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Improved bounds

for the dimensions

of planar distance sets

Pablo Shmerkin1

Abstract. We obtain new lower bounds on the Hausdorff dimension of distance sets and

pinned distance sets of planar Borel sets of dimension slightly larger than 1, improving

recent estimates of Keleti and Shmerkin, and of Liu in this regime. In particular, we prove

that if dimH .A/ > 1, then the set of distances spanned by points of A has Hausdorff

dimension at least 40=57 > 0:7 and there are many y 2 A such that the pinned distance set

¹jx �yjW x 2 Aº has Hausdorff dimension at least 29=42 and lower box-counting dimension

at least 40=57. We use the approach and many results from the earlier work of Keleti and

Shmerkin, but incorporate estimates from the recent work of Guth, Iosevich, Ou and Wang

as additional input.
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1. Introduction

Given A � R
d , with d � 2, its distance set is �.A/ D ¹jx � yjW x; y 2 Aº. If

y 2 R
d is given, we also define the pinned distance set �y.A/ D ¹jx �yjW x 2 Aº.

A major open problem in geometric measure theory, introduced by Falconer in [3],

is whether j�.A/j > 0 whenever A is a Borel set with dimH .A/ > d=2 (we

denote Lebesgue measure by j � j and Hausdorff dimension by dimH ). A variant

asks whether, under the same assumptions, j�y.A/j > 0 for some y 2 A. These

problems remain open in all dimensions, but many new partial results have been

achieved very recently [10, 5, 6, 8, 1, 2, 4, 7]. We review only a small selection of

relevant results in the plane.
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All sets are assumed to be Borel. In [6], Keleti and the author proved that if A

is a planar set with dimH .A/ D s 2 .1; 3=2/, then

dimH .�yA/ � 2

3
s (1.1)

outside of a set of y of Hausdorff dimension � 1 (in particular, for nearly all

y 2 A). In [6] we also proved that if dimH .A/ > 1 then

dimH .�A/ � 2=3 C 1=54:

We also established much better bounds for the packing (or upper box-counting)

dimension of �yA, as well as for the Hausdorff dimension of �yA under addi-

tional structural assumptions on A (such as an upper bound on its packing or box

dimension).

Very recently, Guth, Iosevich, Ou and Wang proved in [4] that if A is a planar

set with dimH .A/ > 5=4 then there are many y 2 A such that j�y.A/j > 0. This

improves upon a well-known result of Wolff [11] asserting that if dimH .A/ > 4=3

then j�.A/j > 0. In another recent breakthrough, Liu [8] managed to replace

�.A/ by �y.A/ with y 2 A in Wolff’s Theorem. Guth, Iosevich, Ou and Wang

use Liu’s approach as well as an idea of [6], but also introduce several fundamental

new insights.

Even more recently, Liu [7], building upon the results of [4], proved that if

s 2 .1; 5=4/ and dimH .A/ D s then there are many y 2 A such that

dimH .�yA/ � 4

3
s � 2

3
: (1.2)

This improves upon (1.1) for all s >1. However, if one only assumes dimH .A/>1

(as in Falconer’s original problem), both (1.1) and (1.2) give dimH .�y.A// > 2=3.

This is perhaps a bit curious as both proofs rely on very different methods, and

suggests that improving upon the 2=3 is a natural problem. Here we prove:

Theorem 1.1. Let

�.u/ D 29 C 19u C 6u2 C 8u3 � 8u4

42 � 15u C 30u2 � 12u3
:

If A is a planar Borel set with dimH .A/ D s 2 .1; 1:04/ then there is y 2 A such

that

dimH .�yA/ � �.s � 1/ > 29=42 D 2=3 C 1=42 � 0:6904 : : : :

In fact, the above holds for all y 2 R
2 outside of a set of Hausdorff dimension at

most 1.
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This improves upon Liu’s lower bound (1.2) in the interval .1; 1:037/ (note

also that our exceptional set has Hausdorff dimension at most 1 and so it is

much smaller than A, while the exceptional set in Liu’s approach can be as large

as A in terms of dimension). Theorem 1.1 also improves upon the estimate

dimH .�A/ � 2=3C1=54 for the full distance obtained in [6] under the assumption

dimH .A/ > 1. We are able to obtain a further improvement for the dimension of

the full distance set, which also works for the lower box counting dimension of

the pinned distance set. Even though for upper box dimension or even packing

dimension much better estimates are proved in [6], a lower box dimension bound

provides new information as it says the pinned distance sets is large at all small

scales, as opposed to only infinitely many small scales.

Theorem 1.2. Let

�.u/ D 8.1 C u/.5 � 3u C 4u2/

57 � 30u C 48u2
:

If A is a planar Borel set with dimH .A/ D s 2 .1; 1:06/ then

dimH .�A/ � �.s � 1/ > 40=57 D 2=3 C 2=57 � 0:7017 : : : :

Moreover, if Hs.A/ > 0 then there is y 2 A such that

dimB.�yA/ � �.s � 1/:

The lower bound �.s � 1/ is better than that given by (1.2) for s 2 .1; 1:05�.

We make some brief comments on the proofs. We follow the scheme of [6].

Recall the bound (1.1). Even though this bound is never better than (1.2) for

general sets, the methods of [6] provide better lower bounds in many cases,

depending on the “branching structure” of A. Let s be slightly larger than 1. If

there are arbitrarily small scales r such that at scale r the set A is a union of � r�s

squares of side length r which are � r�s=2-separated, then the methods of [6] do

not give anything better than 2s=3. However, for such well-separated sets, it is not

too hard to see that the results of [4] give a lower bound dimH .�y.A// > 4=5 for

many y 2 A (this is related to the exponent 4=5 for discretized well separated sets

in [4, Corollary 1.5]). In [6] we proved a structural result saying, roughly, that if

dimH .�y.A// � 2s=3 C � then A resembles one of these well-separated sets in a

rather technical but quantitative fashion.

The main idea of this paper is to show that the results of [4] still give a lower

bound 4=5 � h.�/ for the dimension of the (pinned) distance set of A under the

structural information on A derived from dimH .�y.A// � 2s=3 C �. A similar

idea was already used in the proof of the bound dimH .�.A// � 2=3C1=54 in [6];
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there the estimates of Wolff [11] were used as additional input. The additional

gains in this paper follow from using more powerful quantitative estimates that

we extract from [4].

Interestingly, both [6] and [4] rely crucially on a spherical projection theorem

of Orponen, [9, Theorem 1.11]. Hence the proofs of Theorems 1.1 and 1.2 use

this theorem twice in rather different (although related) forms. It is because of the

use of this projection theorem that we need to assume that dimH .A/ > 1 and we

get no results when dimH .A/ D 1.

