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Abstract. In this paper, we present a general framework to construct recurrent fractal

interpolation surfaces (RFISs) on rectangular grids. Then we introduce bilinear RFISs,

which are easy to be generated while there are no restrictions on interpolation points and

vertical scaling factors. We also obtain the box dimension of bilinear RFISs under certain

constraints, where the main assumption is that vertical scaling factors have uniform sums

under a compatible partition.
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1. Introduction

Fractal interpolation functions (FIFs) were introduced by Barnsley [2] in 1986.

The graphs of these functions are invariant sets of certain iterated function systems

(IFSs) and they are ideally suited for the approximation of naturally occurring

functions. In [4], Barnsley, Elton and Hardin generalized the notion of FIFs to

recurrent FIFs, whose graphs are invariant sets of certain recurrent IFSs. There

are many theoretic works and applications of FIFs and recurrent FIFs. Please see

[1, 3, 5, 9, 20, 28, 29] for examples.

Naturally, we want to generalize FIFs and recurrent FIFs to higher dimensional

cases, especially, the two-dimensional case. However, while it is easy to construct

similar IFSs and recurrent IFSs as in one dimensional case, it is hard to guarantee

that their invariant sets are graphs of continuous functions.

In [18], Massopust introduced fractal interpolation surfaces (FISs) on trian-

gles, where the interpolation points on the boundary are required to be coplanar.
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grant LR14A010001, and the Fundamental Research Funds for the Central Universities of China.
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Dalla [10] constructed FISs on rectangular grids, where the interpolation points

on the boundary are collinear. Feng [14] presented a more general construction of

FISs on rectangular grids, while there are restrictive conditions on vertical scaling

factors.

Using a “fold-out” technique introduced by Małysz [17] and developed by Met-

zler and Yun [21], Ruan and Xu [25] presented a general framework to construct

FISs on rectangular grids. Based on this work, Verma and Viswanathan [27] stud-

ied a bounded linear operator analogous to the so-called ˛-fractal operator asso-

ciated with the univariate FIFs [22]. Ruan and Xu [25] also introduced bilinear

FISs. One advantage of bilinear FISs is that there is no restriction on interpolation

points and vertical scaling factors. We remark that some ideas of [25] are similar

to the paper on the one-dimensional bilinear FIFs by Barnsley and Massopust [6].

As pointed in [25], we expect that bilinear FISs will be used to generate some

natural scenes. However, in order to fit given data more effectively, we need

recurrent FISs (RFISs). Bouboulis, Dalla and Drakopoulos [7, 8], and Yun, Choi

and O [30] presented some nice methods to generate RFISs with function scaling

factors, while the restrictive conditions for continuity are hard to check.

In this paper, by extending the methods in [4] and [25], we present a general

framework to construct RFISs on rectangular grids and introduce bilinear RFISs.

Similarly to bilinear FISs constructed in [25], bilinear RFISs can be defined on

rectangular grids without any restrictions on interpolation points and vertical

scaling factors.

It is one of the basic problems in fractal geometry to obtain the box dimension

of fractal sets. In [4], Barnely, Elton, and Hardin obtained the box dimension

of affine recurrent FIFs in one-dimensional case, where they assumed that the

correlation matrix is irreducible. The result was generalized by Ruan, Sha, and

Ye [23], where there is no restrict condition on the correlation matrix. We remark

that in [4, 23] and in the later works such as [7, 8], the vertical scaling factors are

constants.

In the case of bilinear FIFs (in one dimensional case) and bilinear FISs, it

is very difficult to obtain their box dimension without additional assumptions

since vertical scaling factors are functions. The main assumption in [6, 15] is

that vertical scaling factors have a uniform sum.

In this paper, stronger restrict conditions are needed to obtain the box dimen-

sion since we deal with bilinear RFISs. We assume that vertical scaling factors

have uniform sums under a compatible partition. From Lemmas 4.3 and 4.4, we

can see that the assumption is reasonable.
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We remark that by using the method of this paper and other previous papers, the

authors also studied the construction and the box dimension of RFISs on triangular

domains in [16].

The paper is organized as follows. In Section 2, we present a general framework

to construct RFISs. Bilinear RFISs are introduced in Section 3. In Section 4 we

obtain the box dimension of bilinear RFISs under certain constraints.

2. Construction of recurrent fractal interpolation surfaces

For every positive integer N , we denote †N D ¹1; 2; : : : ; N º and †N;0 D
¹0; 1; : : : ; N º.

Given a data set ¹.xi ; yj ; zij / 2 R
3W i 2 †N;0; j 2 †M;0º with

x0 < x1 < � � � < xN ; y0 < y1 < � � � < yM ;

where N; M � 2 are positive integers, we want to construct a fractal function

which interpolates the data set.

Denote I D Œx0; xN � and J D Œy0; yM �. For any i 2 †N and j 2 †M , we

denote Ii D Œxi�1; xi �; Jj D Œyj �1; yj �, and Dij D Ii � Jj .

We choose x0
0; x0

1; : : : ; x0
N to be a finite sequence in ¹xi W i 2 †N;0º such that

jx0
i � x0

i�1j > xi � xi�1; for all i 2 †N :

For each i 2 †N , we denote by I 0
i the closed interval with endpoints x0

i�1 and x0
i ,

and let ui W I 0
i ! Ii be a contractive homeomorphism with

ui .x
0
i�1/ D xi�1; ui .x

0
i / D xi : (1)

Clearly, ui .x
0
i / D uiC1.x0

i / D xi for all i 2 †N �1, which is an important property

in our construction.

Similarly, we choose y0
0; y0

1; : : : ; y0
M to be a finite sequence in ¹yj W j 2 †M;0º

such that

jy0
j � y0

j �1j > yj � yj �1; for all j 2 †M :

For each j 2 †M , we denote by J 0
j the closed interval with endpoints y0

j �1 and

y0
j , and let vj W J 0

j ! Jj be a contractive homeomorphism with

vj .y0
j �1/ D yj �1; vj .y0

j / D yj : (2)

Clearly, vj .y0
j / D vj C1.y0

j / D yj for all j 2 †M �1.

For all i 2 †N;0 and j 2 †M;0, we denote by z0
ij to be the zpq satisfying

xp D x0
i and yq D y0

j .
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For i 2 †N and j 2 †M , we denote D0
ij D I 0

i � J 0
j , and define a continuous

function Fij W D0
ij � R ! R satisfying

Fij .x0
k ; y0

`; z0
k`/ D zk` (3)

for all .k; `/ 2 ¹i � 1; iº � ¹j � 1; j º, and

jFij .x; y; z0/ � Fij .x; y; z00/j � ˛ij jz0 � z00j (4)

for all .x; y/ 2 D0
ij and all z0; z00 2 R, where ˛ij is a given constant with

0 < ˛ij < 1.

Now we define a map Wij W D0
ij � R ! Dij � R by

Wij .x; y; z/ D .ui .x/; vj .y/; Fij .x; y; z//: (5)

Then

Wij .x0
k ; y0

`; z0
k`/ D .xk ; y`; zk`/; .k; `/ 2 ¹i � 1; iº � ¹j � 1; j º;

and ¹D0
ij � R; Wij I .i; j / 2 †N � †M º is a recurrent iterated function system

(recurrent IFS).

For i 2 †N and j 2 †M , we denote byH.Dij �R/ the family of all non-empty

compact subsets of Dij � R. Let eH be the product of all H.Dij � R/, i.e.,

eH D ¹.Aij /1�i�N;1�j �M W Aij 2 H.Dij � R/ for all i; j º:

For any A D .Aij / 2 eH, we define W.A/ 2 eH by

.W.A//ij D [¹Wij .Ak`/W .k; `/ 2 †N � †M and Dk` � D0
ij º

for all 1 � i � N and 1 � j � M .

For any continuous function f on I � J and .i; j / 2 †N � †M , we denote

�f jDij
D ¹.x; y; f .x; y//W .x; y/ 2 Dij º;

which is the graph of f restricted on Dij . Similarly as in [2, 4, 25], we have the

following theorem.

