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Computation of sharp estimates of the Poincaré constant

on planar domains with piecewise self-similar boundary
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Abstract. We establish a strategy for finding sharp upper and lower numerical bounds of
the Poincaré constant on a class of planar domains with piecewise self-similar boundary.
The approach consists of four main components: W1) tight inner-outer shape interpola-
tion, W2) conformal mapping of the approximate polygonal regions, W3) grad-div sys-
tem formulation of the spectral problem and W4) computation of the eigenvalue bounds.
After describing the method, justifying its validity and determining general convergence
estimates, we show concrete evidence of its effectiveness by computing lower and upper
bound estimates for the constant on the Koch snowflake.
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1. Introduction

The Poincaré constant �g > 0 of a planar open set † is the smallest � > 0 for
which Z

†

juj2 � �

Z

†

j grad uj2 for all u 2 H 1
0 .†/:

Namely, !2
1 D 1

�g
is the ground eigenvalue of the Dirichlet Laplacian on †. When

the boundary @† is a fractal curve, finding accurate estimates for this constant is
highly non-trivial. Classically, much of the important work in this area [23, 30] has
focused on determining asymptotics for !2

1 in terms of inner approximations of
†, with the notable exception of a few numerical results reported in the literature
for the particular case of the Koch snowflake [22, 19, 28, 1].

In this paper we describe a method for computing tight upper and lower
approximations of �g, when there exist two sequences of simply connected open
polygons, ¹Tj º1

j D0 and ¹Hj º1
j D0, such that

Tj � Tj C1 � † � Hj C1 � Hj for all j � 0 (A1)

and for all " > 0 there exists k 2 N such that1

¹z 2 Hj W dist
�
z; @Hj

�
� "º � Tj for all j � k: (A2)

This implies that

† D
1[

j D0

Tj D int
� 1\

j D0

Hj

�
:

Our main interest is for the boundary, @†, to be a fractal curve. The strategy
that we present next combines the use of conformal mappings [1, 3] and a grad-
div system formulation of the problem, with the quadratic projection method
[24, 32, 14].

Workflow of the method (upper and lower bounds for �g). We proceed in four
steps.

W1) Embedding of the region and domain monotonicity. Find polygons satis-
fying (A1). By domain monotonicity, upper (and lower) bounds for the
Poincaré constant inHj (and Tj ) give upper (and lower) bounds for �g. Below
�j denotes either Hj or Tj .

1 Here and elsewhere below we simplify the notation as follows, dist.x; A/ D inf¹jx � ajW
a 2 Aº for a point x and a set A, but dist.A; B/ will be the Hausdorff distance between two sets
A and B.
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W2) Conformal transplantation. Determine conformal maps �0 ! �j . The
eigenvalue problem on �j is transformed into a pencil eigenvalue problem
on �0 with a singular j -dependent right hand side.

W3) Formulation as a system. For fixed j , write the pencil eigenvalue problem
on �0 as a first order system involving the gradient operator, the divergence
operator and singular coefficients.

W4) Computation of the upper and lower bounds. Compute enclosures for the
smallest positive eigenvalues of the singular first order systems by means
of a pollution-free projection method. To make this concrete we choose the
quadratic projection method.

Below we often refer to the fixed j in any of the blocks W1)-W4), by saying
that the relevant datum is associated to the level j .

In this scheme, our precise hypotheses on † and @† are as follows.

Assumption A. The region † � R
2 is open and simply connected. There

exist two sequences of simply connected polygons satisfying (A1) and (A2).
Additionally,

(A3) the boundary is given by

@† D
N[

nD1

Fn

where Fn are self-similar curves each associated to an iterated function
scheme,

(A4) the vertices of @Tj and @Hj are computable from these iterated function
schemes.

As written in the Assumption A, (A4) is not mathematically concrete and its
proper formulation for particular cases is clarified in Section 2. If † is a Koch
snowflake, for example, Tj can be chosen to be the classical j th step of the
construction starting from T0 an equilateral triangle. And Hj the less standard
but well known j th step of the construction starting from a hexagon H0, see [25,
Plate 37], [26, Plate 43] and Figure 1 below. Hence, in this case (A4) is guaranteed
by construction.

In Section 2 we describe and justify the block W1) in the workflow given this
hypothesis. In particular the Assumption A covers classical domains with fractal
boundary, but in the construction of Tj and Hj , both (A1) and (A2) demand careful
attention. We determine this specific construction for: a Koch snowflake, a Cèsaro
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(generalised Koch) snowflake of any angle [10], a quadric island [25, Plate 49]
and a Gosper–Peano island [25, Plate 47], [17]. In lemmas 2.1, 2.2, and 2.6, we
establish convergence of the eigenvalue bounds of block W1) as j ! 1, by
applying directly an estimate of Pang [30].

The singularities of the derivative of the conformal maps associated to block
W2) determine the domain of the grad-div matrix operator in the formulation of
block W3). In Section 3 we conduct a detailed analysis of these singularities. In
Section 4, on the other hand, we describe the precise operator-theoretical setting of
the grad-div singular eigenvalue problem. Several technical details in this respect
are given in the Appendix A.

The reduction to a grad-div formulation proposed in block W3) is not standard
in the context of eigenvalue computation for the Laplacian. It is also counter-
intuitive, as one is left with an indefinite eigenvalue problem which is prone to
spectral pollution due to variational collapse. However, an order reduction of the
differential operator often improves the accuracy of a non-pollution projection
method [5, 6, 4]. We have chosen the quadratic method. In Section 5 we survey
this method and establish the details of its justification.

Section 6 is devoted to a full concrete implementation of W1)-W4) for † a
Koch snowflake inscribed in the unit circle. We report on details of our calcula-
tions leading towards the following estimate

13:1160115 � 1

�g
� 13:1162276: (1)

See Table 1. Remarkably, by formulation of the method, neither the computation
nor the validation of these bounds relies on asymptotic arguments.

2. Embedding of the region and domain monotonicity

Consider the eigenvalue problem associated with the Dirichlet Laplacian,

��u D !2u in �;

u D 0 on @�;
(2)

on a simply connected open set �. By virtue of the classical min-max principle,
�g D 1

!2
1

where !1 � !1.†/ > 0 is the square root of the first eigenvalue of (2)

for � D †. Domain monotonicity ensures that

� � z� H) !2
k. z�/ � !2

k.�/: (3)

We will, in particular, repeatedly use this property for k D 1 and k D 2.
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Combining the embedding condition (A1) with (3) yields

!2
1.Hj / � !2

1.†/ � !2
1.Tj /:

The next lemma is crucial to our analysis. Its proof is an immediate consequence
of a uniform estimate on !2

j .�/ from inner approximations of � established by
Pang [30, Theorem 1.1]. Here and elsewhere j0;1 � 5:784 is the first eigenvalue
of (2) for � the unit disk.

Lemma 2.1. Let ¹Tj º1
j D0 and ¹Hj º1

j D0 be two families of open simply connected

polygons, such that Tj � Tj C1 � Hj C1 � Hj and such that (A2) holds true. Let

C D
29j40;1S9=4

3�9=4R7

where S D jH0j and R is the inradius of T0,

R D sup
z2T0

dist.z; @T0/:

For " > 0, the same k 2 N satisfying (A2) yields

!2
1 .Tj / � !2

1.Hj / � C "1=2 for all j � k:

Proof. Apply directly [30, Theorem 1.1], observing that jH0j � jHj j and that the
inradius of T0 is less than or equal the inradiuses of Hj . �

Thus (A1) and (A2) imply that, in the context of the block W1),

!2
1.Tj / �! !2

1.†/ and !2
1.Hj / �! !2

1.†/; for j ! 1; (4)

monotonically. Note that weaker versions of this result can also be established if
Tj or Hj are not nested.