We set up notational conventions in Section 2. In Sections 3 and 4 we review

various results from [6], while in Section 5 we recall several estimates from [4]

and deduce some useful consequences. Finally, we complete the proofs of Theo-

rems 1.1 and 1.2 in Section 6.

2. Notation

We use Landau’s O.�/ notation: given X > 0, O.X/ denotes a positive quantity

bounded above by CX for some constant C > 0. If C is allowed to depend on some

other parameters, these are denoted by subscripts. We sometimes write X . Y in

place of X D O.Y / and likewise with subscripts. We write X & Y , X � Y to

denote Y . X , X . Y . X respectively.

Throughout the rest of the paper, and according to the setup of [6], we work

with three parameters that we assume fixed: a large integer T and small positive

numbers "; � . The parameter T indicates the scale we work with: we will de-

compose sets and measures in the base 2T . In particular, we will work with sets

and measures that have a regular tree (or Cantor) structure when represented in

this base: see Definition 3.1. The parameter � arises in the set of bad projections

from [6] and we do not deal with it directly. Finally, " will denote a generic small

parameter; it can play different roles at different places.

We will use the notation oT;";� .1/ D oT !1;"!0C;�!0C.1/ to denote any

function f .T; "; �/ such that

f .T; "; �/ � 0 and lim
T !1

"!0C

�!0C

f .T; "; �/ D 0:

If a particular instance of o.1/ is independent of some of the variables, we drop

these variables from the notation. Difference instances of the o.1/ notation may

refer to different functions of T; "; � , and they may depend on each other, so long

as they can always be made arbitrarily small.



Pinned distance sets 31

We will often work at a scale 2�T `; it is useful to think that ` ! 1 while

T; "; � remain fixed.

The family of Borel probability measures on a metric space X is denoted

by P.X/. If 0 < �.A/ < 1, then �A denotes the normalized restriction

�.A/�1�jA 2 P.A/. If f W X ! Y is a Borel map, then by f� we denote the

push-forward measure, i.e. f�.A/ D �.f �1A/.

We let Dj be the half-open 2�jT -dyadic cubes in R
d (where d is understood

from context), and let Dj .x/ be the only cube in Dj containing x 2 R
d . Given

a measure � 2 P.Rd /, we also let Dj .�/ be the cubes in Dj with positive �-

measure. Note that these families depend on T . Given A � R
d , we also denote

by N.A; `/ the number of cubes in D` that intersect A.

A 2�m-measure is a measure in P.Œ0; 1/d / such that the restriction to any

2�m-dyadic cube Q is a multiple of Lebesgue measure on Q, i.e. a measure

defined down to resolution 2�m. Likewise, a 2�m-set is a union of 2�m dyadic

cubes. If � 2 P.Rd / is an arbitrary measure, then we denote

R`.�/ D
X

Q2D`

�.Q/LebQ;

that is, R`.�/ is the 2�T `-measure that agrees with � on all dyadic cubes of side

length 2�T `. We also define the corresponding analog for sets: given A � R
d ,

R`.A/ denotes the union of all cubes in D` that intersect A.

We will sometimes need to deal with supports in the dyadic metric, i.e. given

� 2 P.Œ0; 1/d / we let

supp
d
.�/ D ¹xW �.Dj .x// > 0 for all j 2 Nº:

Note that �.supp
d
.�// D 1 and that supp

d
.�/ � supp.�/.

If a measure � 2 P.Rd / has a density in Lp, then its density is sometimes also

denoted by �, and in particular k�kLp stands for the Lp norm of its density.

Logarithms are always to base 2.

3. The Keleti–Shmerkin framework

In this section we recall several concepts and results from [6].

3.1. Regular measures and energy. Following [6], we decompose a 2�T `-mea-

sure in terms of measures which have a uniform tree structure when represented

in base 2T . This notion is made precise in the next definition.
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Definition 3.1. Given a sequence � D .�1; : : : ; �`/ 2 R
`, we say that � 2

P.Œ0; 1/d / is �-regular if it is a 2�T `-measure, and for any Q 2 Dj .�/, 1 � j � `,

we have

�.Q/ � 2�T .�j C1/�. yQ/ � 2�.Q/;

where yQ is the only cube in Dj �1 containing Q.

The exponent T .�j C 1/ is a convenient normalization. The key point in this

definition is that a measure is �-regular if all cubes of positive mass have roughly

the same mass, and the sequence .�j / quantifies this common mass. We have the

following easy estimate for the mass decay of regular measures.

Lemma 3.2. Suppose � 2 P.Œ0; 1/2/ is .�1; : : : ; �`/-regular and

j
X

iD1

.˛ � �i / � K j D 1; : : : ; `:

Then

�.B.x; r// .T 2KT r1C˛ for all x 2 R
2; r 2 .2�T `; 1�:

Proof. Let Q 2 Dj .�/. By definition of regularity and the assumption

�.Q/ � 2�T .�1C���C�j Cj / � 2KT 2�.1C˛/jT :

Since we can cover a ball B.x; r/ by OT .1/ squares Q 2 Dj with 2�jT � r , the

claim follows. �

The decomposition we referred to above is detailed in the next proposition; see

[6, Corollary 3.5] for the proof.

Proposition 3.3. Fix ` � 1, write m D T `, and let � be a 2�m-measure

on Œ0; 1/2. There exists a family of pairwise disjoint 2�m-sets X1; : : : ; XN with

Xi � supp
d
.�/, and such that

(i) �
�
SN

iD1 Xi

�

� 1 � 2�"m. In particular, if �.A/ > 2�"m, then there exists i

such that �Xi
.A/ � �.A/ � 2�"m;

(ii) �.Xi/ � 2�."Clog.2dT C2/=T /m � 2�oT;".1/m for each i ;

(iii) each �Xi
is �.i/-regular for some �.i/ 2 Œ�1; 1�`.

Recall that the s-energy of � 2 P.Rd / is

Es.�/ D
“

d�.x/d�.y/

jx � yjs :
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Energies play an important rôle in all known approaches to the Falconer distance

set problem, and also in this paper. The following bound for the s-energy of regular

measures is proved in [6, Lemma 3.3].

