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A capacity approach to box and packing dimensions

of projections of sets and exceptional directions

Kenneth J. Falconer

Abstract. Dimension profiles were introduced in [8, 11] to give a formula for the box-

counting and packing dimensions of the orthogonal projections of a set E � R
n onto

almost all m-dimensional subspaces. However, these definitions of dimension profiles are

indirect and are hard to work with. Here we firstly give alternative definitions of dimension

profiles in terms of capacities of E with respect to certain kernels, which lead to the box-

counting and packing dimensions of projections fairly easily, including estimates on the

size of the exceptional sets of subspaces where the dimension of projection is smaller than

the typical value. Secondly, we argue that with this approach projection results for different

types of dimension may be thought of in a unified way. Thirdly, we use a Fourier transform

method to obtain further inequalities on the size of the exceptional subspaces.
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1. Introduction and main results

1.1. Introduction. The relationship between the Hausdorff dimension of a

set E � R
n and of its orthogonal projections �V .E/ onto subspaces V 2

G.n;m/, where G.n;m/ is the Grassmanian of m-dimensional subspaces of Rn

and �V WRn ! V denotes orthogonal projection, has been studied since the foun-

dational work of Marstrand [15] and Mattila [16]. They showed that for Borel

E � R
n

dimH �V .E/ D min¹dimHE;mº (1)

for almost all m-dimensional subspaces V (with respect to the natural invariant

probability measure n;m on G.n;m/) where dimH denotes Hausdorff dimension.

https://creativecommons.org/licenses/by/4.0/
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Kaufman [13, 14] used capacities to prove and extend these results and this has

become the standard approach for such problems. There are many generalisations,

specialisations and consequences of these projection results, see [6, 18] for recent

surveys.

It is natural to seek analogous projection results for other notions of dimension.

However, examples show that the direct analogue of (1) is not valid for lower or

upper box-counting (Minkowski) dimensions or packing dimension, though there

are non-trivial lower bounds on the dimensions of the projections, see [7, 9, 12].

It was shown in [8, 11] that the box-counting and packing dimensions of �V .E/

for a Borel set E are constant for almost all V 2 G.n;m/ but this constant value,

termed a ‘dimension profile’ of E, had a very indirect definition in terms of the

supremum of dimension profiles of measures supported by E which in turn are

given by critical parameters for certain almost sure pointwise limits [8]. A later

approach in [11] defines box-counting dimension profiles in terms of weighted

packings subject to constraints.

I was never very happy with these definitions, which are artificial, indirect

and awkward to use. To make the concept more attractive and useful, this paper

presents an alternative and more natural way of defining box-counting and packing

dimension profiles in terms of capacities with respect to certain kernels. Then

using simple properties of equilibrium measures we can find the ‘typical’ box

or packing dimensions of �V .E/, that is those that are realised for almost all

V 2 G.n;m/, as a dimension profile of E. With little more effort, we can also

obtain some upper bounds for the dimension of the exceptional V 2 G.n;m/

where the projection dimension is smaller than this typical value. Then, using

Fourier transform methods, we will obtain new estimates on the dimension of the

exceptional sets of V 2 G.n;m/ for box and packing dimensions when, roughly

speaking, the dimension of E is greater than m.

Thus in (6) we will define the s-box dimension profile of E � R
n for s > 0 as

dims
BE D lim

r!0

logC s
r .E/

� log r
;

where C s
r .E/ is the capacity of E with respect to the continuous kernel (3) (more

precisely taking lower and upper limits will give the lower and upper dimension

profiles). We will show in Section 2.2 that if s � n then dims
BE is just the

usual box-counting dimension of E. On the other hand, in Section 3.1, we show

that if 1 � m � n � 1, then dimm
B E equals the box-counting dimension of

�V .E/ for almost all V 2 G.n;m/. In this way, the dimension profile dims
BE

may be thought of as the dimension of E when regarded from an s-dimensional

viewpoint. Analogously, dims
HE D min¹dimHE; sº might be interpreted as the
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Hausdorff dimension profile for the Hausdorff dimension result (1). By defining

packing dimension profiles in terms of upper box dimension profiles in Section 4

we obtain similar results for the packing dimension of projections. In Section 5

we consider inequalities satisfied by the dimension profiles which help give a feel

for the results.

Since their conception, dimension profiles have also become a key tool for

investigating the packing and box dimensions of the images of sets under random

processes, see for example [5, 21, 24].

1.2. Main results on projections and exceptional directions. Given the defini-

tions of the dimension profiles which will be formally defined in (6), the basic pro-

jection results are easily stated. Essentially, them-dimension profiles ofE give the

dimension of the projections ofE onto almost allm-dimensional subspaces. The-

orem 1.1 is the basic result on dimension of projections, and Theorems 1.2 and 1.3

concern the dimensions of the set of V 2 G.n;m/ for which the dimensions of the

projections onto V are exceptionally small. We include the well-known Hausdorff

dimension projection results for comparison which are directly analogous to the

conclusions for box and packing dimension if we define

dims
HE WD min¹s; dimHEº

to be the Hausdorff dimension profile of E.

Theorem 1.1. Let E � R
n be a non-empty Borel set (assumed to be bounded

in (ii) and (iii)). Then for all V 2 G.n;m/,

dimH �VE � dimm
H E � min¹m; dimHEº;(i)

dimB�VE � dimm
BE;(ii)

dimB�VE � dim
m

BE;(iii)

dimP �VE � dimm
P E;(iv)

with equality in all of the above for n;m-almost all V 2 G.n;m/.

Part (i) of Theorem 1.1 goes back to Marstrand [15] and Mattila [16], and

parts (ii)–(iv) were obtained in [8, 11] but starting with the original cumbersome

definitions of the box and packing dimension profiles. After relating capacities

and box-counting numbers in Section 2, parts (ii) and (iii) will follow easily,

and (iv) will come from the relationship between packing and box-dimension

profiles discussed in Section 4.
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To put these estimates into context, dimm
P E, etc. cannot be too small compared

with dimPE. Indeed

dimPE

1C .1=m � 1=n/ dimPE
� dimm

P E � min¹dimPE;mºI (2)

these bounds are sharp and there are identical inequalities for dimB and dimB, see

Section 5 and [7]. Thus the almost sure dimensions of the projections are also

constrained by these bounds.

