The formula for the quasicentral modulus in the case of spectral measures on fractals

Dan-Virgil Voiculescu¹

Abstract. We prove a general ampliation homogeneity result for the quasicentral modulus of an *n*-tuple of operators with respect to the (p, 1) Lorentz normed ideal. We use this to prove a formula involving Hausdorff measure for the quasicentral modulus of *n*-tuples of commuting Hermitian operators whose spectrum is contained in certain Cantor-like self-similar fractals.

Mathematics Subject Classification (2020). Primary: 47A55; Secondary: 28A78, 28A80, 47B10.

Keywords. Lorentz (p, 1) normed ideal, p-Hausdorff measure, quasicentral modulus.

1. Introduction

The quasicentral modulus $k_{\mathcal{J}}(\tau)$ is a number associated with an *n*-tuple τ of Hermitian operators relative to a normed ideal $(\mathcal{J}, |\cdot|_{\mathcal{J}})$ of compact operators. It underlies many questions on normed ideal perturbations of *n*-tuples of operators (see the recent survey [11]), and it also had applications in non-commutative geometry in work on the spectral characterization of manifolds [1].

We proved in [7] that in the case of τ an *n*-tuple of commuting Hermitian operators and if the normed ideal is the (n, 1)-Lorentz ideal, which we denote by \mathcal{C}_n^- , the corresponding quasicentral modulus $k_n^-(\tau)$ has the property that $(k_n^-(\tau))^{1/n}$ is proportional to the integral with respect to *n*-dimensional Lebesgue measure of the multiplicity function of τ .

Here we prove a similar result in fractional dimension. More precisely, instead of a cube in \mathbb{R}^n which contains the spectrum of τ , we assume there is a fixed self-similar fractal in \mathbb{R}^n of Hausdorff dimension p > 1 containing the spectrum $\sigma(\tau)$.

¹ Research supported in part by NSF-Grant DMS-1665534.

The analogous formula we prove has the exponent n replaced by p and the integral of the multiplicity function is with respect to p-Hausdorff measure. For technical reasons, the class of fractals is rather restricted: only certain totally disconnected sets, that is Cantor-like fractals are considered. One should certainly expect this can be extended to a larger class of fractals, the present paper being only a first step.

What made the extension of the formula to fractional dimension possible is a completely general ampliation homogeneity result $k_p^-(\tau \otimes I_m) = m^{1/p}k_p^-(\tau)$. Such a result was previously known only for $p = \infty$ (see [9]) and for p = 1(see [7]). Note that in [7] we obtained easily an ampliation homogeneity result for $k_p(\tau)$, that is with \mathcal{C}_p^- replaced by the Schatten–von Neumann class \mathcal{C}_p . For p = 1, we have $\mathcal{C}_1 = \mathcal{C}_1^-$, but for p > 1 the result for $k_p(\tau)$ turned out to be trivial after we showed in [8] that in this case $k_p(\tau) \in \{0, \infty\}$. The interesting quantity which replaces $k_p(\tau)$ is $k_p^-(\tau)$.

The paper has six sections including this introduction. Section 2 contains preliminaries about the quasicentral modulus. Section 3 is devoted to the ampliation homogeneity theorem. In Section 4 we collect preliminaries concerning the class of Cantor-type fractals we consider. The formula for $k_p^-(\tau)$ in the fractal setting is obtained in Section 5. Section 6 deals with concluding remarks.

2. Operator preliminaries

By \mathcal{H} we denote a separable complex Hilbert space of infinite dimension and by $\mathcal{B}(\mathcal{H}), \mathcal{K}(\mathcal{H}), \mathcal{R}(\mathcal{H})$ the bounded operators, the compact operators, and the finite rank operators, respectively. When no confusion can arise, we will simply write \mathcal{K}, \mathcal{R} and we will denote by $\mathcal{R}_1^+(\mathcal{H})$ or \mathcal{R}_1^+ the finite rank positive contractions $0 \le A \le I$ on \mathcal{H} . The (p, 1) Lorentz normed ideal of compact operators will be denoted by $(\mathcal{C}_p^-, |\cdot|_p^-)$. We recall that the norm is

$$|T|_p^- = \sum_{j \in \mathbb{N}} s_j \ j^{-1+1/p}$$

where $s_1 \ge s_2 \ge \cdots$ are the eigenvalues of $|T| = (T^*T)^{1/2}$ in decreasing order. If $(\mathcal{C}_p, |\cdot|_p)$ is the Schatten–von Neumann *p*-class, then $\mathcal{C}_1 = \mathcal{C}_1^-$. More on normed ideals can be found in [5] and [6].