Lemma 3.4. If � 2 P.Œ0; 1/d / is �-regular for some � 2 R
` and s 2 .0; d/, then

ˇ

ˇ

ˇ logEs.�/ �
�

T
`

max
j D1

j
X

iD1

.s � 1/ � �j

�ˇ

ˇ

ˇ � O.`/ C Od;s;T .1/:

3.2. Box-counting estimates for pinned distance sets. The goal of this section

is to combine several results from [6] to obtain a box-counting estimate for sets

�y.A/ in terms of certain combinatorial information about a Frostman measure

� supported on A.

We recall several definitions from [6, Section 4]. They will not be directly used

in this paper, but we include them for completeness.

Definition 3.5. Given L 2 N, a good partition of .0; L� is an integer sequence

0 D N0 < � � � < Nq D L such that Nj C1 � Nj � Nj C 1. If additionally

�Nj � Nj C1 � Nj � Nj C 1 (3.1)

then .Ni / is said to be a �-good partition.

Given a finite sequence .�1; : : : ; �L/ 2 R
L, let

S.�/ D �
L

min
j D0

�1 C � � � C �j � 0:

For any good partition P D .Nj /
q
j D0 of .0; L� and any � 2 R

L, we denote

M.�;P/ D
q�1
X

j D0

S.� j.Nj ; Nj C1�/;

where � jI denotes the restriction of the sequence � to the interval I . Finally, given

� 2 R
L and � 2 .0; 1/, we let

M� .�/ D min¹M.�;P/WP is a �-good partition of .0; L�º:

We write �y.x/ D jx � yj for the pinned distance map. Recall that oT;".1/

denotes a function of T and " which tends to 0 as T ! 1; " ! 0C, and that

N.B; `/ is the box-counting number of B at scale 2�T `.
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Proposition 3.6. Let �; � 2 P.Œ0; 1/2/ have disjoint supports and satisfy Es.�/;

Eu.�/ < 1 for some s 2 .0; 2/; u > max.1; 2 � s/. There exists a set

G � supp � � supp �

with .� � �/.G/ � 2=3 such that the following holds for `0 sufficiently large in

terms of �; �; T; ".

Suppose ` � `0. Let � D �Xi
, where Xi is one of the sets given by Proposi-

tion 3.3 applied to R`�. If y 2 supp.�/ and A � supp.R`�/ satisfy

A � R`¹xW .x; y/ 2 Gº and �.A/ � `�2=2;

then
logN.�yA; `/

T `
� 1 � M� .�/

`
� oT;";�.1/:

Proof. The proof uses the sets of bad projections defined in [6, §3.2]. We do not

repeat the definitions here, but recall from [6, Lemma 3.10] that

j Bad00

`0
.�; x/j .T;";� 2�"0`0

for all x 2 suppd.�/, where "0 D "0.T; "; �/ > 0.

Now let � D �.�; �/ > 0 be the number given in [6, Proposition 3.12] (this

is where the assumptions on � and � get used; Orponen’s spherical projection

theorem plays a crucial rôle here). By taking `0 large enough we may assume that

j Bad00

`0
.�; x/j � �

for all x 2 supp
d
.�/. It follows from [6, Proposition 3.12] that .� � �/.G/ � 2=3,

where

G D ¹.x; y/W Py.x/ 62 Bad00

`0
.�; x/º:

Now let y and A be as in the statement. Then for all x 2 A there is Qx 2 D`.x/

such that . Qx; y/ 2 G and therefore

Py. Qx/ … Bad00

`0
.�; Qx/: (3.2)

According to the definition of the sets Bad0

`0 `.R`�; x/ and Bad00

`0
.�; x/ in [6,

Eqs. (3.3) and (3.4)], we have Py. Qx/ … Bad0

"` `.R`�; Qx/ D Bad"` `.�; Qx/.

The hypotheses of [6, Proposition 4.4] are met by � and A, with ˇ D ". If `0 is

taken large enough in terms of T; "; � we can make the error term in the proposition

equal to oT;".1/. The claim follows from an application of [6, Proposition 4.4]. �
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4. Combinatorics of 1-Lipschitz functions

We next recall some results from [6] that will help us deal with the numbers

M� .�/ from the last section. It turns out to be convenient to work with 1-Lipschitz

functions instead of Œ�1; 1�-sequences; see Lemma 4.6 at the end of this section

for the connection between functions and sequences. The following provides an

analog to Definition 3.5 for Lipschitz functions (we will not directly use this

definition).

Definition 4.1. A sequence .an/1
nD0 is a partition of the interval Œ0; a� if a D a0 >

a1 > � � � > 0 and an ! 0; it is a good partition if we also have ak�1=ak � 2 for

every k � 1.

Let f W Œ0; a� ! R be continuous and .an/ be a partition of Œ0; a�. By the total

drop of f according to .an/ we mean

T.f; .an// D
1

X

nD1

f .an/ � min
Œan;an�1�

f;

and we also introduce the notation

T.f / D inf¹T.f; .an//W .an/ is a good partition of Œ0; a�º;

Although we will not use it directly, we recall [6, Proposition 5.2] (or rather

the special case in which a D 1 and C D 1).

Proposition 4.2. Let u 2 Œ0; 1=2� be a parameter. Let f W Œ0; 1� ! R be a 1-Lip-

schitz function such that f .x/ � ux for every x 2 Œ0; 1�. Then

T.f / � 1 � 2u

3
:

This proposition is sharp: if

f .x/ D
´

x if x 2 Œ0; .u C 1/=2�;

1 C u � x if x 2 Œ.u C 1/=2; 1�;

then T.f / D .1 � 2u/=3. This estimate leads to the bound dimH .�y.A// � 2s=3

for some y 2 A if dimH .A/ D s > 1. In order to improve upon this, we need

another result from [6] that asserts that if T.f / is close to .1 � 2u/=3 then f is

close to the above example in a quantitative way.
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Proposition 4.3. Fix u 2 Œ0; 1=3�, � 2 .0; 1=21� and let f W Œ0; 1� ! R be a 1-

Lipschitz function such that f .0/ D 0, f .x/ � ux on Œ0; 1� and T.f / > 1�2u
3

� �.