Whilst equality holds in Theorem 1.1 for n;m-almost all V 2 G.n;m/, dimen-

sion profiles can provide further information on the size of the set of V for which

the box dimensions of the projections �VE are exceptionally small. Note that

G.n;m/ is a manifold of dimension m.n �m/ so dimHG.n;m/ D m.n �m/ and

it is convenient to express our estimates relative to this dimension. Theorem 1.2

gives estimates for the Hausdorff dimensions of the exceptional sets in terms of

dims
BE, etc. when 0 � s � m and Theorem 1.3 gives estimates when m � s � n.

Theorem 1.2. Let E � R
n be a non-empty Borel set (assumed to be bounded

in (ii) and (iii)) and let 0 � s � m. Then,

dimH¹V 2 G.n;m/W dimH �VE < dims
HEº � m.n �m/ � .m � s/;(i)

dimH¹V 2 G.n;m/W dimB�VE < dims
BEº � m.n �m/ � .m � s/;(ii)

dimH¹V 2 G.n;m/W dimB�VE < dim
s

BEº � m.n �m/ � .m � s/;(iii)

dimH¹V 2 G.n;m/W dimP �VE < dims
PEº � m.n �m/ � .m � s/:(iv)

Noting that dims
BE, etc. increases with s, these bounds for the Hausdorff

dimension of the exceptional sets of V decrease as s decreases.

Using capacity ideas, all parts of Theorem 1.2 may be derived using minor

modifications to the proofs for Theorem 1.1. Part (i) was first obtained by Kauf-

man [13] when he introduced the potential theoretic approach for the Hausdorff

dimension of projections. Parts (ii)–(iv) were established in [8, 11] using the ear-

lier definitions of dimension profiles, but the proofs here using capacities are rather

simpler.

The conclusions of Theorem 1.2 can be strengthened slightly as follows: in

all parts (ii)–(iv) the m.n �m/ � .m � s/-dimensional Hausdorff measure of the

sets on the left must be 0, see the note at the end of Section 3.1. However for

consistency it seems more natural to state the theorem in terms of Hausdorff

dimension.

The spirit of the next theorem is that if the dimension ofE is significantly larger

than that of the typical projection given by Theorem 1.1 then the exceptional set

of V will be small.
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Theorem 1.3. Let E � R
n be a non-empty Borel set (assumed to be bounded

in (ii) and (iii)) and let 0 �  � n �m. Then

dimH¹V 2 G.n;m/W dimH �VE < dim
mC
H E � º � m.n �m/ � ;(i)

dimH¹V 2 G.n;m/W dimB�VE < dim
mC

B E � º � m.n �m/ � ;(ii)

dimH¹V 2 G.n;m/W dimB�VE < dim
mC

B E � º � m.n �m/ � ;(iii)

dimH¹V 2 G.n;m/W dimP �VE < dim
mC
P E � º � m.n �m/ � :(iv)

These estimates are expressed in terms of dim
mC

B E �  , etc. since  cannot

easily be isolated from such expressions (except in case (i)). It follows from

inequality (44) derived in Section 5 that dim
mC

B E� , etc. decrease continuously

as  increases, equalling the typical projection dimension dimm
BE when  D 0,

and dimBE � .n �m/ when  D n �m. (Of course the estimates become trivial

unless 0 � dim
mC
B E �  � m.)

Note that the Hausdorff dimension parts (i) of Theorems 1.2 and 1.3 can be

rearranged to the more familiar form

dimH¹V 2 G.n;m/W dimH �VE < sº

D
´
m.n �m/ � .m � s/ .0 � s � m/;

m.n �m/ � .dimHE � s/ .dimHE � .n �m/ � s � dimHE/:

Case (i) of Theorem 1.3 was established in [3], using Fourier transforms, see

also [19]. We will use Fourier methods to obtain the box dimension cases (ii)–(iii),

from which we will deduce (iv) .

We remark that other recent delicate estimates have been given by [20] using

Radon transform estimates and by [1, 10] using ideas from additive combinatorics.

2. Capacities and box-counting dimensions

Throughout this section we will consider projections of a Borel setE � R
n which

we will take to be non-empty and bounded to ensure that its box dimensions are

defined. Moreover, since the lower and upper box dimensions and the capacities

of a set equal those of its closure, it is enough to prove our results under the

assumption that E is non-empty and compact.

2.1. Capacity, energy and dimension profiles. Potential kernels of the form

�.x/ D jxj�s are widely used in Hausdorff dimension arguments, see for example
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[13, 14, 17, 19]. For box-counting dimensions, another class of kernels turns out

to be useful. Let s > 0 and r > 0 and define the potential kernels

�s
r .x/ D min

°
1;

� r

jxj
�s±

.x 2 R
n/; (3)

originally introduced in [7, 9]. Let E � R
n be non-empty and compact and let

M.E/ denote the set of Borel probability measures supported by E. The energy

of � 2 M.E/ with respect to �s
r is defined by

“
�s

r .x � y/d�.x/d�.y/;

and the potential of � at x 2 R
n by

Z
�s

r .x � y/d�.y/:

The capacity C s
r .E/ of E is the reciprocal of the minimum energy achieved by

probability measures on E, that is

1

C s
r .E/

D inf
�2M.E/

“
�s

r .x � y/d�.x/d�.y/I (4)

since our kernels �s
r are continuous and E is compact, 0 < C s

r .E/ < 1. For a

general bounded set the capacity is defined to be that of its closure.

The following energy-minimising property is standard in potential theory, but

it is key for our development, so we give the short proof which is particularly

simple for continuous kernels.

Lemma 2.1. Let E � R
n be non-empty and compact and s > 0 and r > 0. Then

the infimum in (4) is attained by a measure �0 2 M.E/. Moreover

Z
�s

r .x � y/d�0.y/ � 1

C s
r .E/

(5)

for all x 2 E, with equality for �0-almost all x 2 E.