Theorem 2.1. Let ¹D0
ij �R; Wij I .i; j / 2 †N � †M º be the recurrent IFS defined

by (5). Assume that ¹Fij W .i; j / 2 †N � †M º satisfies the following matchable

conditions:

(1) for all i 2 †N �1 and j 2 †M ,

Fij .x0
i ; y; z/ D FiC1;j .x0

i ; y; z/; for all y 2 J 0
j ; z 2 RI (6)
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(2) for all i 2 †N and j 2 †M �1,

Fij .x; y0
j ; z/ D Fi;j C1.x; y0

j ; z/; for all x 2 I 0
i ; z 2 R: (7)

Then there exists a unique continuous function f on I � J , such that f .xi ; yj / D
zij for all i 2 †N;0 and j 2 †M;0, and .�f jDij

/1�i�N;1�j �M is the invariant set

of W , i.e., �f jDij
D Wij .�f jD0

ij
/ for all .i; j / 2 †N � †M .

Proof. Let C �.I � J / be the collection of all continuous functions ' on I � J

satisfying '.xi ; yj / D zij for all .i; j / 2 †N;0 � †M;0. Define T W C �.I � J / !
C �.I � J / as follows: given ' 2 C �.I � J /,

T '.x; y/ D Fij .u�1
i .x/; v�1

j .y/; '.u�1
i .x/; v�1

j .y///; .x; y/ 2 Dij ; (8)

for all .i; j / 2 †N � †M .

Given ' 2 C �.I � J /, it is clear that for all .i; j / 2 †N � †M , T 'jint.Dij / is

continuous, where we use int.E/ to denote the interior of a subset E of R2. For

all .xp; yq/ 2 Dij ,

Fij .u�1
i .xp/; v�1

j .yq/; '.u�1
i .xp/; v�1

j .yq/// D Fij .x0
p; y0

q; '.x0
p; y0

q//

D Fij .x0
p; y0

q; z0
pq/

D zpq

so that T '.xp ; yq/ D zpq . Furthermore, from matchable conditions, we know that

T ' is well defined on the boundary of Ii � Jj for all .i; j / 2 †N � †M . Thus

T W C �.I � J / ! C �.I � J / is well defined.

For any ' 2 C �.I � J /, we define j'j1 D max¹'.x; y/W .x; y/ 2 I � J º.
From (4), we can easily see that T is contractive on the complete metric space

.C �.I � J /; j � j1/. Thus there exists a unique function f 2 C �.I � J / such that

Tf D f , that is,

f .x; y/ D Fij .u�1
i .x/; v�1

j .y/; f .u�1
i .x/; v�1

j .y///; .x; y/ 2 Dij ; (9)

for all .i; j / 2 †N � †M . Combining this with (5), we know that for all

.i; j / 2 †N � †M ,

�f jDij
D ¹.x; y; f .x; y//W .x; y/ 2 Dij º
D ¹.x; y; Fij .u�1

i .x/; v�1
j .y/; f .u�1

i .x/; v�1
j .y////W .x; y/ 2 Dij º

D ¹.ui .x/; vj .y/; Fij .x; y; f .x; y///W .x; y/ 2 D0
ij º

D ¹Wij .x; y; f .x; y//W .x; y/ 2 D0
ij º:

Thus .�f jDij
/1�i�N;1�j �M is the invariant set of W .
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Assume that there exists Qf 2 C �.I � J /, such that .� Qf jDij
/1�i�N;1�j �M is

the invariant set of W . Then we must have

Fij .x; y; Qf .x; y// D Qf .ui .x/; vj .y//; for all .x; y/ 2 D0
ij ;

so that T Qf D Qf . Since T is contractive on .C �.I � J /; j � j1/, we know that
Qf D f . �

We call f the recurrent fractal interpolation function (RFIF) defined by

¹D0
ij � R; Wij I .i; j / 2 †N � †M º, and call the graph of f a recurrent fractal

interpolation surface (RFIS). From (9), we have the following useful property:

for all .i; j / 2 †N � †M ,

f .ui .x/; vj .y// D Fij .x; y; f .x; y// for all .x; y/ 2 D0
ij : (10)

Generally, the recurrent IFS ¹D0
ij � R; Wij I .i; j / 2 †N � †M º is not hyper-

bolic. However, we can still show that �f D ¹.x; y; f .x; y//W .x; y/ 2 I � J º is

the attractor of the recurrent IFS. The spirit of the proof follows from [2, 4, 25].

For any two nonempty compact subsets A and B of R3, we define their Hausdorff

metric by

dH .A; B/ D max¹max
x2A

min
y2B

d.x; y/; max
y2B

min
x2A

d.x; y/º;

where we use d.�; �/ to denote the Euclidean metric. For any A; B 2 eH with

A D .Aij /1�i�N;1�j �M and B D .Bij /1�i�N;1�j �M , we define

QdH .A; B/ D max¹dH .Aij ; Bij /W .i; j / 2 †N � †M º:

It is well known that .eH; QdH / is a complete metric space. For details about the

Hausdorff metric and the metric QdH , please see [3, 4, 12].

Theorem 2.2. Let f be the RFIF defined by ¹D0
ij � R; Wij I .i; j / 2 †N � †M º.

Then for any A D .Aij /1�i�N;1�j �M 2 eH,

lim
n!1

QdH .W n.A/; .�f jDij
/1�i�N;1�j �M / D 0; (11)

where W 0.A/ D A and W nC1.A/ D W.W n.A// for any n � 0.

Proof. For any A D .Aij /1�i�N;1�j �M 2 eH, we define AXY to be the projection

of A onto I � J , i.e.,

AXY D ¹.x; y/W there exist .i; j / 2 †N � †M and z 2 R with .x; y; z/ 2 Aij º:
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Let H.I � J / be the family of all nonempty compact subsets of I � J . It is clear

that AXY 2 H.I � J /.

Define LWH.I � J / ! H.I � J / by

L.U / D
[

1�i�N
1�j �M

¹.ui .x/; vj .y//W .x; y/ 2 D0
ij \ U º; U 2 H.I � J /:

It is clear that L is contractive on H.I � J /. Since Aij ¤ ; for all .i; j / 2
†N � †M , we have

lim
n!1

dH .Ln.AXY /; I � J / D 0:

Let �n
ij D ¹.x; y; f .x; y//W .x; y/ 2 Ln.AXY /\Dij º. Noticing that f is uniformly

continuous on I � J , we have

lim
n!1

dH .�n
ij ; �f jDij

/ D 0 (12)

for all .i; j / 2 †N � †M .

For n � 1, we define

�n D sup¹jf .x; y/ � zjW .x; y; z/ 2 .W n.A//ij for some .i; j / 2 †N � †M º:

By the definition of Hausdorff metric, we have dH .�n
ij ; .W n.A//ij / � �n for all

.i; j / 2 †N � †M and n � 1.

Given .i; j / 2 †N � †M and n � 1, for any .x; y; z/ 2 .W n.A//ij , there exist

.k; `/ 2 †N � †M and .x�; y�; z�/ 2 .W n�1.A//k` such that

.x; y; z/ D .ui .x
�/; vj .y�/; Fij .x�; y�; z�//:

Let ˛ D max¹˛ij W .i; j / 2 †N � †M º. By (4) and (10),

jf .x; y/ � zj D jFij .x�; y�; f .x�; y�// � Fij .x�; y�; z�//j
� ˛jf .x�; y�/ � z�j � ˛�n�1

so that �n � ˛�n�1. Since 0 < ˛ < 1, we have lim
n!1

�n D 0. Thus

lim
n!1

dH .�n
ij ; .W n.A//ij / D 0

for all .i; j / 2 †N � †M . Combining this with (12), we have

lim
n!1

dH ..W n.A//ij ; �f jDij
/ D 0

for all .i; j / 2 †N � †M . This completes the proof of the theorem. �



268 Z. Liang and H.-J. Ruan

Remark 2.3. In the case that Fij .x; y; z/ are Lipschitz both on x and y for all i

and j , we can construct a metric � equivalent to Euclidean metric, such that the

recurrent IFS is contractive with respect to �. Similar constructions of such metric

can be found in [6, 8, 30]. As a result, except proving that f is continuous by using

the matchable conditions, Theorems 2.1 and 2.2 can be stated without proof since

they are obvious properties of this type of maps as detailed in [11, 13, 19].

