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Abstract. In this paper, we present a general framework to construct recurrent fractal
interpolation surfaces (RFISs) on rectangular grids. Then we introduce bilinear RFISs,
which are easy to be generated while there are no restrictions on interpolation points and
vertical scaling factors. We also obtain the box dimension of bilinear RFISs under certain
constraints, where the main assumption is that vertical scaling factors have uniform sums
under a compatible partition.
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1. Introduction

Fractal interpolation functions (FIFs) were introduced by Barnsley [2] in 1986.
The graphs of these functions are invariant sets of certain iterated function systems
(IFSs) and they are ideally suited for the approximation of naturally occurring
functions. In [4], Barnsley, Elton and Hardin generalized the notion of FIFs to
recurrent FIFs, whose graphs are invariant sets of certain recurrent IFSs. There
are many theoretic works and applications of FIFs and recurrent FIFs. Please see
[1,3,5,9, 20, 28, 29] for examples.

Naturally, we want to generalize FIFs and recurrent FIFs to higher dimensional
cases, especially, the two-dimensional case. However, while it is easy to construct
similar IFSs and recurrent IFSs as in one dimensional case, it is hard to guarantee
that their invariant sets are graphs of continuous functions.

In [18], Massopust introduced fractal interpolation surfaces (FISs) on trian-
gles, where the interpolation points on the boundary are required to be coplanar.
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grant LR14A010001, and the Fundamental Research Funds for the Central Universities of China.
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Dalla [10] constructed FISs on rectangular grids, where the interpolation points
on the boundary are collinear. Feng [14] presented a more general construction of
FISs on rectangular grids, while there are restrictive conditions on vertical scaling
factors.

Using a “fold-out” technique introduced by Matysz [17] and developed by Met-
zler and Yun [21], Ruan and Xu [25] presented a general framework to construct
FISs on rectangular grids. Based on this work, Verma and Viswanathan [27] stud-
ied a bounded linear operator analogous to the so-called «-fractal operator asso-
ciated with the univariate FIFs [22]. Ruan and Xu [25] also introduced bilinear
FISs. One advantage of bilinear FISs is that there is no restriction on interpolation
points and vertical scaling factors. We remark that some ideas of [25] are similar
to the paper on the one-dimensional bilinear FIFs by Barnsley and Massopust [6].

As pointed in [25], we expect that bilinear FISs will be used to generate some
natural scenes. However, in order to fit given data more effectively, we need
recurrent FISs (RFISs). Bouboulis, Dalla and Drakopoulos [7, 8], and Yun, Choi
and O [30] presented some nice methods to generate RFISs with function scaling
factors, while the restrictive conditions for continuity are hard to check.

In this paper, by extending the methods in [4] and [25], we present a general
framework to construct RFISs on rectangular grids and introduce bilinear RFISs.
Similarly to bilinear FISs constructed in [25], bilinear RFISs can be defined on
rectangular grids without any restrictions on interpolation points and vertical
scaling factors.

It is one of the basic problems in fractal geometry to obtain the box dimension
of fractal sets. In [4], Barnely, Elton, and Hardin obtained the box dimension
of affine recurrent FIFs in one-dimensional case, where they assumed that the
correlation matrix is irreducible. The result was generalized by Ruan, Sha, and
Ye [23], where there is no restrict condition on the correlation matrix. We remark
that in [4, 23] and in the later works such as [7, 8], the vertical scaling factors are
constants.

In the case of bilinear FIFs (in one dimensional case) and bilinear FISs, it
is very difficult to obtain their box dimension without additional assumptions
since vertical scaling factors are functions. The main assumption in [6, 15] is
that vertical scaling factors have a uniform sum.

In this paper, stronger restrict conditions are needed to obtain the box dimen-
sion since we deal with bilinear RFISs. We assume that vertical scaling factors
have uniform sums under a compatible partition. From Lemmas 4.3 and 4.4, we
can see that the assumption is reasonable.
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We remark that by using the method of this paper and other previous papers, the
authors also studied the construction and the box dimension of RFISs on triangular
domains in [16].

The paper is organized as follows. In Section 2, we present a general framework
to construct RFISs. Bilinear RFISs are introduced in Section 3. In Section 4 we
obtain the box dimension of bilinear RFISs under certain constraints.

2. Construction of recurrent fractal interpolation surfaces

For every positive integer N, we denote Xy = {1,2,...,N} and Xn0 =
{0,1,...,N}.
Given a data set {(x;, y;,zi;) € R%i € Ty, € Tp o} with

Xo < X1 <---<XN, Yo<y1 <:---<JI¥wm,

where N, M > 2 are positive integers, we want to construct a fractal function
which interpolates the data set.

Denote I = [x¢,xn] and J = [yo, ym]. Foranyi € Ly and j € Xy, we
denote I; = [x,-_l,x,-], Jj = [y‘,-_l,y‘,-], and Dij =1; x Jj.

We choose x;, x{, ..., x}y to be afinite sequence in {x;:i € Xn,} such that

|x] —x{_;| > x;i —xj—1, foralli e Zy.
For eachi € Xy, we denote by I/ the closed interval with endpoints x;_; and x/,
and let u;: I] — I; be a contractive homeomorphism with

ui(xi_y) = xi—1,  ui(x})) = x;. (D
Clearly, u; (x]) = ujy+1(x}) = x; foralli € ¥y_;, which is an important property
in our construction.

Similarly, we choose yg, yi...., ), to be a finite sequence in {y;: j € Zp,0}
such that

¥} = yioil > yj —yj—1, forall j € Zy.
For each j € X/, we denote by J /./ the closed interval with endpoints y]/._1 and
y;,and letv;: J[ — J; be a contractive homeomorphism with

vi(Vim) = vi-1, vi(¥) = ;. 2

Clearly, v; (y}) = vj41(y;) = yj forall j € Zpy—1.
For all i € ¥y and j € X0, we denote by zlfj to be the z,, satisfying
xp = x; and yg = yi.
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Fori € ¥y and j € Xy, we denote D; = Il xJ j’ , and define a continuous
function Fj;: D}, x R — R satisfying

Fij (X, ¥y Zpg) = Zkt (3)
forall (k,¢)e{i —1,i} x{j—1,j},and
|Fij(x.y.2') = Fjj(x, y.2")| < a|z — 2" “4)

for all (x,y) € lej and all z/,z” € R, where «;; is a given constant with
0< o < 1.
Now we define a map Wi;: Di; x R — Dj; x R by

Wij(x,y,z) = (ui(x),v;(y), Fij(x, y, 2)). 5)
Then
I/Vij(x]/c’ yé’zllcl) = (.Xk, yf’zkf)7 (k,Z) € {l - Ll} X {.] - 17 ]}v

and {Dl/.j xR, W;j;(i,j) € Xy x Ty} is a recurrent iterated function system
(recurrent IFS).