Proof. Let �k 2 M.E/ be such that

“
�s

r .x � y/d�k.x/d�k.y/ �!  WD 1

C s
r .E/

:

Then �k has a subsequence that is weakly convergent to some �0 2 M.E/. Since

�s
r .x � y/ is continuous the infimum is attained.
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Suppose that Z
�s

r .z � y/d�0.y/ �  � �

for some z 2 E and � > 0. Let ız be the unit point mass at z and for 0 < � < 1

let �� D �ız C .1� �/�0 2 M.E/. Then

“
�s

r .x � y/d��.x/d��.y/ D �2�s
r .z � z/C 2�.1� �/

Z
�s

r .z � y/d�0.y/

C .1� �/2
“

�s
r .x � y/d�0.x/d�0.y/

� �2 C 2�.1� �/. � �/C .1 � �/2
D  � 2�� CO.�2/;

which contradicts that �0 minimises the energy integral on taking � sufficiently

small. Thus inequality (5) is satisfied for all x 2 E, and equality for �0-almost all

x is immediate from (4). �

For s > 0 we define the lower and upper s-box dimension profiles of E � R
n

in terms of capacities:

dims
BE D lim

r!0

logC s
r .E/

� log r
and dim

s

BE D lim
r!0

logC s
r .E/

� log r
: (6)

Note that dims
BE D dims

B
xE and dim

s

BE D dim
s

B
xE where xE denotes the closure

of E.

2.2. Capacities and box-counting numbers. For a non-empty compact E �
R

n, let Nr .E/ be the minimum number of sets of diameter r that can cover E.

Recall that the lower and upper box-counting dimensions or box dimensions of E

are defined by

dimBE D lim
r!0

logNr .E/

� log r
and dimBE D lim

r!0

logNr .E/

� log r
; (7)

with the box-counting dimension given by the common value if the limit exists,

see for example [4] for a discussion of box dimensions and equivalent definitions;

in particular the box dimensions of a set equal those of its closure.

In this section we prove Corollary 2.4, that provided that s � n the capacity

C s
r .E/ and the covering number Nr .E/ are comparable. This is not necessarily

the case if 0 � s < n and it is this disparity that gives the formulae for the box

dimensions of projections. The next two lemmas obtain lower and upper bounds

for Nr .E/ in terms of energies or potentials.
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Lemma 2.2. Let E � R
n be non-empty and compact and let r > 0. Suppose that

there is a measure � 2 M.E/ such that for some  > 0

.� � �/¹.x; y/W jx � yj � rº � : (8)

Then

Nr .E/ � cn


; (9)

where cn depends only on n. In particular (9) holds if, for some s > 0,

“
�s

r .x � y/d�.x/d�.y/ � : (10)

Proof. Let C.E/ be the set of closed coordinate mesh cubes of diameter r (i.e.

cubes of the form
Qn

iD1Œmirn
�1=2; .mi C1/rn�1=2�where themi are integers) that

intersect E; suppose that there are N 0
r .E/ such cubes. Using Cauchy’s inequality,

1 D �.E/2 �
� X

C2C.E/

�.C /
�2

� N 0
r .E/

X

C2C.E/

�.C /2

D N 0
r .E/

X

C2C.E/

.� � �/
®
.x; y/ 2 C � C

¯

� N 0
r .E/.� � �/

®
.x; y/W jx � yj � r

¯

� N 0
r .E/

� .3
p
n/nNr .E/;

noting that a set of diameter r can intersect at most .3
p
n/n of the cubes of C.E/.

Finally since 1B.0;r/.x � y/ � �s
r .x � y/, inequality (10) implies (8). �

Lemma 2.3. Let E � R
n be non-empty and compact and let s > 0 and r > 0.

Suppose that E supports a measure � 2 M.E/ such that for some  > 0
Z
�s

r .x � y/d�.y/ �  for all x 2 E: (11)

Then

Nr .E/ �

8
ˆ̂<
ˆ̂:

cn;ndlog2.diamE=r/C 1e


if s D n;

cn;s


if s > n;

(12)

where cn;s depends only on n and s.
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Proof. Write M D diamE. For all x 2 E,

Z
�s

r .x � y/d�.y/ � �.B.x; r//C
dlog2.M=r/�1eX

kD0

Z

B.x;2kC1r/nB.x;2kr/

2�ksd�.y/

� �.B.x; r//C
dlog2.M=r/�1eX

kD0

2�ks�.B.x; 2kC1r//

� 2s

dlog2.M=r/eX

kD0

2�ks�.B.x; 2kr//:

Let B.xi ; r/; i D 1; : : : ; N 0
r.E/, be a maximal collection of disjoint balls of radii

r with xi 2 E, where here N 0
r .E/ denotes this maximum number. From (11), for

each i ,

 �
Z
�s

r .xi � y/d�.y/ � 2s

dlog2.M=r/eX

kD0

2�ks�.B.xi ; 2
kr//:

Summing over the xi ,

N 0
r .E/ �

dlog2.M=r/eX

kD0

2s.1�k/

N 0
r .E/X

iD1

�.B.xi ; 2
kr//;

so, for some k with 0 � k � dlog2.M=r/e,

2s.1�k/

N 0
r .E/X

iD1

�.B.xi ; 2
kr// �

8
<̂

:̂

N 0
r .E/

dlog2.M=r/C 1e if s D n;

N 0
r .E/2

k.n�s/.1� 2n�s/ if s > n;

(13)

the case of s > n coming from comparison with a geometric series. For all

x 2 E a volume estimate using the disjoint balls B.xi ; r/ shows that at most

.2k C 1/n � 2.kC1/n of the xi lie in B.x; 2kr/. Consequently each x belongs to at

most 2.kC1/n of the B.xi ; 2
kr/. Thus

N 0
r .E/X

iD1

�.B.xi ; 2
kr// � 2.kC1/n�.E/ D 2nCs2�s.1�k/2k.n�s/ � 2nCs2�s.1�k/; (14)

using that s � n. Inequality (12) now follows from (13), (14), and that Nr .E/ �
anN

0
r .E/ where an is the minimum number of balls in R

n of diameter 1 that can

cover a ball of radius 1. �
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The comparability of box-counting numbers and capacities for s � n now

follows on combining the previous two lemmas.

