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Revolving fractals

Kiko Kawamura and Andrew Allen

Abstract. Davis and Knuth in 1970 introduced the notion of revolving sequences, as rep-

resentations of a Gaussian integer. Later, Mizutani and Ito pointed out a close relation-

ship between a set of points determined by all revolving sequences and a self-similar set,

which is called the Dragon. We will show how their result can be generalized, giving new

parametrized expressions for certain self-similar sets.
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Introduction

In 1970, C. Davis and D. E. Knuth [1] introduced the notation of revolving

representations of a Gaussian integer: for any z D x C iy with x; y 2 Z, there

exists a revolving sequence .ı0; ı1; : : : ; ın/ such that

z D
n

X

kD0

ın�k.1C i/k ;

where ık 2 ¹0; 1;�1; i;�iº with the restriction that the non-zero values must

follow the cyclic pattern from left to right:

� � � �! 1 �! .�i/ �! .�1/ �! i �! 1 �! � � � :

For instance, they gave the following example:

�5C 33i D .1 0 0 0 .�i/ .�1/ i 1 0 .�i/ 0/1Ci :

They also showed that each Gaussian integer has exactly four representations

of this type: one each in which the right-most non-zero value takes on the values

1;�1; i;�i .

https://creativecommons.org/licenses/by/4.0/
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Let W be the set of all revolving sequences, and define the set

X WD
°

1
X

nD1

ın.1C i/�nW .ı1; ı2; ı3; : : : / 2 W
±

:

Notice that each revolving sequence determines a complex number and X is a set

of points in the complex plane. The set X is shown in the left half of Figure 1.

Figure 1. X (left) and X� (right).

Mizutani and Ito [7] proved the following theorem using techniques from

symbolic dynamics.

Theorem 0.1 (Mizutani–Ito, 1987). (i) The set X is tiled by four Dragons

¹Dk; k D 0; 1; 2; 3º, that is

X D
3

[

kD0

Dk D
3

[

kD0

ikD;

where D D  1.D/[  2.D/ is the self-similar set generated by

8

ˆ

<

ˆ

:

 1.z/ D
�1� i

2

�

z;

 2.z/ D
��1� i

2

�

z C 1� i

2
:

(ii) For each k ¤ k0,

�.Dk \Dk0/ D 0:
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In the same paper, they mentioned an interesting question. Define another set

X� by

X� WD
°

1
X

nD1

ın.1C i/�nW .ı1; ı2; ı3; : : : / 2 W
±

:

Notice that ın moves on the unit circle counterclockwise instead of clockwise.

The setX� is shown in the right half of Figure 1. Computer simulations suggested

to Mizutani and Ito that X� must be a union of four Lévy’s curves; however, they

could not give a mathematical proof.

Recall that Lévy’s curve is a continuous curve with positive area. It was

introduced by Paul Lévy in 1939 [6]. Figure 2 shows the graph of Lévy’s curve,

which is a self-similar setL D �1.L/[�2.L/ generated by the similar contractions
8

ˆ

<

ˆ

:

�1.z/ D
�1C i

2

�

z;

�2.z/ D
�1 � i

2

�

z C 1C i

2
:

(0.1)

Figure 2. Lévy’s curve.

Kawamura in 2002 [4] finally gave a proof of Mizutani and Ito’s conjecture.

Theorem 0.2 (Kawamura, 2002). The conjugate of X� is a union of four copies

of Lévy’s curves L generated by (0.1), that is

X� D
3

[

kD0

ikL:
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It is worth mentioning that the proof is completely different from Mizutani and

Ito’s approach. Instead of using technique from symbolic dynamics, Kawamura

considered the following functional equation

f˛; .x/ D
´

f̨˛; .2x/; 0 � x < 1=2;

f˛; .2x � 1/C .1� /; 1=2 � x � 1;
(0.2)

where ˛ and  are complex parameters satisfying j˛j < 1, j j < 1. She proved

the existence of a unique bounded solution f˛; W Œ0; 1� ! C of (0.2) and gave

the explicit expression. Observe that the closure of the image of this bounded

solution f˛; .Œ0; 1�/ is a self-similar set generated by two contractions �1.z/ D ˛z

and �2.z/ D z C .1 � /. In particular, if ˛ D .1 C i/=2 and  D .1 � i/=2,

f˛; .Œ0; 1�/ D L.