Fori € ¥y and j € X, we denote by J{(D;; xR) the family of all non-empty
compact subsets of D;; x R. Let J{ be the product of all H(D;; x R), i.e.,

}NC = {(Aij)lsisN,lijsM: A,’j € g‘f(Dij X R) for all 7, j}
Forany A = (4;5) € H, we define W(A) e H by
(W(A))ij = U{VVij(Akg): (k,€) e Eny x Zpr and Dyy C Dz{j}

foralll<i<Nandl1<j <M.
For any continuous function f on / x J and (i, j) € ¥n§ X Xy, we denote

rf'Dij = {(.Xf,y, f(x’y)):(x’y) € Dij},

which is the graph of f restricted on D;;. Similarly as in [2, 4, 25], we have the
following theorem.

Theorem 2.1. Let {Dl’.j xR, Wij; (i, j) € Xy x Zpr} be the recurrent IFS defined
by (5). Assume that {F;;: (i, j) € ¥n X Xp} satisfies the following matchable
conditions:

(1) foralli €e ¥y_q1 and j € Xy,

Fij(xj.y.2) = Fiq1,(x{,y.2), forally € J] z €R; ©6)
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(2) foralli e ¥y and j € Xpr_4,

Fij(x,y}.2) = Fi j+1(x.y;,2), forallx €I, z € R. @)

Then there exists a unique continuous function f on I x J, such that f(x;,y;) =
zij foralli € Ty and j € X0, and (Ff|Dij)1<i<N 1<j<M 1S the invariant set

SN, =

of W,ie, 'f|p,, = I/I/ij(Ff|Dl4j)f0rall (i,j)e Ty X Zp.

Proof. Let C*(I x J) be the collection of all continuous functions ¢ on I x J
satisfying ¢(x;, y;) = z;j forall (i, j) € Zn,0 X Zp,0. Define T:C*(I x J) —
C*(I x J) as follows: given ¢ € C*(I x J),

To(x,y) = Fiju;' (). 07 (1), 0@ (x), 07 (1), (x.y) € Dij.  (8)

forall (i,j) e ¥y x Zp.

Given ¢ € C*(I x J), it is clear that for all (i, j) € Zy X Zp, T¢linyp;,) is
continuous, where we use int(E) to denote the interior of a subset £ of R2. For
all (xp. y¢) € Dij»

E/ (ui_l(xp)7 Uj_l(yq)’ (p(ui_l(xp)’ Uj_l(yq))) = E] (xllya Y;, go(xllﬁ Y;))
= Fij(xXp. Y Zpq)
= Zpgq
so that T¢(xp, y4) = zpq. Furthermore, from matchable conditions, we know that
T ¢ is well defined on the boundary of I; x J; for all (i, j) € ¥n x Zp. Thus
T:C*(I xJ) — C*(I x J) is well defined.

For any ¢ € C*(I x J), we define |¢|ooc = max{p(x,y):(x,y) € I x J}.

From (4), we can easily see that T is contractive on the complete metric space

(C*(I x J),|*|oo)- Thus there exists a unique function f € C*(I x J) such that
Tf = f,thatis,

S y) = Fyui (), 07 (0, S (), 07 (0), (x,9) € Dij (9)
for all (i,j) € Xy x Xp. Combining this with (5), we know that for all
(i, j) e TN X Zypr,

Lflp,; ={(x.y, f(x,y):(x,y) € Dij}
= {(x, y, Fyj (ui ' (), 057 (0), S (), 077 (0))): (%, 9) € Dij}
= {(ui (x), v; (»). Fij (x. y, f(x,9)): (x.y) € D}
= {W;(x.y, f(x.):(x,y) € Dj;}.

Thus (Ff|Dij)1§i§N’1§j§M is the invariant set of .
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the invariant set of W. Then we must have
Fij(x.y. f(x.y) = fQui(x),v;(y)). forall (x.y) € D},

sothat T f = f. Since T is contractive on (C*(I x J), | - |oo), We know that

f=r O

We call f the recurrent fractal interpolation function (RFIF) defined by
{lej x R, W;j:(i,j) € ¥n x X}, and call the graph of f a recurrent fractal
interpolation surface (RFIS). From (9), we have the following useful property:
forall (i, j) € ¥y x Ty,

fi(x).v;(y) = Fij(x,y, f(x.y)) forall (x,y) € Dj;. (10)

Generally, the recurrent IFS {D] X R, Wiji (i, j) € En x Xy} is not hyper-
bolic. However, we can still show that I'f = {(x, y, f(x,y)):(x,y) € I x J}is
the attractor of the recurrent IFS. The spirit of the proof follows from [2, 4, 25].
For any two nonempty compact subsets 4 and B of R?, we define their Hausdorff
metric by

di (A, B) = max{maxmind(x, y), maxmind(x, y)},
x€A yeB yeB x€A
where we use d(-,-) to denote the Euclidean metric. For any A4, B € H with
A = (Ajj)1<i<N,1<j<m and B = (Bjj)1<i<N,1<j<Mm, We define
dp (A, B) = max{du (Aij, Bij): (i, ) € n x Ty}

It is well known that (9~C, dy) is a complete metric space. For details about the
Hausdorff metric and the metric dy, please see [3, 4, 12].

Theorem 2.2. Let f be the RFIF defined by {Dl/.j xR, Wiji(i,j) € En x Zpm ).
Then for any A = (Aij)1<i<N,1<j<m € I,

Jim de (W™ (4). (TS b, hr=i=n.1<j<m) = 0. (11)
where W°(A) = A and W"T1(A) = W(W"(A)) for any n > 0.

Proof. For any A = (A;j)1<i<N,1<j<M € ¥, we define Ayy to be the projection
of Aonto I x J,i.e.,

Axy = {(x, y):there exist (i, j) € Xy x Xy and z € R with (x, y,z) € 4;;}.
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Let H (I x J) be the family of all nonempty compact subsets of / x J. It is clear
that Axyy € H(I x J).
Define L: H(I x J) - H( x J) by

L) = Jlui(x).v;(»): (x.y) € Dj; NU}. U € HUI x J).
1<i<N
1<j<M

It is clear that L is contractive on (I x J). Since A;; # @ for all (i, j) €
YN X Xm, we have

ll)m dH(Ln(Axy), I x J) =0.

Let anj ={(x,y, f(x,y)):(x,y) € L"(Axy)ND;j;}. Noticing that f is uniformly
continuous on / x J, we have

lim dp (Qf;. Tf|p,;) =0 (12)
n—o0

forall (i,j) e Zy x Zp.
For n > 1, we define

An = sup{] f(x.y) = z|: (x. y.2) € (W"(A);; for some (i, j) € Ty x Sy}

By the definition of Hausdorff metric, we have dg (Q2};, (W"(A4))ij) < A, for all
(i,j)e Xy xZpyandn > 1.