We shall also use the following notation for operations on *n*-tuples of operators, in line with [7]. If $\tau = (T_i)_{1 \le i \le n} \in (\mathcal{B}(\mathcal{H}))^n$ and $X, Y \in \mathcal{B}(\mathcal{H})$, then we use

$$X\tau Y = (XT_iY)_{1 \le i \le n},$$

$$[X, \tau] = ([X, T_i])_{1 \le i \le n},$$

$$\tau^* = (T_i^*)_{1 \le i \le n}.$$

If also $\sigma = (S_i)_{1 \le i \le n} \in (\mathcal{B}(\mathcal{H}))^n$, then we write

$$\sigma + \tau = (S_i + T_i)_{1 \le i \le n},$$

$$\sigma \oplus \tau = (S_i \oplus T_i)_{1 \le i \le n},$$

$$\tau \otimes I_m = (T_i \otimes I_m)_{1 \le i \le n},$$

where I_m is the identity operator on \mathbb{C}^m . When we identify $\mathcal{H} \otimes \mathbb{C}^m$ and $\mathcal{H} \oplus \cdots \oplus \mathcal{H}$, then we also have

$$\tau \otimes I_m \cong \underbrace{\tau \oplus \cdots \oplus \tau}_{m\text{-times}}.$$

Further, we consider norms

$$\|\tau\| = \max_{1 \le i \le n} \|T_i\|, \quad |\tau|_{\mathcal{J}} = \max_{1 \le i \le n} |T_i|_{\mathcal{J}}.$$

The quasicentral modulus of an *n*-tuple $\tau = (T_i)_{1 \le i \le n}$ with respect to a normed ideal $(\mathcal{J}, |\cdot|_{\mathcal{J}})$ (see [7] and [9]) is the number

$$k_{\mathcal{J}}(\tau) = \liminf_{A \in \mathcal{R}_1^+} |[\tau, A]|_{\mathcal{J}},$$

where the lim inf is with respect to the natural order on \mathcal{R}_1^+ . This definition is also equivalent to $k_{\mathcal{J}}(\tau)$ being

$$\inf \left\{ \alpha \in [0,\infty] \mid \alpha = \lim_{k \to \infty} |[A_k,\tau]|_{\mathcal{J}}, \ A_k \uparrow I, \ A_k \in \mathcal{R}_1^+ \right\}$$

or the same with $w - \lim_{k \to \infty} A_k = I$ instead of $A_k \uparrow I$. If $\mathcal{J} = \mathcal{C}_p^-$ we denote $k_{\mathcal{J}}(\tau)$ by $k_p^-(\tau)$.

We should also record as the next proposition the results in [7, Proposition 1.4 and Proposition 1.6].

Proposition 2.1. If $\tau^{(j)} \in \mathcal{B}(\mathcal{H})^n$, $j \in \mathbb{N}$, then

$$\max_{j=1,2} k_{\mathcal{J}}(\tau^{(j)}) \le k_{\mathcal{J}}(\tau^{(1)} \oplus \tau^{(2)}) \le k_{\mathcal{J}}(\tau^{(1)}) + k_{\mathcal{J}}(\tau^{(2)})$$

and

$$k_{\mathscr{J}}\left(\bigoplus_{j\in\mathbb{N}}\tau^{(j)}\right) = \lim_{m_i\to\infty}k_{\mathscr{J}}\left(\bigoplus_{1\leq j\leq m}\tau^{(j)}\right).$$

If $\lambda^{(j)} \in \mathbb{C}^n$ and $\lambda^{(j)} \otimes I_{\mathcal{H}} \in \mathcal{B}(\mathcal{H})^n$, then

$$k_{\mathscr{J}}(\tau^{(1)} \oplus \cdots \oplus \tau^{(m)}) = k_{\mathscr{J}}((\tau^{(1)} - \lambda^{(1)} \otimes I_{\mathscr{H}}) \oplus \cdots \oplus (\tau^{(m)} - \lambda^{(m)} \otimes I_{\mathscr{H}})).$$

Finally, if τ is an *n*-tuple of commuting Hermitian operators, then we denote by $\sigma(\tau) \subset \mathbb{R}^n$ the joint spectrum and by $E(\tau; \omega)$ the spectral projection of τ for the Borel set $\omega \subset \mathbb{R}^n$.

3. Ampliation homogeneity

Theorem 3.1. If τ is an *n*-tuple of bounded operators and $1 \le p \le \infty$, then

$$k_p^-(\tau \otimes I_m) = m^{1/p} k_p^-(\tau).$$

The cases p = 1 and $p = \infty$ have already been proved ([7, Proposition 1.5] and [9, Proposition 3.9]).

We begin the proof with a couple of lemmas.

