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Fourier multipliers and transfer operators
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Abstract. A recent paper of Chen and Volkmer estimated a quantity related to the spectral

radius of a transfer operator and with significance in the study of Fourier multipliers. We

provide a rigorous proof of their conjectured numerical value.
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1. Introduction

In an interesting recent paper, Chen and Volkmer considered a family of operators

with trigonometric weights and estimated their spectral radii. In addition to their

intrinsic interest, their study is motivated by their connections to problems in the

theory of Fourier Multipliers (see Application 1.3 below).

As a simple example, consider the bounded linear operator

LW C 0.Œ0; 1�/ �! C 0.Œ0; 1�/

defined by

.Lu/.t/ D 1

3

3X

iD0

ˇ̌
ˇ sin

��.t C i/

3

�ˇ̌
ˇu

� t C i

3

�
:

In [1] they have established rigorous bounds on the spectral radius

c WD lim
n!C1

kLnk 1
n

of the form

0:643815 � c � 0:649415

and they then conjecture:

Conjecture 1.1 (Chen–Volkmer). c D 648314 : : : :

https://creativecommons.org/licenses/by/4.0/
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We have the following rigorous estimate.

Theorem 1.2. We can write

c D 0:648314752798325682324771447 : : : ˙ 10�27:

We will first prove an easier preliminary estimate in Theorem 3.1 which is

accurate to 20 decimal places. This only requires the ideas from the original

article of Ruelle [4]. The method of proof of the stronger Theorem 1.2 is based

on the approach that was used in [3]. In the interests of simplicity, we have not

implemented the full machinery from [3], which would have lead to an even more

accurate estimate for c.

Part of the interest in the estimate in Theorem 1.2 is that it can be applied

directly to Bochner–Riesz type Fourier multipliers, relative to the middle third

Cantor set, as explained in [1] and as we briefly recall below.

Application 1.3. Let � be the usual natural measure supported on the middle third

cantor set and let ˛ D log 2

log 3
be its dimension. A function m.�/ is an L1 Fourier

multiplier if the linear operator T W L1.dx/ ! L1.dx/ defined by cTf .�/ D m.�/ Of

is bounded. To define Bochner–Riesz type Fourier multipliers, assume �.x/ is a

compactly supported bump function with O� � 0 and ı > 0, then let

mı.�/ D
Z

�.� � �/

j� � �j˛�ı
d�.�/

By Theorem 6.1 in [1], this is an L1-Fourier multiplier if and only if

ı > ˛ C log c

log 3
D 0:236451214234647382935 : : : :

Application 1.4. Let f .t/ D j sin.�t/j. We can write

1Z

0

n�1Y

kD0

f .d kx/dx � cn; as n ! C1:

In particular, where d D 3 we can use the numerical estimates for c in The-

orem 1.2. Quantities of this form appear in the work of Fan and Lau [2], for

example.

I am very grateful to the referee for his careful reading of this note.
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2. Estimating the spectral radius

To estimate the value of c we first introduce the following complex function.

Definition 2.1. We can formally define a complex function

d.z/ WD exp
�

�
1X

nD1

zn

n

1

3n � 1

3n�1X

j D0

n�1Y

kD0

sin
� 3kj�

3n � 1

��

for z 2 C.

There is a natural dynamical interpretation for d.z/ whereby the values 3kj
3n�1

.mod 1/ correspond to periodic points for the classical trebling map

x 7�! 3x .mod 1/

of the unit circle.

One easily sees that d.z/ converges to an analytic function for jzj < 1. The

connection between d.z/ and c is given by the following proposition.

Proposition 2.2 (after Ruelle). The function d.z/ extends analytically to C. The

smallest positive zero ˛ > 0 is the reciprocal of the spectral radius c, i.e., c D 1
˛
.

This is easily deduced from [4] (see also [3]).

We can therefore consider the expansion

d.z/ D 1 C
1X

nD1

bnzn

where bn 2 C, n � 1. To estimate ˛, and thus c, we can consider the sequence of

truncations

dN .z/ D 1 C
NX

nD1

bnzn

and consider their smallest zeros zN > 0. These give approximations cN D 1
zN

to c which can be efficiently computed to high accuracy.

The larger we choose N , the better the approximation. As we can see from

Table 1, a good approximation to zN based on N D 15 is

z15 D 1:54246065770321086721156153797824343314677299 : : : :

which corresponds to an approximation c15 to c of

c15 D 0:64831475279832568232477144769601239350930429 : : : :
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Table 1. The smallest positive zeros zN for the approximations dN .z/ to d.z/.