3. Construction of bilinear RFISs

Let h.x; y/; S.x; y/ be two continuous functions on I � J satisfying

h.xi ; yj / D zij ; .i; j / 2 †N;0 � †M;0; (13)

and

max¹jS.x; y/jW .x; y/ 2 I � J º < 1:

Let gij .x; y/; .i; j / 2 †N � †M be continuous functions on D0
ij satisfying

gij .x0
k ; y0

`/ D z0
k`; .k; `/ 2 ¹i � 1; iº � ¹j � 1; j º: (14)

For .i; j / 2 †N � †M , we define functions Fij .x; y; z/W D0
ij � R ! R by

Fij .x; y; z/ D S.ui .x/; vj .y//.z � gij .x; y// C h.ui .x/; vj .y//; (15)

where ui 2 C.I 0
i / and vj 2 C.J 0

j / are functions defined in Section 2. Then for all

.i; j / 2 †N � †M and .k; `/ 2 ¹i � 1; iº � ¹j � 1; j º,

Fij .x0
k ; y0

`; z0
k`/ D h.ui .x

0
k/; vj .y0

`// D h.xk; y`/ D zk`

so that (3) holds. Furthermore, it follows from max¹jS.x; y/jW .x; y/ 2 I �J º < 1

that (4) also holds.

Given i 2 †N �1 and j 2 †M , for all y 2 J 0
j and z 2 R, we have

Fij .x0
i ; y; z/ D S.xi ; vj .y//.z � gij .x0

i ; y// C h.xi ; vj .y//;

FiC1;j .x0
i ; y; z/ D S.xi ; vj .y//.z � giC1;j .x0

i ; y// C h.xi ; vj .y//:

Thus, the matchable condition (6) holds if gij .x0
i ; y/ D giC1;j .x0

i ; y/ for all

y 2 J 0
j . Similarly, the matchable condition (7) holds if gij .x; y0

j / D gi;j C1.x; y0
j /

for all x 2 I 0
i . Thus, from Theorem 2.1, we have the following result. We remark

that Metzler and Yun [21], and Yun, Choi and O [30] obtained similar results.
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Theorem 3.1. Let Fij ; .i; j / 2 †N � †M be defined as in (15). Assume that the

following matchable conditions hold:

(1) for all i 2 †N �1 and j 2 †M ,

gij .x0
i ; y/ D giC1;j .x0

i ; y/; for all y 2 J 0
j I (16)

(2) for all i 2 †N and j 2 †M �1,

gij .x; y0
j / D gi;j C1.x; y0

j /; for all x 2 I 0
i : (17)

Then there exists a unique continuous function f on I�J such that f .xi ; yj / D zij

for all .i; j / 2 †N;0 � SigmaM;0, and .�f jDij
/1�i�N;1�j �M is the invariant set

of W .

We remark that from (14), for all i 2 †N �1 and j 2 †M ,

gij .x0
i ; y0

j �1/ D z0
i;j �1 D giC1;j .x0

i ; y0
j �1/; gij .x0

i ; y0
j / D z0

ij D giC1;j .x0
i ; y0

j /:

(18)

Similarly, for all i 2 †N and j 2 †M �1,

gij .x0
i�1; y0

j / D z0
i�1;j D gi;j C1.x0

i�1; y0
j /; gij .x0

i ; y0
j / D z0

ij D gi;j C1.x0
i ; y0

j /:

(19)

However, the match conditions in Theorem 3.1 may not be satisfied if we only

require that (18) and (19) hold.

Now we want to construct bilinear RFISs which are special RFISs in the above

theorem. The basic idea is similar to that in [6, 25]. For all i 2 †N and j 2 †M ,

we define ui and vj to be linear functions satisfying (1) and (2). We also define

gij to be the bilinear function satisfying (14). That is, if we denote

�i .x/ D x0
i � x

x0
i � x0

i�1

; �j .y/ D
y0

j � y

y0
j � y0

j �1

;

then for all .x; y/ 2 D0
ij ,

gij .x; y/ D �i .x/�j .y/z0
i�1;j �1 C .1 � �i .x//�j .y/z0

i;j �1

C �i .x/.1 � �j .y//z0
i�1;j C .1 � �i .x//.1 � �j .y//z0

i;j :

Notice that once x is fixed, gij .x; y/ is a linear function of y. Combining this

with (18), the matchable condition (16) in Theorem 3.1 is satisfied. Similarly,

(17) is also satisfied. Thus, in the case that gij are bilinear for all i; j , we do

generate RFIF and RFIS.
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In order to construct bilinear RFISs, we define hW I �J ! R to be the function

satisfying (13) and hjIi �Jj
is bilinear for all .i; j / 2 †N � †M .

Let ¹sij W .i; j / 2 †N;0 �†M;0º be a given subset of R with jsij j < 1 for all i; j .

We define S W I � J ! R to be the function such that S jIi �Ji
is bilinear for all

.i; j / 2 †N � †M and

S.xi ; yj / D sij ; for all .i; j / 2 †N;0 � †M;0:

For all .i; j / 2 †N �†M , we define Fij W D0
ij �R ! R by (15). Then the RFIF

f is called a bilinear RFIF. We call �f a bilinear RFIS. The function S.x; y/ is

called the vertical scale factor function of f . We also call sij ; .i; j / 2 †N;0�†M;0

vertical scaling factors of f if there is no confusion.

From the construction, we know that a bilinear RFIS is determined by inter-

polation points ¹.xi ; yj ; zi;j /º.i;j /2†N;0�†M;0
, vertical scaling factors ¹sij W .i; j / 2

†N;0 � †M;0º, and domain points ¹.x0
i ; y0

j /º.i;j /2†N;0�†M;0
. This property is sim-

ilar to the linear recurrent FIF in the one-dimensional case [4]. In particular, a bi-

linear RFIS is easy to be generated, while there are no restrictions on interpolation

points and vertical scaling factors.

4. Box dimension of bilinear RFISs

For any k1; k2; k3 2 Z and " > 0, we call …3
iD1Œki"; .ki C 1/"� an "-coordinate

cube in R
3. Let E be a bounded set in R

3 and NE ."/ the number of "-coordinate

cubes intersecting E. We define

dimBE D lim
"!0C

logNE ."/

log 1="
and dimBE D lim

"!0C

logNE ."/

log 1="
; (20)

and call them the upper box dimension and the lower box dimension of E, respec-

tively. If dimBE D dimBE, then we use dimB E to denote the common value and

call it the box dimension of E. It is easy to see that in the definition of the upper

and lower box dimensions, we can only consider "n D 1
KnN

, where K > 1 is a

constant and n 2 Z
C. That is,

dimBE D lim
n!1

logNE ."n/

n log K
and dimBE D lim

n!1

logNE ."n/

n log K
: (21)

It is also well known that dimBE � 2 when E is the graph of a continuous function

on a domain of R2. Please see [12] for details.