Lemma 3.1. Let $X_j \in \mathbb{C}_p^-$, $j \in \mathbb{N}$, $p \in [1,\infty]$ be so that $|X_j|_p^- \leq C$. If $\lim_{j\to\infty} ||X_j|| = 0$, then

$$\lim_{j \to \infty} (|X_j \otimes I_m|_p^- - m^{1/p} |X_j|_p^-) = 0.$$

Proof. Let $s_1^{(j)} \ge s_2^{(j)} \ge \cdots$ be the eigenvalues of $(X_j^* X_j)^{1/2}$. Then,

$$|X_j \otimes I_m|_p^- = \sum_{k \in \mathbb{N}} s_k^{(j)} \left((m(k-1)+1)^{-1+1/p} + \dots + (mk)^{-1+1/p} \right)$$

$$\geq m^{1/p} \sum_{k \in \mathbb{N}} s_k^{(j)} k^{-1+1/p} = m^{1/p} |X_j|_p^-.$$

On the other hand, given $\epsilon > 0$ there is N so that

$$k \ge N \implies (m(k-1)+1)^{-1+1/p} + \dots + (mk)^{-1+1/p} \le (1+\epsilon)m^{1/p}k^{-1+1/p}$$

This gives

$$|X_j \otimes I_m|_p^- \le (1+\epsilon)m^{1/p} \sum_{k \ge N} s_k^{(j)} k^{-1+1/p} + N ||X_j||$$

$$\le (1+\epsilon)m^{1/p} |X_j|_p^- + N ||X_j||.$$

Thus,

$$0 \le |X_j \otimes I_m|_p^- - m^{1/p} |X_j|_p^- \le \epsilon m^{1/p} |X_j|_p^- + N ||X_j||.$$

Since $\epsilon > 0$ is arbitrary and $||X_j|| \to 0$, we get the desired result when $j \to \infty$.

Corollary 3.1. Let $X_j = (X_{ji})_{1 \le i \le n}$ be *n*-tuples of operators so that $|X_j|_p^- \le C$ where $p \in [1, \infty]$ and $\lim_{j \to \infty} ||X_j|| = 0$. Then,

$$\lim_{j \in \infty} (m^{1/p} |X_j|_p^- - |X_j \otimes I_m|_p^-) = 0.$$

Lemma 3.2. If $\tau \in (\mathcal{B}(\mathcal{H}))^n$ and $(\mathcal{J}, |\cdot|_{\mathcal{J}})$ is a normed ideal so that $k_{\mathcal{J}}(\tau) < \infty$, then there are $B_j \in \mathcal{R}_1^+$ so that $B_j \uparrow I$ and

$$\lim_{j\to\infty} |[\tau, B_j]|_{\mathscr{J}} = k_J(\tau), \quad \lim_{j\to\infty} ||[\tau, B_j]|| = 0.$$

Proof. It suffices to show that given $\epsilon > 0$ and *P* a finite rank Hermitian projector we can find $B \in \mathcal{R}_1^+$ so that $B \ge P$ and

$$\|[B,\tau]\|_{\mathscr{J}} \leq k_{\mathscr{J}}(\tau) + \epsilon, \quad \|[B,\tau]\| \leq \epsilon.$$

Such *B* can be constructed as follows. We find recursively

$$P = P_1 \le P_2 \le P_3 \le \cdots$$

finite rank Hermitian projectors and $A_j \in \mathcal{R}_1^+$ so that

$$A_j \ge P_j, \quad |[A_j, \tau]|_{\mathscr{J}} \le k_{\mathscr{J}}(\tau) + \epsilon,$$

$$\tau P_j = P_{j+1} \tau P_j, \quad \tau^* P_j = P_{j+1} \tau^* P_j, \quad P_{j+1} \ge A_j$$

If we put $Q_j = P_{j+1} - P_j$ if $j \ge 1$ and $Q_0 = P_1 = P$, then

$$Q_r \tau Q_s \neq 0 \implies |r-s| \le 1$$

and

$$A_j = (Q_0 + \dots + Q_{j-1}) + Q_j A_j Q_j.$$

This gives

$$Q_r[\tau, A_j]Q_s \neq 0 \implies |r-s| \leq 1 \text{ and } j-1 \leq r, s \leq j+1.$$

It follows that if $|k - j| \ge 4 ([\tau, A_j])^* [\tau, A_k] = 0$, then

$$\|[\tau, A_4 + A_8 + \dots + A_{4N}]\| \le 2\|\tau\|.$$

Thus, if $B_N = N^{-1}(A_4 + A_8 + \cdots + A_{4N})$, then $B_N \ge P$, $B_N \in \mathcal{R}_1^+$, $|[B_N, \tau]|_{\mathcal{J}} < k_{\mathcal{J}}(\tau) + \epsilon$, and

$$||[B_N, \tau]|| \le 2N^{-1}||\tau||$$

Thus, if $2N^{-1} \|\tau\| < \epsilon$, we may take $B = B_N$.

Lemma 3.3. If $m \in \mathbb{N}$ and $(\mathcal{J}, |\cdot|_{\mathcal{J}})$ is a normed ideal and $\tau \in (B(\mathcal{H}))^n$ is so that $k_{\mathcal{J}}(\tau) < \infty$, then there are $A_j \in \mathcal{R}_1^+$, $A_j \uparrow I$ so that

$$k_{\mathcal{J}}(\tau \otimes I_m) = \lim_{j \to \infty} |[\tau \otimes I_m, A_j \otimes I_m]|_{\mathcal{J}}$$