N zN

5 1.54246074617008138578022152837049794979310989

6 1.54246065795434503327103554155227221319368967

7 1.54246065770349592275701430307427675571759810

8 1.54246065770321099322481446600053607984440150

9 1.54246065770321086723283011105355390760844307

10 1.54246065770321086721156288770669047295526711

11 1.42460657703210867211561538010061072043216200

12 1.54246065770321086721156153797824370901762535

13 1.54246065770321086721156153797824343314764551

14 1.54246065770321086721156153797824343314677299

15 1.54246065770321086721156153797824343314677299

However, it remains to get rigorous error bounds on these approximations. We

will prove a preliminary error bound (Theorem 3.1) in §3 and then, after a little

more work, prove a better error bound (Theorem 1.2) in §4.

3. A preliminary result

In the next two sections we will explain how to obtain basic rigorous bounds on

the approximation of c by cN , or equivalently, of ˛ by zN . This based on using

bounds on
P1

nD16 jbnj.zN ˙ �/n.

In this section, we begin by describing a basic method which already gives

quite good bounds. This establishes the following preliminary version of Theo-

rem 1.2 with a more modest error estimate.

Theorem 3.1. We can estimate

c D 0:6483147527983256823247 ˙ 10�21:

In the next section, we will apply a more sophisticated approach which im-

proves these initial estimates. Both methods are based on studying the operator L

acting on a smaller space of functions. However, this does not effect the spectral

radius.

3.1. Space of analytic functions. We can use estimates based on the operator

L restricted to a Hilbert space of analytic functions on the disk D.r/ D
®
z 2 CWˇ̌

z � 1
2

ˇ̌
< r

¯
of radius r > 1

2
.



Fourier multipliers and transfer operators 193

Definition 3.2. We can let H be the space of analytic functions f W D.r/ ! C with

norm k � k2 given by

kf k2 D 1

r2
sup

0<�<r

1Z

0

ˇ̌
ˇf

�1

2
C �e2�i�

�ˇ̌
ˇ
2

d�:

We can define a natural basis qn.z/ D 1
rn

�
z � 1

2

�n
, n � 1, for H. Moreover,

since [2
iD0TiD.z; r/ � D

�
rC1

3

�
where Ti.z/ D zCi

3
, for i D 0; 1; 2, we see that

the operator L also preserves H.

3.2. First bounds on coefficients. We can obtain easy bounds on the coefficients

by using simple “Euler bounds” (using the terminology from [3]).

Lemma 3.3. We can bound

jbnj � C n �n.nC1/=2

Q1
kD0.1 � �k/

; n � 1; (3.1)

where � D �.r/ D rC1
3r

and C D C.r/ D .e�� r C 1/=2.

These standard bounds follow easily as in [4] and [3].

We have the freedom to change r > 1=2 in order to find the best possible

bound. The following example illustrates this.

Example 3.4 (r D 5
2
). If we take the value r D 5

2
then we have � D 7

12
and

C D 20:0318 � � � .

Given zN and ı > 0, to see that there is a zero z 2 ŒzN � ı; zN C ı� for d.z/ it

suffices to show rigorously that

jdN .zN � ı/ � d.zN � ı/j < �;

jdN .zN C ı/ � d.zN C ı/j < �; (3.2)

dN .zN � ı/ � �� < 0 < � � dN .zN C ı/:

Then by the triangle inequality and the intermediate value theorem the zero z lies

between zN � ı and zN C ı. To show the first two inequalities in (3.2) we can

bound

jdN .zN ˙ ı/ � d.zN ˙ ı/j �
ˇ̌
ˇ

1X

nDN C1

.zN ˙ ı/nbn

ˇ̌
ˇ

�
1X

nDN C1

.zN ˙ ı/njbnj
(3.3)
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and we can use the bound (3.1) in Lemma 3.3 for individual terms. This gives a

basic, but still respectable, upper bound on (3.3) of the following form

1X

nDN

C n�n.nC1/=2.zN ˙ ı/n

� .C.zN ˙ ı//N �N.N C1/=2

1X

kD0

.C.zN ˙ ı/�N /k�k=2

� .C.zN ˙ ı//N �N.N C1/=2

1 � .C.zN ˙ ı/�N /
:

(3.4)

Letting N D 15 and ı D 10�21 we take � to be the resulting numerical value of

the upper bound in (3.4), which is approximately 6:66711 � � � � 10�22. Finally, we

can numerically compute (with an accuracy far in excess of 22 decimal places) the

values
dN .zN C ı/ D �8:09 : : : � 10�22;

dN .zN � ı/ D 8:09 : : : � 10�22

to establish the final inequality in (3.2) with with � D 10�21, say. This establishes

Theorem 3.1 (with a more modest error estimate than in Theorem 1.2).

