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Assouad dimension influences the box and packing

dimensions of orthogonal projections
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Abstract. We present several applications of the Assouad dimension, and the related

quasi-Assouad dimension and Assouad spectrum, to the box and packing dimensions of

orthogonal projections of sets. For example, we show that if the (quasi-)Assouad dimension

of F � R
n is no greater than m, then the box and packing dimensions of F are preserved

under orthogonal projections onto almost all m-dimensional subspaces. We also show that

the threshold m for the (quasi-)Assouad dimension is sharp, and bound the dimension of

the exceptional set of projections strictly away from the dimension of the Grassmannian.
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1. Introduction and results

The relationship between the dimension of a Borel set F � R
n and its projections

onto m-dimensional subspaces goes back to Marstrand [12] and Mattila [13] who

showed that

dimH �V F D min¹m; dimH F º

for almost all V 2 G.n; m/ with respect to the natural invariant measure on the

Grassmannian G.n; m/, where �V WRn ! V is orthogonal projection onto V and

dimH is Hausdorff dimension.
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Finding the box and packing dimensions of projections of sets is more awk-

ward. For a non-empty bounded F � R
n, let Nr .F / be the minimum number of

sets of diameter r that can cover F . The lower and upper box-counting dimensions

or box dimensions of F are defined by

dimBF D lim
r!0

log Nr.F /

� log r
and dimBF D lim

r!0

log Nr .F /

� log r
:

(Note that this gives the same values for the dimensions as taking Nr .F / to be the

least number of sets of diameter at most r that can cover F or other equivalent

definitions, see [2].) The packing dimension of a (not-necessarily bounded) set

may be defined in terms of upper box dimension as

dimP F D inf
°

sup
j

dimBFj W F �

1
[

j D1

Fj with Fj compact
±

; (1)

see [2]. Although the values of dimB�V F; dimB�V F and dimP �V F are constant

for almost all V 2 G.n; m/, this constant can take any value in the range

dimBF

1 C .1=m � 1=n/dimBF
6 dimB�V F 6 min¹m; dimBF º; (2)

with analogous inequalities for lower box and packing dimensions. These inequal-

ities were established in [5, 6, 10] using dimension profiles, with examples show-

ing them to be best possible in [5, 11], and recently a simpler approach using

capacities was introduced [3]. For background on the dimensions of projections,

see [4, 14], and for general dimension theory, see [2].

In light of the fact that, in general, box and packing dimensions may drop

below the upper bound in (2) under almost all projections, it may be of interest

to find geometric conditions that ensure that such a drop does not occur. In this

paper we obtain a result of this type: we show that if the Assouad, or even the

quasi-Assouad, dimension of F � R
n is no greater than m, then the box and

packing dimensions of F are preserved under orthogonal projection onto almost

all m-dimensional subspaces, i.e. there is equality on the right-hand side of (2).

We also obtain estimates when dimA F > m as well as bounds on the dimension

of the exceptional set of subspaces V .

The Assouad dimension of a non-empty set F � R
n is defined by

dimA F D inf
°

˛W there exists a constant C > 0 such that,

for all 0 < r < R and x 2 F ,

Nr .B.x; R/ \ F / 6 C
�R

r

�˛ ±

:
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The related upper Assouad spectrum is defined by

dim
�

AF D inf
°

˛W there exists a constant C > 0 such that,

for all 0 < r 6 R1=� < R < 1 and x 2 F ,

Nr .B.x; R/ \ F / 6 C
�R

r

�˛ ±

where � 2 .0; 1/. If one replaces r 6 R1=� with r D R1=� , then one obtains the

Assouad spectrum dim�
A F , see [9], but it was proved in [7] that

dim
�

AF D sup
� 02.0;�/

dim� 0

A F

and so we are able to rely on the theory of dim�
A F , which is somewhat more

developed. The upper Assouad spectrum is clearly non-decreasing in � but the

Assouad spectrum need not be. However, in most commonly studied situations

it is non-decreasing and therefore the two spectra coincide. Finally, the quasi-

Assouad dimension is defined by

dimqA F D lim
�%1

dim
�

AF:

Generally, for � 2 .0; 1/,

dimP F 6 dimBF 6 dim
�

AF 6 dimqA F 6 dimA F:

With these definitions we may state our two basic theorems which will be

proved in the next section using dimension profiles.