and $\lim_{j\to\infty} \|[\tau, A_j]\| = 0.$

Proof. Let *G* be the group $\mathscr{S}_m \rtimes \mathbb{Z}_2^m$ of permutation matrices with ± 1 entries and $g \to U_g$ its representation on $\mathscr{H} \oplus \cdots \oplus \mathscr{H}$ which is $\otimes I_{\mathscr{H}}$ the representation on \mathbb{C}^m . Then, the commutant $\{U_g : g \in G\}'$ is $\mathcal{B}(\mathscr{H}) \otimes I_m$ and the map $\Phi : \mathcal{B}(\mathscr{H}^m) \to \mathscr{B}(\mathscr{H}) \otimes I_m$ given by $\Phi(X) = |G|^{-1} \sum_{g \in G} U_g X U_g^*$ is the projection of norm one which preserves the trace. If $B \in R_1^+(\mathscr{H}^m)$, then

$$|[B,\tau\otimes I_m]|_{\mathscr{J}}=|U_g[B,\tau\otimes I_m]U_g^*|_{\mathscr{J}}=|[U_gBU_g^*,\tau\otimes I_m]|_{\mathscr{J}},$$

which gives by taking the mean over G

$$|[\Phi(B), \tau \otimes I_m]|_{\mathcal{J}} \le |[B, \tau \otimes I_m]|_{\mathcal{J}}$$

and clearly $B_j \uparrow I \otimes I_m$ implies $\Phi(B_j) \uparrow I \otimes I_m$. Thus, if $A_j \otimes I_m = \Phi(B_j)$ and $B_j \uparrow I \otimes I_m$ are so that

$$\lim_{j\to\infty} |[B_j,\tau\otimes I_m]|_{\mathcal{J}} = k_{\mathcal{J}}(\tau\otimes I_m)$$

and

$$\lim_{j\to\infty} \|[B_j,\tau\otimes I_m]\| = 0,$$

then

$$\limsup_{j\to\infty} |[A_j \otimes I_m, \tau \otimes I_m]|_{\mathcal{J}} \le k_{\mathcal{J}}(\tau \otimes I_m)$$

352

and

$$\lim_{j\to\infty} \|[A_j\otimes I,\tau\otimes I_m]\| = 0.$$

Since, on the other hand,

$$\liminf_{j\to\infty} |[A_j\otimes I_m,\tau\otimes I_m]|_{\mathcal{J}} \ge k_{\mathcal{J}}(\tau\otimes I_m),$$

we conclude that

$$\lim_{j \to \infty} |[A_j \otimes I_m, \tau \otimes I_m]|_{\mathcal{J}} = k_{\mathcal{J}}(\tau). \qquad \Box$$

Proof of Theorem 3.1. Using Lemma 3.3, we can find $A_j \in \mathcal{R}_1^+$, $A_j \uparrow I$ when $j \to \infty$, so that

$$\lim_{j \to \infty} |[A_j, \tau] \otimes I_m]|_p^- = k_p^-(\tau \otimes I_m)$$

and

$$\lim_{j \to \infty} \|[A_j, \tau]\| = 0.$$

Using Corollary 3.1, we infer that

$$\lim_{j \to \infty} m^{1/p} |[A_j; \tau]|_p^- = k_p^-(\tau \otimes I_m)$$

which implies that

$$m^{1/p}k_p^-(\tau) \le k_p^-(\tau \otimes I_m).$$

On the other hand, Lemma 3.2 shows that there are $A_j \uparrow I$, $A_j \in \mathcal{R}_1^+$ so that

$$\lim_{j \to \infty} |[\tau, A_j]|_p^- = k_p^-(\tau)$$

and

$$\lim_{j \to \infty} \|[\tau, A_j]\| = 0.$$

Then, by Corollary 3.1 we get that

$$m^{1/p}k_p^{-}(\tau) = \lim_{j \to \infty} |[\tau, A_j] \otimes I_m|_p^{-}$$
$$= \lim_{j \to \infty} |[\tau \otimes I_m, A_j \otimes I_m]|_p^{-}$$
$$\ge k_p^{-}(\tau \otimes I_m)$$

which concludes the proof.

D.-V. Voiculescu

4. Fractal preliminaries

For simplicity, the fractal context will be certain totally disconnected Cantor-like self-similar sets on which a certain Hausdorff measure is a Radon measure on Borel sets.

We consider a non-empty compact set $K \subset \mathbb{R}^n$ and a *N*-tuple of maps

$$F_i(x) = \lambda(x - b(i)) + b(i), \quad 1 \le i \le N,$$

where $0 < \lambda < 1$ and $b(i) \in \mathbb{R}^n$, so that

$$K = \bigcup_{1 \le i \le N} F_i K,$$

and we assume that

$$i_1 \neq i_2 \implies F_{i_1} K \cap F_{i_2} K = \emptyset.$$

Note that the open set condition for the contractions F_i (see [4, p. 121]) in this case can be satisfied with an open neighborhood of K. Both the Hausdorff measure and the box dimension of K are equal to

$$p = \frac{\log N}{\log(1/\lambda)}$$

by [4, Theorem 8.6], and the *p*-Hausdorff measure of *K* is finite and non-zero. This Hausdorff measure is often referred to as the *Hutchinson measure of K*. Note also the uniqueness of *K* given the maps F_i , $1 \le i \le N$ ([4, Theorem 8.3]).

