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The formula for the quasicentral modulus
in the case of spectral measures on fractals
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Abstract. We prove a general ampliation homogeneity result for the quasicentral modulus
of an n-tuple of operators with respect to the (p, 1) Lorentz normed ideal. We use this to
prove a formula involving Hausdorff measure for the quasicentral modulus of n-tuples of
commuting Hermitian operators whose spectrum is contained in certain Cantor-like self-
similar fractals.

Mathematics Subject Classification (2020). Primary: 47A55; Secondary: 28A78, 28 A80,
47B10.

Keywords. Lorentz (p, 1) normed ideal, p-Hausdorff measure, quasicentral modulus.

1. Introduction

The quasicentral modulus kg(7) is a number associated with an n-tuple v of
Hermitian operators relative to a normed ideal (¢, | - |¢) of compact operators. It
underlies many questions on normed ideal perturbations of n-tuples of operators
(see the recent survey [11]), and it also had applications in non-commutative
geometry in work on the spectral characterization of manifolds [1].

We proved in [7] that in the case of T an n-tuple of commuting Hermitian oper-
ators and if the normed ideal is the (n, 1)-Lorentz ideal, which we denote by €,,
the corresponding quasicentral modulus &, () has the property that (&, (7)) 1/n js
proportional to the integral with respect to n-dimensional Lebesgue measure of
the multiplicity function of z.

Here we prove a similar result in fractional dimension. More precisely, instead
of a cube in R” which contains the spectrum of 7, we assume there is a fixed self-
similar fractal in R” of Hausdorff dimension p > 1 containing the spectrum o (7).
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The analogous formula we prove has the exponent # replaced by p and the integral
of the multiplicity function is with respect to p-Hausdorff measure. For technical
reasons, the class of fractals is rather restricted: only certain totally disconnected
sets, that is Cantor-like fractals are considered. One should certainly expect this
can be extended to a larger class of fractals, the present paper being only a first
step.

What made the extension of the formula to fractional dimension possible is
a completely general ampliation homogeneity result k, (t ® Irn) = m'/p k, (7).
Such a result was previously known only for p = oo (see [9]) and for p = 1
(see [7]). Note that in [7] we obtained easily an ampliation homogeneity result
for kp(7), that is with € replaced by the Schatten—von Neumann class €,. For
p =1, wehave €; = €, butfor p > 1 the result for k, (7) turned out to be trivial
after we showed in [8] that in this case k,(t) € {0, co}. The interesting quantity
which replaces kp(7) is k, (7).

The paper has six sections including this introduction. Section 2 contains pre-
liminaries about the quasicentral modulus. Section 3 is devoted to the ampliation
homogeneity theorem. In Section 4 we collect preliminaries concerning the class
of Cantor-type fractals we consider. The formula for £, (7) in the fractal setting
is obtained in Section 5. Section 6 deals with concluding remarks.

2. Operator preliminaries

By # we denote a separable complex Hilbert space of infinite dimension and by
B(H), K (H), R(H) the bounded operators, the compact operators, and the finite
rank operators, respectively. When no confusion can arise, we will simply write
X, R and we will denote by R (#) or R the finite rank positive contractions
0 <A <1 on#. The (p,1) Lorentz normed ideal of compact operators will be
denoted by (€, . | - |,). We recall that the norm is

T, =) s j7 7
JEN

where s; > s, > -- - are the eigenvalues of || = (T*T)'/? in decreasing order. If
(€p. |- |p) is the Schatten—von Neumann p-class, then €; = €; . More on normed
ideals can be found in [5] and [6].
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We shall also use the following notation for operations on n-tuples of operators,
in line with [7]. If © = (T})1<i<n € (B(HK))" and X, Y € B(H), then we use