2.1. The classical Koch snowflake. We first describe a specific construction of
Tj andHj for a Koch snowflake. Scale † such that it is inscribed in a unit circle. Let
T0 be an equilateral triangle of side length

p
3 and H0 a hexagon of side length 1,

both centred at 0, such that T0 is inscribed in H0. The polygon Tj is constructed by
attaching to the central third of each side of Tj �1 an equilateral triangle, whereas
the polygon Hj is constructed from Hj �1 by subtracting an equilateral triangle.
The two procedures have the following generators, with Tj at the top and Hj at the
bottom:
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The resulting polygons for levels j D 0; 1; 2 are shown in Figure 1.
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Figure 1. Three levels of Tj and Hj for the Koch snowflake.

Lemma 2.2. Let Tj and Hj be as described in the preceding paragraph. Then,

Tj � Tj C1 � Hj C1 � Hj for all j � 0 and (A2) holds true. Moreover

!2
1.Tj / � !2

1.Hj / �
j40;133=4

25=4�9=4

� 1p
3

�j

for all j 2 N: (5)
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Proof. We claim that polygon Hj is obtained by attaching to each edge of Tj an
isosceles triangle whose base is this edge and whose height is 1

2
p

3
times the length

of the edge. From this, it follows that Tj � Hj and that

°
z 2 Hj W dist.z; @Hj / � 1

3j C1

±
� Tj :

The latter implies (A2). Then, (5) follows from Lemma 2.1, taking " D 1

3j C1 and
R D 1.

It remains to prove the claim by induction. It is not difficult to check that the
claim holds for j D 0. Next, assume that it holds for some j D k � 0. After
rotation and translation let AB with A D .0; 0/, B D .`; 0/ and ` D 3�k

p
3 be

an edge of Tk; see Figure 2. Then by assumption BC and CA are edges of Hk

where C D
�

`
2
; `

2
p

3

�
. By the definition of polygons Tj , AD and DC are edges of

TkC1 where D D
�

`
3
; 0

�
. Further, by the definition of polygons Hj , AE, ED, DF

and F C are edges of HkC1 where E D
�

`
6
; `

6
p

3

�
and F D

�
`
3
; `

3
p

3

�
. As triangles

ADE and DCF are of the required shape, we have proved the claim for j D k C1

and hence by induction for all j � 0. �

A BD

F

C

E

Figure 2. A diagram in aid of Lemma 2.2 explaining the connection between Tj and Hj .

Let

�T D
1[

j D0

Tj and �H D int
� 1\

j D0

Hj

�
:

As a consequence of the previous lemma �T D �H. When referring to the Koch
snowflake below, without further mention, we are setting † D �T D �H. In this
case, (A1) and (A2) hold true, the condition (A3) is given by F1, F2 and F3, which
are Koch curves, and (A4) is intrinsic to the construction.

Remark 2.3. In the proof of Lemma 2.1 we have employed the general estimate
of Pang, which applies to a large class of regions. As it is natural to expect and as
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we shall see from numerical evidence presented in Section 6, the rate factor 1p
3

in (5) is sub-optimal for the specific approximation of the Koch snowflake by Tj

and Hj . Our evidence suggests that

!2
1.Tj / � !2

1.Hj / � C%j where % � 0:35958; C � 5:8688:

See Table 2.

2.2. General Koch curves. The sequences ¹Tj º and ¹Hj º can be constructed in
similar way as above, if @† is the union of several boundary components Fn in
(A3), all of them being Koch curves with a generator of the following form.

In the L-system language [31], Fn has generator "F"->"F+F--F+F"with the same
angle 0 < ˛ < �=2. In particular, let T0 be a regular N -gon. The polygon Tj is
obtained by attaching to the center of each side of Tj �1 an isosceles triangle whose
sides are equal to the length of the other two sides remaining in the segment.
Polygons Hj are then constructed from these polygons Tj in a similar way as in
the proof of Lemma 2.2. Namely, Hj is obtained by attaching to each edge of Tj

an isosceles triangle whose base is this edge and whose height is
�
tan ˛

2

�
times the

length of the edge.

A similar approach also works for antisnowflakes. For example Fn could be
Cèsaro curves [10] of the form "F"->"F-F++F-F" of any angle swapping the way
the polygons Tj and Hj are constructed.

In both these constructions, the validity of the Assumption A is ensured by a
statement very similar to Lemma 2.2 with a proof which is almost identical. We
omit further details.

2.3. Other fractal curves with simple generators. We now establish a princi-
ple for constructing inner-outer polygonal approximations satisfying the Assump-
tion A, which apply to other classes of regions with piecewise self-similar bound-
ary. As we shall see later, this includes classical fractals such as those shown in
Figure 3. We begin by developing a necessary notation and formulating a general
result about simply connected polygons.
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Figure 3. Quadric island (left) and Gosper–Peano island (right).

The open "-neighbourhood in Euclidean distance of a set S � R
2 will be

written as .S/". Let S � R
2 be an open bounded polygon such that @S is a closed

Jordan curve. Order the segments on the boundary of S,
N
�k , contiguously: such

that

@S D
M[

kD1
N
�k

and
N
�j [

N
�j C1 is a continuous curve for all j D 1; : : : ; M denoting

N
�M C1 D

N
�1.

Let V.S/ be the set of vertices/corners on @S. Let " > 0. Let A 2 V.S/ be
a corner point of inner angle ˇ � ˇ.A/. Denote by Ai

" the unique point on the
segment bisecting ˇ.A/ at distance "

sin ˇ
2

from A. Denote by Ao
" the unique point on

the segment bisecting the complementary angle to ˇ.A/ at distance "

sin ˇ
2

from A.

That is Ai
" and Ao

" are endpoints of a line segment that also passes through A.
Because @S is a closed Jordan curve which is piecewise linear, and all angles
ˇ.A/ 2 .0; 2�/, there exists "0 such that Ai

" 2 S and Ao
" 62 S for all 0 < " < "0 and

A 2 V.S/. Indeed this is a consequence of the fact that the line segments ŒAi
"; Ao

"�

have midpoint A and A
i;o
" ! A as " ! 0.

For the side
N
�j D ŒA; B�, setQj

" � Q
j
" .S/ to be the open quadrilateral (trapezoid

or rhomboid) with vertices Ai
"; Ao

"; B i
"; Bo

" . That is two sides of Qj
" are parallel

to
N
�j at distance " from this segment, another is ŒAi

"; Ao
"� and the other is ŒB i

"; Bo
" �.

For 0 < " < "0, we will write

ŒS�i" D S n
� M[

j D1

Q
j
"

�
and ŒS�o" D S [ int

� M[

j D1

Q
j
"

�
:
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Then

ŒS�i" � S � ŒS�o" and .@S/" �
M[

kD1

Qk
" D ŒS�o" n ŒS�i":

Let
ˇm.S/ D max

A2V.S/
¹ˇ.A/; 2� � ˇ.A/º 2 .�; 2�/

be the maximal angle among all angles (inner and outer) in @S. Since

dist
�
y; @

M[

kD1

Qk
"

�
� "

sin ˇm.S/
2

for all y 2 @S;

then
ŒS�o" n ŒS�i" � .@S/Q" for Q" D "

sin ˇm.S/
2

: (6)

The proof of the following lemma is a straightforward consequence of the fact
that dist.ŒS�o" n ŒS�i"; @S/ ! 0 as " ! 0.