If $w \in \{1, ..., N\}^m$, then we put |w| = m and define $F_w = F_{w_1} \circ \cdots \circ F_{w_m}$ and $K_w = F_w K$. In particular, if |w| = |w'|, then K_w and K_{w_1} are congruent and have the same *p*-Hausdorff measure and diameter. Moreover,

$$K = \bigcup_{|w|=L} K_w$$

and, for any $L \in \mathbb{N}$, the union is disjoint. On K there is a unique Radon measure μ so that

$$\mu(K_w) = N^{-|w|} = \lambda^{|w|p}$$

and on Borel sets $\mu = cH_p$ (where H_p denotes the *p*-Hausdorff measure and *c* is a constant). We use the l^{∞} -norm $|(x_1, \ldots, x_n)| = \max_{1 \le i \le n} |x_i|$ on \mathbb{R}^n . Note that

$$\operatorname{diam}(K_w) = c \cdot \lambda^{|w|}$$

for some constant *c*. We shall also assume that the Hausdorff dimension $p \ge 1$.

If τ is a *n*-tuple of commuting Hermitian operators on \mathcal{H} with spectrum $\sigma(\tau) \subset K$, like with Lebesgue measure, here on K with μ , that is with H_p , then the Hilbert space splits as

$$\mathcal{H} = \mathcal{H}_{psing} \oplus \mathcal{H}_{pac},$$

where \mathcal{H}_{psing} and \mathcal{H}_{pac} are reducing subspaces for τ and consist of vectors ξ so that

$$\langle E(\tau;\cdot)\xi,\xi\rangle$$

is singular with respect to μ and, respectively, absolutely continuous with respect to μ , that is with respect to H_p . (Use for instance in [3, Section 1.6.3].) For more on the Hausdorff measure and on fractals, see [3] and [4].

5. k_p^- in the fractal setting

In this section we study $k_p^-(\tau)$, where τ is a *n*-tuple of commuting Hermitian operators with $\sigma(\tau) \subset K$, in the context of Section 4. We assume $p \ge 1$ (and for certain results we will require p > 1).

Lemma 5.1. Assume τ is a n-tuple of commuting Hermitian operators with $\sigma(\tau) \subset K$ and with a cyclic vector ξ . Then, for some constant C depending only on K,

$$k_p^{-}(\tau) \le C(H_p(\sigma(\tau)))^{1/p}.$$

Proof. Let $\Omega(L) = \{w \mid |w| = L, K_w \cap \sigma(\tau) \neq \emptyset\}$ and $G(L) = \bigcup_{w \in \Omega(L)} K_w$. Then, G(L) is open in K and there is L_0 so that, for a given $\epsilon > 0$, we have $L \ge L_0 \implies H_p(G(L)) \le H_p(\sigma(\tau)) + \epsilon$. Let further $E_w = E(\tau; K_w)$ and observe that, since $G(L) \supset \sigma(\tau)$,

$$\sum_{w \in \Omega(L)} E_w = I.$$

We also have

$$H_p(G_L) = |\Omega(L)| H_p(K) \lambda^{L_p}.$$

Let P_L be the orthogonal projection onto $\sum_{w \in \Omega(L)} \mathbb{C}E_w \xi$ and P_w the orthogonal projection onto $\mathbb{C}E_w \xi$. Remark that the non-zero $E_w \xi$ are an orthogonal basis on $P_L \mathcal{H}$ and rank $P_L \leq |\Omega_L|$. We have $[P_L, E_w] = 0$ if |w| = L and

 $L_1 \ge L_2 \implies P_{L_1} \ge P_{L_2}$, since each E_w with $|w| = L_2$ is the sum of $E_{w'}$ with $|w'| = L_1$. Remark also that

$$\begin{split} \|[P_L, \tau]\| &= \max_{\|w\|=L} \|[P_L, \tau] E_w\| \\ &= \max_{\|w\|=L} \|[P_w, E_w \tau]\| \\ &\leq \max_{\|w\|=L} 2 \operatorname{diam}(\sigma(E_w \tau \mid E_w \mathcal{H})) \\ &\leq \max_{\|w\|=L} 2 \operatorname{diam}(K_w) \leq 2\lambda^L \operatorname{diam}(K). \end{split}$$

If $P_L \uparrow P$, then $P\xi = \xi$ and $[P, \tau] = 0$ since $||[P_L, \tau]|| \to 0$. The vector ξ being cyclic, this gives P = I, so $P_L \uparrow I$ as $L \to \infty$. Hence,

$$\begin{split} \|[P_L,\tau]\|_p^- &\leq p(\operatorname{rank}[P_L,\tau])^{1/p} \cdot \|[P_L,\tau]\| \\ &\leq p(2|\Omega(L)|)^{1/p} \cdot 2\lambda^L \operatorname{diam}(K) \\ &= p \cdot 2^{1+1/p} \cdot \left(\frac{H_p(G_L)}{H_p(K)}\lambda^{-Lp}\right)^{1/p} \cdot \lambda^L \operatorname{diam} K \\ &\leq p \cdot 2^{1+1/p} (H_p(K))^{-1/p} \cdot \operatorname{diam} K (H_p(\sigma(\tau)) + \epsilon)^{1/p}. \end{split}$$