X‘L—Y = (XT;Y)ISISn,
[X1 ‘C] = ([X, Ti])lﬁigna

" = (T )1<i<n-
If also 0 = (Si)1<i<n € (B(H))", then we write

o+1t=(Si+Ti)i<i<n:
o®t=(S;i®T)i<i<n,
T® I = (Ti ® Im)1<i<n,

where [, is the identity operator on C”. When we identify # ® C™ and
H D --- D H, then we also have

TR, =21h---Pr.

m-times
Further, we consider norms
|| = max ||T;||, |t|g = max |T;|q.
el = max |7;]. |rlg = max |T;ly
The quasicentral modulus of an n-tuple © = (7;)1<i<» With respect to a

normed ideal (¢, | - [¢) (see [7] and [9]) is the number
kg(tr) = liminf [[z, A]|4.
AeeR]L

where the lim inf is with respect to the natural order on R’ This definition is also
equivalent to kg (7) being

inf {o € [0, 00] | & = klim [Ak. Tllg. Ak 1 1. A € RT}
—>00

or the same with w — limg_, o, A = I instead of Ay 1+ [. If § = €, we denote
kg(z) by k, (7).

We should also record as the next proposition the results in [7, Proposition 1.4
and Proposition 1.6].
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Proposition 2.1. If 1) € B8(H)", j € N, then

max kg(@) <kg® @ @) <kg V) + kg =?)
J=1

and

kg (@,(n) _ m}iﬂlookg( @f(j))-

JeN I<j<m

IFAD) € C" and AV ® I € B(H)", then
kgD @@ 1) = kg (D = 2D @ Iyp) @ - @ (¢ — A" @ L)),

Finally, if 7 is an n-tuple of commuting Hermitian operators, then we denote
by o(r) C R”" the joint spectrum and by E(t; w) the spectral projection of t for
the Borel set  C R”.

3. Ampliation homogeneity

Theorem 3.1. If t is an n-tuple of bounded operators and 1 < p < oo, then
Ky (t ® Im) = m"/Pk; (7).

The cases p = 1 and p = oo have already been proved ([7, Proposition 1.5]
and [9, Proposition 3.9]).

We begin the proof with a couple of lemmas.

Lemma 3.1. Let X; € C,, j € N, p € [l,00] be so that |X;[, < C. If
limj 0 [ Xl = O, then

lim (|X; ® Il —m"?|X;]5) = 0.
j—oo

Proof. Let s%j) > séj) > --- be the eigenvalues of (X;‘X,-)l/z. Then,

X @ Iy = Y s ((m(k — 1) + D7HYP oo (k)= H/P)
kelN

> ml/p Zsl(cj)k_l+l/p — ml/p|Xj |;
kelN

On the other hand, given € > 0 there is N so that

k=N = (m(k—1)+ )72 oo mk)™"HVP < (1 4 m Pk,



Spectral measures on fractals 351

This gives
X ® Inly < (1+m"/P " sk 12 4 N X5
k>N
< (L+m"?1X; [, + N||X;|.
Thus,

0<|Xj ® I, —m"?|X; |, < em"?|X;|; + N[ X;].

Since € > 0 is arbitrary and || X;|| — 0, we get the desired result when j —
00. O

Corollary 3.1. Let X; = (Xji)1<i<n be n-tuples of operators so that | X;|, < C
where p € [1,00] and limj_ || Xj|| = 0. Then,

lim (mY?|X; | — |X; ~)=0.
]16210(’71 | J|p 1X; ® Im|p) 0
Lemma 3.2. If t € (B(H#))" and (¢, |- |g) is a normed ideal so that kg(t) < oo,
then there are Bj € Ry so that B; 1 I and
lim |[z, Bj]lg = k(7).  lim |[z. B]|| = 0.
J—>0o0 J—>00
Proof. It suffices to show that given € > 0 and P a finite rank Hermitian projector
we can find B € R} so that B > P and
[B.7llg < kg(x) +e€ [[B.7]] =e
Such B can be constructed as follows. We find recursively
P=P <P, <P3=<--
finite rank Hermitian projectors and 4; € R} so that
A; = Pj, A, 7llg <kg(?) +e,
P = Pj1tP}, ‘E*Pj=Pj+1‘L’*P', Pig1 > A;.
If weput Q; = Pj41— Pjif j > 1and Qg = P; = P, then
QrTQs 7’50 = |r_s| <1

and
Aj=(Qo+-+0Qj-1)+ Q;4;0;.
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This gives
Orlt,4]0s #0 = |r—s|<landj—1<rs<j+ 1L
It follows that if |k — j| > 4 ([t, A;])*[r, Ax] = 0, then
[z, Aa + Ag + -+ + Aan]||l < 2[|7].