In this section, we will estimate the box dimension of �f , where f is the

bilinear RFIF defined in Section 3. Without loss of generality, we can assume that

I D J D Œ0; 1�.
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4.1. A method to calculate the box dimension. It is difficult to obtain the box

dimension of general bilinear RFIS. In this paper, we assume that

M D N and xi D i

N
; yj D j

N
; for all i; j 2 †N;0: (22)

Furthermore, we assume that there exists a positive integer K � 2 such that

jI 0
i j

jIi j
D

jJ 0
j j

jJj j D K; for all i; j 2 †N : (23)

For each n 2 Z
C and 1 � k; ` � KnN , we denote

Dn
k` D

hk � 1

KnN
;

k

KnN

i
�

h ` � 1

KnN
;

`

KnN

i
:

Given n 2 Z
C and U � Œ0; 1�2, we define

O.f; n; U / D
X

1�k;`�KnN

Dn
k`

�U

O.f; Dn
k`/;

where we use O.f; E/ to denote the oscillation of f on E � Œ0; 1�2, that is,

O.f; E/ D sup¹f .x0/ � f .x00/W x0; x00 2 Eº:

We also denote O.f; n/ D O.f; n; Œ0; 1�2/ for simplicity.

We will use the following simple lemma, which presents a method to estimate

the upper and lower box dimensions of the graph of a function from its oscillation.

Similar results can be found in [12, 15, 24].

Lemma 4.1. Let f be the bilinear RFIF defined in Section 3. Then

dimB.�f / � max
°
2; 1 C lim

n!1

log O.f; n/

n log K

±
; (24)

and

dimB.�f / � 1 C lim
n!1

log.O.f; n/ C 2KnN /

n log K
; (25)

where we define log 0 D �1 according to the usual convention.

Proof. It is clear that

N�f ."n/ � "�1
n

X

1�i;j �KnN

O.f; Dn
ij / D "�1

n O.f; n/ (26)
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so that (24) holds. On the other hand, we note that NE ."/ and NE ."n/ can be

replaced by eNE ."/ and eNE ."n/ in (20) and (21) respectively, where eNE ."/ is the

smallest number of cubes of side " that cover E (see [12] for details). In our case,

eN�f ."n/ �
X

1�i;j �KnN

."�1
n O.f; Dn

ij / C 2/ D KnN.O.f; n/ C 2KnN /

so that (25) holds. �

Remark 4.2. From Lemma 4.1, dimB.�f / D 2 if lim
n!1

log O.f;n/

n log K
� 1, and

dimB.�f / D 1 C lim
n!1

log O.f;n/

n log K
if the limit exists and is larger than 1.

4.2. Compatible partitions and uniform sums. The vertical scaling factors

¹sij W i; j 2 †N;0º are called steady if for each .i; j / 2 †N � †N , either all of

si�1;j �1; si�1;j ; si;j �1 and sij are nonnegative or all of them are nonpositive.

Given B D ¹Brºm
rD1, where B1; : : : ; Bm are nonempty subsets of Œ0; 1�2, B is

called a partition of Œ0; 1�2 if
Sm

rD1 Br D Œ0; 1�2 and int.Br/ \ int.Bt / D ; for

all r 6D t . A partition B D ¹Brºm
rD1 of Œ0; 1� is called compatible with respect to

¹Dij ; D0
ij I .i; j / 2 †N � †N º if the following two conditions hold.

(1) For each .i; j / 2 †N � †N , there exist r; t 2 ¹1; 2; : : : ; mº, such that

Dij � Br and D0
ij � Bt .

(2) Assume that r; t 2 ¹1; 2; : : : ; mº. If there exists .i; j / 2 †N � †N , such that

Dij � Br and D0
ij � Bt , then

Bt D
[

¹D0
k`W Dk` � Br ; D0

k` � Bt º:

For 1 � r; t � m, we denote

ƒr D ¹.i; j / 2 †N � †N W Dij � Brº;
ƒ0

t D ¹.i; j / 2 †N � †N W D0
ij � Btº;

We remark that the second condition is equivalent to

Bt D
[

.i;j /2ƒr \ƒ0

t

D0
ij ; if ƒr \ ƒ0

t 6D ;:

Given 1 � r � m and ˛; ˇ 2 ¹0; 1; : : : ; N � Kº, we denote

ƒr.˛; ˇ/ D ¹.i; j / 2 ƒr W D0
ij D Œx˛; x˛CK � � Œyˇ ; yˇCK�º:
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We say that the vertical scaling factors ¹sij W i; j 2 †N;0º have uniform sums

under a compatible partition B D ¹Brºm
rD1 if for all r; t 2 ¹1; 2; : : : ; mº with

ƒr \ ƒ0
t 6D ;, there exists a constant rt , such that

rt D
X

.i;j /2ƒr .˛;ˇ/

jS.ui .x˛/; vj .yˇ //j D
X

.i;j /2ƒr .˛;ˇ/

jS.ui .x˛/; vj .yˇCK//j

D
X

.i;j /2ƒr .˛;ˇ/

jS.ui .x˛CK/; vj .yˇ //j D
X

.i;j /2ƒr .˛;ˇ/

jS.ui .x˛CK/; vj .yˇCK//j

for all ˛; ˇ 2 ¹0; 1; : : : ; N � Kº with Œx˛; x˛CK � � Œyˇ ; yˇCK� 2 ¹D0
ij W .i; j / 2

ƒr \ ƒ0
tº. In this case, we also call ¹rt W ƒr \ ƒ0

t 6D ;º the uniform sums of

vertical scaling factors.

Lemma 4.3. Assume that the vertical scaling factors ¹sij W i; j 2 †N;0º are

steady and have uniform sums ¹rt W ƒr \ ƒ0
t 6D ;º under a compatible partition

B D ¹Brºm
rD1. Then for all r; t 2 ¹1; 2; : : : ; mº with ƒr \ ƒ0

t 6D ;, and all

˛; ˇ 2 ¹0; 1; : : : ; N � Kº with Œx˛; x˛CK � � Œyˇ ; yˇCK� 2 ¹D0
ij W .i; j / 2 ƒr \ ƒ0

t º,
we have

X

.i;j /2ƒr .˛;ˇ/

jS.ui .x/; vj .y//j D rt ; for all .x; y/ 2 Œx˛; x˛CK � � Œyˇ ; yˇCK�:

Proof. Given r; t 2 ¹1; 2; : : : ; mº with ƒr \ ƒ0
t 6D ;, and given ˛; ˇ 2

¹0; 1; : : : ; N � Kº with Œx˛; x˛CK � � Œyˇ ; yˇCK� 2 ¹D0
ij W .i; j / 2 ƒ0

t º, we define

S�.x; y/ D
X

.i;j /2ƒr .˛;ˇ/

jS.ui .x/; vj .y//j � rt ;

where .x; y/ 2 Œx˛; x˛CK � � Œyˇ ; yˇCK�. Since the vertical scaling factors are

steady, we know that for each .i; j / 2 ƒr.˛; ˇ/, the function S is nonnegative

or nonpositive on Dij . It follows that S.ui .x/; vj .y// is nonnegative or non-

positive on Œx˛; x˛CK � � Œyˇ ; yˇCK�. As a result, S� is a bilinear function on

Œx˛; x˛CK �� Œyˇ ; yˇCK�. Thus, from S� D 0 on .x˛; yˇ /; .x˛; yˇCK/; .x˛CK ; yˇ /

and .x˛CK ; yˇCK/, we know that S� D 0 on Œx˛; x˛CK � � Œyˇ ; yˇCK� so that the

lemma holds. �

4.3. Calculation of box dimension. In this subsection, we always assume that

f is the bilinear RFIF determined in Section 3 with conditions (22) and (23).

Furthermore, we assume that the vertical scaling factors ¹sij W i; j 2 †N;0º are

steady and have uniform sums ¹rt W ƒr \ ƒ0
t 6D ;º under a compatible partition

B D ¹Brºm
rD1.

Using our assumptions, we can obtain the following basic result.
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Lemma 4.4. There exists a positive constant C > 0 such that

ˇ̌
ˇO.f; n C 1; Br/ �

mX

tD1

rtO.f; n; Bt/
ˇ̌
ˇ � CKn (27)

for all 1 � r � m and n 2 Z
C, where we define rt D 0 if ƒr \ ƒ0

t D ;.