Since $\epsilon > 0$,

$$|[P_L, \tau]|_p^- \le c(H_p(\sigma(\tau)))^{1/p}$$

where $c = p \cdot 2^{1+1/p} \cdot \text{diam } K(H_p(K))^{-1/p}$. Letting $L \to \infty$, we get

$$k_p^-(\sigma(\tau)) \le c(H_p(\sigma(\tau)))^{1/p}.$$

Lemma 5.2. Assume $\sigma(\tau) \subset K$ and that the spectral measure $E(\tau; \cdot)$ is singular with respect to H_p . Then,

$$k_p^-(\tau) = 0.$$

Proof. Since τ is the orthogonal sum of *n*-tuples with cyclic vector, it suffices to prove the lemma when τ has a cyclic unit vector ξ . The absolute continuity class on *K* of $E(\tau; \cdot)$ is then the same as the absolute continuity class of the scalar measure $\nu = \langle E(\tau; \cdot)\xi, \xi \rangle$.

Given $\epsilon > 0$, we can find a compact set C_m which is a finite union of K_w so that $H_p(C_m) \leq \epsilon$ and $\nu(K \setminus C_m) < 2^{-m}$. Since $\sigma(\tau \mid E(\tau; C_m)\mathcal{H}) \subset C_m$, the preceding lemma gives that

$$k_p^-(\tau \mid E(\tau; C_m)\mathcal{H}) \le c \cdot H_p(C_m) \le c \cdot \epsilon.$$

On the other hand, $\nu(K \setminus C_m) \leq 2^{-m}$ gives

$$\|\xi - E(\tau; C_m)\xi\|^2 \le 2^{-m}$$

Since $(\tau)''$ is a maximal abelian von Neumann algebra in $\mathcal{B}(\mathcal{H})$, ξ being cyclic is also separating, and we infer $E(\tau; C_m) \xrightarrow{w} I$ and hence $E(\tau; C_m) \xrightarrow{s} I$ as $m \to \infty$. Therefore, we can find $A_m \in \mathcal{R}_1^+$ such that one has $A_m \leq E(\tau; C_m)$, $|[A_m, \tau]|_p^- \leq k_p^-(\tau \mid E(\tau; C_m))$, and $A_m \uparrow I$. It follows that

$$k_p^{-}(\tau) \le c \cdot \epsilon$$

and, ϵ being arbitrary, $k_p^-(\tau) = 0$.

Note that on K the p-Hausdorff measure satisfies an Ahlfors regularity condition

$$C^{-1}r^p \le H_p(B(x,r)) \le Cr^p$$

if $r \le 1$ for some C > 0. The right half of this $H_p(B(x, r)) \le Cr^p$ if $r \le 1$ is the sub-regularity condition where p > 1, required in [2, Corollary 4.7], to show that $k_p^-(\tau_K) > 0$, where τ_K is the *n*-tuple of multiplication operators by the coordinate functions in $L^2(K, H_p | K)$. Thus we have the following result.

Lemma 5.3 ([2]). Assume p > 1. Then $k_p^-(\tau_K) > 0$.

More generally, if $\omega \subset K$ is a Borel set, let τ_{ω} be the *n*-tuple of multiplication operators by the coordinate functions in $L^2(\omega, H_p \mid \omega)$ (this is the same as $\tau_K \mid L^2(\omega, H_p \mid \omega)$ since $L^2(\omega, H_p \mid \omega) \subset L^2(K, H_p \mid K)$). A key part of the proof of the main theorem will be to evaluate $k_p^-(\tau_{\omega})$ for increasingly general ω , along lines similar of Lebesgue measure on \mathbb{R}^n considered in [7].

We also define a constant

$$\gamma_K = \frac{(k_p^-(\tau_K))^p}{H_p(K)},$$

where *p* is the Hausdorff dimension of *K*. Lemma 5.1 and Lemma 5.3 imply that $0 < k_p^-(\tau_K) < \infty$, so that $0 < \gamma_K < \infty$.

Theorem 5.1. Let τ be a *n*-tuple of commuting Hermitian operators with $\sigma(\tau) \subset K$ and assume p > 1. Then,

$$(k_p^-(\tau))^p = \gamma_K \int_K m(x) dH_p(x),$$

where *m* is the multiplicity function of τ .