Thus, if By = N7'(Ay + Ag + -~ + Asn), then By > P, By € R,
I[Bn.t]lg < kg(tr)+ €, and

I[Bw. <l < 2N""|z].
Thus, if 2N 1| 7|| < €, we may take B = By. O

Lemma 3.3. Ifm € Nand (.| - |g) is a normed ideal and v € (B(H))" is so
that kg¢(t) < oo, then there are A; € Rf, A; 1 I so that

kg(t ® In) = lim |[t ® I;n, A} @ In]lg
j—o0
and limj . [, 4,1 = 0.

Proof. Let G be the group 8, x Z5' of permutation matrices with 1 entries and
g — U, itsrepresentation on # @- - -@ # whichis ® [ g the representation on C™.
Then, the commutant {U,: g € G} is B(#) ® I, and the map ®: B(#™) —
B(H)® I, givenby &(X) = |G|™! > _gec Ug XU, is the projection of norm one
which preserves the trace. If B Rf(,%’m), then

BT ® Inllg = |UglB.T ® Ln]Uf |y = |[U BUS .7 ® I3
which gives by taking the mean over G
[®(B), T ® Im]lz < |[B, 7 ® In]lg

and clearly B; 1 I ® I, implies ®(B;) 1 I ® I,,. Thus, if A; ® I,, = ®(B;) and
B; 1 I ® I, are so that

lim [[B;, 1 ® In]|lg = kg(t ® 1)
j—o0

and
lim [[B;, 1 ® In]|| =0,
j—oo

then
limsup [[4; ® I;n, T ® In]lg < kg(t ® In)

j—oo
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and
lim [|[[4; ® [, ® In]|| = 0.
j—oo

Since, on the other hand,

liminf |[A; ® In, T ® Im]lg > kg(t ® Inm),
oo

i
we conclude that

lim [[A; ® I, T ® Inllg = kg(2). m

Proof of Theorem 3.1. Using Lemma 3.3, we can find A, € R, 4; 1 I when
j — o0, so that

Jim (147,71 @ Lnll; =k (¢ ® L)

and
lim ||[4;, ]| =0.
j—oo

Using Corollary 3.1, we infer that
lim m"?|[A;: 7] =k, (t ® In)
j—o0
which implies that
m'Pk(v) < ky (T ® Im).
On the other hand, Lemma 3.2 shows that there are 4; 1 I, A; € R} so that
Jim [[r. 4;]], = ky ()
and
lim ||[z. 4;]] = 0.
j—oo
Then, by Corollary 3.1 we get that
ml/Pk;(r) = jll)ngo [z, 4;] ® Iml,
= lim |[t ® I;m, Aj ® In]|,
j—oo
>k, (T ® Im)

which concludes the proof. O
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4. Fractal preliminaries

For simplicity, the fractal context will be certain totally disconnected Cantor-like
self-similar sets on which a certain Hausdorff measure is a Radon measure on
Borel sets.

We consider a non-empty compact set K C R” and a N-tuple of maps

Fi(x) = AMx = b(i)) +b(@), 1=<i=<N,
where 0 < A < 1 and b(i) € R”, so that
K =JFK.
1<i<N

and we assume that
W # iy, = F,KNF,K=40.