Lemma 2.4. There exists "1 > 0 such that the following holds true for all

0 < " < "1. The intersection Qm
" \ Qn

" D ¿ for m ¤ n and the sets ŒS�i" and

ŒS�o" are simply connected.

We now determine concrete sufficient conditions for a region † to satisfy the
Assumption A.

Hypothesis G. Let † be an open planar region such that @† D
SN

nD1 Fn is a
Jordan curve and Fn are self-similar curves. Let †j be the resulting open pre-
fractal polygons. That is, @†j is the union of the steps j in the generation of
the Fn for n D 1; : : : ; N . Suppose that all @†j are Jordan curves, that there
is ˇ0 2 .�; 2�/ such that ˇm.†j / � ˇ0 and that all the polygons †j have
all their sides of equal length, j̀ , where j̀ > j̀ C1 ! 0. Additionally write
Q

m;j
" D Qm

" .†j /. Suppose that there exists a constant ı > 0 such that for all
j 2 N

(G1) Q
m;j

ı j̀
\ Q

n;j

ı j̀
D ¿ for m ¤ n,

(G2) the sets
Tj D Œ†j �iı j̀

and Hj D Œ†j �oı j̀

are simply connected,

(G3) .Hj C1 n Tj C1/ � .Hj n Tj /, and

(G4)
T
j

Tj ¤ ¿.
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Lemma 2.5. If the planar region † satisfies the Hypothesis G, then it satisfies the

Assumption A.

Proof. Hypothesis G already contains (A3). The condition (G1) implies that the
vertices of Tj and Hj are respectively the vertices of Qm;j

ı j̀
and we have an explicit

formula for them in terms of the vertices of †j . This is a concrete realisation
of (A4).

Now, consider (A1). By construction we have that Tj � †j � Hj . From (G2)
it follows that R2 is split into three disjoint connected regions Tj C1, Hj C1 n Tj C1

and Hc
j C1 D R2 n Hj C1. From (G3) we have that Hj \ .Hj C1 n Tj C1/ D ¿. Also

Hc
j C1 6� Tj C1 because the left-hand side is unbounded. Hence, Hc

j � Hc
j C1 and so

Hj C1 � Hj : (7)

On the other hand (G3) also implies Tj \ .Hj C1 n Tj C1/ D ¿, hence either
Tj � Tj C1 or Tj � Hc

j C1. The latter contradicts (G4) and thus

Tj � Tj C1: (8)

From (7) and (8) follows that

Tj � †j Ck � Hj for all k 2 N: (9)

Since the Hausdorff limit of a family of compact sets contains the intersection of
this family and it is contained in the union of this family, (A1) is a consequence
of (9).

We finally show (A2). Let " > 0 and let k > 0 be such that

`k <
" sin ˇ0

2

2ı
:

For j > k, from the fact that j̀ are decreasing and in the notation of (6),

fı j̀ D ı j̀

sin ˇm.†j /

2

<
ı`k

sin ˇ0

2

<
"

2
:

Then, from (6) it follows that

dist.x; @Œ.@†j /fı j̀
� \ †j / < 2 fı j̀ < " for all x 2 @Hj

and
@Œ.@†j /fı j̀

� \ Tj D @Œ.@†j /fı j̀
� \ †j D @Œ.@†j /fı j̀

� \ Hj :

Hence, Hj n .@Hj /" � Tj . Thus (A2) holds true. �
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In the Hypothesis G, the conditions (G1) and (G2) contrast with (G3). That is,
by Lemma 2.4, (G1) and (G2) are satisfied for ı small enough. They do not depend
on the relation between different levels. But, as we shall see in the examples of
the quadric and Gosper–Peano islands, (G3) will break for ı too close to 0. The
condition (G4) is independent of any of this.

We now show a convergence estimate in the context of block W1) for the
ground eigenvalues of Tj and Hj defined as in the Hypothesis G.

Lemma 2.6. Let the planar region † satisfy the Hypothesis G. Let C > 0 be the

constant of Lemma 2.1. Then

!2
1.Tj / � !2

1.Hj / � C
p

2ı

sin
�

ˇ0

2

� 1
2

`
1
2

j # 0; j ! 1: (10)

Proof. Under the conditions of the Hypothesis G,

°
z 2 Hj W dist.z; @Hj / � 2ı j̀

sin ˇ
2

±
� Tj :

The conclusion follows by applying Lemma 2.1 and recalling that j̀ ! 0 mono-
tonically. �

In this lemma, it is remarkable that the convergence rate of the eigenvalue gap
is directly related to the decay rate of the j̀ . We now examine the Hypotheses G
for two classical fractal region.

2.4. Quadric islands. Let † be a quadric island [25, Plate 49] constructed as
follows. Begin with †0 a square of side 1. Let Fn for n D 1; : : : ; 4 be constructed
using the generator

See Figure 3 left.
Suppose that the sides of †0 are aligned with the horizontal and vertical axes.

Then, @†j is the union of two families, each comprising segments of equal length.
One of these families is made of segments aligned with the horizontal axis and
the other is made of segments aligned with the vertical axis. It is readily seen that

j̀ D j̀ �1

4
D 1

4j
and ˇm.†j / D 3�

2
:
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The trapezoids and rhomboids which jointly form Hj n Tj always have two
opposite edges parallel to the axes. Then, (G1) holds true for all ı � 1

2
. Moreover,

@Tj and @Hj are Jordan curves, so (G2) as well as (G4) are satisfied for all ı < 1
2
.

On the other hand,

dist.@†j ; @†j C1/ D j̀ C1:

Hence

dist.@†j ; @Œ.†j C1/ı j̀ C1
�/ D .1 C ı/ j̀ C1:

Thus, the condition (G3) holds if and only if

ı j̀ � .1 C ı/ j̀ C1:

Solving for ı, we get that ı � 1
3
. See Figure 4 (left).

This argumentation shows that for the quadric island with generator as above,
the inner-outer interpolants Tj and Hj , as in the Hypothesis G, ensure the validity
of the Assumption A for all 1

3
� ı < 1

2
. Further, Lemma 2.6 implies that, for

block W1), !2
1.Tj / � !2

1.Hj / ! 0 as j ! 1 at a rate at least 1

2j .

Figure 4. A section of the quadric island with Tj and Hj , for j D 3; 4 and ı D 0:4 (left).
A section of the Gosper–Peano island with Tj and Hj , for j D 4; 6 and ı D 0:48 (right).

2.5. Gosper–Peano islands. As a final example, we consider † to be a Gosper–
Peano island [25, Plate 47], in which †0 is a hexagon of side 1. See Figure 3 right.
That is Fn for n D 1; : : : ; 6 is constructed using the generator
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The boundary @†j is a union of equal length segments where

j̀ D j̀ �1p
5

D 1

5
j
2

:

As we will see next, there is no ı > 0 ensuring all three conditions of the
Hypothesis G simultaneously. After that, we show how to overcome this difficulty,
which is not caused by the fact that †0 is a hexagon.

The inner angles of the vertices in each of the 6 components of @†j are either
ˇ D �

2
or ˇ D 3�

2
. Each one of these components is an arrangement of segments

(of the same length) aligned in two possible directions one perpendicular to the
other. The inner angle between components is a fixed ˇ D 2�

3
. So ˇm.†j / D 3�

2
.

Then, similar to the case of the quadric island, (G1), (G2), and (G4) are satisfied
if and only if 0 < ı < 1

2
.