Proof. Using Lemma 5.2 and the decomposition $\mathcal{H} = \mathcal{H}_{psing} \oplus \mathcal{H}_{pac}$, the proof reduces to the case when the spectral measure of τ is absolutely continuous

with respect to H_p , that is when $\mathcal{H} = \mathcal{H}_{pac}$. In view of Proposition 2.1, a further reduction is possible to the case when τ has finite cyclicity, that is when the multiplicity function is bounded. Since, when τ has a cyclic vector and H_p -absolutely continuous spectral measure, τ is unitarily equivalent to a τ_{ω} , the proof reduces to the case when $\tau = \tau_{\omega_1} \oplus \cdots \oplus \tau_{\omega_m}$ for some Borel sets $\omega_j \subset K$, $1 \leq j \leq m$. In view of the last assertion in Proposition 2.1, the theorem holds for $\tau_{\omega_1} \oplus \cdots \oplus \tau_{\omega_m}$ if and only if it holds for

$$\tau_{F_{w_1}(\omega_1)} \oplus \cdots \oplus \tau_{F_{w_m}(\omega_m)}$$

where $|w_1| = \cdots = |w_m|$, because

$$au_{F_{w_j}(\omega_j)} \simeq F_{w_j}(\tau_{\omega_j}).$$

We may then choose $|w_j|$ sufficiently large and so that the $F_{w_j}(\omega_j)$ $(1 \le j \le m)$ are disjoint, which implies that

$$au_{F_{w_1}(\omega_1)} \oplus \cdots \oplus au_{F_{w_m}(\omega_m)} \simeq au_{\omega},$$

where

$$\omega = F_{w_1}(\omega_1) \cup \cdots \cup F_{w_m(\omega_m)}$$

Thus, the proof has been reduced to showing that

$$(k_p^-(\tau_\omega))^p = \gamma_K H_p(\omega).$$

First, assume that ω is a finite union of K_w . Since K_w is a disjoint union of $K_{w'}$ with $|w'| \ge |w|$, we may assume that

$$\omega = K_{w_1} \cup \cdots \cup K_{w_m},$$

where $|w_1| = \cdots = |w_m|$ and w_1, \ldots, w_m are distinct. These K_{w_j} are congruent and, using again the last assertion in Proposition 2.1, the proof of this case reduces to proving the theorem for $\tau = \tau_{K_w} \otimes I_m$. The multiplicity function is *m* times the indicator function of K_w so that the right-hand side in the formula we want to prove is

$$\gamma_K m H_p(K_w) = \frac{(k_p^-(\tau_K))^p}{H_p(K)} \cdot m \cdot \lambda^{p|w|} \cdot H_p(K)$$
$$= m \cdot (\lambda^{|w|} k_p^-(\tau_K))^p = m(k_p^-(\tau_{K_w}))^p.$$

By Theorem 3.1, the left-hand side equals

$$(k_p^-(\tau_{K_w} \otimes I_m))^p = (m^{1/p}k_p^-(\tau_{K_w}))^p.$$

Next, we prove the theorem for τ_{ω} when $\omega \subset K$ is a general open subset. Let $\omega^{(L)}$ be the union of the $K_w \subset \omega$ with $|w| \leq L$. The $\omega^{(L)}$ are clopen subsets of K and are finite unions of K_w , so that the theorem holds for $\tau_{\omega^{(L)}}$ and for τ_{ω} is obtained using Proposition 2.1, which gives $k_p^-(\tau_{\omega^{(L)}}) \uparrow k_p^-(\tau_{\omega})$.

Finally, let $\omega \subset K$ be a Borel set and let *C* be compact and *G* in *K* be open so that $C \subset \omega \subset G$ and $H_p(G \setminus C) < \epsilon$ for a given $\epsilon > 0$. We have $|k_p^-(\tau_{\omega}) - k_p^-(\tau_G)| \leq |k_p^-(\tau_{G \setminus C})| = (\gamma_k \epsilon)^{1/p}$, using the fact that $G \setminus C$ is open in *K* and Proposition 2.1. Thus,

$$\begin{aligned} |k_{p}^{-}(\tau_{\omega}) - (\gamma_{K}H_{p}(\omega))^{1/p}| \\ &\leq |k_{p}^{-}(\tau_{\omega}) - k_{p}^{-}(\tau_{G})| + |k_{p}^{-}(\tau_{G}) - (\gamma_{K}H_{p}(\omega))^{1/\omega}| \\ &\leq (\gamma_{K}\epsilon)^{1/p} + |(\gamma_{K}H_{p}(G))^{1/p} - (\gamma_{K}H_{p}(\omega))^{1/p}| \\ &\leq (\gamma_{K}\epsilon)^{1/p} + |(\gamma_{K}(H_{p}(\omega) + \epsilon))^{1/p} - (\gamma_{K}H_{p}(\omega))^{1/p}|. \end{aligned}$$

Since $\epsilon > 0$ was arbitrary, we get $k_p^-(\tau_\omega) = (\gamma_K H_p(\omega))^{1/p}$.

Corollary 5.1. Assume $\sigma(\tau) \subset K$ and p > 1. Then, $k_p^-(\tau) = 0$ if and only if the spectral measure of τ is singular with respect to H_p .