Note that the open set condition for the contractions F; (see [4, p. 121]) in this case
can be satisfied with an open neighborhood of K. Both the Hausdorff measure and
the box dimension of K are equal to

_ logN
P Tog(1/3)

by [4, Theorem 8.6], and the p-Hausdorff measure of K is finite and non-zero.
This Hausdorff measure is often referred to as the Hutchinson measure of K. Note
also the uniqueness of K given the maps Fj, 1 <i < N ([4, Theorem 8.3]).

Ifw e {1,...,N}™, then we put |w| = m and define F, = Fy, o---0 Fy,,
and Ky, = F,, K. In particular, if |w| = |w’|, then K, and K,,, are congruent and
have the same p-Hausdorff measure and diameter. Moreover,

K = U Ky
lw|=L

and, for any L € IN, the union is disjoint. On K there is a unique Radon measure
A so that
w(Ky) = Nwl — ylwlp

and on Borel sets © = cH, (where H, denotes the p-Hausdorff measure and c is
a constant). We use the /*°-norm |(x1, ..., X,)| = max;<;j<, |X;| on R”. Note that

diam(Ky) = ¢ - Av!

for some constant ¢c. We shall also assume that the Hausdorff dimension p > 1.
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If ¢ is a n-tuple of commuting Hermitian operators on # with spectrum
o(t) C K, like with Lebesgue measure, here on K with p, that is with H,, then
the Hilbert space splits as

H = e%psing ® e%pacy

where Hpsing and Hpac are reducing subspaces for T and consist of vectors & so
that

(E(r:7)E.§)

is singular with respect to u and, respectively, absolutely continuous with respect
to u, that is with respect to H,. (Use for instance in [3, Section 1.6.3].) For more
on the Hausdorff measure and on fractals, see [3] and [4].

5. k}, in the fractal setting

In this section we study k, (z), where 7 is a n-tuple of commuting Hermitian
operators with o (7) C K, in the context of Section 4. We assume p > 1 (and for
certain results we will require p > 1).

Lemma 5.1. Assume t is a n-tuple of commuting Hermitian operators with
o(t) C K and with a cyclic vector &. Then, for some constant C depending only
on K,

k, (t) < C(Hp(o(v))'/7.

Proof. Let Q(L) ={w | |lw| = L, Ky No(r) # 0} and G(L) = Uy equ) Kw-
Then, G(L) is open in K and there is L so that, for a given ¢ > 0, we have
L > Ly = Hp(G(L)) < Hy(o(r)) + €. Let further £, = E(r; Ky) and
observe that, since G(L) D o (1),

ZEw=I.

weQ(L)
We also have

Hy(GL) = |Q(L)|Hp(K)A"?.

Let Pf, be the orthogonal projection onto ), cq ;) CEw& and Py, the orthogonal
projection onto CE,,§. Remark that the non-zero E,,§ are an orthogonal basis
on PrJ and rank P; < |Qr|. We have [Pr,Ey] = 0 if l[w| = L and
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Ly > L, = Pr, > Pp,, since each E,, with |[w| = L, is the sum of E,
with |w’| = L. Remark also that

I[PL, 7]l = max [|[PL,T]Ew]|
lw|=L

= max |[Py, Ewt]|
lw|=L

< max 2diam(c (Eyt | Ew¥))
wie

< max 2diam(Ky,) < 2A%diam(K).
wl=

If P 1 P,then P§ = £ and [P, t] = O since ||[PL, t]|| = 0. The vector & being
cyclic, this gives P = I,so Pr 1 [ as L — oco. Hence,
[Pz, 7]l, < p(rank[Pr, ])"/? - ||[Pr, 7]|
< pQIUL)N7 - 24  diam(K)

= p-2ltir. (MA—LP)W - ALdiam K
Hp(K)
< p-2'TVYP(H,(K))™VP . diam K(H,(o (1)) 4 €)'/?.
Since € > 0,
I[PL. 7], < c(Hp(a(m))'/?
where ¢ = p - 2'TV7 . diam K(H,(K))~'/?. Letting L — oo, we get

ky (0(1)) < c(Hp(o (D). O

Lemma 5.2. Assume o(t) C K and that the spectral measure E(t;-) is singular
with respect to Hy,. Then,
k,(z) = 0.