Lévy’s curve and Dragon are very different: one is a continuous curve while

the other is a tiling fractal; however, both are self-similar sets. Thus, the following

questions arise naturally.

(1) Is there a generalized relationship between sets of revolving sequences and

self-similar sets? In particular, we are interested in describing self-similar

sets which arise from more general revolving sequences, where the 90 degree

angle of rotation is replaced with a more general angle.

(2) Is there a simpler way to prove both Mizutani and Ito’s and Kawamura’s

theorems?

1. Generalized revolving sequences

Before stating our results, some notation need to be introduced. Let ˛ 2 C denote

a complex parameter satisfying j˛j < 1. Let � be an angle with �� < � � �

and a rational multiple of 2� . More precisely, there are p 2 N; q 2 N0 such that

j� j D 2�q
p

. Define

�� WD ¹0; 1; ei�; e2i� ; : : : ; e.p�1/i� º:

Definition 1.1. A sequence .ı1; ı2; : : : / 2 �N
�

satisfies the Generalized Revolving

Condition (GRC), if the subsequence obtained after the removal of its zero ele-

ments is a (finite or infinite) truncation of the sequence .ei�/. More precisely, let

.ni / WD ¹nW ın ¤ 0º. Then, ıniC1
D ei�ıni

:
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Notice that ın moves on the unit circle counterclockwise if � > 0, and

clockwise if � < 0.

Define W� as the set of all generalized revolving sequences with parameter � :

W� WD ¹.ı1; ı2; : : : / 2 �N� W .ı1; ı2; : : : / satisfies the GRCº;

and for a given ˛ 2 C such that j˛j < 1, define

X˛;� WD
°

1
X

nD1

ın˛
nW .ı1; ı2; ı3; : : : / 2 W�

±

:

Notice that each generalized revolving sequence determines a complex number

and X˛;� is a set of points in the complex plane. Two examples of X˛;� are shown

in Figure 3. It is not hard to imagine that X˛;� is a union of self-similar sets;

however, it is not immediately clear which iterated function system generates these

self-similar sets.

Figure 3. X˛;� W .˛; �/ D
�

1Ci

2
; �

10

�

(left) and .˛; �/ D
�

1�i
2
; �

3

�

(right).

Using a direct approach different from both [7] and [4], we obtain the following

theorem.

Theorem 1.2. X˛;� is a union of p copies of K˛;� :

X˛;� D
p�1
[

lD0

.ei�/lK˛;� ;
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whereK˛;� D  1.K˛;� /[ 2.K˛;� / is the self-similar set generated by the iterated

function system (IFS):

´

 1.z/ D ˛z;

 2.z/ D .˛ei�/z C ˛:
(1.1)

Remark 1.3. Using a similar approach as in [4], Young [8] essentially found the

result of Theorem 1.2 under the RTG Undergraduate Summer Research Program;

however, his proof was incomplete.

Example 1.4. Both Mizutani and Ito’s and Kawamura’s results are included in

this setting as special cases. It is clear that X˛;� is a union of Dragons if ˛ D 1�i
2

and � D ��=2. If ˛ D 1�i
2

and � D �=2, then X˛;� is a union of Lévy’s curves

generated by
8

ˆ

<

ˆ

:

 1.z/ D
�1� i

2

�

z;

 2.z/ D
�1C i

2

�

z C 1 � i
2
:

(1.2)

Notice that (1.2) is different from (0.1). Let P be the self-similar set P D
 1.P / [  2.P / generated by (1.2). It is clear that xL D P since

xL D �1.L/ [ �2.L/ D  1.xL/ [  2.xL/:

Recall the celebrated theorem of Hutchinson [3]: for any finite family of

similar contractions  1;  2; : : : ;  m on R
n, there exists a unique self-similar set

X � R
n, which is a unique non-empty compact solution of the set equation

X D  1.X/ [  2.X/ [ � � � [  m.X/. However, the converse is not true. In

fact, a self-similar set can be constructed by many different families of similar

contractions.