Corollary 2.4. Let E � R
n be non-empty and bounded and let r > 0. Then

cnC
s
r .E/ � Nr.E/ �

´
cn;ndlog2.diamE=r/eC s

r .E/ if s D n;

cn;sC
s
r .E/ if s > n;

(15)

Proof. By Lemma 2.1 we may find � 2 M.E/ satisfying (5), so the conclusion

when E is compact follows immediately from Lemmas 2.2 and 2.3. For general

bounded E, since C s
r .E/ D C s

r .
xE/ and Nr.E/ D Nr . xE/, where xE is the closure

of E, the conclusion transfers directly to all non-empty bounded E. �

Equality of the box dimensions and the dimension profiles for s � n is

immediate from Corollary 2.4.

Corollary 2.5. Let E � R
n be non-empty and bounded. If s � n then

dims
BE D dimBE and dim

s

BE D dimBE:

Proof. This follows from (15) and the definitions of box dimensions (7) and of

dimension profiles (6). �

3. Proofs of the projection results

In this section we prove parts (ii) and (iii) of the theorems stated in Section

1.2 concerning the lower and upper box dimensions of projections. Part (iv) on

packing dimensions will follow from the relationships between packing dimension

and upper box dimension and their dimension profiles which will be discussed in

Section 4.

3.1. Proofs of Theorems 1.1 and 1.2 parts (ii) and (iii). The upper bound for

the dimensions of projections onto subspaces is an easy consequence of the way

that the kernels behave under projections together with the relationship between

box dimensions and capacities from Lemma 2.3.

Proof of Theorem 1.1 (ii) and (iii) (inequalities). It is enough to obtain the upper

bound when E is compact. Let V 2 G.n;m/ and r > 0. Since �V does not
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increase distances,

�m
r .�V .x/ � �V .y// D min

°
1;

� r

j�V .x/ � �V .y/j
�m±

� min
°
1;

� r

jx � yj
�m±

D �m
r .x � y/ .x; y 2 E/:

For each r > 0 we may, by Lemma 2.1, find a measure � 2 M.E/ such that for

all x 2 E
1

Cm
r .E/

�
Z
�m

r .x � y/d�.y/

�
Z
�m

r .�V .x/ � �V .y//d�.y/

D
Z
�m

r .�V .x/ � w/d�V .w/;

where �V 2 M.�VE/ is the image of the measure � under �V , defined by
Z
g.w/d�V .w/ D

Z
g.�V x/d�.x/

for continuous gWV ! R and by extension. Then for each z D �V .x/ 2 �VE,
Z
�m

r .z �w/d�V .w/ � 1

Cm
r .E/

:

By Lemma 2.3

Nr .�VE/ � cm;mdlog.diam.�VE/=r/C 1eCm
r .E/;

so

logNr .�VE/

� log r
� log.cm;mdlog.diam.�VE/=r/C 1e/

� log r
C logCm

r .E/

� log r
:

Taking lower and upper limits as r & 0, we conclude that dimB�VE � dimm
BE

and dimB�VE � dim
m

BE for all V 2 G.n;m/. �

Note that a similar argument shows that dimBf .E/ � dimm
BE for every

Lipschitz map f WE ! R
m.

Almost sure equality in Theorem 1.1(ii) and (iii) is more or less a particular

case of the corresponding parts of Theorem 1.2 so we combine the proofs. We

first need a lemma to estimate the measure of the subspaces V onto which the

projection of two given points are close to each other. We assume that the

GrassmanianG.n;m/ is equipped with some natural locallym.n�m/-dimensional

metric d , and H
t denotes t -dimensional Hausdorff measure on G.n;m/, defined

with respect to this metric.
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Lemma 3.1. (a) There is a number an;m > 0 depending only on n and m such

that

�m
r .x � y/ � n;m¹V W j�V x � �V yj � rº � an;m�

m
r .x � y/ .x; y 2 R

n; r > 0/:

(16)

(b) Let 0 < s � m and letK � G.n;m/ be a Borel set with Hausdorff measure

H
m.n�m/�.m�s/.K/ > 0. Then there is a Borel measure � supported by K with

�.K/ > 0 and a number aK > 0 such that

�¹V W j�V x � �V yj � rº � aK�
s
r .x � y/ .x; y 2 R

n; r > 0/: (17)

Proof. (a) Note that �m
r .x/ is comparable to the proportion of the subspaces

V 2 G.n;m/ for which the r-neighbourhoods of the orthogonal subspaces to V

contain x, specifically, for all 1 � m < n there are numbers an;m > 0 such that

�m
r .x/ � n;m¹V W j�V xj � rº � an;m�

m
r .x/ .x 2 R

n; r > 0/:

This standard geometrical estimate can be obtained in many ways, see for example

[17, Lemma 3.11]. One approach is to normalise to the case where jxj = 1

and then estimate the (normalised) .n � 1/-dimensional spherical area of S \
¹yW dist.y; V ?/ � rº, that is the intersection of the unit sphere S in R

n with the

‘tube’ or ‘slab’ of points within distance r of some .n�m/-dimensional subspace

V ? of Rn. Linearity then gives (16).