Remark 5.1. In [8] we showed for a *n*-tuple τ and a normed ideal \mathcal{J} that there is a largest reducing subspace for τ on which $k_{\mathcal{J}}$ vanishes. In the case of commuting *n*-tuples of Hermitian operators and $\mathcal{J} = \mathcal{C}_n^-$ this subspace is the subspace where the spectral measure is singular with respect to the Lebesgue measure. The theorem we proved in this section shows that if $\sigma(\tau) \subset K$ and p > 1, then the largest reducing subspace on which k_p^- vanishes for the restriction of τ is precisely \mathcal{H}_{psing} .

6. Concluding remarks

Remark 6.1. It is natural to wonder whether in general

$$(k_p^{-}(\tau_1 \oplus \tau_2))^p = (k_p^{-}(\tau_1))^p + (k_p^{-}(\tau_2))^p,$$

which would be much more than the ampliation homogeneity we proved. If p = 1, this is known to be true [7]. For 1 , this is an open problem. While a negative answer would not be surprising, it is certainly desirable to clarify this issue.

Remark 6.2. To get results for more general self-similar fractals than the Cantorlike *K*, we believe that it may be useful to replace k_p^- by \tilde{k}_p^- , the variant of k_p^- considered in [7], pp. 13–16. This amounts to extending the norms of normed ideals to *n*-tuples, not by the max of norm on the components, but by the norm of $(T_1^*T_1 + \cdots + T_n^*T_n)^{1/2}$, that is the modulus in the polar decomposition of the column $\begin{pmatrix} T_1 \\ T_m \end{pmatrix}$. This $|\tau|_{\mathfrak{F}}$ has the advantage over $|\tau|_{\mathfrak{F}}$ of being invariant under rotations, that is if $(u_{ij})_{1 \le i, j \le n}$ is a unitary matrix and the *n*-tuple $(\sum_j u_{ij}T_j)_{1 \le i \le n}$ has the same $\sim \mathfrak{F}$ -norm as $\tau = (T_i)_{1 \le i \le n}$. In particular \tilde{k}_p^- may be better suited to handle self-similar sets *K* when we use more general $F_i(x) = \lambda U_i(X - b(i)) + b(i)$, where $U_i \in O(n)$. In particular, it is quite straightforward to use \sim -norms in §3 and to see that ampliation homogeneity still holds for \tilde{k}_n^- , which we record as the next theorem.

Theorem 6.1. If τ is a *n*-tuple of bounded operators and $1 \le p \le \infty$, then

$$\tilde{k}_p^-(\tau \otimes I_m) = m^{1/p} \tilde{k}_p^-(\tau).$$

Remark 6.3. In [10] we give an extension in another direction to the formula for $k_n^-(\tau)$ in [7] to hybrid perturbations.

References

- A. Connes, On the spectral characterization of manifolds. J. Noncommut. Geom. 7 (2013), no. 1, 1–82. MR 3032810 Zbl 1287.58004
- [2] G. David and D. Voiculescu, *s*-numbers of singular integrals for the invariance of absolutely continuous spectra in fractional dimensions. *J. Funct. Anal.* 94 (1990), no. 1, 14–26. MR 1077543 Zbl 0732.47023
- [3] L. C. Evans and R. F. Gariepy, *Measure theory and fine properties of functions*. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. MR 1158660 Zb1 0804.28001
- [4] K. J. Falconer, *The geometry of fractal sets*. Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986. MR 0867284 Zbl 0587.28004
- [5] I. C. Gohberg and M. G. Krein, *Introduction to the theory of linear nonselfadjoint operators*. Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, 18. American Mathematical Society, Providence, R.I., 1969. MR 0246142 Zbl 0181.13504
- [6] B. Simon, *Trace ideals and their applications*. Second edition. Mathematical Surveys and Monographs, 120. American Mathematical Society, Providence, R.I., 2005. MR 2154153 Zbl 1074.47001

- [7] D. V. Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators. J. Operator Theory 2 (1979), no. 1, 3–37. MR 0553861 Zbl 0446.47003
- [8] D. V. Voiculescu, Some results on norm-ideal perturbations of Hilbert space operators. II. J. Operator Theory 5 (1981), no. 1, 77–100. MR 0613049 ZbI 0483.46036
- [9] D. V. Voiculescu, On the existence of quasicentral approximate units relative to normed ideals. I. J. Funct. Anal. 91 (1990), no. 1, 1–36. MR 1054113 Zbl 0762.46051
- [10] D. V. Voiculescu, Hybrid normed ideal perturbations of *n*-tuples of Hilbert space operators. I. J. Geom. Phys. **128** (2018), 169–184. MR 3786193 Zbl 1455.47028
- [11] D. V. Voiculescu, Commutants *mod* normed ideals. In A. Chamseddine, C. Consani, N. Higson, M. Khalkhali, H. Moscovici, and G. Yu (eds.), *Advances in noncommutative geometry*. On the occasion of Alain Connes' 70th birthday. Based on the noncommutative geometry conference, Shanghai, China, March 23–April 7, 2017. Springer, Cham, 2019, 585–606. Zbl 1455.46058

Received August 21, 2020

Dan-Virgil Voiculescu, Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720-3840, USA

e-mail: dvv@math.berkeley.edu