Proof. From the first condition of compatible partition,

Br D
[

.i;j /2ƒr

Dij D
[

t Wƒr \ƒ0

t 6D;

[

.i;j /2ƒr \ƒ0

t

Dij

for all 1 � r � m. Thus, in order to prove the lemma, it suffices to show that for

all 1 � r; t � m with ƒr \ ƒ0
t 6D ;, there exists a constant Crt > 0, such that

ˇ̌
ˇ

X

.i;j /2ƒr \ƒ0

t

O.f; n C 1; Dij / � rtO.f; n; Bt/
ˇ̌
ˇ � CrtK

n:

For all ˛; ˇ 2 ¹0; 1; : : : ; N � Kº, we denote zD˛ˇ D Œx˛; x˛CK � � Œyˇ ; yˇCK�.

From the second condition of compatible partition, for all r; t D 1; 2; : : : ; m with

ƒr \ ƒ0
t 6D ;,

Bt D
[

¹ zD˛ˇ W there exists .i; j / 2 ƒr \ ƒ0
t ; such that zD˛ˇ D D0

ij º:

On the other hand, it is clear that for each .i; j / 2 ƒr \ ƒ0
t , there exists a unique

.˛; ˇ/ 2 ¹0; 1; : : : ; N � Kº2, such that D0
ij D zD˛ˇ � Bt . Thus, in order to prove

the lemma, it suffices to show that for all r; t D 1; 2; : : : ; m with ƒr \ ƒ0
t 6D ;,

and all ˛; ˇ D 0; 1; : : : ; N � K with zD˛ˇ D D0
ij for some .i; j / 2 ƒr \ ƒ0

t , there

exists a constant Cr;t;˛;ˇ > 0, such that
ˇ̌
ˇ

X

.i;j /2ƒr .˛;ˇ/

O.f; n C 1; Dij / � rtO.f; n; zD˛;ˇ /
ˇ̌
ˇ � Cr;t;˛;ˇKn (28)

for all positive integers n.

Denote M � D max¹jf .x; y/jW .x; y/ 2 Œ0; 1�2º. For .i; j / 2 †N � †N and

z� 2 Œ�M �; M ��, we define

yFi;j;z�.x; y/ D Fij .x; y; z�/; .x; y/ 2 D0
ij :

Since S.ui .x/; vj .y//; gij .x; y/; h.ui .x/; vj .y// are all bilinear functions on D0
ij ,

we know that

Cij D sup
.x;y/2int.D0

ij
/

z�2Œ�M �;M ��

kr yFi;j;z�.x; y/k < 1;

where k � k is the standard Euclidean norm.
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Given 1 � k; ` � KnN with Dn
k`

� D0
ij , we fix a point .xk;n; y`;n/ 2 Dn

k`
.

It is clear that for all .x; y/ 2 Dn
k`

,

jFij .xk;n; y`;n; f .x; y// � Fij .x; y; f .x; y//j �
p

2Cij "n: (29)

On the other hand, for all .x0; y0/; .x00; y00/ 2 Dn
k`

, we have

Fij .xk;n; y`;n; f .x0; y0/ � Fij .xk;n; y`;n; f .x00; y00//

D S.ui .xk;n/; vj .y`;n//.f .x0; y0/ � f .x00; y00//:

Combining this with (10) and (29), we have

jf .ui .x
0/; vj .y0// � f .ui .x

00/; vj .y00//j
� jS.ui .xk;n/; vj .y`;n//j � jf .x0; y0/ � f .x00; y00/j C 2

p
2Cij "n

so that

O.f; .ui � vj /.Dn
k`// � jS.ui .xk;n/; vj .y`;n//j � O.f; Dn

k`/ C 2
p

2Cij "n:

Thus, from Lemma 4.3,

X

.i;j /2ƒr .˛;ˇ/

O.f; n C 1; Dij /

�
X

1�k;`�KnN

Dn
k`

� zD˛ˇ

X

.i;j /2ƒr .˛;ˇ/

.jS.ui .xk;n/; vj .y`;n//j � O.f; Dn
k`/ C 2

p
2Cij "n/

D rt � O.f; n; zD˛ˇ / C 2
p

2NKnC2
X

.i;j /2ƒr .˛;ˇ/

Cij :

Similarly,

X

.i;j /2ƒr .˛;ˇ/

O.f; n C 1; Dij / � rtO.f; n; zD˛ˇ / � 2
p

2NKnC2
X

.i;j /2ƒr .˛;ˇ/

Cij

so that (28) holds. �

Define G D .rt /m�m, where rt D 0 if ƒr \ ƒ0
t D ;. Given 1 � r; t � m and

n 2 Z
C, a finite sequence ¹ikºn

kD0
in ¹1; 2; : : : ; mº is called an n-path (a path for

short) from t to r if i0 D t , in D r , and

ik ;ik�1
> 0; for all k D 1; 2; : : : ; n:

r and t are called connected, denoted by r � t , if there exist both a path from r

to t , and a path from t to r . We remark that in general, it is possible that there is no
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path from r to itself. A subset V of ¹1; 2; : : : ; mº is called connected if r � t for

all r; t 2 V . Furthermore, V is called a connected component of ¹1; 2; : : : ; mº if V

is connected and there is no connected subset zV of ¹1; 2; : : : ; mº such that V ¨ zV .

It is well known that the matrix G is irreducible if and only if ¹1; 2; : : : ; mº is

connected. Please see [26] for details.

Given a connected component V D ¹r1; : : : ; rtº of ¹1; 2; : : : ; mº, where r1 <

r2 < � � � < rt , we define a submatrix GjV of G by

.GjV /k` D rk ;r`
; 1 � k; ` � t:

Definition 4.5. Given .i; j /; .k; `/ 2 †N �†N , we call .k; `/ an ancestor of .i; j /

if there exists a finite sequence ¹.i� ; j�/ºn
�D0 in †N �†N such that .i0; j0/ D .i; j /,

.in; jn/ D .k; `/, and

Di� ;j�
� D0

i��1;j��1
; for all � D 1; 2; : : : ; n:

Let A0.i; j / be the collection of all ancestors of .i; j / and

A.i; j / D ¹.i; j /º [ A0.i; j /:

We call .i; j / degenerate if for all .k; `/ 2 A.i; j /, we have either

sk�1;`�1 D sk�1;` D sk;`�1 D sk` D 0 (30)

or

zpq D gk`.xp; yq/; for all p; q 2 †N;0 with .xp; yq/ 2 D0
k`. (31)

Given 1 � r � m, we call r is degenerate if .i; j / is degenerate for all .i; j / 2 ƒr .

A connected component V of ¹1; 2; : : : ; mº is called degenerate if r is degenerate

for all r 2 V . Otherwise, V is called non-degenerate.

By definition, a connected component V of ¹1; 2; : : : ; mº is non-degenerate if

there exists .i; j / 2 S
r2V ƒr such that .i; j / is non-degenerate.

Remark 4.6. It is clear that (30) holds if and only if S jDk`
D 0. Since gk` is

bilinear, we can see that (31) holds if and only if the following two conditions

hold:

(1) for each p 2 †N;0 with xp 2 I 0
k
, points in ¹.xp; yq; zpq/W q 2 †N;0; yq 2 J 0

`
º

are collinear;

(2) for each q 2 †N;0 with yq 2 J 0
`
, points in ¹.xp; yq; zpq/W p 2 †N;0; xp 2 I 0

k
º

are collinear.
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Lemma 4.7. Given .i; j / 2 †N � †N , if .i; j / is degenerate, then

(1) for all .k; `/ 2 A.i; j /, we have f .x; y/ D h.x; y/, .x; y/ 2 Dk`;

(2) there exists a constant C > 0, such that O.f; n; Dij / � CKn for all n 2 Z
C;

(3) dimB �f jDij
D 2.