Given (i, j) € ¥y x Zp and n > 1, for any (x, y,z) € (W"(A));;, there exist
(k,0) € Ty x Ty and (x*, y*, z*) € (W™ 1(A))x¢ such that

(X, ¥, 2) = (ui (x%),v;(¥%), Fij (x*, y*,z%)).
Let o = max{o;;: (i, j) € Zn x Zy}. By (4) and (10),

|f(x.y) —z| = |F; (x*, p*, f(x*, y™) — Fij (x*, y*, 2%))|
<alf(x*,y*) =% < alp

so that A, < aA,_;.Since 0 < o < 1, we have lim A, = 0. Thus

n—>oo
lim dy (Qf;, (W"(4))ij) =0
n—>oo
for all (i, j) € ¥y x Xp. Combining this with (12), we have
lim_dp (W"(4))ij, Tf p;;) =0

for all (i, j) € ¥y x Xpr. This completes the proof of the theorem. O
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Remark 2.3. In the case that F;;(x, y, z) are Lipschitz both on x and y for all i
and j, we can construct a metric p equivalent to Euclidean metric, such that the
recurrent IFS is contractive with respect to p. Similar constructions of such metric
can be found in [6, 8, 30]. As aresult, except proving that f is continuous by using
the matchable conditions, Theorems 2.1 and 2.2 can be stated without proof since
they are obvious properties of this type of maps as detailed in [11, 13, 19].

3. Construction of bilinear RFISs
Let 4(x, y), S(x, y) be two continuous functions on / x J satisfying
h(xi,y;) =zij, (i,]) € Zno X Zpm,0. (13)

and
max{|S(x, y)|:(x,y) e I x J} < 1.

Let g;;(x,y), (i, j) € ¥n x Xy be continuous functions on lej satisfying
gij (v = zp (KO eli =1Ly x{j—1,j} (14)
For (i, j) € £y x Xp, we define functions Fj; (x, y, z): Dl/.j x R — R by

Fij(x,y.2) = S(ui(x), v;(Y))(z = gij (x, ¥)) + h(ui(x),v;(y)),  (15)

where u; € C(I]) and v; € c( /./ ) are functions defined in Section 2. Then for all
(i,j)eEnyxZEyand (k) eli —1,i} x{j—1.j},

Fij (k. ¥ Zke) = hlui (x), v; () = h(xe., ye) = 2t

so that (3) holds. Furthermore, it follows from max{|S(x, y)|: (x,y) € I xJ} < 1
that (4) also holds.
Giveni € ¥y_jand j € Xy, forall y € Jj/ and z € R, we have

Fij(xf,y,2) = S(xi,v;(0))(z = gij (x[, ) + h(xi, v (),
Fit1,j(x;, . 2) = S(xi, v (0))(Z = git1,5 (X}, ) + h(xi, v;(¥)).
Thus, the matchable condition (6) holds if g;;(x/,y) = gi+1,;(x},) for all
y € J/. Similarly, the matchable condition (7) holds if gi; (x, y}) = gi,j+1(x. y})

forall x € I i/ . Thus, from Theorem 2.1, we have the following result. We remark
that Metzler and Yun [21], and Yun, Choi and O [30] obtained similar results.
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Theorem 3.1. Let Fjj, (i, j) € X x Xp be defined as in (15). Assume that the
Jollowing matchable conditions hold.:

(1) foralli e ¥y_q1 and j € X,

gij (i, y) = gi+1,;(xi.y), forally € J; (16)
(2) foralli e ¥y and j € Xpr_4,

gij(x.y}) = gijr1(x.y}). forallx €I (17)

Then there exists a unique continuous function f on I xJ suchthat f(x;,y;) = zij
forall (i,j) e Eno x Sigmapg o, and (rf|Dij)15i5N’15j5M is the invariant set
of W.

We remark that from (14), for alli € ¥y_; and j € Xy,

gi./'(xz{’y]/'—l) = Zz{,j—l = gi+1,j(xl{’yj/'—1)’ gij(xl{,yj/-) = Zl{j = &i+1,j (Xl{,yj/-)-
(18)
Similarly, foralli € ¥y and j € X1,

gij (X, ) = zisy ;= &ij+1 (X, V), g (X y)) = zi; = gij1 (X))

(19)
However, the match conditions in Theorem 3.1 may not be satisfied if we only
require that (18) and (19) hold.

Now we want to construct bilinear RFISs which are special RFISs in the above
theorem. The basic idea is similar to that in [6, 25]. For alli € ¥ and j € Xy,
we define u; and v; to be linear functions satisfying (1) and (2). We also define
gi; to be the bilinear function satisfying (14). That is, if we denote

Xl —x V=Y
M) = i) = )/J_T
i T X 7T Vi1

then for all (x, y) € D};,
ij (x,¥) = L)y (0)ziy g + A=) (V)2 -
+ L)1 = Nzi_yj + =2 (x) (A = i ()z] ;-

Notice that once x is fixed, g;;(x,y) is a linear function of y. Combining this
with (18), the matchable condition (16) in Theorem 3.1 is satisfied. Similarly,
(17) is also satisfied. Thus, in the case that g;; are bilinear for all i, j, we do
generate RFIF and RFIS.
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In order to construct bilinear RFISs, we define 4: I x J — IR to be the function
satisfying (13) and h|;xy; is bilinear for all (i, j) € Ty x .

Let {si;: (i, j) € Zn,0x Zp,0} be a given subset of R with |s;;| < 1 foralli, j.
We define S: 7 x J — R to be the function such that S|, %y, is bilinear for all
(i,]j) € Ty x Zp and

S(x,-,y‘,-) = Sij, for all (i,j) € EN,O X EM,().

Forall (i, j) € Xy x Xy, we define Fj;: lej xR — R by (15). Then the RFIF
f is called a bilinear RFIF. We call I' f a bilinear RFIS. The function S(x, y) is
called the vertical scale factor function of f. We also call s;;, (i, j) € Zn,0XZnm,0
vertical scaling factors of f if there is no confusion.

From the construction, we know that a bilinear RFIS is determined by inter-
polation points {(x;, ¥, Zi,j) }(i,/)eS y oxZps o» VETtical scaling factors {s;;: (i, j) €
EN,0 X Xm0}, and domain points {(X;, ¥})}(, /)T y.oxSas0- Lhis property is sim-
ilar to the linear recurrent FIF in the one-dimensional case [4]. In particular, a bi-
linear RFIS is easy to be generated, while there are no restrictions on interpolation
points and vertical scaling factors.