(b) By Frostman’s Lemma, see [17, 19], there is a Borel probability measure

� supported on a compact subset of K and a > 0 such that

�.BG.V; �// � a�m.n�m/�.m�s/ .x 2 R
n; � > 0/; (18)

where BG.V; �/ denotes the ball in G.n;m/ of centre V and radius � with respect

to the metric d . This ensures that the subspaces in K cannot be too densely

concentrated, and a geometrical argument gives

�¹V W j�V xj � rº � aK�
s
r .x/ .x 2 R

n; r > 0/ (19)

for some aK > 0, see [16] or [19, (5.12)] for more details. �

Proof of Theorem 1.1 (a.s. equality) and Theorem 1.2 (ii) and (iii). As before we

may take E to be compact. Let

K D ¹V 2 G.n;m/W dimB�VE < dim
s

BEºI

then K is a Borel set. Suppose, for a contradiction, that Hm.n�m/�.m�s/.K/ > 0.
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By Lemma 3.1(b) there is a measure � supported by K with �.K/ > 0 and

satisfying (17). For � 2 M.E/ and V 2 G.n;m/, write �V for the projection

of � onto V defined by
R
f .w/d�V .w/ D

R
f .�V .x//d�.x/ for continuous f on

V and by extension. Using Fubini’s theorem,

Z
.�V � �V /¹.w; z/ 2 V � V W jw � zj � rºd�.V /

D
Z
.� � �/¹.x; y/W j�V x � �V yj � rºd�.V /

D
“

�¹V 2 G.n;m/W j�V x � �V yj � rºd�.x/d�.y/

� aK

“
�s

r .x � y/d�.x/d�.y/ (20)

by (17). If dim
s

BE > t 0 > t > 0 then C s
rk
.E/ � rk

�t 0

for a sequence rk & 0,

where we may assume that 0 < rk � 2�k for all k. Thus for each k there is a

measure �k 2 M.E/ such that

“
�s

rk
.x � y/d�k.x/d�k.y/ � rk

t 0

:

Applying (20) to each �k and summing over k,

Z � 1X

kD1

r�t
k .�k

V � �k
V /

®
.w; z/ 2 V � V W jw � zj � rk

¯�
d�.V /

� aK

1X

kD1

r�t
k

“
�s

rk
.x � y/d�k.x/d�k.y/

� aK

1X

kD1

r
.t 0�t/

k
� aK

1X

kD1

2�k.t 0�t/ < 1:

Thus, for �-almost all V there is a numberMV < 1 such that

.�k
V � �k

V /¹.w; z/ 2 V � V W jw � zj � rkº � MV r
t
k

for all k. For such V , Lemma 2.2 implies that

Nrk
.�VE/ � cmM

�1
V r�t

k

for all k, as the projected measures �k
V are supported by �VE � V . Hence

limr!0 logNr .�VE/= � log r � t . This is so for all t < dim
s

BE, so dimB�VE �
dim

s

BE for �-almost all V 2 G.n;m/, contradicting that �.K/ > 0.
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The inequality for the lower dimensions for almost all V follows in a similar

manner, noting that it is enough to take r D 2�k ; k 2 N when considering the

limits as r & 0 in the definitions of lower box dimension and lower box dimension

profiles.

Thus we have proved Theorem 1.2(ii) and (iii). Almost sure equality in

Theorem 1.1(ii) and (iii) follows in exactly the same way by taking s D m,

replacing � by the restriction of n;m to K and using (16) at (20) to get a similar

contradiction if n;m.K/ > 0. �

We remark that in the above proof we reached a contradiction to the fact that

H
m.n�m/�.m�s/.K/ > 0. Thus a slightly stronger conclusion in terms of measures

is valid, namely that

H
m.n�m/�.m�s/¹V 2 G.n;m/W dimB�VE < dim

s

BEº D 0:

3.2. Proof of Theorem 1.3 parts (ii) and (iii). Theorem 1.3 gives upper bounds

for the size of the exceptional directions for box dimensions of projections in terms

of dims
BE or dim

s

B when s � m. We use a Fourier transform approach, analogously

to the Hausdorff dimension case stated in Theorem 1.3(i), see [3].

We define the Fourier transform of a function f 2 L1.Rn/ and a finite measure

� on R
n by

Of .�/ D
Z
f .x/ei� �xdx; O�.�/ D

Z
ei� �xd�.x/ .� 2 R

n/;

with the definitions extending to distributions in the usual way.

Fourier transforms of radially symmetric functions can be expressed as in-

tegrals against Bessel functions, see [19, Section 3.3], and in particular, for

s > n; r > 0, the kernels �s
r on R

n transform as distributions to

b�s
r .�/ D cnsj�j�n�1Csrs

1Z

r j�j

Jn=2.u/u
n=2�s�1du .� 2 R

n; r > 0/;

where Jn=2 is the Bessel function of order n=2 and cn depends only on n (this form

follows from integrating the usual radial transform expression by parts). However,

this oscillating transform is difficult to work with, so we introduce an alternative

kernel s
r that is equivalent to �s

r and which has strictly positive Fourier transform.

Thus for 0 < s < n and r > 0 we define  s
r WRn ! R

C by the convolution

 s
r .x/ WD .j � j�s � e/

�x
r

�
D

Z
jyj�se

�x
r

� y
�
dy (21)
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where for convenience we write

e.x/ WD exp
�

� 1

2
jxj2

�
.x 2 R

n/; (22)

and also

er.x/ WD e
�x
r

�
D exp

�
� 1

2

ˇ̌
ˇx
r

ˇ̌
ˇ
2�

.x 2 R
n; r > 0/: (23)

In particular

 s
r .x/ �  s

1

�x
r

�
: (24)

The following lemma summarises the key properties of  s
r .

Lemma 3.2. For 0 < s < n let  s
r be as in (21). Then

(a) there are constants c1; c2 > 0 depending only on n and s such that

c1 
s
r .x/ � �s

r .x/ � c2 
s
r .x/ .x 2 R

n; r > 0/I (25)

(b) there is a constant c3 depending only on n and s such that

c s
r .�/ D c3r

sj�js�ne.r�/ .� 2 R
n; r > 0/: (26)

Proof. (a) By (24) it is enough to establish (25) when r D 1. Then

 s
1.x/D

Z
jyj�se.x � y/dy (27)

� c

Z
jyj�s�B.0;1/.x � y/dy DW cJ.x/ .x 2 R

n/;

where c D exp.�1
2
/ and �B.0;1/ is the indicator function of the unit ball. By

obvious estimates, writing vn for the volume of B.0; 1/, if jxj � 1 then J.x/ �
2�svn and if jxj > 1 then J.x/ � .2jxj/�svn. The right-hand inequality of (25)

follows for some c2 > 0 when r D 1 and thus for all r > 0.