Theorem 1.1. Let 1 6 m < n and � 2 .0; 1/. If F � R
n is bounded then, for

almost all V 2 G.n; m/,

dimB�V F > dimBF � max¹0; dim
�

AF � m; .dimA F � m/.1 � �/º; (3)

and the same conclusion holds with dimB replaced by dimB. If F is Borel the

conclusion holds with dimB replaced by dimP.

The following statement bounds the Hausdorff dimension of the exceptional

set of projections in Theorem 1.1 strictly away from m.n � m/, the dimension of

G.n; m/.
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Theorem 1.2. Let 1 6 m < n, s 2 .0; m/ and � 2 .0; 1/. If F � R
n is bounded

then

dimH

®

V 2 G.n; m/W

dimB�V F < dimBF � max¹0; dim
�

AF � s; .dimA F � s/.1 � �/º
¯

6 m.n � m/ � .m � s/;

(4)

and the same conclusion holds with dimB replaced by dimB. If F is Borel the

conclusion holds with dimB replaced by dimP.

The following corollaries follow easily from the theorems by choosing appro-

priate parameters.

Corollary 1.3. Suppose that dimqA F 6 max¹m; dimBF º. If F � R
n is bounded

then, for almost all V 2 G.n; m/,

dimB�V F D min¹m; dimBF º; (5)

and more generally

dimB�V F > dimBF � max¹0; dimqA F � mº: (6)

The same conclusion holds with dimB replaced by dimB. If F is Borel the

conclusion holds with dimB replaced by dimP.

Proof. The almost sure estimates (5) and (6) follow on letting � % 1 in (3). �

The conclusion (5) in Corollary 1.3 can also be obtained using [15, Proposi-

tion 4.5].

Corollary 1.4. Suppose that dimqA F < m. If F � R
n is bounded then

dimH¹V 2 G.n; m/ W dimB�V F < dimBF º 6 m.n � m/ � .m � dimqA F /;

and the same conclusion holds with dimB replaced by dimB. If F is Borel the

conclusion holds with dimB replaced by dimP.

Proof. Take s D dimqA F and let � % 1 in (4). �

In the absence of a precise result, a natural question is when (6) improves on the

general lower bounds from (2). A careful analysis of the lower bound yields many

such situations. We provide one instance, based on a knowledge of the Assouad

dimension. We exclude the range dimA F < max¹m; dimBF º since this is covered

by Corollary 1.3.
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Corollary 1.5. Let 16m<n be integers. If F �R
n is bounded with dimBF 6m

and

max¹m; dimBF º 6 dimA F <
.mn C 2dimBF.n � m//m

mn C dimBF.n � m/
;

then, for almost all V 2 G.n; m/,

dimB�V F > dimBF �
.dimA F � m/dimBF

m
>

dimBF

1 C .1=m � 1=n/dimBF
:

This result remains valid with dimB replaced by dimB throughout. If F is Borel

the result remains valid with dimB replaced by dimP.

Proof. This follows from Theorem 1.1. If dimBF D m, then the bound follows

by letting � & 0 in (3). If dimBF < m, then choose � as large as possible such

that dim
�

AF 6 m. By [9, Proposition 3.1] we know that

dim
�

AF 6
dimBF

1 � �

and therefore we can always choose

� D 1 �
dimBF

m
:

Therefore by (3), for almost all V 2 G.n; m/,

dimB�V F > dimBF � .dimA F � m/.1 � �/

D dimBF �
.dimA F � m/dimBF

m

>
dimBF

1 C .1=m � 1=n/dimBF
;

as required. The final strict inequality uses the assumption on the Assouad

dimension. �

Figure 1 indicates our bounds for the almost sure box dimensions of projections

depending on the pair .dimBF; dimA F / in different cases.