One of the challenges of this type of question is to find a suitable pair of

contractions which matches the position of the set X˛;� exactly. Once the suitable

pair of contractions is found, a more direct proof is possible, using the following

lemma and proposition.

Define a subset of X˛;� as follows.

X1;˛;� WD
°

1
X

nD1

ın˛
nW ıj1

D 1; .ı1; ı2; ı3; : : : / 2 W�

±

; (1.3)

where j1 WD min¹j W ıj 6D 0º.
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Lemma 1.5. X1;˛;� is a closed set.

Proof. Let .xk/ be a sequence in X1;˛;� , converging to some point x. For each

k 2 N, there exists a sequence .ık
n/ 2 W� such that xk D

P1

nD1 ı
k
n˛

n.

It suffices to construct a sequence .ın/ such that for each n � 1, there exists

k 2 N such that .ın/ and .ık
n/ start with the same initial word of length n.

Obviously, then x D
P1

nD1 ın˛
n 2 X1;˛;� .

A suitable sequence .ın/ can be constructed by induction as follows. First,

choose ı1 2 ¹0; 1º so that there exist infinitely many k 2 N such that ık
1 D ı1.

Next, suppose an initial word ı1; ı2; : : : ; ın has been defined for some n � 1 so

that ık
1 ı

k
2 : : : ı

k
n D ı1ı2 : : : ın for infinitely many k 2 N. Then choose ınC1 2

¹0; ei�ıj0.n/º, where j0.n/ WD max¹j � nW ıj 6D 0º, in such a way that there exist

infinitely many k 2 N such that

ık
1 ı

k
2 : : : ı

k
nı

k
nC1 D ı1ı2 : : : ınınC1:

This gives the desired sequence .ın/. �

Corollary 1.6. X˛;� is a closed set.

Proof. Notice that

X˛;� D
p�1
[

lD0

.ei�/lX1;˛;� :

Using the fact that the union of finitely many closed set is closed, X˛;� is closed.

�

Proposition 1.7. X1;˛;� satisfies the set equation:

X1;˛;� D  1.X1;˛;� / [  2.X1;˛;� /;

where ¹ 1;  2º is the IFS from (1.1).

Proof. Let x D
P1

nD1 ın˛
n 2 X1;˛;� . If ı1 D 0, set ı0

j WD ıj C1 for j D 1; 2; : : : :

Then .ı0
j / satisfies the generalized revolving condition with its first nonzero digit

equal to 1, so

x D ˛

1
X

j D1

ı0
j˛

j 2  1.X1;˛;� /:

If ı1 D 1, set ı0
j WD e�i�ıj C1 for j D 1; 2; : : : . Since the second nonzero digit of

.ın/ is ei� , the sequence .ı0
j / satisfies the generalized revolving condition with its
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first nonzero digit equal to 1, so

x D ˛ C ˛ei�

1
X

j D1

ı0
j˛

j 2  2.X1;˛;� /:

Thus X1;˛;� �  1.X1;˛;� / [  2.X1;˛;� /.

The reverse inclusion follows analogously. Let x 2  1.X1;˛;� / [  2.X1;˛;� /.

If x D ˛
P1

nD1 ın˛
n 2  1.X1;˛;� /, set

ı0
j WD

´

0 if j D 1;

ıj �1 if j � 2:

Then .ı0
j / satisfies the generalized revolving condition with its first nonzero digit

equal to 1, so

x D
1

X

nD2

ın�1˛
n D

1
X

j D1

ı0
j˛

j 2 X1;˛;� :

If x D .˛ei�/
P1

nD1 ın˛
n C ˛ 2  2.X1;˛;� /, set

ı0
j WD

´

1 if j D 1;

ei�ıj �1 if j � 2:

Since the second nonzero digit of .ı0
j / is ei� , the sequence .ı0

j / satisfies the

generalized revolving condition with its first nonzero digit equal to 1, so

x D
1

X

nD2

.ei�ın�1/˛
n C ˛ D

1
X

j D1

ı0
j˛

j 2 X1;˛;� :