Let

t1 D 1 C u

3
� �

� 1 C u

1 � 2u
� .1 � u/

�

: (4.1)

Then

f .x/ �

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

ux on Œ0; 3��;

x � 3�.1 � u/ on Œ3�; t1�;

t1 � 3�.1 � u/ on Œt1; 2t1 � 6�.1 � u/�;

3t1 � 9�.1 � u/ � x on Œ2t1 � 6�.1 � u/; 2t1 � 3�.1 � u/�;

x � t1 � 3�.1 � u/ on Œ2t1 � 3�.1 � u/; 2t1�;

3t1 � x � 3�.1 � u/ on Œ2t1; 1�:

Proof. It is proved in [6, Proposition 5.15] that under our assumptions

f .x/ �

8

ˆ

ˆ

<

ˆ

ˆ

:

x � 3�.1 � u/ on Œ0; t1�;

t1 � 3�.1 � u/ on Œt1; 2t1 � 6�.1 � u/�;

3t1 � x � 3�.1 � u/ on Œ2t1; 1�:

Using the assumption f .x/ � ux, Proposition 4.3 and the 1-Lipschitz property

of f , we get the estimates on the remaining intervals. �

The following corollary will be used in the proof of Theorem 1.1. Its deduction

from Proposition 4.3 is very similar to the proof of [6, Corollary 5.17]. The value

of � in the corollary may appear strange at this point; the value is chosen so

that (6.1) holds, and in turn this ensures that two lower bounds on the dimension

of the pinned distance set match.

Corollary 4.4. Fix u 2 Œ0; 1=25�. Let f W Œ0; 1� ! R be a 1-Lipschitz function such

that f .0/ D 0 and f .x/ � ux for all x 2 Œ0; 1�. Let

� D 1 C u � 4u2 � 4u3

42 � 15u C 33u2 � 21u3 C 6u4
D �.u/ � 2.1 C u/

3
;

� D 3.1 � u � 2u2 � �.2 C 7u � 5u2 C 2u3//

.4 � u/.1 � 2u/
2 .2=3; 1/:

Then either T.f / � .1 � 2u/=3 � � or

f .x/ � 1 � u

3
x � .1 � 2u/� on Œ0; ��:
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Proof. Assume T.f / > .1�2u/=3��. By Proposition 4.3, and comparing slopes,

it is enough to prove the desired inequality at x D 3�; x D 2t1 � 3�.1 � u/ and

x D �, where t1 is given by (4.1). Recalling that u 2 Œ0; 1=25� we can check that

� < 1=40, which in turn gives t1 � 1=3. We can also see that � > 2t1. Using

Proposition 4.3 we can then verify that, indeed,

f .3�/ � 3�u D 1 � u

3
.3�/ � .1 � 2u/�;

f .2t1 � 3�.1 � u// � t1 � 6�.1 � u/ >
1 � u

3
.2t1 � 3�.1 � u// � .1 � 2u/�;

f .�/ � 3t1 � � � 3�.1 � u/ D 1 � u

3
� � .1 � 2u/�:

(In fact � was defined so that the last equality is satisfied.) �

The following variant, which will be used to prove Theorem 1.2, has a nearly

identical proof. Here the value of � is chosen so that (6.6) below holds.

Corollary 4.5. Fix u 2 Œ0; 0:06�. Let f W Œ0; 1� ! R be a 1-Lipschitz function such

that f .0/ D 0 and f .x/ � ux for all x 2 Œ0; 1�. Let

� D 2.1 C u/.1 � 2u/

57 � 30u C 48u2
D �.u/ � 2.1 C u/

3
;

� D 4 � 4u � 8u2 � �.9 C 30u � 24u2/

5.1 � 2u/
:

Then either T.f / � .1 � 2u/=3 � � or

f .x/ � x � 3.1 � 4u/�

4
on Œ0; ��:

Proof. Assume T.f / > .1 � 2u/=3 � �. Applying Proposition 4.3 as in the

previous corollary it is enough to check the claimed inequality for x D 3�; x D
2t1 � 3�.1 � u/ and x D �. Using that u 2 Œ0; 0:06� we get � < 1=29 and t1 > 1=3.

Using this and Proposition 4.3,

f .3�/ � 3�u D 3� � 3.1 � 4u/�

4
;

f .2t1 � 3�.1 � u// � t1 � 6�.1 � u/ >
2t1 � 3�.1 � u/ � 3.1 � 4u/�

4
;

f .�/ � 3t1 � � � 3�.1 � u/ D � � 3.1 � 4u/�

4
�;

where again � was defined precisely so that the last equality is satisfied. �
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We conclude this section with a lemma that will help us translate the results

for Lipschitz functions to results for Œ�1; 1�-sequences; it is the special case of [6,

Lemma 5.22] in which L D `.

Lemma 4.6. Let 
; � 2 Œ�1; 1�, � 2 .0; 1=2/, � 2 .0; 1/ and let � 2 Œ�1; 1�` satisfy


j � �` � �1 C � � � C �j � �j C �` .1 � j � `/:

Then there exists a piecewise linear 1-Lipschitz function f W Œ0; 1� ! R such

that

f .j=`/ D 1

`
.�1 C � � � C �j / if

p

�` � j � `;(a)

.
 �
p

�/x � f .x/ � .� C
p

�/x on Œ0; 1�(b)

and
1

`
M� .�/ � T.f / C 2

p

� C 144� C O� .log `=`/:(c)

5. The Guth-Iosevich-Ou-Wang estimates and some consequences

Let �; � 2 P.Œ0; 1/2/. We want to estimate the dimension of �y.supp.�// for

�-typical y or, rather, discretized versions of this, under suitable assumptions on

� and �. A key innovation of Guth, Iosevich, Ou and Wang [4] is a decomposition

� D �good C �bad where �y�bad has small mass, and �y�good has small L2

norm, in both cases for y in a set of large �-measure. For simplicity, we will

denote Q� D �good (note also that what we denote by � and � are denoted �1; �2

in [4]).

When � is a general probability measure, Q� is a complex-valued distribution

(in fact a complex-valued measure). We will apply the results of [4] in the case in

which � is a 2�T `-measure, and in this case Q� can be seen as a (complex-valued)

absolutely continuous measure. The following quantitative estimates are implic-

itly proved in the course of the proofs of [4, Proposition 2.1 and Proposition 2.2].

Theorem 5.1 ([4]). Suppose �; � 2 P.Œ0; 1/2/ satisfy

Es0
.�/ � K�;s0

;

Es0
.�/ � K�;s0

;

�.B.x; r// � zK�;s1
rs1 for all x 2 R; r > 0;

for some s0; s1 > 1. Assume also that � has a bounded density and

dist.supp.�/; supp.�// & 1:
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Then for all large R and small ı > 0 there is a function Q�WR2 ! C such that the

following holds:

(1) there is a set B with �.B/ � 1 � R�ı=O.1/ such that

Z

j�y�.t/ � �y Q�.t/j dt .ı .K�;s0
K�;s0

/1=2R�ı=O.1/

for each y 2 B;

(2) one has

Z

k�y Q�k2
2 d�.y/ .ı

zK1=3
�;s1

RO.1/
E.5�s1CO.ı//=3.�/:

The implicit constants may depend on the distance between supp.�/ and supp.�/

as well as s0 and s1.

