

1

sin.�2�n.t C k//
D ln 2

�
:

To this end, for any given " > 0 we fix ı > 0 such that
ˇ

ˇ

ˇ

x

sin x
� 1

ˇ

ˇ

ˇ
< "; 0 < x < ı:

We can then write

2n�1�1
X

kD0

1

sin.�2�n.t C k//

D
X

kW�2�n.tCk/<ı

�2�n.t C k/

sin.�2�n.t C k//

1

�2�n.t C k/

C
X

kW�2�n.tCk/�ı

1

sin.�2�n.t C k//

D I C II.

By our choice of ı,

I D .1 C O."//
X

kW�2�n.tCk/<ı

1

�2�n.t C k/

D 2n

�
.1 C O."//

X

kW�2�n.tCk/<ı

1

t C k

D 2n

�
.1 C O."//.1 C o.1// ln.2n/

D n2n.1 C O."//
ln 2

�
; as n ! 1:

On the other hand, using

sin x � 2

�
x; 0 � x � �

2
;

we have

II D O.2n/
X

kW�2�n.tCk/�ı

1

t C k

D O.2n/ ln
�1

ı

�

D o.n2n/; as n ! 1:
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Combining these, we get

1

n2n
.I C II/ D .1 C O."//

ln 2

�
; as n ! 1:

Since " is arbitrary, this completes the proof. �

4.5. Properties of hn.t/. It turns out that the functions hn; n 2 N share some

common geometric properties. We were able to prove some of them.

Proposition 4.4. (a) If 0 < q � 1, then h00
n.t / < 0 for all n 2 N and t 2 .0; 1/.

(b) If 1 < q < 2, then h00
n

�

1
2

�

< 0 for n D 1; : : : ; N.q/, where N.q/ satisfies

limq!1C N.q/ D 1.

(c) If 2 < q < 1, then h00
n

�

1
2

�

> 0 for n D 1; : : : ; N.q/, where N.q/ satisfies

limq!1 N.q/ D 1.

Proof. (a) In the case n D 0, h0.t / � 1, so the statement obviously holds with

strict inequality replaced by equality. Assume that h00
n�1.t / � 0 for all t 2 .0; 1/.

We now show that h00
n.t / < 0 for all t 2 .0; 1/.

By definition, we have

hn.t / D 1

2

ˇ

ˇ

ˇ
cos

�

�
t

2

�ˇ

ˇ

ˇ

q

hn�1

� t

2

�

C 1

2

ˇ

ˇ

ˇ
cos

�

�
t C 1

2

�ˇ

ˇ

ˇ

q

hn�1

� t C 1

2

�

:

Since the second term equals the first term after the change of variable t ! 1 � t ,

it suffices to show .fg/00.t / < 0 for all t 2
�

0; 1
2

�

, where

f .t/ D j cos.�t/jq; g.t/ D hn�1.t /:

However, by the product rule,

.fg/00 D f 00g C 2f 0g0 C fg00:

Since q � 1, we have f 00.t / < 0 for all t 2
�

0; 1
2

�

. Also, by symmetry we have

g0
�

1
2

�

D 0, and so the induction hypothesis implies g0.t / � 0 for all t 2
�

0; 1
2

�

.

Combining these we get f 00g < 0, f 0g0 � 0, and fg00 � 0, which gives

.fg/00.t / < 0 for all t 2
�

0; 1
2

�

. This completes the proof by induction.

(b) The proof is similar to that of (a). Using the same notation, we observe that

f 00.t / D �2qj cos.�t/jq.qj sin.�t/j2 � 1/; 0 < t <
1

2

now changes sign at

t D tq WD ��1 arcsin
�q

1
q

�

:
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Notice that tq > 1
4

if q < 2, and tq < 1
4

if q > 2; moreover,

lim
q!1C

tq D 1

2
; lim

q!1
tq D 0:

In order to determine the sign of

.fg/00 D f 00g C 2f 0g0 C fg00; (31)

as before we want all the three terms to have the same sign.