4. Box dimension of bilinear RFISs

For any kq,k,,k3 € Z and ¢ > 0, we call H;”zl[kig, (k; + 1)¢] an e-coordinate

cube in R3. Let E be a bounded set in R3 and N (¢) the number of e-coordinate

cubes intersecting £. We define
— logNEg(e)

di—mBE = lim

and dimgFE = lim M
e—~>0+ 10g1/8

e>o0+ logl/e
and call them the upper box dimension and the lower box dimension of E, respec-
tively. If dimgE = dimg E, then we use dimp E to denote the common value and
call it the box dimension of E. It is easy to see that in the definition of the upper
and lower box dimensions, we can only consider ¢, = ﬁ, where K > lisa
constant and n € Z*. That is,

(20)

__ — logN
TmgE = Tim 8 NE(En)

logN
and dimgFE = lim Og—E(g").
n—>oco nlogK

21
nooo nlogK @D

Itis also well known that dimgz £ > 2 when E is the graph of a continuous function
on a domain of R2. Please see [12] for details.

In this section, we will estimate the box dimension of I'f, where f is the
bilinear RFIF defined in Section 3. Without loss of generality, we can assume that
I =J=]01].
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4.1. A method to calculate the box dimension. It is difficult to obtain the box
dimension of general bilinear RFIS. In this paper, we assume that

M=N and x; :lﬁ,yj:%, foralli, j € ¥n. (22)

Furthermore, we assume that there exists a positive integer K > 2 such that

71 _ 1]l K, foralli,jeXx (23)
= = T — ’ ’ N'
1l 5]

Foreachn € Zt and 1 < k, ¢ < K" N, we denote

k=1 k -1 ¢
DL = o o) Low Tow
K"N K"N K"N K"N
Givenn € Z* and U C [0, 1]?, we define

O(f.n,U)=Y_0(f.D}y.

1<k {<K"N
D!,CU
where we use O( f, E) to denote the oscillation of f on E C [0, 1], that is,
O(f,E) =sup{f(x')— f(x"):x',x" € E}.

We also denote O(f,n) = O(f,n,[0, 1]?) for simplicity.

We will use the following simple lemma, which presents a method to estimate
the upper and lower box dimensions of the graph of a function from its oscillation.
Similar results can be found in [12, 15, 24].

Lemma 4.1. Let f be the bilinear RFIF defined in Section 3. Then

: _logO(f.n)
dimg (Tf) > max{z, | +,3L—“;W}’ 24)
and
. — 1 2K"
Jmp(Tf) < 14 fim (0EOUm T 2KIN) (25)
n—00 nlog K
where we define log0 = —oo according to the usual convention.

Proof. 1t is clear that

Nrs(en) = £, Y O(f, D) = &, O(f.n) (26)
1<i,j<K"N
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so that (24) holds. On the other hand, we note that Ng(¢) and Ng(e,) can be
replaced by Ng (¢) and Ng (g,,) in (20) and (21) respectively, where Ng (¢) is the
smallest number of cubes of side ¢ that cover E (see [12] for details). In our case,

Nrr(en) < (6, O(f. D) +2) = K"N(O(f.n) +2K"N)
1<i,j<K"N

so that (25) holds. O

Remark 4.2. From Lemma 4.1, dimg(['f) = 2 if n@o% < 1, and

dimg(T'f) =1+ lim % if the limit exists and is larger than 1.
n—>oo

4.2. Compatible partitions and uniform sums. The vertical scaling factors
{sij:i,j € Xy} are called steady if for each (i, j) € Xy x Xy, either all of
Si—1,j—1.8i—1,j.8i,j—1 and s;; are nonnegative or all of them are nonpositive.

Given B = {B,}™_,, where By, ..., B,, are nonempty subsets of [0, 1]?, B is
called a partition of [0,1]? if | J"_, B, = [0,1]? and int(B,) N int(B;) = @ for
all r # t. A partition B = {B,}"_, of [0, 1] is called compatible with respect to
{Dij, Dj;; (i, j) € £y x Ty} if the following two conditions hold.

(1) For each (i,j) € Xy x Xy, there exist r,z € {1,2,...,m}, such that
Dij C B, and Dz{j C B;.

(2) Assume thatr,t € {1,2,...,m}. If there exists (i, j) € ¥ n X Xy, such that
D;;j C B, and Dl’.j C By, then

By = | J{D}y: Dre € Br. Dy C By}

For 1 <r,t < m, we denote
Ay ={(,J) € En x En: Djj C By},
A} ={(i,]) € Ex x Ty: D}j C By,
We remark that the second condition is equivalent to

B, =D}, ifANA;#0.

ij
G,J)eA,NA)

Givenl <r <mando,B €{0,1,..., N — K}, we denote

Ar(e,B) ={(i. j) € Ar: Djj = [Xa. Xatk] X [y, Yp+£]}-
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We say that the vertical scaling factors {s;j:i,j € Xy} have uniform sums
under a compatible partition B = {B,}’_, if for all r,z € {1,2,...,m} with
Ay N A, # @, there exists a constant y,;, such that

Ve = Y 1Sui(xa). v (yp))] = D IS (xa). v (yp4+5))|

@.7)eAr (@.B) @.7)eAr(@.B)
= 1S (ar). v ()| = Y IS0 (Xt k). v (¥4 K))]
@ 7)eAr (@,B) @, 7)eAr(@.B)

forall o, B € {0,1,..., N — K} with [xq, Xo+k] X [y8, Vg+K] € {Dl’.j:(i,j) €
A, N A%}, In this case, we also call {y,;: A, N A} # @} the uniform sums of
vertical scaling factors.

Lemma 4.3. Assume that the vertical scaling factors {s;i;:i,j € Xn,} are
steady and have uniform sums {y,;: Ay N A}, # @} under a compatible partition
B = {B},. Then for all r,t € {1,2,...,m} with A, N A, # 0, and all
a,fe{0,1,....,N — K} with [xq, Xa+ k] X [yg. Ya+K] € {lej: (i,j) e Ay NALY
we have

D 1S@i(x), ;W) = vre, forall (x,) € [Xa. Xatk] X [, o4&
@ )ENr (@,B)

Proof. Given r,t € {1,2,...,m} with A, N A}, # @, and given o, €
{0.1,..., N — K} with [xq, Xa4x] X [y8. Yg+Kk] € {Dl/.j: (i, j) € A}}, we define

S*x.y) = 1S (i (x), v; ()| = Ve,

(@, j)eNr (,B)

where (x,y) € [xq,Xe+k] X [y8, yp+k]- Since the vertical scaling factors are
steady, we know that for each (i, j) € A,(«, ), the function S is nonnegative
or nonpositive on D;;. It follows that S(u;(x),v;(y)) is nonnegative or non-
positive on [Xq, Xe+ k] X [¥8, Yg+Kk]. As a result, S* is a bilinear function on
[Xa, Xa+ k] % [g, yp+k]. Thus, from $* = 0 on (Xa, yg), (Xa. Yg+k): (Xa+K. ¥)
and (Xq+ k&, Yg+k), We know that S* = 0 on [xq, Xe+ k] X [V8, ¥g+k] so that the
lemma holds. O

4.3. Calculation of box dimension. In this subsection, we always assume that
f is the bilinear RFIF determined in Section 3 with conditions (22) and (23).
Furthermore, we assume that the vertical scaling factors {s;j:i,j € Xy} are
steady and have uniform sums {y,;: A, N A} # @} under a compatible partition
B ={B,}"_,.