Proof. We indicate how to deduce these estimates by following the proofs of [4,

Propositions 2.1 and 2.2]. In that paper s0 D s1 and the Frostman constants of �

and � (essentially our K’s) remain fixed so the authors do not pay explicit attention

to how other quantities depend on them; however, it is not hard to track the exact

dependencies. Likewise, R0 (our R) and ı in [4] are respectively large and small

but ultimately fixed, while we need explicit estimates in terms of these parameters,

which again are not hard to extract from the proofs of [4].

We start by noting that in the proofs of [4, Propositions 2.1 and 2.2] the values

of R and ı and therefore the measure Q� are the same, but otherwise the proofs are

independent from each other. In particular, we are allowed to consider different

exponents s0; s1 in each proof. Also, while [4, Proposition 2.2] has an assumption

s1 > 5=4 (in our notation), this is not used in the proof until the very end; for our

estimates to be valid in fact s1 > 0 is enough (on the other hand, s0 > 1 is key as

we will see shortly).

In the proof of [4, Lemma 3.6], the last line of the proof shows that the implicit

constant in the statement is given by

O.1/

Z

kPy�kLp d�.y/;

where Py denotes spherical projection with center y and p D p.s0/ > 1. The fact

that this integral is finite under our assumptions was proved by Orponen in [9,

Theorem 1.11]. In fact, Orponen provides a quantitative estimate in [9, eq. (3.6)]:

Z

kPy�kp
Lp d�.y/ . Es0

.�/1=.2p/
Es0

.�/1=2:
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Hence the implicit constant in [4, Lemma 3.6] is Os0
.1/.K�;s0

K�;s0
/1=2. The

first claim follows by inspecting the proof of [4, Proposition 2.1] assuming [4,

Lemma 3.6].

We turn to the second part. Looking at [4, eq. (5.1) and following display],

we see that the claim will follow by establishing that " D O.ı/, the constant

C.R/ D RO.1/, and the implicit constant in [4, Proposition 5.3] is O.K
1=3
�;s1

/ . The

first two facts can be easily read off the proof of [4, Proposition 5.3]; in particular

see the last line of the proof for the value of C.R/.

In the proof of [4, Proposition 5.3] , the Frostman condition on � is used at

a single point: to estimate k� � �1=rkL1 . r2�s1 where r is large and �1=r is

a mollifier (recall that �2 and ˛ in [4] are our � and s1). The explicit bound

is k� � �1=rkL1 . zK�;s1
r2�s1 . Following through with the proof, we see that

the factor that appears in the final estimate is actually k� � �1=rk1=3
L1 , and so one

ultimately gets an additional factor zK1=3
�;s1

. �

The following corollary of Theorem 5.1 is deduced in essentially the same way

as in the proof of [4, Theorem 1.2] from [4, Propositions 3.1 and 3.2].

Corollary 5.2. Under the same assumptions of Theorem 5.1, the following holds:

if C1 D C1.ı/ and C2 are sufficiently large, then there exists a set B with

�.B/ > 1 � R�ı=C2

such that if y 2 B and A is any set satisfying

�.A/ > C1.K�;s0
K�;s0

/1=2R�ı=C2 ;

then

j�y.A/j�1 � �.A/�2 zK1=3
�;s1

RC2 E.5�s1CC2ı/=3.�/:

Proof. By the first part of Theorem 5.1, �.B 0/ � 1 � R�ı=C2 , where

B 0 D
²

yW
Z

j�y�.t/ � �y Q�.t/jdt � 1

2
C1.K�;s0

K�;s1
/1=2R�ı=C2

³

;

and C1 and C2 as in the statement. On the other hand, for each y 2 B 0

�.A/ �
Z

�y .A/

�y�.t/ dt

�
Z

�y .A/

j�y�.t/ � �y Q�.t/j dt C
Z

�y.A/

j�y Q�.t/j dt
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� 1

2
�.A/ C

Z

�y.A/

j�y Q�.t/j;

using the assumption on �.A/ in the last line. Using Cauchy-Schwarz, we deduce

�.A/2=4 �
� Z

�y.A/

j�y Q�.t/jdt

�2

� j�y.A/jk�y Q�k2
L2

for all y 2 B 0. By the second part of Theorem 5.1 and Markov’s inequality,

�.B 00/ > 1 � R�1, where

B 00 D ¹yW k�y Q�k2
L2 � zK1=3

�;s1
RO.1/

E.5�s1CO.ı//=3.�/º:

The claim follows by taking B D B 0 \ B 00. �

The following result is a further corollary of Theorem 5.1 that is well suited to

the proof of Theorem 1.1.

Proposition 5.3. Let s; s1 > 1. Suppose � 2 P.Œ0; 1/2/ satisfies

�.B.x; r// � C rs1 for all x 2 R; r > 0:

Let also � 2 P.Œ0; 1/2/ and assume that for each x 2 supp
d
.�/ and for each

sufficiently large ` we are given a 2�T `-measure �x;` such that

Es.�x;`/ � 2oT;".1/T `

and

dist.supp.�/; supp.�x;`// & 1:

If `0 is large enough (in terms of T; "), then there exists a set G � supp.�/ �
supp.�/ with .� � �/.G/ � 9=10 such that for .x; y/ 2 G the following holds: if

` � `0 and �x;`.F / > `�2=5 for some 2�T `-set F , then

j�y.F /j > 2�oT;".1/T `=E.5�s/=3.�x;`/:

Proof. Fix x and ` for the time being and write � D �x;` for simplicity. We

are in the setting of Corollary 5.2 applied to � (in place of �) and �, with

s0 2 .1; min.s; s1//, K�;s0
D O.1/2oT;".1/T `, and K�;s0

D zK�;s D O.1/. Here

we are using that a Frostman condition with exponent s1 implies (quantitative)

finiteness of the energy for s0 < s1.