For the left-hand inequality, fixing M > n, there is a constant c > 0 such that

e.x/ � c
�
1C jxj

��M
for all x 2 R

n, so from (27),

 s
1.x/ � c

Z

Rn

jyj�s
�
1C jx � yj

��M
dy .x 2 R

n/: (28)

Splitting the domain of integration of (28) into regions jyj � 1 and jyj > 1 easily

shows that the integral is bounded. Then splitting the domain into regions jyj �
1
2
jxj and jyj > 1

2
jxj gives upper bounds of orders O.jxjn�s�M / and O.jxj�s/

respectively, so a bound ofO.jxj�s/ overall. Thus the left-hand inequality of (25)

follows for a suitable c1 when r D 1 and so for all r > 0.
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(b) Note that 1j � j�s D cj � js�n in the distributional sense, where c depends

only on n and s, see [19, Theorem 3.6], and that Oe.�/ D .2�/n=2e.�/. Using the

convolution theorem we would hope that

c s
1.�/ D .3j � j�s � e/.�/ D 1j � j�s.�/be.�/ D .2�/n=2cj�js�ne.�/I

the validity of this is justified in [19, Lemma 3.9]. By scaling, the Fourier

transform of  s
r for all r > 0 is given by (26), where c3 D .2�/n=2c. �

We now express energies with respect to the kernel  s
r in terms of Fourier

transforms.

Proposition 3.3. Let 0 < s < n and � 2 M.E/. Then there are constants c4; c5

and c6 depending only on n and s such that

“
 s

r .x � y/d�.x/d�.y/ D c4

Z
c s

r .�/j O�.�/j2d� (29)

D c5r
s

Z
j�js�ne.r�/j O�.�/j2d� (30)

and “
er.x � y/d�.x/d�.y/ D c6r

n

Z
e.r�/j O�.�/j2d�: (31)

Proof. Intuitively (29) follows by applying Parseval’s formula and the convolution

formula. Justification of this requires some care, by first working with approxi-

mations to � given by � � ı� where ¹ı�º�>0 is an approximate identity. However,

the proof follows exactly that for the Riesz kernel j � j�s given, for example, in [19,

Theorem 3.10]. Equation (30) then follows from (26). The identity (31) follows

in a similar way. �

For each V 2 G.n;m/ we may decompose x 2 R
n as x D xV C xV ? , where

xV 2 V and xV ? 2 V ?, and where appropriate we will write x as .xV ; xV ?/

in the obvious way. Given � 2 M.E/ we define Radon measures �V on each

V 2 G.n;m/ by

Z

Rn

f .xV /d�V .xV / D
Z

V

f .xV /e.xV ?/d�.xV ; xV ?/ (32)

for all continuous f on V and by extension. Then �V is a weighted projection

of � onto V and the support of �V is the projection of the support of � onto V ,
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in particular spt.�V / � �VE. The Fourier transform of �V on V is given for

�V 2 V by

c�V .�V / D
Z

Rn

exp.ixV ��V /e.xV ?/d�.xV ; xV ?/

D .2�/�.n�m/=2

Z

Rn

Z

V ?

Œexp.ixV ��V / exp.ixV ? ��V ?/

� e.�V ?/�d�V ?d�.xV ; xV ?/

D .2�/�.n�m/=2

Z

V ?

O�.�V ; �V ?/e.�V ?/d�V ? : (33)

using the transform of the symmetric e.�V ?/ and Fubini’s theorem.

Next we relate the transforms of the �V to that of � for each V .

Lemma 3.4. Let 0 <  < n, let � 2 M.E/ and let �V be defined by (32). Then

there is a constant c7 depending only on n and m such that for all V 2 G.n;m/

and 0 < r < 1
2
,

Z

V

jc�V .�V /j2e.r�V /d�V � c7

Z

Rn

j O�.�/j2e.r�/ exp
�
�1

4
j�V ? j2

�
d�: (34)

Proof. Applying Schwarz’s inequality to (33), for some c7 > 0,

jc�V .�V /j2 � c7

Z
j O�.�V ; �V ?/j2e.�V ?/d�V ? :

Thus for all V 2 G.n;m/, � D .�V ; �V ?/ 2 R
n and 0 < r < 1

2
,

jc�V .�V /j2e.r�V / � c7

Z
j O�.�V ; �V ?/j2e.r�V /e.�V ?/d�V ?

D c7

Z
j O�.�V ; �V ?/j2 exp

�
�1

2
r2j�V j2 � 1

2
j�V ? j2

�
d�V ?

� c7

Z
j O�.�V ; �V ?/j2

� exp
�
�1

2
r2.j�V j2 C j�V ? j2/�1

4
j�V ? j2

�
d�V ?

D c7

Z
j O�.�V ; �V ?/j2e.r�/ exp

�
�1

4
j�V ? j2

�
d�V ? :

Integrating with respect to �V gives (34). �

To enable us to integrate (34) over V we need a strightforward bound for the

integral of exp
�
�1

4
j�V ? j2

�
.
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Lemma 3.5. Let W be an analytic subset of G.n;m/ with H
t .W / > 0 where

0 � .m � 1/.n � m/ < t < m.n � m/. Then there exists a Borel probability

measure � supported by W and a constant c8 depending only on n;m and t such

that for all � 2 R
n

Z
exp

�
�1

4
j�V ? j2

�
d�.V / � c8j�j.m�1/.n�m/�t :

Proof. A consequence of (18) is that there exists a probability measure � sup-

ported by W and c > 0 such that

�.V 2 G.n;m/W j�V ? j � �/ � c
� �

j�j
�t�.m�1/.n�m/

.� > 0; j�j > 0/;

see [19, (5.11)]. Then

Z
exp

�
�1

4
j�V ? j2

�
d�.V / D

1Z

0

1
2
� exp.�1

4
�2/�.V W j�V ? j � �/d�

� 1
2
c

1Z

0

� exp
�

� 1
4
�2

�� �
j�j

�t�.m�1/.n�m/

d�

D c8j�j.m�1/.n�m/�t .� 2 R
n/;

since the integral with respect to � is finite. �

Proof of Theorem 1.3. Let 0 < d < d 0 < dim
mC
B E. Then for each 0 < r � 1

2

there is a measure �r 2 M.E/ such that the energy

rmC

Z
j�jmC�ne.r�/jc�r.�/j2d� D c�1

5

“
 mC

r .x � y/d�r .x/d�r.y/

� crd 0

; (35)

where c is independent of r , using (30), (25), and (6). Let �r
V be the weighted

projection of �r onto V derived from �r as in (32). Let Wr � G.n;m/ be the

Borel set

Wr WD
²
V 2 G.n;m/W rm

Z

V

jc�r
V .�V /j2e.r�V /d�V � rd�

³
: (36)

LetW D lim supk!1W2�k . Let t D m.n�m/� so .m�1/.n�m/�t D Cm�n.