The proof of Corollary 1.5 involved choosing a particular � in the ‘worst case

scenario’. If dim�
A F is known, then there may be a much better choice leading to

better estimates in the particular setting. For example, better choices of � always

exist if F is a Bedford-McMullen carpet, see [8].
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We remark that the examples in [6, Lemma 19] of sets F � R
n for which

there is almost sure equality on the left-hand inequality of (2), all have Assouad

dimension dimA F D n, consistent with our estimates.

(i)

(ii)

(iii)

(iv)

dimBF

dimA F

0 0:2 0:4 0:6 0:8 1

0

0:5

1

1:5

2

Figure 1. Taking m D 1 and n D 2, if the pair .dimBF; dimA F / lies in region: (i) we

get no information, (ii) Corollary 1.5 gives improvements on the general bounds (2),

(iii) Corollary 1.3 gives min¹m; dimBF º, (iv) is not possible, since dimA F > dimBF .

The curve bounding regions (i) and (ii) is given by y D .2x C 2/=.x C 2/.

2. Dimension profiles and proofs of theorems

We first review the relationship between the dimension profiles of a set and the

box dimensions of its projections. Then estimating the dimension profiles in terms

of (quasi-)Assouad dimensions will lead to the theorems in Section 1.

Dimension profiles may be defined in terms of capacities with respect to certain

kernels [3]. For s 2 Œ0; n� and r > 0 we define the kernel

�s
r .x/ D min

°

1;
� r

jxj

�s±

.x 2 R
n/: (7)

For a non-empty compact F � R
n, the capacity, C s

r .F /, of F with respect to this

kernel is given by

1

C s
r .F /

D inf
�2M.F /

“

�s
r .x � y/d�.x/d�.y/;

whereM.F / denotes the collection of Borel probability measures supported by F .
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The double integral inside the infimum is called the energy of � with respect to

the kernel. The capacity of a general bounded set is taken to be that of its closure.

For bounded F � R
n and s > 0 we define the lower and upper box dimension

profiles of F by

dims
BF D lim

r!0

log C s
r .F /

� log r
; dim

s

BF D lim
r!0

log C s
r .F /

� log r
;

and, analogously to the packing dimension (1), the packing dimension profile (for

F not necessarily bounded) by

dims
P F D inf

°

sup
j

dim
s

BFj W F �

1
[

j D1

Fj with Fj compact
±

: (8)

In particular, by [3, Corollary 2.5] if s > n then

dims
BF D dimBF; dim

s

BF D dimBF; dims
P F D dimP F;

but for s < n the dimension profiles give the almost sure dimensions of projections

of sets as well as information on the size of the set of exceptional projections, as

follows.

Theorem 2.1 ([3, Theorems 1.1 and 1.2]). (i) Let 1 6 m < n be an integer. For

almost all V 2 G.n; m/, if F � R
n is bounded

dimB�V F D dimm
B F and dimB�V F D dim

m

B F;

and if F � R
n is Borel

dimP �V F D dimm
P F:

(ii) For 0 < s < m, if F � R
n is bounded

dimH¹V 2 G.n; m/W dimB�V F < dims
BF º 6 m.n � m/ � .m � s/;

dimH¹V 2 G.n; m/W dimB�V F < dim
s

BF º 6 m.n � m/ � .m � s/;

and if F � R
n is Borel

dimH¹V 2 G.n; m/W dimP �V F < dims
P F º 6 m.n � m/ � .m � s/:

The following theorem relates the dimension profiles to (quasi-)Assouad di-

mension. Combined with Theorem 2.1 this will give the bounds stated in Section 1

for the box and packing dimensions of projections.
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Theorem 2.2. Let s 2 .0; n� and � 2 .0; 1/. If F � R
n is bounded then

dims
BF > dimBF � max¹0; dim

�

AF � s; .dimA F � s/.1 � �/º

and

dim
s

BF > dimBF � max¹0; dim
�

AF � s; .dimA F � s/.1 � �/º: (9)

If F � R
n is Borel then

dims
P F > dimP F � max¹0; dim

�

AF � s; .dimA F � s/.1 � �/º: (10)