4. Proof of Theorem 1.2

We next describe a method for improving the error terms in order to establish

Theorem 1.2.

4.1. Better bounds on the coefficients. The advantage of working with the

Hilbert spaceH of analytic functions rather than, say, Hölder continuous functions

is that we obtain good bounds on the coefficients cn in terms of the norm of the

operator acting on the functions ¹qnº. We can write

kLqnk2 D 1

r2n

1Z

0

ˇ̌
ˇ.Lqn/

�1

2
C re2�in�

�ˇ̌
ˇ
2

d�: (4.1)

We then denote

˛n WD
� 1X

kDn�1

kLqkk2
�
; n � 1:

This leads to the following bound on jbnj, which helps to improve on the prelimi-

nary bounds (3.1).
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Lemma 4.1. Let M � N . We can bound the coefficients jbnj for N C 1 � n � M

by

jbnj �
min¹M;nºX

kD1

Qk;M C .n�k/
�‚M.n�k/C.n�k/.n�kC1/=2

Qn�k
iD1 .1 � ‚i /

�
;

where

‚ D r C 1

3r
< 1; C D e�‚r C 1

‚
p

1 � ‚2
;

and

Qk;M D
X

m1<���<mk�M

˛m1
˛m2

� � � ˛mk
:

Proof. We will sketch the proof, using the bounds established in [3]. In particular,

by Lemma 2 in [3] we can bound

jbnj �
X

i1<���<in

nY

j D1

sij .L/; (4.2)

where

si .L/ D inf¹kL � KkW rank K � i � 1º; i � 1;

are the approximation numbers. (The inequality (4.2) has its origins in the Weyl

inequality.) Moreover, by Proposition 1 in [3] sn.L/ � zn for n � 1. Therefore,

we can bound the right hand side of (4.2) by

min¹M;nºX

kD1

Qk;M

� X

M <mkC1<���<mn

˛mkC1
� � � ˛mn

�
: (4.3)

Moreover, we can bound ˛n � C ‚n, for n > M , (by Corollary 1 in [3]) and thus

we can bound the inner summation in (4.3) by

C .n�k/
X

M <mkC1<���<mn

‚mkC1C���Cmn D C n�k ‚M.n�k/C.n�k/.n�kC1/=2

Qn�k
iD1 .1 � ‚i/

;

which can be compared with Lemma 3.3. This completes the proof. �

In this lemma, the improvement on the bounds comes from the terms Qk;M

being relatively small for small k. In order to make this into a bound which can

be numerically estimated we need to replace ˛n by the upper bound

ęn WD
� LX

kDn�1

kLgkk2 C C 2�2L

1 � ‚2

�1=2
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where L � M following [3]. Correspondingly, we can bound Qk;M by

AQk;M D
X

m1<���<mk�M

ęm1
ęm2

� � � ęmk
:

In particular, we can bound the contribution from the terms for N C 1 � n � M

by

MX

nDN C1

.zN ˙ ı/njbnj

�
MX

nDN C1

.zN ˙ ı/n

min¹M;nºX

kD1

AQk;M C .n�k/
�‚M.n�k/C.n�k/.n�kC1/=2

Qn�k
iD1 .1 � ‚i /

�
:

Finally, for the terms with n � M C 1 we have an upper bound

1X

nDM C1

.zN ˙ ı/njbnj

�
MX

kD1

AQk;M

� 1X

nDM C1

.zN ˙ ı/nC .n�k/
�‚M.n�k/C.n�k/.n�kC1/=2

Qn�k
iD1 .1 � ‚i/

��

� 1Q1
iD1.1 � ‚i /

�
MX

kD1

AQk;M

� 1X

nDM C1

.zN ˙ ı/nC .n�k/.‚M.n�k/C.n�k/.n�kC1/=2/
�

� 1Q1
iD1.1 � ‚i /

MX

kD1

AQk;M .˛ C �/k .C�M .zN ˙ ı//.M C1�k/

1 � C�M .zN ˙ ı/
:

It now only remains to make judicious choices for the various arbitrary values,

which we do in the next subsection.