In the case n D 1, since g � 1, we have .fg/00.t / D f 00.t / < 0 for all

t 2 .0; 2tq/, where 2tq > 1
2

and 2tq ! 1 as q ! 1C. This implies h00
1.t / < 0 for

all t 2 .1 � 2tq; 2tq/. By symmetry we have h0
1.t / > 0 for all t 2

�

1 � 2tq; 1
2

�

.

Now proceeding by induction, we see that, using (31),

h00
n.t / < 0; t 2 .2n�1.1 � 2tq/; 1 � 2n�1.1 � 2tq//

and

h0
n.t / > 0; t 2

�

2n�1.1 � 2tq/;
1

2

�

:

In particular, if q > 1 is sufficiently close to 1, we have 2n�1.1 � 2tq/ < 1
2

and

thus h00
n

�

1
2

�

< 0, as desired.

The proof for (c) is similar. �

When q is an even integer, we can have more information.

Proposition 4.5. If q � 4 is an even integer, then

h1.t / WD ��qj sin.�t/jqG.q; t/

satisfies h00
1

�

1
2

�

> 0; moreover, h0
1.t / < 0 for all t 2

�

0; 1
2

�

.

Proof. By (29), we have

G.q; t/ D .�1/q�1�

.q � 1/Š

� d

dt

�q�1

cot.�t/:

Lemma 4.6 below shows that, after simplification,

h1.t / D 2

.q � 1/Š
Pq�1.cos.�t//

where Pq�1.x/ is a polynomial consisting of the even powers 1; x2; : : : ; xq�2 and

has positive coefficients. By direct computation, we then have

h0
1.t / D � 2�

.q � 1/Š
P 0

q�1.cos.�t// sin.�t/
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and

h00
1

�1

2

�

D 2�2

.q � 1/Š
P 00

q�1.0/:

The desired conclusions now follow immediately from the properties of Pq�1.x/

mentioned above. �

Lemma 4.6. For all n 2 N, we have

� d

dt

�n

cot t D .�1/n Pn.cos t /

.sin t /nC1

where Pn.x/ is a polynomial of degree n � 1 whose coefficients are nonneg-

ative integers. Moreover, when n is odd, Pn.x/ consists of the even powers

1; x2; : : : ; xn�1; when n is even, Pn.x/ consists of the odd powers x; x3; : : : ; xn�1.

Proof. It is easy to see that P0.x/ D x and P1.x/ D 1. Moreover, by direct

computation we have

PnC1.x/ D .n C 1/xPn.x/ C .1 � x2/P 0
n.x/:

Suppose the statement holds for Pn.x/, i.e.

Pn.x/ D an�1xn�1 C
n�2
X

j D0

aj xj

where an�1 is a positive integer and the aj ’s (j � n � 2) are nonnegative integers.

Then

PnC1.x/ D 2an�1xn C
n�2
X

j D0

.n � j C 1/aj xj C1 C
n�1
X

j D0

jaj xj �1: (32)

Therefore PnC1.x/ is a polynomial of degree n whose coefficients are nonnegative

integers. By induction, this completes the proof of the first part of the lemma.

The fact that Pn.x/ consists of either the even powers 1; x2; : : : ; xn�1 or the odd

powers powers x; x3; : : : ; xn�1 (depending on whether n is odd or even) follows

easily from the recursion formula (32) and induction. �

We believe that the N.q/’s the Proposition 4.4 should not be present, but we

have not been able to remove them. By examining h00
1

�

1
2

�

in its dependence on q,

we make the following conjecture, where �.s/ denotes the Riemann zeta function.
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Conjecture 4.7. The function

F.s/ D 2.s C 1/.2sC2 � 1/�.s C 2/ � 2�2.2s � 1/�.s/; 1 < s < 1:

is strictly increasing. In particular s D 2 is the unique zero of F.s/.