Now,

dist.@†j ; @Œ.†j C1/ı j̀ C1
�/ D j̀

5
C ı j̀ C1p

2
2

sin
�
˛ C �

4

�
D j̀

5
C ı j̀

3

5

where ˛ D arcsin.1=
p

5/ is the angle between the j and j C 1 iteration. In order
to satisfy (G3), we require

dist.@†j ; @Œ.†j C1/ı j̀ C1
�/ < ı j̀ :

Solving for ı gives ı > 1
2
. So indeed, there is no ı > 0 such that (G3) holds at the

same time as (G1), (G2), and (G4).
To construct an approximating sequence of inner-outer polygons for † in this

case, we should therefore pick a subsequence of levels. For example, pick T2k and
H2k for k 2 N. Once again (G1), (G2), and (G4) will be satisfied for 0 < ı < 1

2
,

but now

dist.@†2k; @Œ.†2kC2/ı`2kC2
�/ � `2k

5
C ı`2kC2p

2
2

D `2k

5
C ı`2k

p
2

5
:

And (G3) is guaranteed for

dist.@†2k; @Œ.†2kC2/ı`2kC2
�/ < ı`2k;

which implies ı > 1

5�
p

2
with the right hand side of this less than 1=2. Hence all

four conditions of the Hypothesis G hold whenever we pick only the even levels
for 1

5�
p

2
� 0:2789 < ı < 1=2; see Figure 4 (right).

From Lemma 2.6 we get !2
1.T2k/ � !2

1.H2k/ ! 0 as k ! 1 at a rate at
least 1

5
k
2

.
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3. Conformal transplantation

We now turn to block W2). Let f � fj W �0 ! �j be the conformal map of �0 to
the corresponding level �j . Here we consider �j as subsets of the complex plane.
When instead the polygons are viewed as lying in the two-dimensional real plane
R

2, the coordinates are denoted by y D .y1; y2/ 2 �0 and x D .x1; x2/ 2 �j .
We also denote by f WR2 ! R

2 the map given in real coordinates:

y 7�! x D f .y/ D .f 1.y/; f 2.y//:

The following standard manipulations involving the composition map asso-
ciated with f will be useful in later sections. As f is analytic, it satisfies the
Cauchy-Riemann equations:

@1f 1 D @2f 2 and @2f 1 D �@1f 2:

Hence

ryf D
�
@1f 1 �@2f 1

@2f 1 @1f 1

�
;

det.ryf / D jf 0j2; and .ryf /.ryf /T D jf 0j2
�
1 0

0 1

�
;

where

jf 0j2 D .@1f 1/2 C .@2f 1/2 D .@1f 2/2 C .@2f 2/2:

Let u 2 C 2.�j / and v D u ı f . Then

grady v D ry.u ı f / D .ryf /T rxu ı f

and

�yv D divy grady v

D ry � Œ.ryf /T rxu ı f �

D Œrxu ı f � �
x
�f C TrŒ.ryf /T .D2

xu ı f /.ryf /�

D 0 C TrŒ.ryf /T .D2
xu ı f /.ryf /�

D jf 0j2�xu ı f:

Here D2
xu denotes the Hessian

D2
xu D

�
@2

11u @2
12u

@2
21u @2

22u

�
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and
x
�f the vector Laplacian

x
�f D

�
�f 1

�f 2

�
:

Also
Z

�0

jv.y/j2jf 0.y/j2dy D
Z

�j

ju.x/j2dx < 1 (11)

and Z

�0

jryv.y/j2dy D
Z

�j

jrxu.x/j2dy < 1; (12)

whenever u 2 H 1.�j /.
The above calculations indicate that if u is an eigenfunction of (2) for � D �j ,

then v D u ı f solves the transplanted eigenvalue problem

��v D !2jf 0j2v in �0;

v D 0 on @�0:
(13)

Moreover, if v is an eigenfunction of (13), then u D v ı f �1 is an eigenfunction
of (2) associated with the same eigenvalue. As we shall see later in Theorem 4.2
there is a one-to-one correspondence between the eigenfunctions of the Dirichlet
Laplacian on �j and those of a selfadjoint operator associated to (13). This is
neither obvious nor an immediate consequence of classical principles, as jf 0j has
zeros and poles on the boundary of the domain.

There are two reasons for preferring (13) over (2). One is that, even though both
u and v have singularities, v is more regular than u. The other reason is related
to the fact that our polygons will have thousands of vertices. With techniques
developed in [2, 3] we are able to efficiently and accurately compute the conformal
map f , even in these extreme situations. Solving the eigenvalue problem on �0,
especially for the ground eigenvalue, requires much simpler and smaller meshes
than we would have needed on domains �j with a highly complex boundary. This
approach was also used in [1] to compute eigenvalues of fractal regions.

3.1. The Schwarz–Christoffel maps for the Koch Snowflake. In this sub-
section we assume that † is a Koch snowflake. We also consider �0 as a subset
of the complex plane with the variable denoted by z and �j subset of the complex
plane with the variable denoted by w. Denote by wk the corners of the polygon
�j and by zk their pre-images under the map f , so that f .zk/ D wk. In the case
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of the polygons T0 and Tj , we order the vertices so that wk D zk for k D 1; 2; 3.
That is, the first three vertices of Tj are the vertices of the original triangle T0.
Similarly, for polygons H0 and Hj we require that wk D zk for k D 1; : : : ; 6. The
ordering of the remaining vertices is not important.

Remark 3.1. A conformal map between two domains is not unique, but can
be made so by fixing three boundary points. For Tj this immediately ensures
uniqueness. For Hj , due to symmetries, we are able to fix six vertices.

We denote the interior angles of �j by �˛k .

� If �j D Tj , ˛k D 1=3 for k D 1; 2; 3 and ˛k D 1=3 or 4=3 for k > 3. The
total number of corners of Tj is

n.j / D 4j 3 D 3 C .4j � 1/„ ƒ‚ …
˛kD1=3

C 2.4j � 1/„ ƒ‚ …
˛kD4=3

:

� If �j D Hj , ˛k D 2=3 for k D 1; : : : ; 6 and ˛k D 2=3 or 5=3 for k > 6. The
total number of corners of Hj is

n.j / D 4j 6 D 6 C 4.4j � 1/„ ƒ‚ …
˛kD2=3

C 2.4j � 1/„ ƒ‚ …
˛kD5=3

:

We construct the conformal map fj in two steps by means of an intermediate
mapping onto D D ¹jzj < 1º. Set

f .z/ � fj .z/ D gj ı g�1
0 .z/; (14)

where the conformal map gj WD ! �j is given by the Schwarz–Christoffel formula

gj .�/ D Aj C Cj

�Z n.j /Y

kD1

.1 � �=�k/˛k�1d�;

where we left out the lower integration limit as it only influences the constant Aj .
The position of �k , each on the unit circle @D, is initially unknown and needs
to be computed by solving a non-linear system of equations [16]. Due to the
symmetries, we can fix the first three/six pre-vertices, the pre-vertices that map
to the three/six corners of the triangle/hexagon, all to be equally spaced points on
@D. In other words, gj .�k/ D wk D zk , k D 1; : : : ; m. Here and elsewhere m D 3

for Tj and m D 6 for Hj . For all k we have the following relationships

zk D g0.�k/; fj .zk/ D gj .�k/ D wk:
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Note that

f 0
j .z/ D 1

g0
0.g�1

0 .z//
g0

j .g�1
0 .z// D Cj

C0

n.j /Y

kDmC1

.1 � g�1
0 .z/=�k/˛k�1

D Cj

C0

n.j /Y

kDmC1

.1 � g�1
0 .z/=g�1

0 .zk//˛k�1:

(15)

As expected, the singularities near the m D 3 or m D 6 fixed corners have
disappeared. Integrating the above formula we obtain a Schwarz–Christoffel
formula for f

fj .z/ D zAj C Cj

C0

zZ n.j /Y

kDmC1

.1 � g�1
0 .�/=g�1

0 .zk//˛k�1d�: (16)

The following result on the regularity of f is a consequence of this formula.