Suppose, for a contradiction, thatHt .W / > 0. By Lemma 3.5 there is a probability

measure � supported by W satisfying
Z

exp
�
�1

4
j�V ? j2

�
d�.V / � c8j�jCm�n: (37)
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For convenience write �k D �2�k

and �k
V D �2�k

V . Then, using (34), Lemma 3.4,

(37) and (35),

1X

kD1

�.W2�k /

D
1X

kD1

�

²
V W

Z

V

jc�k
V .�V /j2e.2�k�V /d�V � 2�k.d�m�/

³

�
1X

kD1

�

²
V W c7

Z

Rn

jc�k.�/j2e.2�k�/ exp.�1
4
j�V ? j2/d� � 2�k.d�m�/

³

�
1X

kD1

c72
�k.Cm�d/

Z

V

Z

Rn

jc�k.�/j2e.2�k�/ exp.�1
4
j�V ? j2/d�d�.V /

� c7c82
�k.Cm�d/

Z

Rn

jc�k.�/j2e.2�k�/j�jCm�nd�

�
1X

kD1

c6c7c82
�k.d 0�d/ < 1:

By the Borel–Cantelli lemma �.W / D 0, a contradiction, so dimHW � t .

For all V … W , by (31),

.�k
V � �k

V /
®
.w; z/ 2 V � V W jw � zj � 2�k

¯

� e1=2

“
e2�k .w � z/d�k

V .w/d�
k
V .z/

D e1=2c62
�km

Z

V

jc�k
V .�V /j2e.2�k�V /d�V

� e1=2c62
�k.d�/

for all sufficiently large k, by (36). Since �k
V is supported by �VE, Lemma 2.2

implies that there is c0 > 0 such that N2�k .�VE/ � c02k.d�/ for all sufficiently

large k, so dimB.�VE/ � d �  , since when finding box-dimensions it is

enough to consider a sequence of scales r D 2�k.k 2 N/. This is true for all

0 < d < d 0 < dim
mC

B E, so dimB.�VE/ � dim
mC

B E �  for all V 2 G.n;m/

except for a set of Hausdorff dimension at most t , giving Theorem 1.3(ii).

The proof of Theorem 1.3(ii) is similar, taking 0 < d < d 0 < dim
mC

B E and

summing over those r D 2�k for which (35) is satisfied. �
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4. Packing dimensions

In this section we show how the results for box-counting dimensions carry over to

the packing dimensions.

Packing measures and dimensions were introduced by Taylor and Tricot [22,

23] as a type of dual to Hausdorff measures and dimensions, see [4, 17] for

more recent expositions. Whilst, analogously to Hausdorff dimensions, packing

dimensions can be defined by first setting up packing measures, an equivalent

definition in terms of upper box dimensions of countable coverings of a set is

often more convenient in practice. Thus for E � R
n we may define the packing

dimension of E by

dimPE D inf
°

sup
1�i<1

dimBEi WE �
1[

iD1

Ei

±
I (38)

since the box dimension of a set equals that of its closure, we can assume that the

sets Ei in (38) are all compact.

It is natural to make an analogous definition of the packing dimension profile

of E � R
n for s > 0 by

dims
PE D inf

°
sup

1�i<1

dim
s

BEi WE �
1[

iD1

Ei with each Ei compact
±
: (39)

With this definition, properties of packing dimension can be deduced from

corresponding properties of upper box dimension. Thus we get an immediate

analogue of Corollary 2.5.

Corollary 4.1. Let E � R
n. If s � n then

dims
PE D dimPE:

With these definitions we can deduce the packing dimension parts (iv) of our

main theorems from the corresponding upper box dimension parts (iii). For this

we need the following ‘localisation’ property.

Proposition 4.2. Let E � R
n be a Borel set such that dims

PE > t . Then there

exists a non-empty compact F � E such that dims
P.F \U/ > t for every open set

U such that F \ U ¤ ;.

Proof. In the special case where E is compact there is a short proof is based on

[2, Lemma 2.8.1]. Let B be a countable basis of open sets that intersect E. Let

F D E n
[ ®

V 2 BW dims
P.E \ V / � t

¯
:
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Then F is compact and, since dims
P is countably stable, dims

P F > t and further-

more dims
P.E n F / � t .

Suppose for a contradiction that U is an open set such that F \ U ¤ ; and

dims
P.F \ U/ � t . As B is a basis of open sets we may find V � U with V 2 B

such that F \ V ¤ ; and dims
P.F \ V / � t . Then

dims
P.E \ V / � max¹dims

P.E n F /; dims
P.F \ V /º � t;

so E\V is disjoint from F by definition of F , which contradicts that F \V ¤ ;.

For a general Borel set E with dims
PE > t we need to find a compact subset

E 0 � E with dims
PE

0 > t which then has a suitable subset as above. Whilst this is

intuitively natural, I am not aware of a simple direct proof from the definition (39)

of packing dimension profiles in terms of box dimension profiles. However the

existence of such a set E 0 is proved in [11] using packing-type measures. In that

paper, measures Ps;d are constructed so that dims
PE D inf¹d WPs;d .E/ < 1º. If

dims
PE > t then P

s;t .E/ D 1 and [11, Theorem 22] gives a construction of a

compact E 0 � E with P
s;t .E 0/ D 1, so that dims

PE
0 > t . The above argument

can then be applied to E 0. �

With the definitions of dimP and dims
P we can transfer the results on projections

and exceptional sets from upper box dimensions to packing dimensions.