Using our assumptions, we can obtain the following basic result.
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Lemma 4.4. There exists a positive constant C > 0 such that

O(fin+1,B,)= yuO(fin,B;)| < CK" 27)

t=1

orall 1 <r <mandn € ZF, where we define y,; = 0if A, N A, = 0.
t

Proof. From the first condition of compatible partition,
B, = /Dy =J U Dy
(. J)EAr L:A NN, #D (i,j)eArNA),

for all 1 < r < m. Thus, in order to prove the lemma, it suffices to show that for
all 1 <r,t <m with A, N A, # @, there exists a constant C,; > 0, such that

Y O(fin+1,Dij) =y O(f.n, By)

(.J)eANA,

<C.K".

Foralla, B € {0,1,..., N — K}, we denote 5aﬂ = [Xa, Xat k] X [y, YB+k]-
From the second condition of compatible partition, for all r,# = 1,2, ..., m with
Ar NN, # 0,

B; = U{ﬁaﬁ: there exists (i, j) € A, N A, such that ﬁaﬂ = ij}-

On the other hand, it is clear that for each (i, j) € A, N A/, there exists a unique
(¢, B) €{0,1,..., N — K}?, such that D; = Dyp C B;. Thus, in order to prove
the lemma, it suffices to show that for all v,z = 1,2,...,m with A, N A} # 0,
andalle, 8 =0,1,..., N — K with 5(,43 = Dj; for some (i, j) € A, N Ay, there
exists a constant C,; o g > 0, such that

| Y0+ 1.Dy) = v O(fin. Dap)| < CriapK”  (28)
(@ 0)eAr (a,B)

for all positive integers n.
Denote M* = max{|f(x, y)|: (x,y) € [0,1]?}. For (i, j) € ¥y x Zy and
z*¥ e [-M*, M*], we define

Fijze(x.y) = Fiyj(x.y.2%.  (x.y) € Djj.

/

Since S(ui(x),v;(y)), gij(x, y), h(ui(x),v;(y)) are all bilinear functions on D;,,

we know that

Cij= sup |VEj(x,»)] <o,
(x,y)€int(D;)
z*e[-M* ,M*]

where || - || is the standard Euclidean norm.
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Given 1 < k, £ < K"N with D}, C lej, we fix a point (xg, y¢,n) € D,
It is clear that for all (x, y) € DZ,,

| Fij (ks Ve F(X,9)) = Fij (x, . f(x, )| < V2Cijen. (29)
On the other hand, for all (x', y’), (x", y") € D},, we have
Fij (Xkns Yens f&'y) - Fij(Xkn» Y.ns F&". ")
= Si(Xk,n), v Ve (F(X Y = f(x7 ")
Combining this with (10) and (29), we have
| f (i (x7), 0 (0) = f(ui (X7), 0; (")
< 1S (Xkn)s v Qe - LS Y = f(&" ") + 2v2C; 60

so that

O(f. (ui X v;)(Dp) < IS Wik n), v; (Ven))| - O(f, Diy) + 28/2Cije.

Thus, from Lemma 4.3,

> O(fin+1.Dy)

@, ))eAr (a,B)

<> > (18 (xkn), v (ea))| - O(f; DRy) + 232G 60)
1<k <K"N (i,j)eA,(a,B)
Dzecﬁaﬁ
= Vri - O(fin, Dop) + 2V2NK" 23 Cy;.
@, ))eNr (@,B)

Similarly,
> O(fin +1.Dyj) = ¥ O(f.n, Dup) — 2v2NK"+2 3" C;
@,))enr(a,B) @, ))eNr(,B)
so that (28) holds. O

Define G = (Yrt)mxm, Where y,; = 0if A, N A}, = @. Given1 < r,t < m and
n € 7%, afinite sequence {ik}i—o in {1,2,...,m} is called an n-path (a path for
short) from ¢ to r if ig = ¢, i, = r, and

Viesig—y >0, forallk =1,2,...,n.

r and ¢ are called connected, denoted by r ~ t, if there exist both a path from r
to ¢, and a path from ¢ to r. We remark that in general, it is possible that there is no
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path from r to itself. A subset V of {1,2,...,m} is called connected if r ~ ¢t for
all r,t € V. Furthermore, V is called a connected component of {1,2,...,m}if V
is connected and there is no connected subset VV of {1, 2, ..., m} such that V c V.
It is well known that the matrix G is irreducible if and only if {1,2,...,m} is
connected. Please see [26] for details.

Given a connected component V = {ry,...,r;} of {1,2,...,m}, where ry <
ry < --- < ry, we define a submatrix G|y of G by

(GlV)ke = Vrgre» 15k €<t

Definition 4.5. Given (i, j), (k,{) € ¥y x Xn, we call (k, £) an ancestor of (i, j)
if there exists a finite sequence {(i;, j)}7_, in ¥y x X such that (ig, jo) = (i, j),
(in, jn) = (k,£), and

Dir,jr c D!

i yje_y» Torallt=1,2,....n.

Let Ao(i, j) be the collection of all ancestors of (i, j) and

A(i, j) =A@, j)} U Ao, j).
We call (i, j) degenerate if for all (k,£) € A(i, j), we have either
Sk—1,6-1 = Sk—1,6 = Sk,t—1 = Sk¢ =0 (30)
or

Zpqg = &kt (Xp, yq), forall p,q € Xy with (x,, y4) € Dy,. 3D

Given 1 <r < m, we call r is degenerate if (i, j) is degenerate for all (i, j) € A,.
A connected component V of {1,2,...,m} is called degenerate if r is degenerate
for all r € V. Otherwise, V is called non-degenerate.

By definition, a connected component V' of {1, 2, ..., m} is non-degenerate if
there exists (i, j) € J,ep Ar such that (i, j) is non-degenerate.

Remark 4.6. It is clear that (30) holds if and only if S|p,, = 0. Since gx¢ is
bilinear, we can see that (31) holds if and only if the following two conditions
hold:

(1) for each p € Xy, with x,, € I, points in {(xp., y4.2pg):q € En0.Yq € J}}
are collinear;

(2) foreach g € Ty, with y, € J/, points in {(xp, y4. Zpg): P € Zn,0.Xp € I}
are collinear.
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Lemma 4.7. Given (i, j) € Xy x X, if (i, j) is degenerate, then

(1) forall (k,2) € A(i, j), we have f(x,y) = h(x,y), (x,y) € Dgg;

(2) there exists a constant C > 0, such that O(f,n, D;j) < CK" foralln € Z.*;
(3) dimg I'f'|p,; = 2.