Thus,  1.X1;˛;� / [  2.X1;˛;� / � X1;˛;� . �

Proof of Theorem 1.2. Since the set equation X D  1.X/ [  2.X/ has a unique

nonempty compact solution, Theorem 1.2 follows immediately from Lemma 1.5

and Proposition 1.7. �

2. Signed revolving sequences

Theorem 1.2 shows a direct relationship between generalized revolving sequences

and self-similar sets generated by the IFS from (1.1):

´

 1.z/ D ˛z;

 2.z/ D .˛ei�/z C ˛:
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Many interesting self-similar sets are generated by (1.1); however, Koch’s

curve, a famous self-similar set, is not generated by (1.1) but by a different pair of

two similar contractions:

´

 1.z/ D ˛ Nz;
 2.z/ D .˛ei�/ Nz C ˛:

(2.1)

In particular, if ˛ D 1=2 C .
p
3=6/i; � D ��=3, the IFS (2.1) generates Koch’s

curve.

A reversed question arises naturally: what kind of revolving sequences are

related to self-similar sets generated by the IFS (2.1)? More precisely, given

the attractor K2
˛;�

of the IFS (2.1), we want to find a suitable set of “revolving”

sequences such that the analog of the set X˛;� from Section 1 is

p�1
[

lD0

.ei�/lK2
˛;� :

Recall that ˛ 2 C is a complex parameter satisfying j˛j < 1 and � be an angle

with j� j D 2�q
p

where p 2 N; q 2 N0. The generalized revolving sequences

from Section 1 always follow a fixed direction on the unit circle, depending on the

given � . How does the introduction of complex conjugates in the IFS influence

the corresponding type of revolving sequences?

Definition 2.1. A sequence .ı1; ı2; : : : / 2 �N
�

satisfies the Signed Revolving Con-

dition (SRC), if

(1) ı1 is free to choose;

(2) if ı1 D ı2 D � � � D ık D 0, then ıkC1 is free to choose;

(3) otherwise, ıkC1 D 0 or

ıkC1 D
´

.eCi�/ıj0.k/ if j0.k/ is odd;

.e�i�/ıj0.k/ if j0.k/ is even;

where j0.k/ WD max¹j � kW ıj 6D 0º.

Roughly speaking, j0.k/ is the last time before time k that ıj is on the unit

circle.

Notice that ın is either zero or lies on the unit circle, and its direction of motion

(that is, where it moves to at time n) depends on the last time j < n when ıj is



298 K. Kawamura and A. Allen

on the unit circle. If the last visit to the unit circle happened at an even time, then

ın moves clockwise along the circle. On the other hand, if the last visit to the unit

circle happened at an even time, then ın moves counterclockwise along the circle.

For example,

0 �! 1 �! e�i� �! 0 �! 1 �! ei� �! 0 �! 0 �! 1 �! � � � :

Compared to the generalized revolving sequences from Section 1, which al-

ways move in the same direction, we see that the direction of movement of the

sequence .ın/ depends on its past.

Define W ˙

�
as the set of all signed revolving sequences with parameter � :

W ˙

� WD ¹.ı1; ı2; : : : / 2 �N� W .ı1; ı2; : : : ık; : : : / satisfies the SRCº;

and for a given ˛ 2 C such that j˛j < 1, define

X2
˛;� WD

°

1
X

nD1

ın

n
Y

j D1

�j W .ı1; ı2; : : : / 2 W ˙

�

±

;

where �1 D ˛ and �j C1 D �j for j D 1; 2; : : : . Four examples of X2
˛;�

are shown

in Figure 4.

Let j1 WD min¹j W ıj 6D 0º and define a subset of X2
˛;�

as follows:

X2
1;˛;� D

°

1
X

nD1

ın

n
Y

j D1

�j W ıj1
D 1; .ı1; ı2; : : : / 2 W ˙

�

±

: (2.2)

A straightforward modification of the proof of Lemma 1.5 gives the following

Lemma 2.2 and Corollary 2.3.

Lemma 2.2. X2
1;˛;�

is a closed set.

Corollary 2.3. X2
˛;�

is a closed set.

Proposition 2.4. X2
1;˛;�

satisfies the set equation

X2
1;˛;� D  1.X

2
1;˛;� / [  2.X

2
1;˛;� /;

where ¹ 1;  2º is the IFS from (2.1).