Proof of part (iv) of Theorems 1.1, 1.2, and 1.3. If t > dims
PE we may cover

E by a countable collection of compact sets Ei such that dim
s

BEi < t . By

Theorem 1.1(iii), for all V 2 G.n;m/,

dimB�V .Ei / � dim
s

BEi � t;

for all i . Since �V .E/ �
S

i �V .Ei /, dimP �V .E/ � t by (38), so as this holds

for all t > dims
PE, the inequality in Theorem 1.1(iv) follows.

We next derive Theorem 1.2(iv) from Theorem 1.2(iii). Let 0 < s � m and

let t < dims
PE. By Proposition 4.2 we may find a non-empty compact F � E

such that for every open U that intersects F , dims
P.F \ U/ > t , so in particular

dim
s

B.F \ xU/ > t . As Rn is separable, there is a countable basis ¹Uiº1
iD1 of open

sets that intersect F . For each i 2 N let

Wi D ¹V 2 G.n;m/W dimB�V .F \ xU i / < dim
s

B.F \ xU i /º: (40)

By Theorem 1.2(iii) dimHWi � m.n � m/ � .m � s/ for all i , so writing

W D
S1

iD1Wi , it follows that dimHW � m.n �m/ � .m � s/.
Let V … W . If ¹Kj º1

j D1 is any cover of the compact set �V .F / by a countable

collection of compact sets, Baire’s category theorem implies that there is an index
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k and an open set U such that ; ¤ �V .F /\U � �V .F /\Kk. There is some Ui

such that �V .F \ Ui / � �V .F / \ U , so in particular

dimB.�V .F / \Kk/ � dimB.�V .F / \ xU /
� dimB�V .F \ xU i / � dim

s

B.F \ xU i / > t

as V … Wi . Thus dimP �VE � dimP �V F � t if V … W . This is true for all

t < dims
PE, so the conclusion follows from taking a countable sequence of t

increasing to dims
PE.

The derivation of part (iv) of Theorem 1.3 from part (iii) is virtually identical,

except at (40) we take

Wi D
®
V 2 G.n;m/W dimB�V .F \ xU i / < dim

mC

B .F \ xU i / � 
¯
;

and note that dimHWi � m.n �m/ �  for each i .

Finally, n;m-almost sure equality in Theorem 1.1(iv) again follows from

part (iii) by the same argument, this time taking Wi as in (40) with s D m and

noting that n;mWi D 0 so that n;mW D 0. �

5. Inequalities

A number of inequalities are satisfied by the dimension profiles; these were

obtained for packing dimension profiles in[8, Section 6] but their derivation is

more direct using our capacity approach. In particular inequality (42) may be

written in three equivalent ways which give different insights into the behaviour

of the profiles.

Proposition 5.1. Let E � R
n and let d.s/ denote any one of dims

BE; dim
s

BE or

dims
PE. Then for 0 < s � t ,

0 � d.s/ � d.t/ � n; (41)

and
d.t/

1C .1=s � 1=t/d.t/ � d.s/ � s: (42)

If d.s/ > 0 then (42) is equivalent to

0 � 1

d.s/
� 1

s
� 1

d.t/
� 1

t
; (43)

giving the Lipschitz form

d.t/ � d.s/ � d.s/d.t/

st
.t � s/ � t � s: (44)
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Proof. First note that it is enough to prove (41) and (42) for d.s/ D dims
BE

and d.s/ D dim
s

BE. The analogues for d.s/ D dims
PE then follow using the

definition (38) of packing dimension profiles in terms of upper box dimension

profiles. Note also that (43) and (44) come from simple rearrangements of (42).

Inequality (41) is immediate from the definitions since from (3) �s
r .x/ � �t

r.x/

if s � t . For the right-hand side of (42) note thatC s
r .E/

�1 D
R
�s

r .x�y/d�0.y/ �
rs

R
jx�yj�r jx � yj�sd�0.y/ for some x 2 E, where �0 is an energy-minimising

measure on E, and this last integral is bounded away from 0 for small r ; taking

lower or upper limits as r & 0 gives the conclusion for box dimensions.

For the left-hand side of (42) let 0 < r < R, 0 < s < t and d > 0. Then for

� 2 M.E/ and x 2 E, splitting the integral and using Hölder’s inequality,

Z
�s

r .x � y/d�.y/ � �.B.x; R//C
Z

jx�yj>R

� r

jx � yj
�s

d�.y/

D �.B.x; R//C rsR�s

Z

jx�yj>R

� R

jx � yj
�s

d�.y/

� �.B.x; R//C rsR�s

� Z

jx�yj>R

� R

jx � yj
�t

d�.y/

�s=t

�
Z
�t

R.x � y/d�.y/C rsR�s

� Z
�t

R.x � y/d�.y/
�s=t

� Rd

�
R�d

Z
�t

R.x � y/d�.y/
�

C rsRs.d=t�1/

�
R�d

Z
�t

R.x � y/d�.y/
�s=t

:

Setting R D r1=.1C.1=s�1=t/d/ this rearranges to

r�d=.1C.1=s�1=t/d/

Z
�s

r .x � y/d�.y/

� R�d

Z
�t

R.x � y/d�.y/C
�
R�d

Z
�t

R.x � y/d�.y/

�s=t

:

If C t
R.E/ � R�d for some R then by Lemma 2.1 there is a measure

� 2 M.E/ such that the right-hand side of this inequality, and thus the left-hand

side, is at most 2 for �-almost all x, so C s
r .E/ � 1

2
r�d=.1C.1=s�1=t/d/ for the
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corresponding r . Letting R & 0, it follows that

d.s/ � d.t/

1C .1=s � 1=t/d.t/
;

where d.�/ is either the lower or upper dimension profile, which rearranges to (43).

�

Examples show that the inequalities (43) give a complete characterisation of

the dimension profiles that can be attained, see [8, Section 6]. Setting s D m

and t D n in inequalities (42) gives (2) along with similar inequalities for

box dimensions, bounding the dimension profiles of E, and thus the typical

dimensions of its projections, in terms of the dimension of E itself.
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