Proof. (1). Let T and C*([0, 1]?) be the same as defined in the proof of The-
orem 2.1. Let C3([0, 1]?) be the collection of all continuous functions ¢ €
C*([0, 1]?) satisfying

@(x,y) = h(x,y), (x,y) € Dgy,

forall (k,?) € A(, j).

Given ¢ € C([0, 11?) and (k,0) € A(, j), if S|p,, # O, then (31) holds.
In this case, from (13) and (31), we have h(xp.yq) = zpg = gke(xp, yq) for
every (xp,yq) € Dj,. Since both maps are bilinear over Dog C Dy, we
have h(x.y) = gie¢(x.y) for every (x,y) € Dog C Dy,. Thus, by using
@(x,y) = h(x,y) for every (x, y) € Dog C Dy, we have

@(x,y) = gre(x.y), (x,y) € Dy,.

Hence, from (8) and (15), we have

To(x,y) = Fre(ug' (x), v (1), our ' (x). v (1)
= S, ) (@ (), v () — gre(ur ' (x), v (1) + h(x, y)
= h(x,y)

for all (x,y) € Dg¢. In the case that S|p,, = 0, it is clear that we still have
Te(x,y) = h(x,y) on Dg, by using (8) and (15). Thus T is a map from
C75([0,1]) to itself. Notice that C;([0,1]%) is complete since it is closed in
C*([0,1]%). Hence f € C5([0,1]%).

(2) and (3) directly follow from (1). O

Given a matrix X = (X;j)uxn, We say X is non-negative if X;; > 0 for all i

and j. X is called strictly positive if X;; > 0 foralli and j. The following lemma
is well known. Please see Theorem 2.7 in [26] for details.

Lemma 4.8 (Perron-Frobenius theorem). Let X = (X;j)nxn be an irreducible
non-negative matrix. Then

(1) p(X), the spectral radius of X, is a positive eigenvalue of X and has strictly
positive eigenvector.

(2) p(X) increases if any element of X increases.
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Given three points (x®, y), k = 1,2,3 in [0, 1]> with
(x(2) _ x(l))(x(3) _ x(2)) >0,
we denote

dr(xM,x@ x®:y) = | F(x@,y) = AL D, p) + =1 FxP, ),

where
A= (x(3) _ X(Z))/(x(3) _ x(l))_

By definition, (x®, y, f(x®, y)), k = 1,2, 3, are collinear if and only if we have
that dy (x(V, x® x®; y) = 0. Furthermore, if all of (x®, y), k = 1,2,3, lie in
a subset E of [0, 1], then O(f, E) > dp (x(V,x@ x®; y).

The following result is the key lemma to obtain the exact box dimension of
bilinear RFISs.

Lemma 4.9. Let V be a non-degenerate connected component of {1,2,...,m}.
Then there exists a constant C > 0, such that for allr € V andn € 7.+,

O(f.n,Br) = C(p(Glv))". (32)

Proof. Denote by ny the cardinality of V', and assume that V' = {ry,...,r,, }.
Since V' is non-degenerate, there exist t* € V and (i*,j*) € A+ such that
(i*,j*) is non-degenerate. Thus there exists (ko,%9) € A(i™*,j*) such that
both (30) and (31) do not hold. By Remark 4.6, we can assume without loss
of generality that there exist three interpolation points {(xp;, Y4, Zp;.q)}1<i<3 in
D;{O t with p; < p2 < ps, such that they are not collinear. That is, if we denote
Ao = (xp3 — Xp,)/(xp; — Xp, ), then

8o :=df(Xp,, Xpys Xps3 Yq) = |Zpag — (AoZpy,g + (1 — A0)Zps,q)| > 0.

Now, we show that following claim holds: for all 1 < k < ny, there exist
(i ®, ;&) e Ay, and three points (xj . y&) r=1,2,3in Djw) jw, such that

8k 1= dp (Xp.1, Xk20 Xk,3: yF) > 0.
Let ro and 7o be elements in {1,2, ..., m} satistying (ko, o) € Ay, N A/to. Let

a and B be elements in {0, 1, ..., N — K} satisfying [xq. Xo+ k] X [yg. Vp+K] =
D;{OZO. Notice that g;; are the same for all (i, j) € A, (a,pB), since they
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are the same bilinear function passing through the four points (xq, yg,Zq¢,8),

(Xa» YB+K> Za,p+K)> (Xa+K» VB> Za+k,p)> AN (Xo+K, VB+K» Za+K,p+K)- We de-
note it by gop.

For (i, j) € Ay (o, B), we define 6;; = 1if S is nonnegative on D;;, and define
0i; = —1 otherwise. Then |S(x, y)| = 6;;S(x, y) for all (x, y) € D;;. Combining
this with (10) and (15),

0ij f (ui (x), v; () = |8 i (x), v; YD (¥, y) = gij (X, ) + 03 (ui(x), v; (¥))

for (x,y) € D}; = [xa, Xa+k] X [yg, yp+k]. By Lemma 4.3,

Z Oij f (ui(x),v;(y))

(i,/)€A rg (@,B)

= Yroto (S (X ) = Gap (e 2)) + 3 63w (x), v ()

(i,/)€A g (@,B)

for all (x,y) € [Xq, Xa+k] X [y8, yg+K]- On the other hand, since both g,g and
hlp,;» (i, j) € Ay, (e, B) are bilinear, we have

8ap (Xpys ¥q) = Aogtxﬁ (Xpysyq) + (1 — )‘O)gtxﬁ (Xp3s Yg)s
and

h(ui(xp, ), vj (¥g)) = Aoh(ui(xp,), v (¥g)) + (1 = A0)h(ui (xp3), v; (¥q))

for all (i, j) € Ay (a. B). Thus

Z dy (i (xp, ), ui(xp,), ui (Xp3): v (¥q))

(i,/)€A g (@,B)

= (). 0y () = Ao 3 Oy £ 0s (i) v (3)

(@, ))€Arg(a,B) (7)€ rg(@,B)

= (1= 40 220 usCipa). vy )|

(@,7)EAry (@,B)
= )’roto|f(xp2a J’q) - (AOf(xpl ) J’q) + (1 - AO)f(xpsv J’q))| = )’rot080'

As a result, there exists (i, j) € Ay, (a., B) such that
df (ui(xP1)7 ui(xP2)7 Ui (xP3); Vj ()/q)) > 0.

