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Dimension distortion

by right coset projections

in the Heisenberg group

Terence L. J. Harris, Chi N. Y. Huynh, and Fernando Román-García1

Abstract. We study the family of vertical projections whose fibers are right cosets of

horizontal planes in the Heisenberg group, Hn. We prove lower bounds for Hausdorff

dimension distortion of sets under these mappings with respect to the natural quotient

metric, which we show behaves like the Euclidean metric in this context. Our bounds are

sharp in a large part of the dimension range, and we give conjectural sharp lower bounds

for the remaining range. Our approach also lets us improve the known almost sure lower

bound for the standard family of vertical projections in Hn for n � 2.
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1. Introduction

The study of dimension distortion by projections dates back to J. Marstrand’s

1954 paper [18]. Among many other things, it was shown that for an analytic

set A � R
2, dim P�.A/ D min¹dim A; 1º for H1-almost all � 2 Œ0; �/, where

P� WR2 ! `� is the orthogonal projection onto the line with terminal angle � .

Moreover, it was shown that if dim A > 1 then H1.P� .A// > 0 for H1-almost all

� 2 Œ0; �/. Over time, this result has been expanded and generalized in many

directions. For instance in [17], R. Kaufman introduced a potential theoretic

approach that streamlined Marstrand’s proof, and using this approach P. Mattila

generalized the result to higher dimensions [19]. The general result, including the

Besicovitch–Federer characterization of unrectifiability ([7, 12]), is stated in the

following theorem.

Theorem 1.1. Let A � R
n be an analytic set of dimension s.

(1) If s � m, dim PV .A/ D s for almost every m-dimensional subspace V .

(2) If s > m, Hm.PV .A// > 0 for almost every m-dimensional subspace V .

(3) If s > 2m, Int.PV .A// ¤ ¿ for almost every m-dimensional subspace V .

Moreover, in the case where s Dm and with the added hypothesis thatHm.A/<1,

A is purely m-unrectifiable if and only if Hm.PV .A// D 0 for almost every m-

dimensional subspace V .

Analogous, but in some cases weaker, results have been obtained when pro-

jections are restricted to a subfamily of planes [3, 16, 11, 24, 9, 25, 14]. In [26]

the authors introduced the concept of transversal families of maps thus giving a

vast generalization of Theorem 1.1 which extended the result to many more fam-

ilies of mappings. The problem has also been studied outside of the Euclidean

setting, specifically in the Heisenberg group, in [2, 3]. There, the story is far from

over. Two distinct families of “projections” arise naturally in this context, known

as homogeneous projections. Dimension distortion by one of these families, that

of horizontal projections, can be tackled using transversality, but the other fam-

ily, that of vertical projections, is not transversal in the sense of Peres and Schlag

and is otherwise quite difficult to work with. Improving the known dimension

distortion bounds in this context continues to be an active area of research with

improvements being made recently in [15]. In this paper we continue the work in

this direction by studying another natural, yet unstudied, family of projections in

the Heisenberg group. Our approach also improves the known dimension distor-

tion bound for the standard family of homogeneous projections studied in [3].
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The nth Heisenberg group is defined as the manifold H
n WD R

2n � R with

typical point denoted by .z; t / D .x1; : : : ; xn; y1 : : : ; yn; t / where for j D 1; : : : ; n,

zj D xj C iyj . As such, we will identify C
n with R

2n (and e.g. write iz

for pointwise scalar multiplication of z 2 C
n by i). We endow this manifold

with the group law .z; t / � .w; s/ D
�

z C w; t C s C 1
2
!.z; w/

�

, where w D
.u1; : : : ; un; v1; : : : ; vn/, and !.z; w/ D

Pn
j D1.xj vj � yj uj /. This group law

makes Hn a Lie group with left invariant vector fields

Xj D @

@xj

� yj

2

@

@t
; Yj D @

@yj

C xj

2

@

@t
; T D @

@t
; for j D 1; : : : ; n:

For any given j , ŒXj ; Yj � D T , so H D span¹Xj ; Yj W j D 1; : : : ; nº forms a

bracket generating distribution. We say an absolutely continuous curve  W Œ0; 1�!
Hn is horizontal if

P.s/ 2 H.s/ for a.e. s 2 Œ0; 1�:

By declaring ¹Xj ; Yj W j D 1; : : : ; nº to be orthonormal, we can compute the

(horizontal) length of  in the usual way. We will denote the length of  by j j.
The bracket generating condition enables the definition of a Carnot–Carathéodory

distance in all of Hn via

dcc.p; q/ D inf¹j jW  is horizontal, and .0/ D p; .1/ D qº:

The Korányi gauge k.z; t /k4
Hn D jzj4 C 16t2 also gives a left invariant metric

(known as the Korányi metric) given by dHn.p; q/ D kq�1�pk. These two metrics

are bi-Lipschitz equivalent.