Proof. Since t is the orthogonal sum of n-tuples with cyclic vector, it suffices
to prove the lemma when t has a cyclic unit vector £&. The absolute continuity
class on K of E(t;-) is then the same as the absolute continuity class of the scalar
measure v = (E(t;-)§, £).

Given € > 0, we can find a compact set C,, which is a finite union of K,, so
that H,(C,y) < € and v(K\Cy,) < 27™. Since o(t | E(t:Cn)H) C Cp, the
preceding lemma gives that

k,(t| E(t;Cn)H) <c-Hp(Cm) <c-e.
On the other hand, v(K\C,,) <27 gives
1§ — E(x; Cm)E|I> <27
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Since (7)” is a maximal abelian von Neumann algebra in B(H), & being cyclic is
also separating, and we infer E(z; Cm)gl and hence E(t; Cm)i>1 as m — 0o.
Therefore, we can find 4, € JQT such that one has A4,, < E(t; Cp), |[Am, r]|; <
k, (t | E(t;Cn)), and Ay, 1 1. Tt follows that

k,(t) <c-e
and, € being arbitrary, k; (r) =0. O

Note that on K the p-Hausdorff measure satisfies an Ahlfors regularity condi-
tion
C'r? < Hy(B(x,r)) < Cr?
if r < 1 for some C > 0. The right half of this H,(B(x,r)) < Cr? if r < 1is the
sub-regularity condition where p > 1, required in [2, Corollary 4.7], to show that

k, (tx) > 0, where 7k is the n-tuple of multiplication operators by the coordinate
functions in L2(K, H, | K). Thus we have the following result.

Lemma 5.3 ([2]). Assume p > 1. Then k, (tx) > 0.

More generally, if ® C K is a Borel set, let 7, be the n-tuple of multiplication
operators by the coordinate functions in L?(w, H, | o) (this is the same as
% | L*(w, Hp | ) since L?(w, H, | ) C L*(K, H, | K)). A key part of the
proof of the main theorem will be to evaluate k,, (z,) for increasingly general w,
along lines similar of Lebesgue measure on R” considered in [7].

We also define a constant

(k, (k)
YK = —(F o~ >
Hp(K)
where p is the Hausdorff dimension of K. Lemma 5.1 and Lemma 5.3 imply that

0<k;(rK)<oo,sothat0<yK<oo.

Theorem 5.1. Let t be a n-tuple of commuting Hermitian operators witho (v) C K
and assume p > 1. Then,

(k5 (D) = yx / m(x)dHy(x),

K

where m is the multiplicity function of t.

Proof. Using Lemma 5.2 and the decomposition # = Hpsing @ Hpac, the proof
reduces to the case when the spectral measure of 7 is absolutely continuous
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with respect to H),, that is when # = Hp,c. In view of Proposition 2.1, a
further reduction is possible to the case when 7 has finite cyclicity, that is when
the multiplicity function is bounded. Since, when t has a cyclic vector and
Hp-absolutely continuous spectral measure, 7 is unitarily equivalent to a 7, the
proof reduces to the case when v = 74, ® - -+ @ 1, for some Borel sets w; C K,
1 < j < m. In view of the last assertion in Proposition 2.1, the theorem holds for
Tw, D -+ @ 7o, if and only if it holds for

TFy, (@) D " ® TFy,, (0m)
where |wy| = --- = |wm|, because
Tij (w;) =~ ij (ij)'
We may then choose |w; | sufficiently large and so that the F,; (w;) (1 < j < m)

are disjoint, which implies that

TFp (@) D D TRy, (0m) = o>

where
o= Fy () U--UFy, (-

Thus, the proof has been reduced to showing that
(kp (10))” = vk Hp(w).