Proposition 3.2. Let f .z/W �0 ! �j be the conformal map defined by (16). Then,

f is analytic in a neighbourhood of z1; : : : ; zm. Moreover

f .z/ D wk C .z � zk/˛k Qfk.z/ for all k > m

where Qfk.z/ is analytic in a neighbourhood of zk and Qfk.zk/ ¤ 0.

3.2. Schwarz–Christoffel map for general fractals. In the general case we still
choose f as the conformal map from �0 to �j , but the choice of prevertices would
depend on the geometry and symmetries of the fractal. Using the same arguments
as in (15), we have that

f .z/ D wk C .z � zk/˛k�ˇkC1 Qfk.z/

with Qfk.z/ a function analytic and non-zero in the neighbourhood of the prever-
tex zk, ˛k� the interior angle of �j at corner wk and ˇk� the interior angle of �0

at zk . If zk is not a corner, ˇk D 1 and we obtain the same behaviour as described
in Proposition 3.2 for the Koch snowflake.

In the subsequent analysis we will need to determine the behaviour of jf 0.z/j�1

near the prevertices. From the above, it follows that

jf 0.z/j�1 � jz � zkjˇk�˛k as z ! zk :

In particular for jf 0.z/j�2 to be integrable in two dimensions, a condition we will
require in the analysis, we need ˛k � ˇk < 1. Note that this condition holds
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always if ˇk D 1 as ˛k 2 .0; 2/. So, as long as we choose the conformal map
in such a way that it sends corners of �0 to corners of �j with ˛k � ˇk < 1, the
above is integrable. We formulate this as an assumption, which holds for the Koch
snowflake construction described above.

Assumption B. The conformal map f W �0 ! �j is such that for each vertex zk

of �0 mapped to a vertex wk of �j , we have ˛k �ˇk < 1. Here ˛k� is the interior
angle of �j at wk, and ˇk� is the interior angle of �0 at zk. Note that this implies
that Z

�0

jf 0.z/j�2dz < 1:

For the Koch snowflake we fix the conformal map so that ˇk D ˛k .

3.3. Singularities of the eigenmodes. Let uW �j ! R be an eigenfunction of (2)
associated with an eigenvalue !2 for � D �j .

Proposition 3.3. Let .r; �/ be the local polar coordinates of x 2 �j with the

origin at the vertex wk. Let R > 0 be such that R < mini¤k dist.wk; wi/ and

R < �
2j!j . Then for r 2 .0; R/

u.x/ D
1X

nD1

anJ n
˛k

.j!jr/ sin
�n�

˛k

�
;

where

an D 2

˛k�J n
˛k

.j!jR/

˛k�Z

0

u.R; �/ sin
�n�

˛k

�
d�; n 2 N:

Proof. The proof is obtained in the usual way by separation of variables. �

Remark 3.4. The condition R < �
2j!j ensures that J n

˛k

.j!jR/ is non-zero. Fur-

ther, we have

janJ n
˛k

.j!jr/j � C
� r

R

� n
˛k ;

giving absolute convergence of the series; see [11].

Now, let v D u ı f W �0 ! R be the transplanted eigenfunction for the
eigenvalue !2 of (13), where f W �0 ! �j is the Schwarz–Christoffel map (16)
in the case of the Koch snowflake.
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Proposition 3.5 (Koch snowflake). Let .%; '/ be the local polar coordinates of

y 2 �0 with the origin at the pre-vertex zk . Then

(1) For �j D Tj

v.y/ D bk.'/%3 C O.%5/; for k D 1; 2; 3;

v.y/ D bk.'/% C O.%5=3/; for k > 3 and ˛k D 1=3;

v.y/ D bk.'/% C O.%2/; for k > 3 and ˛k D 4=3:

(2) and for �j D Hj

v.y/ D bk.'/%3=2 C O.%3/; for k D 1; : : : ; 6;

v.y/ D bk.'/% C O.%2/; for k > 6 and ˛k D 2=3;

v.y/ D bk.'/% C O.%2/; for k > 6 and ˛k D 5=3:

In the above, bk.'/ are analytic functions of ' for %ei' 2 �0. These functions are

different for each corner.

Proof. Recall the Maclaurin expansion of Bessel functions for � > 0 [29, 10.2.2],

J�.z/ D
�1

2
z
��

1X

`D0

.�1/`

�
1
4
z2

�`

`Š�.� C ` C 1/
: (17)

If k � m, note that the singularity at zk of v is the same as that of u, since f is
analytic near zk and f .zk/ D zk. The result is then obtained from Proposition 3.3
and the fact that � is integer.

Next we give the details for k > m. Combining Proposition 3.2 and Proposi-
tion 3.3, it follows that

v.y/ D v.z/ D
1X

nD1

anJ n
˛k

.j!jr/ sin
�n�

˛k

�

near zk, where
rei� D %˛k ei˛k' Qfk.z/

and the analytic function Qfk.z/ is as in Proposition 3.2. In order to make use of
the expansion (17), consider the terms of the form

rn=˛kC2` D %nC2`˛k j Qfk.z/jn=˛kC2` n D 1; 2; : : : and ` D 0; 1; : : : :

Note that j Qfk.z/jn=˛kC2` is an analytic function of % and ' in the vicinity of zk

since Qfk.zk/ ¤ 0. Further

� D ˛k' C Arg Qfk.z/:

The result is obtained by isolating the leading term in each one of the cases. �
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Two remarks are now in place.
As a consequence of this proposition, in the case of the Koch snowflake, it

follows that the strongest singularity for Tj is near the angles ˛k D 1=3 and for Hj

near the 6 original corners. Therefore, overall, the transplantation has reduced the
strongest singularity from r3=4 to %5=3 for Tj and from r3=5 to %3=2 for Hj . This
implies, for example, that the first derivative of v is bounded but the first derivative
of u is unbounded.

In the case of the Tj polygons, the original eigenfunction u is analytic near the
three vertices wk, k D 1; 2; 3, and the same holds for the transplanted eigenfunc-
tion near the corresponding prevertices zk.

4. Formulation as a system

In this section we set the theoretical framework of the block W3). For this purpose
we define a selfadjoint operator Ty of order 1 associated with the eigenvalue
problem (13), whose squared non-zero spectrum coincides with the eigenvalues
of (2). In Section 5 we will formulate a procedure for computing lower and upper
bounds for spec.Ty/, which involves the square of this operator. For this, the
trial functions are required to lie in the operator domain of Ty (the domain of

the quadratic form associated to Ty
2
). In Section 4.2 we describe explicitly an

operator core D in terms of the derivative of the conformal map jf 0j.

4.1. The div-grad operator. Let

Gx‚ …„ ƒ2
4

0 i divx

i gradx 0

3
5W

D.Gx/‚ …„ ƒ
H 1

0 .�j /

�
H.div; �j /

�!

L2.�j /3

‚ …„ ƒ
L2.�j /

�
L2.�j /2

:

The densely defined operator Gx W D.Gx/ ! L2.�j /3 is selfadjoint, because the
adjoint of the minimal operator i gradx W H 1

0 .�j / ! L2.�j /2 is the maximal
operator i divxW H.div; �j / ! L2.�j / and vice versa. Note that all the Hilbert
spaces considered in this paper are on the field of complex values.