Proof. Let x D
P1

nD1 ın

Qn
lD1 �l 2 X2

1;˛;�
. If ı1 D 0, set ı0

j WD ıj C1 for

j D 1; 2; : : : . Then .ı0
j / satisfies the signed revolving condition with its first
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Figure 4. X2
˛;�

W .˛; �/ D
�

1

2
C

p
3i

6
;� �

3

�

(top left), .˛; �/ D
�

1

2
C

p
3i

6
; �

3

�

(top right),

.˛; �/ D
�

1
2

C
p

3i

6
; �

6

�

(bottom left), .˛; �/ D
�

1
2

C
p

3i

6
;� �

6

�

(bottom right).

nonzero digit equal to 1, so

x D ˛

1
X

j D1

ı0
j

j
Y

lD1

�l D ˛

1
X

j D1

ı0
j

j
Y

lD1

�l 2  1.X
2
1;˛;� /:

If ı1 D 1, set ı0
j WD ei�ıj C1 for j D 1; 2; : : : . Since the second nonzero digit

of .ın/ is ei� , the sequence .ı0
j / satisfies the signed revolving condition with its

first nonzero digit equal to 1, so

x D ˛ C ˛ei�

1
X

j D1

ı0
j

j
Y

lD1

�l 2  2.X
2
1;˛;� /:
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Thus X2
1;˛;�

�  1.X
2
1;˛;�

/ [  2.X
2
1;˛;�

/. The reverse inclusion follows analo-

gously. �

Since the set equation X D  1.X/ [  2.X/ has a unique nonempty compact

solution, Theorem 2.5 follows immediately from Lemma 2.2 and Proposition 2.4.

Theorem 2.5. Let K2
˛;�

be the self-similar set generated by the IFS from (2.1).

Then,
p�1
[

kD0

.ei�/kK2
˛;� D X2

˛;� :

Remark 2.6. It is interesting to note that, while K2
˛;�

is the attractor of an au-

tonomous IFS (where the maps applied at each step do not change), its represen-

tation by a set of revolving sequences involves a rule that is past-dependent.

3. Alternating sequences

Both Propositions 1.7 and 2.4 gave more explicit description of certain self-similar

sets generated by the IFS from (1.1) and (2.1) respectively. In these two iterated

function systems, either both maps or neither involve a reflection. But what

happens if exactly one of the maps includes a reflection? For example, what kind

of revolving sequences are related to self-similar sets generated by the IFS

´

 1.z/ D ˛z;

 2.z/ D .˛ei�/ Nz C ˛;
(3.1)

where ˛ 2 C such that j˛j < 1 and j� j D
ˇ

ˇ

2�q
p

ˇ

ˇ � � ?

(Notice that the self-similar sets generated by

´

 1.z/ D ˛ Nz;
 2.z/ D .˛ei�/z C ˛;

are essentially the same as those generated by (3.1), so this fourth case does not

require separate treatment.)

As in Section 2, we want to find a suitable set of “revolving” sequencesX3
1;˛;�

satisfying the set equation

X3
1;˛;� D  1.X

3
1;˛;� / [  2.X

3
1;˛;� /;

where  1 and  2 are the maps in (3.1).
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Surprisingly, X3
1;˛;�

is not parametrized by a set of “revolving” sequences but

by what we call “alternating” sequences.

Definition 3.1. A sequence .ı1; ı2; : : : / 2 �N
�

satisfies the Alternating Condi-

tion (AC), if

(1) ı1 is free to choose;

(2) if ı1 D ı2 D � � � D ık D 0, then ıkC1 is free to choose;

(3) otherwise, ıkC1 D 0 or

ıkC1 D
´

.eCi�/ıj0.k/; if Nj0.k/ is odd;

.e�i�/ıj0.k/; if Nj0.k/ is even;

where j0.k/ WD max¹j � kW ıj 6D 0º and Nj0.k/ WD #¹j � j0.k/W ıj 6D 0º:

Roughly speaking, Nj0
.k/ is the number of times until j0.k/ that ıj is on the

unit circle. Notice that any ık 6D 0 must alternate between two values on the unit

circle. For example, the following sequence satisfies the AC:

0 �! 0 �! 1 �! ei� �! 0 �! 1 �! 0 �! ei� �! 0 �! � � � :

Define W A
�

as the set of all alternating sequences with parameter � :

W A
� WD ¹.ı1; ı2; : : : / 2 �N� W .ı1; ı2; : : : / satisfies the ACº;

and for a given ˛ 2 C such that j˛j < 1, define

X3
˛;� WD

°

1
X

nD1

ın

n
Y

j D1

�j W .ı1; ı2; : : : / 2 W A
�

±

;

where �1 D ˛ and

�j C1 D
´

�j if ıj D 0;

�j if ıj 6D 0;
(3.2)

for j > 0.

Four examples ofX3
˛;�

are shown in Figure 5. Notice thatX3
˛;�

has a significant

difference from X˛;� and X2
˛;�

: the
Qn

j D1 �j term found in X3
˛;�

depends on the

behavior of the sequence .ı1; ı2; � � � ; ın/, while the products in X˛;� and X2
˛;�

do

not depend on that sequence.
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Figure 5. X3
˛;�

W .˛; �/ D
�

1Ci

2
; �

2

�

(top left), .˛; �/ D
�

1Ci

2
;� �

2

�

(top right), .˛; �/ D
�

2Ci

4
; �

4

�

(bottom left), .˛; �/ D
�

2Ci

4
;� �

4

�

(bottom right).

Let j1 WD min¹j W ıj 6D 0º and define a subset of X3
˛;�

as follows.

X3
1;˛;� D

°

1
X

nD1

ın

n
Y

j D1

�j W ıj1
D 1; .ı1; ı2; : : : / 2 W A

�

±

;

A straightforward modification of the proof of Lemma 1.5 gives the following

Lemma 3.2 and Corollary 3.3.

Lemma 3.2. X3
1;˛;�

is a closed set.

Corollary 3.3. X3
˛;�

is a closed set.



Revolving fractals 303

Proposition 3.4. X3
1;˛;�

satisfies the set equation

X3
1;˛;� D  1.X

3
1;˛;� / [  2.X

3
1;˛;� /;

where ¹ 1;  2º is the IFS from (3.1).

Proof. Let x D
P1

nD1 ın

Qn
lD1 �l 2 X3

1;˛;�
, where .�l / depends on .ın/ as in (3.2).

If ı1 D 0, set ı0
j WD ıj C1 and � 0

j WD �j C1 for j D 1; 2; : : : . Then .ı0
j / satisfies the

alternating condition with its first nonzero digit equal to 1, and .� 0
j / depends on .ı0

j /

as in (3.2), with first term ˛. So

x D ˛

1
X

j D1

ı0
j

j
Y

lD1

� 0

l 2  1.X
3
1;˛;� /:

If ı1 D 1, set ı0
j WD ei�ıj C1 and � 0

j WD �j C1 for j D 1; 2; : : : . Since the second

nonzero digit of .ın/ is ei� , the sequence .ı0
j / satisfies the alternating condition

with its first nonzero digit equal to 1, so

x D ˛ C ˛ei�

1
X

j D1

ı0
j

j
Y

lD1

� 0

l
2  2.X

3
1;˛;� /:

Thus X3
1;˛;�

�  1.X
3
1;˛;�

/ [  2.X
3
1;˛;�

/. The reverse inclusion follows analo-

gously. �

Since the set equation X D  1.X/ [  2.X/ has a unique nonempty compact

solution, Theorem 3.5 follows immediately from Lemma 3.2 and Proposition 3.4.

Theorem 3.5. Let K3
˛;�

be the self-similar set generated by the IFS from (3.1).

Then
p�1
[

kD0

.ei�/kK3
˛;� D X3

˛;� :

Remark 3.6. We originally found the results of Theorems 1.2, 2.5, and 3.5 using a

technique similar to the one in [4] (considering the unique solution of a functional

equation analogous to (0.2)). However, to avoid unnecessary technicalities, we

have chosen to include only the more direct proofs using Propositions 1.7, 2.4,

and 3.4. For the details of the original proofs, see [5].
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