Figure 3. A graph of F.s/ for 1 < s < 4.

5. Lp space

Let 1 � p � 1. We can also consider the transfer operator L on the Lebesgue

space Lp.T/. Here we consider only the case f .t/ D j cos.�t/jq. Other cases can

be treated similarly.

Let d � 2 be an integer. Let

Lq D LW Lp.T/ �! Lp.T/

be the operator given by

.Lqu/.t/ D 1

d

d�1
X

iD0

ˇ

ˇ

ˇ cos
�

�
t C i

d

�ˇ

ˇ

ˇ

q

u
� t C i

d

�

:
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Then Lq defines a bounded linear operator on Lp.T/. The adjoint of Lq is given

by

Tq D L�
q W Lp0

.T/ �! Lp0

.T/

where p0 D p
.1�p/

,

.Tqx/.t/ D j cos.�t/jqx.d � t /:

Notice that, for p0 < 1,

kTqxkp0

p0 D
Z

T

j cos.�t/jqp0 jx.d � t /jp0

dt

D
Z

T

.Lqp0 1/.t/jx.t/jp0

dt:

Thus

kLqkp!p D kTqkp0!p0

D . sup
kxkp0�1

kTqxkp0

p0 /
1=p0

D
�

sup
kjxjp

0
k1�1

Z

T

.Lqp01/.t/jx.t/jp0

dt

�1=p0

D kLqp0 1k1=p0

1 :

By Lemma 3.2, the function h1.t / D .Lqp01/.t/ attains its maximum at either

t D 0 or t D 1
2

depending on the value of qp0. (Note that the function h1 for

f D j cos.�t/jq and that for f D j sin.�t/jq differ only by a translation of d
2
.) In

particular, we obtain an explicit formula for the operator norm

kLqkp!p D max
°

.Lqp0 1/.0/; .Lqp01/
�1

2

�±

:

More generally, for any n 2 N, the same argument as above gives

kLn
qkp!p D kLn

qp0 1k1=p0

1 :

Therefore, to compute the spectral radius of Lq on Lp.T/, it suffices to find

�p.Lq/ WD lim
n!1

kLn
qk1=n

p!p D lim
n!1

kLn
qp0 1k1=.np0/

1

D lim
n!1

khnk1=.np0/
1

where hn.t / D .Ln
qp0 1/.t/. However, the last expression is the p0th root of the

spectral radius of Lqp0 on C.T/. So we obtain the following.
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Proposition 5.1. For p > 1, we have

�p.Lq/ D Œ�.Lqp0/�1=p0

:

Similar as in Section 4, in the special case d D 2, we can find eigenfunctions

of Lq in Lp.T/ explicitly. We consider two different cases.

Case 1. qp0 � 1. In this case we have, by Theorem 4.2,

�.Lqp0 / D 2�qp0

;

and so

�p.Lq/ D 2�q :

Since q � 1, the spectral radius of Lq on Lp.T/ coincides that on C.T/. In

particular, we have the same eigenfunction

u.t/ D j sin.�t/jq 2 Lp.T/

corresponding to the eigenvalue � D 2�q .

Case 2. qp0 > 1. In this case we have

�.Lqp0/ D 1

2
;

and so

�p.Lq/ D 2�1=p0

:

Note that 1
p0 < q. Following the same idea as in Section 4, we consider functions

of the form

us.t / D j sin.�t/jqG.s; t /

where s > 1 and G.s; t / D �.s; t / C �.s; 1 � t / 1 is as in (28). Since

�.s; t / � t�s; as t ! 0C;

we have that us 2 Lp.T/ if and only if .s � q/p < 1, i.e.

s < q C 1

p
:

1 More generally, one can take G.s; t/ to be linear combinations of �.s; t/ and �.s; 1 � t/.
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Since qp0 > 1 exactly when q C 1
p

> 1, we can take

s D q C 1

p
� "

for sufficiently small " > 0 to obtain an eigenfunction in Lp.T/ corresponding to

the eigenvalue

2�qC.s�1/ D 2�1=p0�":

Therefore, as " ! 0, us.t / gives an ‘approximate’ eigenfunction corresponding

to �p.Lq/ D 2�1=p0

. Note that when " D 0, us.t / gives an eigenfunction in the

Lorentz space Lp;1.T/.