We remark that (v; (xp, ), v;(y4)), T = 1,2, 3 are three points in D;;.
From (i*, j*) € A+ and (ko, £o) € AG™, j*) N Ay, N Aj, there is a path from
to to t*. Since V is connected, we know that for all 1 < k < ny, there is a path
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from ¢* to ry so that there is a path from ¢y to r;. Similarly as above, we can prove
by induction that the claim holds.

Now we will show (32) holds. Let § = (£1, &, ...,&,, )7 be astrictly positive
eigenvector of G|y with eigenvalue p(G|y) such that & < § forall 1 <k <ny.

Given 1 < k,£ < ny andn € Z™, we denote by ngf)(rk, r¢) the set of all n-
paths in V from ry to rg. Given 7 = {r(0),r(1),...,r(n)} € P (rg,re), we
denote by Q(F) the set of all elements (igi1 - +in, joj1--*ja) in TR x THH
satisfying (io, jo) = (1%, j®), Di,_,j,_, € Dj_; and (ir. jz) € Ap for
alll <t <n.

Given (i,§) = (ioi1 -+ in, joj1++ Jn) € QF) and (x, y) € D;j,, we define

ui(x) = uj, ouj,_, o---ou; (x), vj(y) =vj, ovj,_, o---0v; (y).

Given 1 < k,{ < ny andn > 1, for each 7 = {r(0),r(1),---,r(n)} €
ﬂ’g')(rk, r¢), similarly as above, we have

n
D dy (i), wix2) wiee,3); vi () = 8 [ [ vrren
(e t=1

so that

Z ZO(f, (ui X ) (D;0) i)

PP (1 rg) GDEQE)

n
> 8y [Troren

{(r(0)eer ()YePV) (rgeore) 171

n
= 3 Z 1_[ Yra)ra—1 = Sk ((Glv)")ek-
r(1),...,r(n—1)ev t=1
r(0)=rg,r(n)=ry¢

As a result,

Ofin.Br)zy > D O xv)(Dyw )

1<k<ny 7ept (ry rg) (D)

> 3 (G Iv)" ek

1<k<ny

Thus

(O(fin,By).....0(fin. By, N = (Gly)"(B1.....80)"
> (Gly)"(E1, .o Eny)T
= (IO(G|V))n(%_11 e 7Env)T'
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Henceforall 1 <k <ny,wehave O(f.n, B;,) > (p(G|y))" &k so that the lemma
holds. |

For each 1 < r < m, we define
A*(ry={t €{1,...,m}:t + r and there exists a path from 7 to r}.

Then we recurrently define P(r), r = 1,2,...,m as follows: P(r) = 1 if
A*(r) = @, and P(r) = 1 + max{P(t):t € A*(r)} if A*(r) # @. We call
P(r) the position of r.

Now we can use Lemmas 4.4 and 4.9 to obtain the exact box dimension of
bilinear RFISs under certain constraints. The spirit of the proof follows from
[4, 15, 23].

Theorem 4.10. Let f be the bilinear RFIF determined in Section 3 with condi-
tions (22) and (23). Assume that the vertical scaling factors {s;;:i, ] € X0} are
steady and have uniform sums {y,;: A, N A} # @} under a compatible partition
B =B}y, Let {V1,Va,..., Vy,x} be the set of all non-degenerate connected
components of {1,2,...,m}. Define d; = logp(G|y;)/log K for 1 <i <n} and
let dx = max{dy,...,d,x, 1}. Then dimp(L'f) = 1 + d..

Proof. Denote py = K%, Firstly, we will prove dimg(I'f) > 1 + d. Itis clear

that dimg(I'f) > 2 since f is continuous. Thus we only need to consider the

case d« > 1. Letip be anelementin {1,...,n}} satisfying d;, = d«. Assume that

Vie =1{r1,...,rq}forsomel < g < m,wherer; <--- <rg. Then py = ,o(G|Vl.O).
From Lemma 4.9, there exists a constant C > 0, such that

O(f.n, By,) = Cplt = CK"9

forall 1 <k < g andn € Z*. Notice that O(f,n) > O(f,n, B,,) foralln € Z*.
By using Lemma 4.1, we have dimg(I'f) > 1 + dx.
Now we will show that the following claim holds.

Claim. Forall1 <r <m and all § > 0, there exists C > 0 such that
O(f.n, B;) < Clpo +8)" (33)
foralln € 7.
We will prove this by using induction on P (7). Denote

Prax = max{P(r):1 <r <mj.
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In the case that P(r) = 1, we have A*(r) = 0. If r is degenerate, then
from Lemma 4.7 (2) and pg = K 4« > K we know that the claim holds. Thus
we can assume that r is non-degenerate. Combining this with P(r) = 1, there
exists a non-degenerate connected component V; such that » € V;. Assume that
Vi={r1,...,rqy}forsomel < g < m,wherer; <--- <rq. Denote p; = p(G|y,).
Letn = (n1,...,n4)T be a strictly positive eigenvector of G|y, with eigenvalue
pi. It follows from A*(r) = @ that y,, , = Oforall 1 <k <gand¢ ¢ V;. Thus,
from Lemma 4.4, there exists a constant C > 0 such that

q
O(fin+1,Br) <> ¥vrr, O(fin, Bry) + CK”
=1
forall 1 <k < gandn € Z*. Choose a constant C; > 0 such that C;n; > C for
all1 <k <g.Thenforalll <k <gandn € Z™,

q
O(fin+1,Br) <Y ¥rer, O(fin, By,) + Crpfme. (34)
(=1

Arbitrarily pick § > 0. Let C; be a positive constant such that
O(f, 1, By,) < Caping + C18~ (po + 8) M
forall 1 < k < g. By induction and using (34), we have
O(f.n. By,) < Copfni + C18~ (po + 8)" i (35)

forall1 <k <gqgandn € Z*, where we use

q
> Ve (C2p e + €187 (po + 8)"ne) + C1plymi
=1
< Cop! ik + €187 (po + 8)" pimk + Ci(po + 8)" nk

< Cop™ i + C187 (oo + 8)" .

1

It follows that the claim holds if P(r) = 1.

Assume that the claim holds for all 1 < r < m satisfying P(r) < P, where
1 < P < Ppax. Let r be an element in {1, 2,...,m} satisfying P(r) = P + 1.
It is clear that (33) holds if r is degenerate. Thus we can assume that r is non-
degenerate. In the case that r does not belong to any connected component, we
have P(¢) < P for any 1 <t < m with y,; > 0. Combining this with Lemma 4.4,
there exists a constant C > 0, such that

O(fin+1,B,) < (Zy,,) > O0(fin, B)+CK", foralln = 1.
t=1 t:P(t)<P

By inductive assumption, we can see that the claim holds in this case.
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Now we consider the case that r belongs to a connected component V; =
{ri,...,rq), where r; < --- < r,. Similarly as above, let n = (n1,...,7,)7
be a strictly positive eigenvector of G|y, with eigenvalue p; = p(G|y,). From
Lemma 4.4, there exists a constant C > 0 such that

q
O(fin+1.Br) <Y Vrw O(fint, Br) + > yr s O(fin. By) + CK"
=1 t:P(t)<P

forall 1 <k <gandn € Z*. Thus, given § > 0, by using inductive assumption,
there exists a constant C; > 0 such that

q
O(fin+1,Br) <Y Yrer O(fin. By,) + Ciiclpo + 8)" (36)
(=1

forall 1 <k <gandn € Z*. Similarly as above, there exists C, > 0 such that
foralll <k <fandn e ZT,

O(fin, Br,) < Cap?ni + C18 (oo + 8)" 1.