Proof. (1). Let T and C �.Œ0; 1�2/ be the same as defined in the proof of The-

orem 2.1. Let C �
ij .Œ0; 1�2/ be the collection of all continuous functions ' 2

C �.Œ0; 1�2/ satisfying

'.x; y/ D h.x; y/; .x; y/ 2 Dk`;

for all .k; `/ 2 A.i; j /.

Given ' 2 C �
ij .Œ0; 1�2/ and .k; `/ 2 A.i; j /, if S jDk`

6D 0, then (31) holds.

In this case, from (13) and (31), we have h.xp; yq/ D zpq D gk`.xp; yq/ for

every .xp; yq/ 2 D0
k`

. Since both maps are bilinear over D˛ˇ � D0
k`

, we

have h.x; y/ D gk`.x; y/ for every .x; y/ 2 D˛ˇ � D0
k`

. Thus, by using

'.x; y/ D h.x; y/ for every .x; y/ 2 D˛ˇ � D0
k`

, we have

'.x; y/ D gk`.x; y/; .x; y/ 2 D0
k`:

Hence, from (8) and (15), we have

T '.x; y/ D Fk`.u�1
k .x/; v�1

` .y/; '.u�1
k .x/; v�1

` .y///

D S.x; y/.'.u�1
k .x/; v�1

` .y// � gk`.u�1
k .x/; v�1

` .y/// C h.x; y/

D h.x; y/

for all .x; y/ 2 Dk`. In the case that S jDk`
D 0, it is clear that we still have

T '.x; y/ D h.x; y/ on Dk` by using (8) and (15). Thus T is a map from

C �
ij .Œ0; 1�2/ to itself. Notice that C �

ij .Œ0; 1�2/ is complete since it is closed in

C �.Œ0; 1�2/. Hence f 2 C �
ij .Œ0; 1�2/.

(2) and (3) directly follow from (1). �

Given a matrix X D .Xij /n�n, we say X is non-negative if Xij � 0 for all i

and j . X is called strictly positive if Xij > 0 for all i and j . The following lemma

is well known. Please see Theorem 2.7 in [26] for details.

Lemma 4.8 (Perron–Frobenius theorem). Let X D .Xij /n�n be an irreducible

non-negative matrix. Then

(1) �.X/, the spectral radius of X , is a positive eigenvalue of X and has strictly

positive eigenvector.

(2) �.X/ increases if any element of X increases.
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Given three points .x.k/; y/, k D 1; 2; 3 in Œ0; 1�2 with

.x.2/ � x.1//.x.3/ � x.2// > 0;

we denote

df .x.1/; x.2/; x.3/I y/ D jf .x.2/; y/ � .�f .x.1/; y/ C .1 � �/f .x.3/; y//j;

where

� D .x.3/ � x.2//=.x.3/ � x.1//:

By definition, .x.k/; y; f .x.k/; y//; k D 1; 2; 3, are collinear if and only if we have

that df .x.1/; x.2/; x.3/I y/ D 0. Furthermore, if all of .x.k/; y/, k D 1; 2; 3, lie in

a subset E of Œ0; 1�2, then O.f; E/ � df .x.1/; x.2/; x.3/I y/.

The following result is the key lemma to obtain the exact box dimension of

bilinear RFISs.

Lemma 4.9. Let V be a non-degenerate connected component of ¹1; 2; : : : ; mº.
Then there exists a constant C > 0, such that for all r 2 V and n 2 Z

C,

O.f; n; Br/ � C.�.GjV //n: (32)

Proof. Denote by nV the cardinality of V , and assume that V D ¹r1; : : : ; rnV
º.

Since V is non-degenerate, there exist t� 2 V and .i�; j �/ 2 ƒt� such that

.i�; j �/ is non-degenerate. Thus there exists .k0; `0/ 2 A.i�; j �/ such that

both (30) and (31) do not hold. By Remark 4.6, we can assume without loss

of generality that there exist three interpolation points ¹.xpi
; yq; zpi ;q/º1�i�3 in

D0
k0`0

with p1 < p2 < p3, such that they are not collinear. That is, if we denote

�0 D .xp3
� xp2

/=.xp3
� xp1

/, then

ı0 WD df .xp1
; xp2

; xp3
I yq/ D jzp2;q � .�0zp1;q C .1 � �0/zp3;q/j > 0:

Now, we show that following claim holds: for all 1 � k � nV , there exist

.i .k/; j .k// 2 ƒrk
and three points .xk;� ; y.k//, � D 1; 2; 3 in Di.k/;j .k/ , such that

ık WD df .xk;1; xk;2; xk;3I y.k// > 0:

Let r0 and t0 be elements in ¹1; 2; : : : ; mº satisfying .k0; `0/ 2 ƒr0
\ ƒ0

t0
. Let

˛ and ˇ be elements in ¹0; 1; : : : ; N � Kº satisfying Œx˛; x˛CK� � Œyˇ ; yˇCK� D
D0

k0`0
. Notice that gij are the same for all .i; j / 2 ƒr0

.˛; ˇ/, since they
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are the same bilinear function passing through the four points .x˛; yˇ ; z˛;ˇ /,

.x˛; yˇCK ; z˛;ˇCK/, .x˛CK ; yˇ ; z˛CK;ˇ /, and .x˛CK ; yˇCK ; z˛CK;ˇCK/. We de-

note it by Qg˛ˇ .

For .i; j / 2 ƒr0
.˛; ˇ/, we define �ij D 1 if S is nonnegative on Dij , and define

�ij D �1 otherwise. Then jS.x; y/j D �ij S.x; y/ for all .x; y/ 2 Dij . Combining

this with (10) and (15),

�ij f .ui .x/; vj .y// D jS.ui .x/; vj .y//j.f .x; y/ � gij .x; y// C �ij h.ui .x/; vj .y//

for .x; y/ 2 D0
ij D Œx˛; x˛CK � � Œyˇ ; yˇCK�. By Lemma 4.3,

X

.i;j /2ƒr0
.˛;ˇ/

�ij f .ui .x/; vj .y//

D r0t0.f .x; y/ � Qg˛ˇ .x; y// C
X

.i;j /2ƒr0
.˛;ˇ/

�ij h.ui .x/; vj .y//

for all .x; y/ 2 Œx˛; x˛CK � � Œyˇ ; yˇCK�. On the other hand, since both Qg˛ˇ and

hjDij
, .i; j / 2 ƒr0

.˛; ˇ/ are bilinear, we have

Qg˛ˇ .xp2
; yq/ D �0 Qg˛ˇ .xp1

; yq/ C .1 � �0/ Qg˛ˇ .xp3
; yq/;

and

h.ui .xp2
/; vj .yq// D �0h.ui .xp1

/; vj .yq// C .1 � �0/h.ui .xp3
/; vj .yq//

for all .i; j / 2 ƒr0
.˛; ˇ/. Thus

X

.i;j /2ƒr0
.˛;ˇ/

df .ui .xp1
/; ui.xp2

/; ui .xp3
/I vj .yq//

�
ˇ̌
ˇ

X

.i;j /2ƒr0
.˛;ˇ/

�ij f .ui .xp2
/; vj .yq// � �0

X

.i;j /2ƒr0
.˛;ˇ/

�ij f .ui .xp1
/; vj .yq//

� .1 � �0/
X

.i;j /2ƒr0
.˛;ˇ/

�ij f .ui .xp3
/; vj .yq//

ˇ̌
ˇ

D r0t0 jf .xp2
; yq/ � .�0f .xp1

; yq/ C .1 � �0/f .xp3
; yq//j D r0t0ı0:

As a result, there exists .i; j / 2 ƒr0
.˛; ˇ/ such that

df .ui .xp1
/; ui.xp2

/; ui .xp3
/I vj .yq// > 0:

We remark that .ui .xp�
/; vj .yq//, � D 1; 2; 3 are three points in Dij .

From .i�; j �/ 2 ƒt� and .k0; `0/ 2 A.i�; j �/\ƒr0
\ƒ0

t0
, there is a path from

t0 to t�. Since V is connected, we know that for all 1 � k � nV , there is a path
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from t� to rk so that there is a path from t0 to rk. Similarly as above, we can prove

by induction that the claim holds.