We can then fix ı D oT;".1/ and R D 2oT;".1/T ` in such a way that

`�2=5 > C1.K�;s0
K�;s0

/1=2R�ı=C2 and R�ı=C2 � 2�T `=OT;".1/:
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Let Bx;` D R`B , where B is the set given by Corollary 5.2 applied with these

parameters. Then

�.Bx;`/ � 1 � 2�T `=OT;".1/:

Moreover, if y 2 Bx;` and F is a 2�T `-set with �x;`.F / � `�2=2, then

j�y.F /j � 2�oT;".1/T `=E.5�sCoT;".1//=3.�x;`/

& 2�oT;".1/T `=E.5�s/=3.�x;`/;

using Lemma 3.4 and the fact that �x;` is a 2�T `-measure. Here we are using that

for a 2�m-set F , if jy � y0j � 2�m then j�y.F /j � O.1/j�y0.F /j.
Setting B`0

.x/ D \`�`0
Bx;`, we have that �.B`0

.x// � 9=10 for all x 2
supp

d
.�/, again provided `0 is large enough. The set G D ¹.x; y/W y 2 B`0

.x/º
has the desired properties. �

6. Proofs of main theorems

6.1. Proof of Theorem 1.1. In this section we prove Theorem 1.1. We fix

s 2 .1; 1:04/ for the rest of the proof; all implicit constants may depend on it. Since

� is continuous, it is enough to prove the desired conclusion under the assumption

dimH .A/ > s (rather than dimH .A/ D s).

Let u D s � 1, and let � and � be the numbers given by Corollary 4.4 for

this value of u. We let � D �.u/ where � is the function in the statement of the

theorem. We note the identity

� D � � .1 � 2u/� D 2.1 C u/

3
C �: (6.1)

Indeed, � and then � were defined precisely so that this holds.

Recall that oT;";�.1/ stands for a function of T; "; � which tends to 0 as T ! 1
and "; � ! 0C. We will henceforth assume that T; "; � are given, and that the

integer `0 is chosen large enough in terms of T; "; � that any required bounds on

`0 to hold.

It is enough to show that if �; � 2 P.Œ0; 1/2/ have disjoint supports and satisfy

Frostman conditions

�.B.x; r// . rs0 ;

�.B.x; r// . rs;

for some s0 > 1, then there is y 2 supp.�/ (possibly depending on T; "; �) such

that

dimH .�y.supp.�/// � � � oT;";�.1/:
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See e.g. [6, Proof of Theorem 1.2] for details on this standard reduction. The

measures �; � are fixed for the rest of the proof and any implicit constants may

depend on them.

Let G0 � supp � � supp � be the set G given by Proposition 3.6. In particular,

.� � �/.G0/ > 2=3.

Given ` � `0 let `0 D b�`c. We consider, for each `, the decomposition .X`;i /

given by Proposition 3.3 applied to R`�. We denote �`;i D .R`�/X`;i
and, for

x 2 X`;i , we write

�0

x;`0 D R`0�`;i :

(If x … [iX`;i , we define �0

x;`0 D � for completeness). Note that if �`;i is �-

regular, then R`0�`;i is .�1; : : : ; �`0/-regular. Using (ii) in Proposition 3.3,

�0

x;`0.B.y; r// . �`;i .B.y; r// . 2oT;".1/T `�.B.y; r// . 2oT;".1/T `rs:

Since supp �0

x;`0 is contained in the O.2�`0

/-neighborhood of supp �, we also have

dist.supp �; supp �0

x;`0/ & 1:

We have checked the assumptions of Proposition 5.3 for � and ¹�0

x;`0º (in fact,

` ! `0 is not a bijection; to remedy this we can for example restrict our attention

to a subset of ` on which it is). Let G00 � supp � � supp � be the set given the

proposition.

Define G D G0\G00. Then .���/.G/ > 1=2. We henceforth fix a point y with

�.A1/ > 1=2 for the rest of the proof, where A1 D ¹xW .x; y/ 2 Gº � supp.�/.

Our goal is to show that

dimH .�yA1/ � � � oT;";�.1/;

which will clearly imply the statement.

In turn, by a standard dyadic pigeonholing argument (see e.g. [6, Lemma 6.2]

or [7, Lemma 3.1]), it is enough to show that if A2 � A1 satisfies �A1
.A2/ � `�2

and ` is large enough, then

logN.�yA2; `/ � .� � oT;";� .1//T `: (6.2)

Since the set �y.R`A2/ is contained in the .
p

2�2�T `/-neighborhood of �yA2,

the numbers logN.�yA2; `/ and logN.�yR`A2; `/ differ by at most a constant.

We can then assume that A2 is a 2�T `-set. Moreover, replacing A2 by A2\R`.A1/,

we may assume that A2 � R`.A1/.

Consider again the sets .X`;i / given by Proposition 3.3 applied to R`�. Using

the first part of the proposition with A D A2, and that

2�"T ` � 1
2
`�2 � �.A1/�A1

.A2/ D �.A2/ D R`�.A2/
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for large enough `, we get that there is some i such that, setting X D X`;i and

� D �`;i D .R`�/X ,

(i) �.A2/ � `�2=3,

(ii) R`�.X/ � 2�oT;".1/T ` and therefore

Es.�/ � R`�.X/�2
Es.R`�/ .T 2oT;".1/T `

Es.�/ . 2oT;".1/T `;

(iii) � is �-regular for some sequence � D .�1; : : : ; �`/, �j 2 Œ�1; 1�,

(iv) X is contained in R` supp
d
.�/.

Recall that G � G0 where G0 is the set from Proposition 3.6. Note that � and

A2 satisfy the assumptions of the proposition, so (assuming " > 0 is small enough

to ensure separation) we get that

logN.�yA2; `/ �
�

1 � M� .�/

`
� oT;";� .1/

�

T `: (6.3)

Denote �0 D �0

x;`
D R`0�. Using the fact that the set G � G00 was defined so that

Proposition 5.3 holds, we also have that

log j�y.A2/j � � log.E.5�s/=3.�0// � oT;".1/T `0

and therefore

logN.�yA2; `/ � logN.�yA2; `0/ � .1�oT;".1//T `0 � log.E.5�s/=3.�0//: (6.4)

From the results of [6] it follows the right-hand side of (6.3) is at least
�

2s
3

� oT;".1/
�

T `. The idea is to show that if that right-hand side is too close

to 2s
3

T `, then one gets an improvement using (6.4).

By Lemma 3.4 and (ii), (iii) above, and assuming that `0 was taken large

enough in terms of T , we have

j
X

iD1

�i � .s � 1/j � `oT;".1/ .j D 1; : : : ; `/:

Lemma 4.6 applies to give a 1-Lipschitz function f W Œ0; 1� ! R with

(a) f .j=`/ D 1
`
.�1 C � � � C �j / for j 2 ŒoT;".1/`; `�,

(b) f .x/ � .s � 1 � oT;".1//x,

(c) 1
`
M� .�/ � T.f / C oT;";� .1/.
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Suppose first that T.f / � 1 � � C 2oT;".1/=3, where this particular instance of

oT;".1/ is the one from (b). Then (6.3) and (c) immediately yield (6.2).