Denote the selfadjoint operator associated to (2) on � D �j by

��xW D.�x/ �! L2.�j /:

Here the domain of the Dirichlet Laplacian is defined via von Neumann’s theorem
[21, p. 275], as

D.�x/ D ¹u 2 H 1
0 .�j /W grad u 2 H.div; �j /º � L2.�j /:

See Appendix A.
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Lemma 4.1. The non-zero vector
� u

N
s

�
2 D.Gx/ is an eigenfunction of Gx if and

only if,

(1) either u 2 D.�x/, ��xu D !2u and
N
s D ˙i

j!j gradx u

(2) or u D 0 and divx N
s D 0.

Moreover,
� u

N
s

�
is associated to the eigenvalue ˙! in the case 1 and to the eigen-

value 0 in the case 2.

Proof. See Lemma A.1 and the proof of Lemma A.2. �

Denote by ¹ukºk2N � D.�x/ an orthonormal basis of eigenfunctions such
that ��xuk D !2

k
uk . If

N
sk D ˙i

j!k j gradx uk and ¹
N
�nº1

nD1 � H.div; �j / is an
orthonormal basis of ker.div/ then, as a consequence of Lemma 4.1, the family

E D
²�

uk

˙
N
sk

�³

k2N
[

²�
0

N
�n

�³

n2N

is a complete family of eigenfunctions of Gx . Moreover

spec.Gx/ D ¹˙!k.�j /; 0º:

In fact E is an orthonormal basis of L2.�j /3. Each non-zero eigenvalue is discrete
and the eigenvalue zero is degenerate (infinite multiplicity).

4.2. The transplanted selfadjoint operator. Let

D WD
²�

Qv

N
t

�
2 L2.�0/3W jf 0j�1 Qv 2 H 1

0 .�0/; jf 0j�1 divy N
t 2 L2.�0/

³

and define

Ty D
�

0 i jf 0j�1 divy

i grady jf 0j�1 0

�
WD �! L2.�0/3:

Then Ty is a densely defined symmetric operator.

Theorem 4.2. The operator .Ty;D/ on L2.�0/3 has an orthonormal basis of

eigenfunctions in its domain. The closure

Ty W D.Ty/ �! L2.�0/3

is selfadjoint. Moreover,

spec.Ty/ D spec.Gx/ D ¹˙wk.�j /; 0º:
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The rest of this section is devoted to the proof of this theorem. Our first task
will be to verify that the transplanted eigenfunctions are in the domain of Ty . Let

vk D uk ı f; Qvk D jf 0jvk ;

N
tk D .ryf /T

N
sk ı f;

N
�n D .ryf /T

N
�n ı f:

Lemma 4.3. We have

zE D
²� Qvk

˙
N
tk

�
;

�
0

N
�n

�³

k;n2N
� D:

Proof. Let us first show that � Qvk

˙
N
tk

�
2 D:

From (12) with u D uk and v D vk, it follows that
Z

�0

jryvkj2dy < 1:

Since �0 is compact, by Sobolev embedding it then follows that also
Z

�0

jvkj2dy < 1

and jf 0j�1 Qvk D vk 2 H 1
0 .�0/. This is the first condition in the definition of D.

Now the second condition. Since
Z

�0

j
N
tk j2dy D

Z

�0

Œ.ryf /.ryf /T .
N
sk ı f /� � .

N
sk ı f /dy D

Z

�j

j
N
sk j2dx

we gather that
N
tk 2 L2.�0/2. Then

divy N
tk D .

N
sk ı f / �

x
�f C Tr

�
.ryf /T ry.

N
sk ı f /

�

D 0 C Tr
�
.ryf /T Œ.ryN

sk/T ı f �.ryf /
�

D jf 0j2 divx N
sk ı f:

Hence
jf 0j�1 divy N

tk D jf 0j divx N
sk ı f;

so
Z

�0

jjf 0j�1 divy N
tkj2dy D

Z

�0

jf 0j2j divx N
sk ı f j2dy D

Z

�j

j divx N
sk j2dx < 1:

This is the second condition in the definition of D.
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It is only left to show that �
0

˙
N
�n

�
2 D:

On the one hand,
Z

�0

j
N
�nj2dy D

Z

�0

Œ.ryf /.ryf /T .
N
�n ı f /� � .

N
�n ı f /dy D

Z

�j

j
N
�nj2dx:

On the other hand,

divy N
�n D jf 0j2 divx N

�n ı f D 0 2 L2.�0/: �

The family zE in this lemma is a family of eigenfunctions of Ty. Indeed

Ty

�
Qvk

˙
N
tk

�
D

�
˙i jf 0j�1 divy N

tk
i grady vk

�

D
� ˙i jf 0j.divx N

sk/ ı f

i.ryf /T .gradx uk/ ı f

�

D
�
jf 0j 0

0 .ryf /T

�
Gx

�
uk

˙
N
sk

�
ı f

D ˙!k

�
jf 0juk ı f

˙.ryf /T

N
sk ı f

�

D ˙!k

� Qvk

˙
N
tk

�

and

Ty

�
0

N
�n

�
D

�
i jf 0j.divx N

�n/ ı f

0

�
D 0:

In fact it is a complete family of eigenfunctions as we shall see next.

Lemma 4.4.

Span zE D L2.�0/3:

Proof. We verify that zE? D ¹0º. Suppose that

Z

�0

�
Qvk

˙
N
sk

�
�
�
v

N
t

�
dy D 0 D

Z

�0

�
0

N
�n

�
�
�
v

N
t

�
dy for all k; n 2 N: (18)
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Let g D f �1WR2 ! R
2 be the inverse map to f . Then u D v ı g and

N
s D

N
t ı g

and

0 D
Z

�0

�
jf 0juk ı f

˙.ryf /T

N
sk ı f

�
�
�
u ı f

N
s ı f

�
dy

D
Z

�0

�
uk ı f

˙
N
sk ı f

�
�
�

jf 0ju ı f

.ryf /
N
s ı f

�
dy

D
Z

�j

�
uk

˙
N
sk

�
�
�

jg0ju
jg0j2..ryf / ı g/

N
s

�
dx

for all k 2 N. Further

0 D
Z

�j

jg0j2
N
�n � .ryf ı g/

N
s dx

for all n 2 N. Since E is an orthonormal basis of L2.�j /3, then

jg0ju D 0 and jg0j2.ryf ı g/
N
s D 0:

Hence, since jg0j 6D 0 a.e. and det ryf ı g D jg0j�2 6D 0 a.e., u D 0 and
N
s D 0.

Thus (18) implies
� v

N
t

�
D 0. �

In order to generate an orthonormal family of eigenfunctions apply Gram-
Schmidt to zE which might not be orthonormal a priori. Note that in fact Ty is
essentially selfadjoint, [13, Lemma 1.2.2]. This completes the proof of Theo-
rem 4.2.

Remark 4.5. Since jf 0j has singularities on @�0, it is not a priori clear whether
.Ty;D/ is closed. This is a rather subtle point. We are unaware of any investigation
in this respect.

5. Computation of upper and lower bounds

We now describe one possible method to determine bounds for the eigenvalues
of the operator Ty for the block W4). We have chosen the quadratic method [24]
which fully avoids spectral pollution [32] and is shown to be reliable for computing
eigenvalues. For a full list of references see [6, Section 6.1]. For alternative
approaches see [27, 34, 9, 20, 5].
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5.1. The quadratic method. Given a subspaceL � D.Ty/ of dimension d <1,
the second order spectrum [14] of Ty relative to L is the spectrum of the following
quadratic matrix polynomial weak eigenvalue problem.