First, assume that w is a finite union of K,. Since K4, is a disjoint union of K,
with |w’| > |w|, we may assume that

=Ky U---UKy,,

where |wi| = --- = |wm| and wq, ..., wy,, are distinct. These Ky, are congruent
and, using again the last assertion in Proposition 2.1, the proof of this case reduces
to proving the theorem for t = g, ® I,. The multiplicity function is m times
the indicator function of K, so that the right-hand side in the formula we want to
prove is

(ky (tK))?

Hp(K)

= m - Ak (x)? = m(k, (k)7

By Theorem 3.1, the left-hand side equals

ykmHp(Ky) = m - AP Hp(K)

(k, (tk, ® Im))? = (m'/?k; (k)"
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Next, we prove the theorem for 7, when w C K is a general open subset. Let
oD be the union of the K, C w with |w| < L. The »® are clopen subsets of
K and are finite unions of Ky, so that the theorem holds for 7, and for 7, is
obtained using Proposition 2.1, which gives k, (t,,w) 1k, ().

Finally, let ® C K be a Borel set and let C be compact and G in K be
open so that C C w C G and H,(G\C) < € for a given € > 0. We have
|k, (t0) — k, (t6)| < |k, (Te\c)| = (yke)'/?, using the fact that G\ C is open in
K and Proposition 2.1. Thus,

Iky (tw) — (v& Hp(@))'/?|
< |k, (tw) =k, ()| + |k, (t6) — (vx Hp (@)
< (yk)M? + |(yk Hp(G)'/7 — (yx Hp(w))"/?]
< (yk)M? + |(yk (Hp(@) + )P — (yk Hp(@))V/?|.

Since € > 0 was arbitrary, we get k, (7») = (yx Hp ()P, |

Corollary 5.1. Assume o(t) C K and p > 1. Then, k, (t) = 0 if and only if the
spectral measure of T is singular with respect to Hp.

Remark 5.1. In [8] we showed for a n-tuple 7 and a normed ideal ¢ that there is
a largest reducing subspace for  on which kg4 vanishes. In the case of commuting
n-tuples of Hermitian operators and § = €, this subspace is the subspace
where the spectral measure is singular with respect to the Lebesgue measure. The
theorem we proved in this section shows that if 0(z) C K and p > 1, then the
largest reducing subspace on which &, vanishes for the restriction of 7 is precisely

e%psing .

6. Concluding remarks

Remark 6.1. It is natural to wonder whether in general
(k, (11 ® ©2))? = (k, (11))? + (k, ()7,

which would be much more than the ampliation homogeneity we proved. If p = 1,
this is known to be true [7]. For 1 < p < oo, this is an open problem. While a
negative answer would not be surprising, it is certainly desirable to clarify this
issue.
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Remark 6.2. To get results for more general self-similar fractals than the Cantor-
like K, we believe that it may be useful to replace k, by k>, the variant of k,
considered in [7], pp. 13—-16. This amounts to extending the norms of normed
ideals to n-tuples, not by the max of norm on the components, but by the norm
of (T}Ty + -+- + T,;}T,)"/?, that is the modulus in the polar decomposition

Ty
of the column :
T

ant under rotations, that is if (#;;)1<i,j<» iS a unitary matrix and the n-tuple
(Zj Uij T}')lsis” has the same ~ g-norm as t = (7;)1<i<n- In particular IE;
may be better suited to handle self-similar sets K when we use more general
Fi(x) = AU; (X —b(i)) +b(i), where U; € O(n). In particular, it is quite straight-
forward to use ~-norms in §3 and to see that ampliation homogeneity still holds
for Ig;, which we record as the next theorem.

. This |‘L’|;,' has the advantage over |r|g of being invari-

Theorem 6.1. If t is a n-tuple of bounded operators and 1 < p < oo, then
ky (1 ® Im) = m'7k, (2).

Remark 6.3. In [10] we give an extension in another direction to the formula for
k. (t) in [7] to hybrid perturbations.
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