Proof. We first consider upper box dimensions. We may assume for convenience

that jF j < 1=2, where jF j denotes the diameter of F . Throughout this proof

we write Nr.E/ to denote the maximal size of an r-separated subset of E. Fix

˛ > dim
�

AF , ˇ > dimA F and let C > 0 be a constant such that for all

0 < r < R < 1 and x 2 F

Nr .B.x; R/ \ F / 6 C
�R

r

�ˇ

;

and for all 0 < r 6 R1=� < R < 1 and x 2 F

Nr .B.x; R/ \ F / 6 C
�R

r

�˛

:

Let 0 < r < 1 and ¹xiº
Nr .F /
iD1 be a maximal r-separated set of points in F . Place a

point mass of weight 1=Nr.F / at each xi and let the measure � be the aggregate

of these point masses so that �.F / D 1.

Write D D dlog2.2jF jr�1/e and B D d.1 � �/ log2.r�1/e noting that for

sufficiently small r , 1 6 B < D. For each i the potential of � at xi is

Z

�s
r .xi � y/d�.y/ 6

D
X

kD0

2�.k�1/s�.B.xi ; 2kr//

6

D
X

kD0

2�.k�1/s 1

Nr .F /
Nr

�

B.xi ; 2kr/ \ F
�

6
2s

Nr .F /

�

D
X

kDB

2�ksC
�2kr

r

�˛

C

B�1
X

kD0

2�ksC
�2kr

r

�ˇ �

6 c
max¹1; r�.˛�s/; r�.ˇ�s/.1��/º

Nr .F /
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for a constant c which is independent of r . Summing over the xi , the energy of �

is
“

�s
r .x � y/d�.x/d�.y/ 6 c

max¹1; r�.˛�s/; r�.ˇ�s/.1��/º

Nr .F /

and so the capacity C s
r .F / satisfies

C s
r .F / > c�1Nr .F / min¹1; r .˛�s/; r .ˇ�s/.1��/º:

Thus

dim
s

BF D lim
r!0

log C s
r .F /

� log r

> lim
r!0

log.c�1Nr .F / min¹1; r .˛�s/; r .ˇ�s/.1��/º/

� log r

D dimBF � max¹0; ˛ � s; .ˇ � s/.1 � �/º:

The conclusion for upper dimensions follows on taking ˛ and ˇ arbitrarily close

to dim
�

AF and dimA F respectively. For the lower box dimension case we take

lower limits in the final inequalities.

Finally, we extend the conclusions for upper dimensions to packing dimen-

sions. Given a Borel set F with dimP F > 
 there exists a compact E � F such

that dimP.E \ U / > 
 for every open set U that intersects E, see for example

[1, Lemma 2.8.1]. Let ¹Uiº be a countable basis of open sets that intersect E.

From (9),

dim
s

B.E \ Ui /

> dimB.E \ Ui / � max¹0; dim
�

A.E \ Ui / � s; .dimA.E \ Ui / � s/.1 � �/º

> 
 � max¹0; dim
�

AF � s; .dimA F � s/.1 � �/º;

for all i , using the monotonicity of dim
�

A and dimA.

Let ¹Ej º be any countable cover of E by compact sets. By Baire’s category

theorem, for some j , E \ Ej contains a set that is open relative to E, so E \Ui �

E \ Ej for some i . It follows from the definition of the packing dimension profile

dims
P (equation (8)) that

dims
P F > dims

P E > 
 � max¹0; dim
�

AF � s; .dimA F � s/.1 � �/º:

Taking 
 arbitrarily close to dimP F gives (10). �

Proof of Theorems 1.1 and 1.2. Theorem 1.1 is immediate on substituting the

inequalities of Theorem 2.2 with s D m in Theorem 2.1(i). Similarly Theorem 1.2

follows using the estimates of Theorem 2.2 in Theorem 2.1(ii). �
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3. Sharpness of the threshold for the (quasi-)Assouad dimension

To conclude the paper, we show that Corollary 1.3 is sharp in the following sense:

Lemma 3.1. For all s 2 .m; n� and t 2 .0; s/ there exists a compact set F � R
n

such that dimP F D dimBF D t , dimA F D s (in particular, dimqA F 6 s), and

dimP �V F 6 dimB�V F 6
mst

m.s � t / C st
< min.t; m/

for every V 2 G.n; m/.