Problem 5.1. Find � 2 C and 0 6D
� v

N
t

�
2 L such that

�
.Ty � �/

�
v

N
t

�
; .Ty � ��/

�
Qv

N
Qt

��
D 0 for all

�
Qv

N
Qt

�
2 L:

Given a basis for the subspace L,

L D span¹
N
bj ºd

j D1;

and writing
�
v

N
t

�
D

dX

j D1

j̨ N
bj for

N
˛ D . j̨ /d

j D1 2 C
d ;

this problem becomes equivalent to

Q.�/
N
˛ D 0 for Q.z/ D K � 2zL C z2M;

where

K D ŒhTy N
bj ;Ty N

bki�dj;kD1; L D ŒhTy N
bj ;

N
bki�dj;kD1; M D Œh

N
bj ;

N
bki�dj;kD1:

The � 2 C solutions to Problem 5.1 are therefore the spectrum of the quadratic
matrix polynomial Q.z/. Since Q.z/ is selfadjoint, this set is symmetric with
respect to the real line. Since det M 6D 0, it consists of at most 2d distinct isolated
points.

The following relation between the second order spectra and the spectrum of
Ty is crucial below. Let

D.a; b/ D
²

z 2 CW
ˇ̌
ˇ̌z � a C b

2

ˇ̌
ˇ̌ <

b � a

2

³
:

Then,

.a; b/ \ specTy D ¹!º
det Q.�/ D 0

� 2 D.a; b/

9
>=
>;

H) Re � � j Im �j2
b � Re �

< ! < Re � C j Im �j2
Re � � a

: (19)

See [33, Remark 2.3] and [8, Corollary 2.6].
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5.2. Finite element approximation of the eigenvalue bounds. We now show a
possible concrete family of subspacesL. Let „h be a uniform triangulation of �0,
define the corresponding space of piecewise polynomials to be

yL D
²�

v

N
t

�
2 C 0.�0/3W

�
vjK

N
t jK

�
2 Pp.K/3 for all K 2 „h; vj@�0

D 0

³
; (20)

and let

F D

2
4

jf 0j 0 0

0 1 0

0 0 1

3
5 :

Consider the following reformulation of Problem 5.1.

Problem 5.2. Find � and 0 6D
� v

N
t

�
2 yL such that for all

h
Qv
N
Qt
i

2 yL
�
F �1Gy

�
v

N
t

�
; F �1Gy

�
Qv

N
Qt

��
� 2�

�
Gy

�
v

N
t

�
;

�
Qv

N
Qt

��
C �2

�
F

�
v

N
t

�
; F

�
Qv

N
Qt

��
D 0:

The substitution
� v

N
t

�
D F �1

� w

N
r

�
and

h
Qv
N
Qt
i

D F �1
h

Qw
N
Qr

i
yields an equivalence

between problems 5.2 and 5.1, where the subspaces are deformed by the action
of jf 0j,

L D F yL: (21)

Indeed Problem 5.2 is equivalent to finding � and 0 6D
� w

N
r

�
2 L such that

�
Ty

�
w

N
r

�
;Ty

�
Qw

N
Qr

��
� 2�

�
Ty

�
w

N
r

�
;

�
Qw

N
Qr

��
C �2

��
w

N
r

�
;

�
Qw

N
Qr

��
D 0 for all

�
Qw

N
Qr

�
2 L:

The latter is exactly Problem 5.1 for L given by (21). For the quadratic method to
be free from spectral pollution we require L � D.Ty/. As we shall see next, this
is indeed the case.

Lemma 5.3. Let yL be given by (20) and L be given by (21). Then L � D:

Proof. Let
h

Qv
N
t

i
2 yL. Since yL � H 1

0 .�0/ � H 1.�0/2, then Qv 2 H 1
0 .�0/ and

N
t 2 H 1.�0/2 � H.div; �0/. As the first entry of F

h
Qv
N
t

i
is jf 0j Qv, it indeed satisfies

the first condition in the definition of D.
Now, the second entry of F

h
Qv
N
t

i
is

N
t . Since

N
t is continuous and piecewise

polynomial its divergence is bounded on �0. Hence
Z

�0

jjf 0j�1 divy N
t j2dy � k divy N

tk2
1

Z

�0

jf 0j�2dy:
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The function jf 0j�1 has singularities only on @�0. According to Assumption B,
Z

�0

jf 0j�2dy < 1:

Then, indeed jf 0j�1 divy N
t 2 L2.�0/, ensuring the second condition in the defi-

nition of D. �

Remark 5.4. Let � Qv1

N
t1

�
2 zE

be the normalised eigenfunction associated to the first positive eigenvalue

!1.�j / 2 spec.Ty/:

A convergence analysis of the finite element method at individual �j can be
carried out in the context of [7, Theorem 3.2]. It shows that if there exists a
constant c1 > 0 so that

inf
Œwh N

rh�T 2L


�

Qv1

N
t1

�
�

�
wh

N
rh

�
L2.�0/3

C
Ty

��
Qv1

N
t1

�
�

�
wh

N
rh

��
L2.�0/3

< c1hp;

then there exists �h such that det Q.�h/ D 0 and

j�h � !1j < c2hp=2:

The hypothesis translates into the subspace yL as follows:

inf
Œvh N

rh�T 2 yL


�
jf 0jv1

N
t1

�
�

�
jf 0jvh

N
rh

�
L2.�0/3

C
F �1Gy

��
jf 0jv1

N
t1

�
�

�
jf 0jvh

N
rh

��
L2.�0/3

< c1hp:

Here v1 D u1 ı f . These convergence estimates might be investigated in future
work.

6. Computations for a Koch snowflake

In this section we show a particular implementation of the workflow W1)–W4)
for the Koch snowflake † inscribed in the unit disk D. This implementation leads
to (1). In [12, Table 2] an approximation of the ground eigenvalue for the hexagon
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Table 1. For level j D 10. Upper and lower bounds for the ground eigenvalue on H10 and
T10. The mesh is made of equilateral triangles. At each refinement we increase the number
of triangles by a factor of 4.

!2
1

.H10/
upper
lower Refinement

13:117
04

2

13:1161
49

3

13:1161
57

4

13:1161
59

5

13:116016
02

6

13:1160120
15

7

!2
1

.T10/
upper
lower Refinement

13:12
09

4

13:117
03

5

13:1165
26

6

13:1163
57

7

13:11624
16

8

13:116229
08

9

13:1162276
10

10

was reported as !2
1.H0/ � 7:155339146. Later in [1, Table 2] numerical evidence

was given indicating that !2
1.†/ D 13:116184N3 with doubt over the last digit. This

number is within the estimate (1).
In block W1) we set j D 1; : : : ; 10 where Tj and Hj are chosen as in Sec-

tion 2.1. We find upper and lower bounds for !2
1.Tj / and !2

1.Hj /. By domain
monotonicity (3) lower bounds for !2

1.Hj / are lower bounds for !2
1.†/ and upper

bounds for !2
1.Tj / are upper bounds for !2

1.†/. We derive (1) from

!2
1.H10/lower < !2

1.†/ < !2
1.T10/upper

using the numerical estimates in the last row of Table 1.
We compute the conformal maps fj for block W2) by means of the highly

accurate procedure described in [3, 2] coded in C++. The Schwarz–Christoffel
formula (16) is semi-explicit as the position of the pre-vertices zk for j > 0

is not a-priori known and needs to be computed as the solution of a non-linear
parameter problem. Using a simple iteration due to Davis [15] and accelerating
the computation using the fast multipole method [18], we solve this problem for
hundreds of thousands of pre-vertices. The details and required modifications to
the original algorithms are given in [2, 3].