Now we will show (32) holds. Let � D .�1; �2; : : : ; �nV
/T be a strictly positive

eigenvector of GjV with eigenvalue �.GjV / such that �k � ık for all 1 � k � nV .

Given 1 � k; ` � nV and n 2 Z
C, we denote by P

.n/
V .rk; r`/ the set of all n-

paths in V from rk to r`. Given Er D ¹r.0/; r.1/; : : : ; r.n/º 2 P
.n/
V .rk; r`/, we

denote by Q.Er/ the set of all elements .i0i1 � � � in; j0j1 � � � jn/ in †nC1
N � †nC1

N

satisfying .i0; j0/ D .i .k/; j .k//, Di��1;j��1
� D0

i� ;j�
and .i� ; j�/ 2 ƒr.�/ for

all 1 � � � n.

Given .i; j/ D .i0i1 � � � in; j0j1 � � � jn/ 2 Q.Er/ and .x; y/ 2 Di0j0
, we define

ui.x/ D uin ı uin�1
ı � � � ı ui1.x/; vj.y/ D vjn

ı vjn�1
ı � � � ı vj1

.y/:

Given 1 � k; ` � nV and n � 1, for each Er D ¹r.0/; r.1/; � � � ; r.n/º 2
P

.n/
V .rk ; r`/, similarly as above, we have

X

.i;j/2Q.Er/

df .ui.xk;1/; ui.xk;2/; ui.xk;3/I vj.y
.k/// D ık

nY

tD1

r.t/;r.t�1/

so that
X

Er2P.n/
V

.rk ;r`/

X

.i;j/2Q.Er/

O.f; .ui � vj/.Di.k/;j .k///

� ık

X

¹r.0/;:::;r.n/º2P.n/
V

.rk ;r`/

nY

tD1

r.t/;r.t�1/

D ık

X

r.1/;:::;r.n�1/2V

r.0/Drk ;r.n/Dr`

nY

tD1

r.t/;r.t�1/ D ık..GjV /n/`k:

As a result,

O.f; n; Br`
/ �

X

1�k�nV

X

Er2P.n/
V

.rk ;r`/

X

.i;j/2Q.Er/

O.f; .ui � vj/.Di.k/;j .k///

�
X

1�k�nV

..GjV /n/`kık:

Thus

.O.f; n; Br1
/; : : : ; O.f; n; BrnV

//T � .GjV /n.ı1; : : : ; ınV
/T

� .GjV /n.�1; : : : ; �nV
/T

D .�.GjV //n.�1; : : : ; �nV
/T :
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Hence for all 1 � k � nV , we have O.f; n; Brk
/ � .�.GjV //n�k so that the lemma

holds. �

For each 1 � r � m, we define

A�.r/ D ¹t 2 ¹1; : : : ; mºW t 6� r and there exists a path from t to rº:

Then we recurrently define P.r/, r D 1; 2; : : : ; m as follows: P.r/ D 1 if

A�.r/ D ;, and P.r/ D 1 C max¹P.t/W t 2 A�.r/º if A�.r/ 6D ;. We call

P.r/ the position of r .

Now we can use Lemmas 4.4 and 4.9 to obtain the exact box dimension of

bilinear RFISs under certain constraints. The spirit of the proof follows from

[4, 15, 23].

Theorem 4.10. Let f be the bilinear RFIF determined in Section 3 with condi-

tions (22) and (23). Assume that the vertical scaling factors ¹sij W i; j 2 †N;0º are

steady and have uniform sums ¹rt W ƒr \ ƒ0
t 6D ;º under a compatible partition

B D ¹Brºm
rD1. Let ¹V1; V2; : : : ; Vn�

c
º be the set of all non-degenerate connected

components of ¹1; 2; : : : ; mº. Define di D log �.GjVi
/= log K for 1 � i � n�

c and

let d� D max¹d1; : : : ; dn�

c
; 1º. Then dimB.�f / D 1 C d�.

Proof. Denote �0 D Kd� . Firstly, we will prove dimB.�f / � 1 C d�. It is clear

that dimB.�f / � 2 since f is continuous. Thus we only need to consider the

case d� > 1. Let i0 be an element in ¹1; : : : ; n�
c º satisfying di0 D d�. Assume that

Vi0 D ¹r1; : : : ; rqº for some 1 � q � m, where r1 < � � � < rq. Then �0 D �.GjVi0
/.

From Lemma 4.9, there exists a constant C > 0, such that

O.f; n; Brk
/ � C�n

0 D CKnd�

for all 1 � k � q and n 2 Z
C. Notice that O.f; n/ � O.f; n; Br1

/ for all n 2 Z
C.

By using Lemma 4.1, we have dimB.�f / � 1 C d�.

Now we will show that the following claim holds.

Claim. For all 1 � r � m and all ı > 0, there exists zC > 0 such that

O.f; n; Br/ � zC.�0 C ı/n (33)

for all n 2 Z
C.

We will prove this by using induction on P.r/. Denote

Pmax D max¹P.r/W 1 � r � mº:
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In the case that P.r/ D 1, we have A�.r/ D ;. If r is degenerate, then

from Lemma 4.7 (2) and �0 D Kd� � K, we know that the claim holds. Thus

we can assume that r is non-degenerate. Combining this with P.r/ D 1, there

exists a non-degenerate connected component Vi such that r 2 Vi . Assume that

Vi D ¹r1; : : : ; rqº for some 1 � q � m, where r1 < � � � < rq. Denote �i D �.GjVi
/.

Let � D .�1; : : : ; �q/T be a strictly positive eigenvector of GjVi
with eigenvalue

�i . It follows from A�.r/ D ; that rk ;t D 0 for all 1 � k � q and t 62 Vi . Thus,

from Lemma 4.4, there exists a constant C > 0 such that

O.f; n C 1; Brk
/ �

qX

`D1

rk ;r`
O.f; n; Br`

/ C CKn

for all 1 � k � q and n 2 Z
C. Choose a constant C1 > 0 such that C1�k � C for

all 1 � k � q. Then for all 1 � k � q and n 2 Z
C,

O.f; n C 1; Brk
/ �

qX

`D1

rk ;r`
O.f; n; Br`

/ C C1�n
0�k : (34)

Arbitrarily pick ı > 0. Let C2 be a positive constant such that

O.f; 1; Brk
/ � C2�i�k C C1ı�1.�0 C ı/�k

for all 1 � k � q. By induction and using (34), we have

O.f; n; Brk
/ � C2�n

i �k C C1ı�1.�0 C ı/n�k (35)

for all 1 � k � q and n 2 Z
C, where we use

qX

`D1

rk ;r`
.C2�n

i �` C C1ı�1.�0 C ı/n�`/ C C1�n
0�k

� C2�nC1
i �k C C1ı�1.�0 C ı/n�i�k C C1.�0 C ı/n�k

� C2�nC1
i �k C C1ı�1.�0 C ı/nC1�k :

It follows that the claim holds if P.r/ D 1.

Assume that the claim holds for all 1 � r � m satisfying P.r/ � P , where

1 � P < Pmax. Let r be an element in ¹1; 2; : : : ; mº satisfying P.r/ D P C 1.