This lemma says that, in order to guarantee that packing or upper box dimen-

sions are preserved under almost all orthogonal projections (or indeed under even

one orthogonal projection), it is not enough to assume that dimqA F 6 s, or

even that dimA F 6 s, if s > m (while s D m is enough by Corollary 1.3).

However, how much the packing or box dimension of a typical projection �V F ,

V 2 G.n; m/, can drop from dimBF in terms of dimBF and dimA F remains an

open problem, since the upper and lower bounds provided by Corollary 1.3 and

Lemma 3.1 respectively, are in general quite far apart from each other. We note

that when s D n, the upper bound given by Lemma 3.1 agrees with the lower

bound in (2), and is therefore sharp in this case.

The construction of the set F in the above lemma is based on sets defined by

restricting the digits in dyadic expansions. Given a set S � N, let

XS D
°

1
X

kD1

ak2�k W ak 2 ¹0; 1º and ak D 0 for all k 2 N n S
±

� Œ0; 1�:

We write #F to denote the cardinality of a set F . Recall the definition of (upper)

density and Banach density of a subset of N:

Nd.S/ D lim sup
k!1

#.S \ ¹1; : : : ; kº/

k
;

NdB.S/ D lim sup
k!1

sup
`2N

#.S \ ¹`; ` C 1; : : : ; ` C k � 1º/

k
:

Lemma 3.2. Given S � N and n 2 N,

dimP Xn
S D dimBXn

S D Nd.S/n; dimA Xn
S D NdB.S/n:

where Xn
S � Œ0; 1�n is the n-fold product of XS .
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Proof. The claim for upper box dimension is almost immediate from the defini-

tion, see [1, Example 1.4.2] for details in the case n D 1. The claim for packing

dimension follows from the one on upper box dimension and [1, Lemma 2.8.1].

Finally, for the Assouad dimension formula, we note that if

2�`�k
6 r < 21�`�k

6 2�`�1 < R 6 2�`

then, for any x 2XS , the set XS\B.x;R/ can be covered by Cn�2�n#S.\¹`;:::;`CkC1º/

balls of radius r and cannot be covered by fewer than a constant (depending on n)

multiple of this number, so that dimA.XS / D NdB.S/n. �

Proof of Lemma 3.1. Let A � N be a set with Nd.A/ D NdB.A/ D s=n; this is easily

arranged. Let .kj /j 2N be a sequence of natural numbers satisfying

.k1 � � � kj �1/=kj �! 0 as j ! 1: (11)

Finally, set

S D

1
[

j D1

.A C kj / \
°

kj ; : : : ;
j s

s � t
kj

k±

;

and F D Xn
S . Here A C kj D ¹a C kj W a 2 Aº. Using (11), we see that Nd.S/

is realized along the sequence
� skj

s�t

˘

, and a calculation shows that Nd.S/ D t=n.

Also, NdB.S/ D NdB.A/ D s=n and hence, thanks to Lemma 3.2,

dimP F D dimBF D t; dimA F D s:

Now fix V 2 G.n; m/, " > 0 and k 2 N. Pick j such that kj 6 k < kj C1.

Provided k (and therefore j ) is large enough in terms of "; n; s and t , the set F can

be covered by

2n
Qj �1

iD1
.tki =.s�t//

6 2"kj

cubes of side-length 2�kj , where we used (11). Hence, �V F can be covered by

Cn;m2m.k�kj /2"kj cubes of side-length 2�k . On the other hand, if k > skj =.s � t /,

then (again assuming k is large enough), F can be covered by 2.tC"/skj =.s�t/ cubes

of side-length 2�k , and hence �V F can be covered by at most a constant Cn;m

multiple of that number. Up to the terms involving ", the first bound is more

efficient when

k <
�

1 C
st

m.s � t /

�

kj ;

otherwise the second bound is more efficient. Note that 1 C st
m.s�t/

> s
s�t

, since

s > m. A short calculation shows that, in any case, �V F can be covered by

Cn;m2.dC"Cm;s;t /k ; d D
mst

m.s � t / C st
;

cubes of side-length 2�k . Since " > 0 was arbitrary, this concludes the proof. �
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