For block W4), we solve Problem 5.2. We pick Lagrange elements of order
p D 5 in (20) on a mesh for �0 made of uniformly distributed equilateral triangles
of identical area. We start with an initial mesh for H0 made of 6 equilateral
triangles and T0 made of 4 equilateral triangles. Then refine each mesh a number
of times. In each refinement the number of elements is multiplied by 4.

The ground eigenvalue on the unit disk is !2
1.D/ D j0;1 and 14:68 < j1;1 D

!2
2 .D/. To get lower bounds for !1.�j /, we appeal to (3) and consider (19) fixing
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a D 0 and b � !2.D/. In practice we choose

b <
p

j1;1:

We formulated and solved Problem 5.2 numerically using the commercial package
Comsol Multiphysics and ran the simulations in Comsol Livelink for Matlab.

6.1. Our best estimate. In Table 1 we show our computation of !2
1.T10/ and

!2
1 .H10/, as we refine the original mesh the indicated number of times.

For T10 accuracy stalls from the 6th to the 7th refinement, then it jumps by a
considerable margin. We believe that this phenomenon is linked to the structure
of the eigenfunction for T10 near the boundary, but we can say no more at present.
Similarly a stall in accuracy occurs between the 3rd and 5th refinement for H10.

We stopped the calculation due to lack of computer memory for T10 after 10
refinements and for H10 after 7 refinements.

6.2. The optimal rate of interior-exterior domain approximation. In order to
test optimality of the decreasing rate of

!2
1.Tj / � !2

1.Hj /

established in Lemma 2.2, we present in Table 2 computation of !2
1 .�j / with the

shown number of refinements for j D 0; : : : ; 10. Note that

!2
1.T0/ D 16�2

9
� 17:54597:

Therefore the lower bound for level j D 0 is not given, because the b chosen
in (19) is not below !1.T0/.

Let the mean of the computed bounds at corresponding level for region �j be

Q!2
1.�j / D !2

1.�j /upper C !2
1.�j /lower

2
:

On the right of Table 2 we show a semilog (vertical axis) plot of

r.j / D Q!2
1.Tj / � Q!2

1.Hj /

versus j D 2; : : : ; 10. Remarkably, the picture shows a near straight line, suggest-
ing that, to high accuracy, the law

r.j / � C�j
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is satisfied. Our computed values give � � 0:35958 and

C � 5:8688:

See the Remark 2.3. In [1] this observation was used to accelerate by extrapolation
the convergence to the eigenvalues of the fractal.

Table 2. For level j D 0; : : : ; 10. Top. Upper and lower bounds for the ground eigen-
value on Hj and Tj . The refinement used in each case is as shown in the columns R.
Bottom. Semilog plot of r.j /.

j !2
1

.Hj /
upper
lower R !2

1
.Tj /

upper
lower R

0 7:1553394
83

4 17:545963380 4

1 11:7814439
19

5 13:40273
24

5

2 12:5198687
72

6 13:26886
56

6

3 12:8977823
06

7 13:17077
69

7

4 13:0371092
57

7 13:135754
33

8

5 13:087693
89

7 13:12322
19

8

6 13:1059382
52

7 13:11871
68

8

7 13:11251
49

7 13:117093
73

8

8 13:114863
59

7 13:11652
49

8

9 13:1157099
73

7 13:11631
28

9

10 13:1160120
15

7 13:1162276
10

10

100

10 1

10 2

10 3

10 4

2 4 6 8 10

j

r
.j

/
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Appendix A. Spectrum of the matrix operator

The results presented in this appendix are common knowledge. However, as we
could not find a suitable reference to the specific statement that we required in
Section 3, we include full details of proofs.

Let H1 and H2 be two possibly different separable Hilbert spaces. Let
T W D.T / ! H2 be a densely defined closed operator from D.T / � H1 and let

E D
�

0 T �

T 0

�
:

The operator

EW D.T / ˚ D.T �/ �! H1 ˚ H2

is selfadjoint, indeed note that .T �/� D xT D T . Moreover, by von Neu-
mann’s Theorem [21, p. 275], we know that both T T �W D.T T �/ ! H1 and
T �T W D.T �T / ! H2 are selfadjoint in the corresponding domains of operator
multiplication (of closed operators). Also D.T �T / � H1 is a core for T and
D.T T �/ � H1 is a core for T �. As we shall see next, the spectrum of E is fully
characterised by the spectra of T T � and T �T . Below, the point spectrum is de-
noted by specp.

Lemma A.1. 0 2 specp.E/ if and only if 0 2 specp.T T �/ [ specp.T �T /.

Moreover

dim Ker.E/ D dim Ker.T �T / C dim Ker.T T �/:

Proof. Since

E

�
u

v

�
D 0 () T �v D 0 and T u D 0

() T T �v D 0 and T �T u D 0;

the first claim follows.

For the second claim note that there is a one-to-one correspondence between
a set of eigenvectors

®� un

˙vn

�¯
associated to 0 2 specp.E/ and

®�
un

0

�
;
�

0
vn

�¯
, which

possibly has some zero vectors. �

In the above statement zero can be in the point spectrum of one of the operators
T T � or T �T but not necessarily the other. This is for example the case for T the
standard shift in `2.N/.
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Lemma A.2. Let � 6D 0. The following are equivalent:

� � 2 specp.E/;

� �� 2 specp.E/;

� �2 2 specp.T T �/;

� �2 2 specp.T �T /.

Moreover

dim Ker.E � �/ D dim Ker.E C �/

D dim Ker.T �T � �2/

D dim Ker.T T � � �2/:

Proof. Let � 2 specp.E/ and dim Ker.E � �/ D m. Then there exists a linearly
independent set ²�

un

vn

�³m

nD1

� D.E/

such that

.E � �/

�
un

vn

�
D 0:

Then T �vn D �un and T un D �vn and, necessarily, un 6D 0 and vn 6D 0 for
all n 2 ¹1; : : : ; mº. Thus also the set

®�
un�vn

�¯m

nD1
is linearly independent and

.E C �/
�

un�vn

�
D 0: Therefore �� 2 specp.E/ and dim Ker.E C �/ D m.

Now, as ²�
1
�

T �vn

vn

�³m

nD1

D
²�

un

vn

�³m

nD1

;

the former is a linearly independent set of eigenvectors with vn 2 D.T �/ and
T �vn 2 D.T /. Then T T �vn D �2vn for the set of non-zero vectors ¹vnºm

nD1 �
D.T T �/. Assume that dim Ker.T T � � �2/ D l < m. Then

¹vnºm
nD1 � span¹ Qvj ºl

j D1

for a linearly independent set ¹ Qvj ºl
j D1. Hence

vk D
lX

j D1

aj Qvj and T �vk D
lX

j D1

aj T � Qvj

for some k 2 ¹1; : : : ; mº. Thus

�
1
�

T �vk

vk

�
D

lX

j D1

aj

�
1
�

T � Qvj

Qvj

�
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which is a contradiction. Therefore l � m. But let Quj D 1
�

T � Qvj and consider the

set
°h Quj

Qvj

i±l

j D1
� D.E/. This is a linearly independent set of eigenvectors of E

for �. This shows that necessarily l D m.
All the above, and a symmetric argument involving un instead of vn and T �T

instead of T T �, are enough to prove the claim. �
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