4.2. Error term bounds. For practical considerations (based on computation

time) we can choose N D 15, M D 100 and L D 500. We can let r D 2 then

‚ D 1
2

and e� C 1 D 13:4187 : : : : We make no claim that these choices are

optimal, but with these choices we obtain concrete bounds on the contribution

coming from the terms corresponding to n � 16.

We now take ı D 10�26, and with this choice we have the bound

1X

nD16

jbnj.zn C ı/n � 3:63 � � � � 10�27;
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which can be compared with the bound in (3.3). In particular, since we can

compute

dN .zN C ı/ D �8:09 : : : � 10�27;

dN .zN � ı/ D 8:09 : : : � 10�27:

we can use the corresponding inequalities in (3.2) to complete the proof of Theo-

rem 1.2.

Table 2. The first few values of kLqkk and ęn

k kLqkk
1 5.086023222

2 1.113848198

3 0.317490130

4 0.178212967

5 0.091573051

6 0.041201463

7 0.017851464

8 0.008068454

9 0.003857587

10 0.001881168

11 0.000910710

12 0.000435966

13 0.000207753

14 0.000099228

15 0.000047642

n ęn

1 5.220281249

2 1.176309529

3 0.378214620

4 0.205539086

5 0.102403389

6 0.045834817

7 0.020081582

8 0.009197562

9 0.004415337

10 0.002148074

11 0.001037028

12 0.000236576

13 0.000113166

14 0.000054408

15 0.000026275

5. Generalizations

The method we have described above for estimating the spectral radius ofL applies

more generally. For example, one can consider transfer operators

Ld;qW C 0.Œ0; 1�/ �! C 0.Œ0; 1�/

(where d � 2 and q � 1) defined by

.Ld;qu/.t/ D 1

d

dX

iD0

fq

� t C i

d

�
u

� t C i

d

�
;

where either fq.t / D j cos.�t/jq or fq.t / D j sin.�t/jq.
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Table 3. The first few values of BQ100;k and the corresponding bounds on bn.

k BQ100;k

1 7.166413516

2 11.262024489

3 6.009094824

4 1.345702822

5 0.135230283

6 0.006173517

7 0.000128659

8 1.241338291 �10�6

9 5.638788290 �10�9

10 1.219753034�10�11

11 1.262398454�10�14

12 6.257402794�10�18

13 1.486214073�10�21

14 1.694078690�10�25

15 9.291306353�10�30

n bounds on bn

1 5.176742012 �10�52

2 1.526929255 �10�48

3 2.251911477 �10�45

4 1.660556730 �10�42

5 6.122462367 �10�40

6 1.128674038 �10�37

7 1.040353545 �10�35

8 4.794721336 �10�34

9 1.104881739 �10�32

10 1.273028787�10�31

11 7.333826946�10�31

12 2.112482380�10�30

13 3.042464622�10�30

14 2.190927381�10�30

15 7.888609052�10�31

Definition 5.1. We let cd .q/ be the spectral radius of Ld;q.

There are particular cases where cd .q/ is easily computed. In the case that

d D 2 one can explicitly compute c2.q/ D 2� min¹q;1º (q > 0). Furthermore, when

q D 2 and q D 4 then one can explicitly compute c.2/ D 1
3

and c.4/ D 3
8
, see [5].

In general, when q is even then the values cd .q/ can be easily expressed in terms

of finite matrices.

For completeness, we briefly describe the modifications for the more general

setting. In the general case, we can introduce the following complex function,

generalizing Definition 2.1.

Definition 5.2. We can formally define

dd;q.z/ WD exp
�

�
1X

nD1

zn

n

1

d n � 1

dn�1X

j D0

d�1Y

kD0

fq

� 2kj

d n � 1

��

for z 2 C.

Since kfqk1 � 1 we see that d.z/ converges to an analytic function for jzj < 1.

We can therefore consider the expansion

dd;q.z/ D 1 C
1X

nD1

bnzn
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where bn 2 C, n � 1. One can show that the smallest positive zero ˛ D ˛d;q > 0

is the reciprocal of the spectral radius c, i.e., c D cd;q D 1
˛

of Ld;q. To estimate

˛, and thus c, we can consider the sequence of truncations

dN .z/ D 1 C
NX

nD1

bnzn

and consider their smallest zeros zN > 0. These give approximations cN D 1
zN

to c.

We can choose small complex neighbourhoods Ui � Œi=q; .i C 1/=q� and

consider analytic functions on
`

i Ui . The operator is nuclear. In particular, this

allows computation of the values c D cd;q much as before.
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