For r > 0 the non-isotropic dilations ır.z; t / D .rz; r2t / give H
n a homoge-

neous structure. This enables the definition of homogeneous subgroups as sub-

groups which are closed under dilations. These subgroups come in two kinds,

those contained in C
n � ¹0º (horizontal), and those containing the entire t -axis

(vertical). The t -axis is a homogeneous subgroup, one without a complementary

horizontal subgroup. The horizontal subgroups V � ¹0º coincide with isotropic

subspaces V of Cn, and their (Euclidean) orthogonal complements V ? � R are

vertical subgroups (here an isotropic subspace means one on which the symplectic

form ! vanishes identically). We denote the Grassmannian of isotropic m-planes

in R
2n as Gh.n; m/, and for V 2 Gh.n; m/, we denote the corresponding horizon-

tal and vertical subgroups by V and V
? respectively. For each V 2 Gh.n; m/, V?

is a normal subgroup of Hn, and we have a semi-direct splitting H
n D V Ë V

?.

Since the group V
? is normal, the splitting can also be taken to be Hn D V

? ÌV.

These splittings induce projection maps PV onto the horizontal subgroup V, and

P R
V? , P L

V? onto the vertical subgroup V
?. Here P R

V? is induced by the first men-

tioned splitting, and its fibers are right cosets of the subgroup V. In the same
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way, P L
V? is induced by the second splitting and its fibers are left cosets of the

horizontal subgroup V. Turns out, PV agrees with the Euclidean orthogonal pro-

jection onto the subspace V , while P R
V? , and P L

V? can be defined via the group

law by P R
V?.p/ D PV.p/�1p; P L

V?.p/ D pPV.P /�1. Since the group law is

non-commutative, these two maps are inherently different, although they are re-

lated by the equation P L
V?.p/ D �P R

V?.�p/. It is important to note that given a

set A � H
n dimHn A ¤ dimHn.�A/ in general. It is therefore expected that these

maps behave differently when it comes to dimension distortion.

The group U.n/ of complex unitary matrices, which may be identified as

a subgroup of O.2n/, preserves the symplectic form ! (see [20, Chapter 3]).

This group acts smoothly and transitively on Gh.n; m/, and each R 2 U.n/

induces an isometry of Hn given by R.z; t / D .Rz; t/. Therefore, for any two

horizontal subgroups V and V
0 there is an R0 2 U.n/ such that V D R0V

0.

Since U.n/ has a unique probability Haar measure, the space Gh.n; m/ inherits

a unique U.n/-invariant probability measure, which we denote by �n;m. This in

turn allows us to put a measure on the set of horizontal (resp. vertical) subgroups

of Hausdorff dimension m (resp. 2n C 2 � m) in H
n, specifically, one simply uses

the measure �n;m by appealing to the aforementioned correspondence between

horizontal (resp. vertical) subgroups and Gh.n; m/.

The vertical projections P L
V? , together with horizontal projections, have been

heavily studied in the context of Hausdorff dimension distortion ([2, 3, 10, 15]).

These projections also play a pivotal role in the theory of rectifiable sets in

H
n ([23]). Here we intend to initiate the study of the projection P R

V? in the context

of dimension distortion. Whereas the fibers of the map P L
V? are horizontal lines,

the fibers of P R
V? are not horizontal. It is therefore not very natural to consider

P R
V? as a map from .Hn; dcc/ to .V?; dccbV?/. In H

1, the maps P R
V? have already

been studied in other contexts (see for instance [1]) where a natural metric arises

on the image of P R
V? . We study dimension distortion in the context of this, “more

natural,” metric by first generalizing it to higher dimensions. Our main result is

as follows.