It is clear that (33) holds if r is degenerate. Thus we can assume that r is non-

degenerate. In the case that r does not belong to any connected component, we

have P.t/ � P for any 1 � t � m with rt > 0. Combining this with Lemma 4.4,

there exists a constant C > 0, such that

O.f; n C 1; Br/ �
� mX

tD1

rt

� X

t WP.t/�P

O.f; n; Bt / C CKn; for all n � 1:

By inductive assumption, we can see that the claim holds in this case.
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Now we consider the case that r belongs to a connected component Vi D
¹r1; : : : ; rqº, where r1 < � � � < rq. Similarly as above, let � D .�1; : : : ; �q/T

be a strictly positive eigenvector of GjVi
with eigenvalue �i D �.GjVi

/. From

Lemma 4.4, there exists a constant C > 0 such that

O.f; n C 1; Brk
/ �

qX

`D1

rk ;r`
O.f; n; Br`

/ C
X

t WP.t/�P

rk ;t O.f; n; Bt/ C CKn

for all 1 � k � q and n 2 Z
C. Thus, given ı > 0, by using inductive assumption,

there exists a constant C1 > 0 such that

O.f; n C 1; Brk
/ �

qX

`D1

rk ;r`
O.f; n; Br`

/ C C1�k.�0 C ı/n (36)

for all 1 � k � q and n 2 Z
C. Similarly as above, there exists C2 > 0 such that

for all 1 � k � ` and n 2 Z
C,

O.f; n; Brk
/ � C2�n

i �k C C1ı�1.�0 C ı/n�k:

Hence the claim holds for P.r/ D P C 1.

By induction, the claim holds for all 1 � r � m. Combining this with

Lemma 4.1, we can see from the arbitrariness of ı that dimB�f jBr
� 1 C d� for

all 1 � r � m. Thus dimB.�f / � 1 C d�. As a result, dimB.�f / D 1 C d�. �

We can obtain the following corollary immediately.

Corollary 4.11. Let f be the bilinear RFIF determined in Section 3 with condi-

tions (22) and (23). Assume that the vertical scaling factors ¹sij W i; j 2 †N;0º are

steady and have uniform sums ¹rt W ƒr \ ƒ0
t 6D ;º under a compatible partition

B D ¹Biºm
iD1. Then, in the case that G is irreducible, we have

(1) dimB.�f / D 1 C log �.G/= log K if ¹1; 2; : : : ; mº is non-degenerate and

�.G/ > K, or

(2) dimB.�f / D 2 otherwise.

Remark 4.12. In the case that K D N , it is clear that B D ¹B1º D ¹Œx0; xN � �
Œy0; yN �º is the compatible partition. From Theorem 4.10, we can obtain the box

dimension of bilinear FISs under certain constraints, which is the main result

in [15].
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4.4. An example

Example 4.13. Let N D 4, K D 2, and x0
0 D x0

2 D x0
4 D 0, x0

1 D x0
3 D 1

2
,

y0
0 D y0

2 D y0
4 D 1

2
, y0

1 D 1, y0
3 D 0. By definition, we have

u1.x0/ D x0; u1.x2/ D u2.x2/ D x1; u2.x0/ D u3.x0/ D x2; : : : ;

v1.y2/ D y0; v1.y4/ D v2.y4/ D y1; v2.y2/ D v3.y2/ D y2; : : : :

Let B1 D
�
0; 1

2

�
�

�
0; 1

2

�
, B2 D

�
0; 1

2

�
�

�
1
2
; 1

�
and B3 D

�
1
2
; 1

�
�

�
0; 1

�
. It

is easy to check that B D ¹B1; B2; B3º is a compatible partition with respect to

¹Dij ; D0
ij I 1 � i; j � 4º. Furthermore, ƒr \ ƒ0

t 6D ; if and only if .r; t / 2
¹.1; 2/; .2; 1/; .3; 1/; .3; 2/º.

Let .r; t / D .1; 2/. Then ƒ1.0; 2/ D ¹.1; 1/; .1; 2/; .2; 1/; .2; 2/º so that

X

.i;j /2ƒ1.0;2/

jS.ui .x0/; vj .y2//j

D jS.x0; y0/j C jS.x0; y2/j C jS.x2; y0/j C jS.x2; y2/j
D js00j C js02j C js20j C js22j:

Similarly,

X

.i;j /2ƒ1.0;2/

jS.ui .x0/; vj .y4//j D 2.js01j C js21j/;

X

.i;j /2ƒ1.0;2/

jS.ui .x2/; vj .y2//j D 2.js10j C js12j/;

X

.i;j /2ƒ1.0;2/

jS.ui .x2/; vj .y4//j D 4js11j:

Assume that vertical scaling factors ¹sij W 0 � i; j � 4º have uniform sums

under the compatible partition ¹B1; B2; B3º. Then we must have

12 D js00j C js02j C js20j C js22j D 2.js01j C js21j/ D 2.js10j C js12j/ D 4js11j:

Similarly,

21 D js02j C js04j C js22j C js24j D 2.js03j C js23j/ D 2.js12j C js14j/ D 4js13j;
31 D js22j C js24j C js42j C js44j D 2.js23j C js43j/ D 2.js32j C js34j/ D 4js33j;
32 D js20j C js22j C js40j C js42j D 2.js21j C js41j/ D 2.js30j C js32j/ D 4js31j:
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Let

.sij /0�i;j �4 D

0
BBBBB@

0:85 0:9 0:95 0:9 0:9

0:2 0:45 0:8 0:7 0:6

0 0 0 0:5 0:95

�0:4 �0:2 0 0:3 0:6

�0:8 �0:4 0 0:1 0:25

1
CCCCCA

:

By above discussion, we can check that vertical scaling factors are steady and

have uniform sums under ¹B1; B2; B3º with 12 D 1:8, 21 D 2:8, 31 D 1:2 and

32 D 0:8.

Assume that

.zij /0�i;j �4 D

0
BBBBB@

2 3 2 1 2

2 2 3 1 3

1 3 2 3 1

3 2 4 2 0

2 3 2 4 4

1
CCCCCA

:

The corresponding bilinear RFIS is shown in Figure 1.

0.0
0.5

1.0

x

0.0
0.5

1.0
y

0

1

2

3

4

z

Figure 1. Bilinear RFIS in Example 4.13

Furthermore, we can check that V1 D ¹1; 2º is the unique non-degenerate

connected component of ¹1; 2; 3º with

GjV1
D

�
0 1:8

2:8 0

�
:

Thus d� D log 5:04=.2 log 2/ so that dimB.�f / D 1 C log 5:04=.2 log 2/.
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We can present the precise form of the corresponding maps S , h and gij as

follows. By definition, for .x; y/ 2 Œ i�1
4

; i
4
� � Œ j �1

4
; j

4
� with 1 � i; j � 4, we have

S.x; y/ D .i � 4x/.j � 4y/si�1;j �1 C .1 C 4x � i/.j � 4y/si;j �1

C .i � 4x/.1 C 4y � j /si�1;j C .1 C 4x � i/.1 C 4y � j /sij ;

h.x; y/ D .i � 4x/.j � 4y/zi�1;j �1 C .1 C 4x � i/.j � 4y/zi;j �1

C .i � 4x/.1 C 4y � j /zi�1;j C .1 C 4x � i/.1 C 4y � j /zij :

For .x; y/ 2 D0
ij with 1 � i; j � 4, we have

gij .x; y/ D �i .x/�j .y/z0
i�1;j �1 C .1 � �i .x//�j .y/z0

i;j �1

C �i .x/.1 � �j .y//z0
i�1;j C .1 � �i .x//.1 � �j .y//z0

ij ;

where

�1.x/ D �3.x/ D 1 � 2x; x 2
h
0;

1

2

i
; �2.x/ D �4.x/ D 2x; x 2

h
0;

1

2

i
;

�1.y/ D 2 � 2y; y 2
h
0;

1

2

i
; �2.y/ D 2y � 1; y 2

h1

2
; 1

i
;

�3.y/ D 2y; y 2
h
0;

1

2

i
; �4.y/ D 1 � 2y; y 2

h
0;

1

2

i
;

and

.z0
ij /0�i;j �4 D

0
BBBBB@

z02 z04 z02 z00 z02

z22 z24 z22 z20 z22

z02 z04 z02 z00 z02

z22 z24 z22 z20 z22

z02 z04 z02 z00 z02

1
CCCCCA

D

0
BBBBB@

2 2 2 2 2

2 1 2 1 2

2 2 2 2 2

2 1 2 1 2

2 2 2 2 2

1
CCCCCA

:
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