Hence from now on we assume that

T.f / > 1 � � C 2oT;"

3
D 1 � 2.u � oT;".1//

3
� �;

using the identity (6.1). Thanks to (b) above, we can apply Corollary 4.4 with

u � oT;".1/ in place of u. Since � and � are smooth functions of u, we deduce that

f .x/ � 1 C u

3
x � .1 � 2u/� � oT;".1/ on Œ0; ��:

Using (a) above, this implies that

j
X

iD1

1 C u

3
� �i � `..1 � 2u/� C oT;".1//; j D 1; : : : ; `0:

By Lemma 3.4, this says that �0, which we recall is a .�1; : : : ; �`0/-regular measure,

satisfies

logE.4�u/=3.�0/ � T `..1 � 2u/� C oT;".1//:

In light of (6.4), and recalling that `0 D b�`c and the identity (6.1), we also get (6.2)

in this case, and this completes the proof of Theorem 1.1.

6.2. Proof of Theorem 1.2 (Hausdorff dimension part). Now we begin the

proof of Theorem 1.2. As before, we assume that dimH .A/ > s and we aim to

prove that

dimH .�.A// � �.s � 1/: (6.5)

In the next section we indicate how to get the statement about box dimension of

pinned distance sets.

We henceforth fix u D s � 1, � D �.u/ and let �; � be the values given by

Corollary 4.5. We note the identities

� D � � .1 � 4u/� D 2.u C 1/

3
C �: (6.6)

Again, � and then � were defined precisely so that this holds.

As usual fix T � 1; "; � � 1. It is enough to consider the case in which

A � Œ0; 1/2. Let �1; �2 2 P.Œ0; 1/2/ be measures supported on A such that

Es.�1/;Es.�2/ < 1, and their supports are at distance & 1. Any implicit

constants arising in the proof may depend on �1, �2 and s.

Let G1; G2 � supp �1 � supp �2 be the sets given by Proposition 3.6 applied

to � D �1 and � D �2 and to � D �2 and � D �1 respectively (in the second case
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we swap the coordinates to get a subset of supp �1�supp �2). We set G D G1\G2

and note that .�1 � �2/.G/ > 1=3.

Write �.x; y/ D jx � yj be the distance map. Our goal is to show that

dimH .�.G// � � � oT;";� .1/:

Since �.G/ � �.A�A/, this will establish the Hausdorff dimension bound (6.5).

In turn, by the standard pigeonholing argument, in order to complete the proof it

is enough to prove the following claim.

Claim. Let � D �1 � �2. The following holds if ` is large enough in terms of

�1; �2; s; T; "; � : if H is a Borel subset of Œ0; 1/2 � Œ0; 1/2 such that �G.H/ > `�2,

then

logN.�.H/; `/ � T `.� � oT;";�.1//:

We will in fact prove the following stronger fact: there is z such that

logN.¹jx � zjW .x; z/ 2 H or .z; x/ 2 H º; `/ � T `.� � oT;";�.1//: (6.7)

We may assume also that H is a 2�T `-set, since proving (6.7) for R`H also proves

it for H . We also assume that H � R`G. Note that R`�.H/ D �.H/ D
�G.H/�.G/ > `�2=3.

We denote the decompositions given by Proposition 3.3 applied to R`�j by

.Xj;`;k/, and set �j;`;k D .R`�j /Xj;`;k
. Write

�k1;k2
D R`�1.X1;`;k1

/R`�2.X2;`;k1
/;

and note that

.R`�1 � R`�2/.H/ �
X

k1;k2

�k1;k2
.�1;`;k1

� �2;`;k2
/.H/ � 2 � 2�"T `; (6.8)

so we can fix k1; k2 such that �j D �j;`;kj
satisfy

.�1 � �2/.H/ � `�2=4: (6.9)

We can find yj 2 supp.�j / and sets Aj � supp.�j / such that �j .Aj / � `�2=4 and

.x1; y2/; .x2; y1/ 2 H � R`.G/ for all xj 2 Aj

Let � .j / 2 Œ�1; 1�` be the sequences such that �j is � .j /-regular. Using Lemma 3.4

and the fact that the sets Xj;`;kj
are obtained from Proposition 3.3, we have

k
X

iD1

�
.j /
i � .s � 1/k � `oT;".1/ .k D 1; : : : ; `/:
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We apply Lemma 4.6 to obtain 1-Lipschitz functions f1; f2W Œ0; 1� ! R with

(a) fj .k=`/ D 1
`
.�

.j /
1 C � � � C �

.j /

k
/ for k 2 ŒoT;".1/`; `�,

(b) fj .x/ � .s � 1 � oT;".1//x,

(c) 1
`
M� .� .j // � T.fj / C oT;";�.1/.

We assume first that T.f1/ � 1 � � C 2oT;".1/=3, where this instance of oT;".1/

is the one from (b). In this case there is y0 with jy0 � y2j . 2�T ` and such that y0

and A1 satisfy the hypotheses of Proposition 3.6 applied with � D �1 and � D �2

(recall the definition of the set G). From (c) and the proposition we get

logN.�.G/; `/ � logN.�y0.A2/; `/ � O.1/ � .� � oT;";�.1//T `:

The case T.f1/ � 1 � � C 2oT;".1/=3 is identical, so we assume from now on that

for both j D 1; 2 it holds that

T.fj / > 1 � � C 2oT;".1/=3 D 1 � 2.u � oT;".1//

3
� �:

The goal is to apply Corollary 5.2 with � D �0
1, � D �0

2 and s1 D 5=4, where

�0
j D R`0�j and `0 D b�`c. To begin, notice that since the �j were obtained from

Proposition 3.3, we have

Es.�
0
j / . Es.�j / . 2oT;".1/T `:

Now, thanks to (b) both f1 and f2 satisfy the hypotheses of Corollary 4.5 with

u � oT;".1/ in place of u, so we get

fj .x/ � x � 3�.1 � 4u/

4
� oT;".1/ on Œ0; ��

for j D 1; 2. Using (a) above and recalling that `0 D b�`c, this yields

k
X

iD1

1=4 � �
.j /
i � `

�3

4
�.1 � 4u/ C oT;".1/

�

; k D 1; : : : ; `0:

Lemma 3.2 applied to �0
2 yields

�0
2.B.x; r// . 2.3�.1�4u/=4CoT;".1//T ` r5=4; (6.10)

while Lemma 3.4 shows that

E5=4CoT;".1/.�
0
1/ . 2oT;".1/T `

E5=4.�0
1/ . 2.3�.1�4u/=4CoT;".1//T `: (6.11)