Hence the claim holds for P(r) = P + 1.

By induction, the claim holds for all 1 < r < m. Combining this with
Lemma 4.1, we can see from the arbitrariness of § that dimgT" flB, <1+ d« for
all 1 <r < m. Thus dimg(I'f) < 1 + dy. Asaresult, dimp(I'f) = 1 +d,. O

We can obtain the following corollary immediately.

Corollary 4.11. Let f be the bilinear RFIF determined in Section 3 with condi-
tions (22) and (23). Assume that the vertical scaling factors {s;;:i, ] € Zn,0} are
steady and have uniform sums {y;;: A, N A, # @} under a compatible partition
B = {B;i}!_,. Then, in the case that G is irreducible, we have

(1) dimp(T'f) = 1 + logp(G)/log K if {1,2,...,m} is non-degenerate and
o(G) > K, or

(2) dimg(T'f) = 2 otherwise.

Remark 4.12. In the case that K = N, it is clear that B = {B1} = {[x0, xn] X
[vo, ynN]} is the compatible partition. From Theorem 4.10, we can obtain the box

dimension of bilinear FISs under certain constraints, which is the main result
in [15].
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4.4. An example

Example 4.13. Let N = 4, K =2, andxy = x;, = x; = 0, x] = x; =

1
20
Yo = ¥y = ¥4 = 2, ¥ = 1, ¥4 = 0. By definition, we have

u1(xo) = xo, u1(x2) = ua(x2) = x1, wu2(xp) = uz(xo) = x2, ...,
vi(y2) = yo, vi(ya) =v2(ya) = y1, v2(y2) = v3(y2) = y2,
Let By = [0,1] x [0.4], B, = [0.1] x [4.1] and B3 = [3.1] x [0.1]. Tt
is easy to check that B = {Bj, B,, B3} is a compatible partition with respect to

{D,-j,Dl’.j;l < i,j < 4}. Furthermore, A, N A}, # @ if and only if (r,7) €

{(1,2),(2,1),(3,1),(3,2)}.
Let (r,#) = (1,2). Then A1(0,2) = {(1, 1), (1,2), (2, 1), (2,2)} so that

> 1S (i (x0). vj (v2))|
(i,/)€A1(0,2)

= |S(x0, yo)| + [S(x0, y2)| + [S(x2, yo)| + [S(x2, y2)|

= |soo| + |02 + [s20] + [s22].

Similarly,
D IS @i(x0). v (ya))| = 2(Iso1| + ls21]).
(isj)EAl (052)

D IS i (x2). v ()| = 2(Is10] + Is12)).

(#,/)€A1(0,2)

D 1S@i(x2), v (ya))| = 4lsnal.

(#,/)€A1(0,2)

Assume that vertical scaling factors {s;;:0 < i, j < 4} have uniform sums
under the compatible partition { By, B», B3}. Then we must have

Y12 = [soo| + [s02| + |s20| + [s22] = 2(|so1] + [s21]) = 2(|s10] + [s12]) = 4|s11].
Similarly,

Y21 = |so2| + [s0a| + |s22]| + [s24] = 2(|s03] + [s23]) = 2(|s12] + [s14]) = 4513/,
Y31 = ls22| + [s24] + [sa2| + [sa4] = 2(|s23] + [s43]) = 2(|s32] + [s34]) = 4[s33],
Y32 = [S20] + [s22] + [sa0] + [s42] = 2(|s21] + [sa1]) = 2(|s30| + [s32]) = 4[s31].
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Let
08 09 09 09 09

0.2 045 08 0.7 0.6
(Sij)o<i,j<a = 0 0 0 05 0.95
—-0.4 —-0.2 0 0.3 0.6
-08 —-04 0 0.1 025

By above discussion, we can check that vertical scaling factors are steady and
have uniform sums under { By, B,, B3} with y;, = 1.8, 21 = 2.8, y31 = 1.2 and
y32 = 0.8.

Assume that

(Zij)OSi,j54 =

N W = NN
W N W N W
N BN W
BN W = =
B O = W

The corresponding bilinear RFIS is shown in Figure 1.

w\\.

‘H u\\\»

Figure 1. Bilinear RFIS in Example 4.13

Furthermore, we can check that V; = {1,2} is the unique non-degenerate
connected component of {1, 2, 3} with

0 1.8
G"’l:(z.g 0)‘

Thus d,x = log5.04/(21og?2) so that dimp(I'f) = 1 + log5.04/(21og?2).
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We can present the precise form of the corresponding maps S, & and g;; as
follows. By definition, for (x, y) € [55%, 4] x [£34, £] with 1 <1, j <4, we have
S(x,y) =0 —4x)(J —4y)si—1,j—1 + (L +4x —i)(J —4y)si,j—1
+ @ —4x)1+4y —j)sio,; + (L +4x—i)(1 + 4y — j)sij,
h(x.y) = ( —4x)(j —4y)zi-1,j-1 + (1 +4x —)(j —4y)zi j—1
+ (@ —4x)(A + 4y — j)zi—r,; + (1 +4x —i)(1 + 4y — j)zij.

For (x,y) € lej with 1 <i,j <4, we have

8ij (6, ») = 2 )y (Wziy iy + (1= () (0)z -
A () (1= i ONzf_yj + (=2 )) (1 — i ()2}

where
1 1
A(x) = As(x) = 1—2x, xe€ [o, E]’ Aa(x) = Aa(x) = 2x, x € [0, E]’
1 1
Hi(y) =2-2y, yE[O, 5], pa(y) =2y — 1, ye[z, ]
1 1
p3(y) =2y, yE€ [0, 5], pa(y) =1-=2y, y € [0, 5],
and
Zo2 Zo4 Zo2 Zoo Zo2 2 22 2 2
Z32 Z24 Z22 Z20 Z22 21 2 1 2
(Zl{j)OSi,j§4 =1 zZo2 Zo4 Zo2z Zoo Zo2z |=1]| 2 2 2 2 2
Z32 Z24 Z22 Z20 Z22 21 21 2
Zo2 Zo4 Zo2 Zoo Zo2 2 22 2 2
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