6. An application to Fourier multipliers

In this section, we present an application to some Bochner-Riesz type multipliers

introduced by Mockenhaupt in [9, Section 4.3]. Let E � R be the middle-third

Cantor set obtained from dissecting the interval
�

� 1
2
; 1

2

�

, and let � be the Cantor

measure on E. It is well known that

dim E D ˛ WD log 2

log 3

and that the Fourier transform of � is given by

O�.x/ D
Z

R

e��ix�d�.�/ D
1
Y

j D1

cos.�3�j x/: (33)

Let � 2 C 1
c .R/ be a bump function with O� � 0. For ı > 0, let

mı.�/ D �.�/
j � j˛�ı

� �.�/ D
Z

R

�.� � �/

j� � �j˛�ı
d�.�/:

Note that mı defines a bounded function only when ı > 0. In particular, mı is an

L2-Fourier multiplier if and only if ı > 0.

Theorem 6.1. mı is an L1-Fourier multiplier if and only if

ı >
log 2

log 3
C log c.1/

log 3
D 0:236 : : :

where c.1/ is as in Section 3 (with d D 3).
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Proof. Recall that an Lp-Fourier multiplier is a function m.�/ such that

kF�1.m.�/ Of .�//kLp.R/ � C kf kLp.R/ (34)

holds for a constant C independent of f , where F
�1 denotes the inverse Fourier

transform. In the case p D 1, this is equivalent to ym being a finite measure. If

˛ � ı � 0, it is easy to see that this is the case with m D mı . If ˛ � ı > 0, then

we have

ymı.x/ D c � . O� � j � j˛�ı�1/.x/ � O�.x/

for some constant c. Thus, mı is an L1-Fourier multiplier if and only if

Z

R

j ymı.x/jdx D
Z

jxj�3

j ymı.x/jdx C
1

X

kD1

Z

3k<jxj�3kC1

j ymı.x/jdx

� 1 C
1

X

kD1

3.˛�ı�1/k

Z 3kC1

3k

1
Y

j D1

jcos.�3�j x/jdx

< 1

where we have used

O� � j � j˛�ı�1.x/ � jxj˛�ı�1 as jxj ! 1

and (33). On the other hand, notice that

Z 3kC1

3k

1
Y

j D1

jcos.�3�j x/jdx D 3k

Z 3

1

1
Y

j D1

jcos.�3k�j x/jdx

D 3k

Z 3

1

j O�.x/j
k�1
Y

j D0

jcos.�3j x/jdx

� 3k

Z 1

0

k�1
Y

j D0

jcos.�3j x/jdx

where in the last line we have used periodicity and the fact that j O�.x/j is bounded

below on the interval Œ2; 3�. Now by Theorem 2.6(b), we know that

Z 1

0

k�1
Y

j D0

jcos.�3j x/jdx � c.1/k :

Therefore
Z

R

j ymı.x/jdx < 1
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if and only if
1

X

kD1

3.˛�ı�1/k3kc.1/k < 1;

which is equivalent to

ı >
log 2

log 3
C log c.1/

log 3
:

This completes the proof. �

Since mı is compactly supported, we can choose f 2 Lp.R/ in (34) such that
Of � 1 on the support of m D mı , and get ymı 2 Lp.R/ as a necessary condition

for mı to be an Lp-Fourier multiplier. By the same argument as above, this leads

us to

ı > ı.p/ WD log 2

log 3
� 1 C 1

p
C log.c.p/1=p/

log 3
:

Figure 4. A graph of ı.p/ as a function of 1
p

2 .0; 1/.
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