We also have the separation property

dist.supp.�0
1/; supp.�0

2// & 1:
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We have verified that the assumptions of Corollary 5.2 are satisfied for � D �0
1,

� D �0
2, with s0 D s, s1 D 5=4 and

K�0
j

;s . 2oT;".1/T `; zK�0
2

;5=4 . 2T `.3�.1�4u/=4CoT;".1//:

Let C1.ı/; C2 be the numbers given by the corollary. Note that

�0
1.R`0A1/ D R`0�1.R`0A1/ � �1.A1/ � `�2=5:

On the other hand, we can choose ı D oT;".1/ and R D 2oT;".1/T ` so that

`�2=5 > C1.ı/.K�0
1
;sK�0

2
;s/

1=2R�ı=C2 and R�ı=C2 � 2�T `=OT;".1/:

It follows from (6.9) that we can find B � supp.�0
2/ with

�0
2.B/ � `�2=8 � R�ı=C2

such that for all y 2 B it holds that

�0
1.Ay/ � `�2=8 where Ay D ¹xW .x; y/ 2 R`0H º:

By Corollary 5.2 and (6.11), we can find a point y 2 B such that �0
1.Ay/ & `�2

and

j�y.R`0Ay/j � 2�.�.1�4u/=4�oT;".1//T `
�

E5=4CoT;".1/.�
0
1/

��1

& 2�.�.1�4u/CoT;".1//T `:

Using that dist.y; supp.�// . 2�T `0

, pick z 2 supp.�/ such that

logN.�z.A1/; `/ � logN.�z.A1/; `0/

� .1 � oT;".1//T `0 � �.1 � 4u/T `

� .� � �.1 � 4u/ � oT;".1//T `:

In light of (6.6), this yields (6.7) and concludes the proof of the Hausdorff dimen-

sion bound (6.5).

6.3. Proof of Theorem 1.2 (box dimension part). Now we turn to the part of

Theorem 1.2 concerning the lower box dimension of �y.A/. We now assume that

H
s.A/ > 0 and aim to prove that there is y 2 A such that

dimB.�y.A// � �.s � 1/: (6.12)

In fact, we will prove that �-almost all y are good, where � is an s-Frostman

measure on A, i.e. �.B.x; r// . rs.
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As usual we assume that A � Œ0; 1/2, and allow all implicit constants to depend

on s and the implicity constant in the Frostman condition. Moreover, we fix

u D s � 1, � D �.u/ and �; � as given by Corollary 4.5.

We claim that it is enough to show that for large enough ` (depending on T; "; �)

if �.B/ > `�2, then there is y 2 B such that

logN.�yA; `/ � .� � oT;";�.1//T `: (6.13)

Indeed, assuming this, it follows that for �-almost all y the inequality (6.13) holds

for all sufficiently large ` (depending on T; "; � and y). Taking a suitable sequence

.Tj ; "j ; �j / we see that (6.12) holds for �-almost all y.

Before we embark on the proof of (6.13), we present a lemma that will allow

us to go back to a setting very similar to that of §6.2. By a square we mean one

with axes-parallel sides, and we denote side-lengths by �.�/.

Lemma 6.1. Suppose � 2 P.Œ0; 1/2/ satisfies �.B.x; r// � L rs for some s 2
.1; 2�, L > 0. Then there exists squares Q; Q1; Q2 such that Qj � Q, �.Qj / �
L�Os.1/ and

dist.Q1; Q2/ & �.Q/:

We emphasize that the implicit constants do not depend on L.

Proof. Let K D K.s/ � 1 be a number to be determined later. Let us say that a

square Q is good if it contains two sub-squares Q1; Q2 with �.Qj / � �.Q/=100,

�.Qj / � �.Q/=K and dist.Q1; Q2/ � �.Q/=100; otherwise, we say that Q is

bad.

We claim that if Q is bad then it contains a sub-square Q0 with �.Q0/ �
�.Q/=10 and �.Q0/ � �.Q/.1 � O.1=K//. Indeed, if K is large enough then cer-

tainly there is a sub-square Q0 with �.Q0/ D �.Q/=100 and �.Q0/ � �.Q/=K.

Let Q0 be the smallest square that contains all sub-squares of Q with side-length

�.Q/=100 that are at distance � 1=100 of Q0. Then �.Q0/ � �.Q/=10 and Q nQ0

can be covered by O.1/ squares of side length �.Q/=100, each of which has �-

mass at most �.Q/=K, so the claim follows.

We now construct inductively a decreasing sequence of squares .Rj / as fol-

lows. Let R0 D Œ0; 1/2. If Rj is good we stop. Otherwise, we let Rj C1 be a

subsquare of Rj with �.Rj C1/ � �.Rj /=10 and �.Rj C1/ � �.Rj /.1 � O.1=K//.

By construction, if K was taken large enough in terms of s then

�.Rj / � .1 � O.1=K//j

� �.Rj /log.1�O.1=K//= log.1=10/

� 100�.Rj /�1�.Rj /s;
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and this contradicts the Frostman assumption if �.Rj / � L�1. Hence the process

must stop in . log L steps. Letting Q D Rj , the last square obtained in this

process, we obtain the claim. �

Now we begin the proof of (6.13). Let B and ` with �.B/ > `�2 be given.

We apply Lemma 6.1 to �B , with L D O.`2/; let Q; Q1; Q2 be the squares

given by the lemma. Moreover, let H be the homothety mapping Q to Œ0; 1/2,

which has ratio � `O.1/ by the lemma and the Frostman condition. Finally, let

�j D H.�Qj \B/. By construction, we have

�j .B.x; r// . `O.1/ rs;

and

dist.supp.�1/; supp.�2// & 1:

These properties of �1; �2 are very similar to those in §6.2, except that we have

the extra factor `O.1/ in the Frostman constant (and hence also in the s0-energy of

�j , where s0 D .1 C s/=2). However, since `O.1/ � 2"T ` for large `, the proof of

the Hausdorff dimension part carries over in exactly the same way to yield (for j

equal to either 1 or 2) a point z 2 supp �j such that

logN.�z.supp.�3�j //; `/ � .� � oT;";�.1//T `:

Applying H �1 to �z.supp.�3�j //, we conclude that y D H �1z satisfies

logN.�y.B/; `/ � logN.�y.B/; ` C O.log `// � O.log `/

� logN.�z.supp.�3�j //; `/ � O.log `/

� .� � oT;";� .1//T `:

Since B � A, this concludes the proof of (6.13) and with it of Theorem 1.2.
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