Theorem 1.2. For 1 � m � n and any Borel set A � H
n,

dimE P L
V?.A/; dimE P R

V?.A/ �

8

ˆ

ˆ

<

ˆ

ˆ

:

dimE A if dimE A 2 Œ0; 2n � m�;

2n � m if dimE A 2 Œ2n � m; 2n�;

dimE A � m if dimE A 2 Œ2n; 2n C 1�;

(1)
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for �n;m-a.e. V 2 Gh.n; m/, and

dimVnHn P R
V?.A/ �

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

.dimHn A/=2 if dimHn A 2 Œ0; 2�;

dimHn A � 1 if dimHn A 2 Œ2; 2n � m C 1�;

2n � m if dimHn A 2 Œ2n � m C 1; 2n C 1�;

dimHn A � m � 1 if dimHn A 2 Œ2n C 1; 2n C 2�;

(2)

for �n;m-a.e. V 2 Gh.n; m/. If dimE A � 2n � m then (1) is sharp, and if

dimHn A � 2n C 1 � m then (2) is sharp.

Here, dVnHn refers to this aforementioned “more natural” metric on V
? while

dimE and dimHn refer to the Hausdorff dimension with respect to the Euclidean

and Heisenberg metrics, respectively (see [6]). Our main idea is to obtain a

projection theorem in the Heisenberg group by first considering the Euclidean

metric on both sides and then applying some kind of “dimension comparison

principle”. This is natural for right coset projections because the resulting bound

obtained is sometimes sharp. We remark that the Euclidean-Euclidean dimension

distortion problem for vertical projections in H seems to have been first posed in

[21, p. 296]. At least one instance of applying Euclidean methods and dimension

comparison to projection bounds in the Heisenberg group can be found in the

proof of Proposition 4.9 in [3].

By dimension comparison, Theorem 1.2 leads to the following almost sure

dimension bound for the standard (left-coset) projection problem.

Theorem 1.3. For 1 � m � n and any Borel set A � H
n,

dimHn P L
V?.A/ �

´

dimHn A � 1 if dimHn A 2 Œ2; 2n � m C 1�;

2n � m if dimHn A 2 Œ2n � m C 1; 2n C 1�;
(3)

for �n;m-a.e. V 2 Gh.n; m/.

Previously, the best known almost sure lower bound for this problem (in H
n

with n > 1 and dimHn A � m C 2) was

dimHn P L
V?.A/ � min¹dimHn A; 1º for �n;m-almost all V 2 Gh.n; m/:

This bound also holds when n D 1, though there it is not the best known. The best

known universal lower bound was

dimHn P L
V?.A/�max

°

0;
dimHn A � m

2
; dimHn A�m�1; 2.dimHn A�n�1/�m

±

:
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From this, the best possible almost sure lower bound was

dimHn P L
V?.A/ � max

°

min¹dimHn A; 1º; dimHn A � m

2
;

dimHn A � m � 1; 2.dimHn A � n � 1/ � m
±

;

for �n;m-almost every V 2 Gh.n; m/. Therefore, Theorem 1.3 improves this

almost sure lower bound in the range dimHn A 2 Œ2; 2n C 1�. The new lower

bound reads

dimHn P L
V?.A/

�

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

dimHn A if dimHn A 2 Œ0; 1�;

1 if dimHn A 2 Œ1; 2�;

dimHn A � 1 if dimHn A 2 Œ2; 2n � m C 1�;

2n � m if dimHn A 2 Œ2n � m C 1; 2n C 1�;

2.dimHn A � n � 1/ � m if dimHn A 2 Œ2n C 1; 2n C 2�;

for �n;m-almost every V 2 Gh.n; m/.

For n > 1, we do not know if the lower bounds in Theorem 1.2 are sharp

for dimE A � 2n � m and dimHn A � 2n C 1 � m, but we suspect the answer

is no. For dimHn A > 2 we predict the lower bound dimHn A � 1 to hold up to

dimHn A D 2nC2�m; the example in the proof of Theorem 1.2 shows this would

be sharp. The conjectured lower bounds are given below; in all cases it is assumed

that 1 � m � n.

Conjecture 1.4 (see [2, Conjecture 1.5] for the case n D 1). Let A � H
n be a

Borel set. If dimHn A � 2n C 2 � m, then

dimHn P L
V?.A/ � dimHn A

for a.e. V 2 Gh.n; m/, and, if dimHn A > 2n C 2 � m, then

H
2nC2�m
dcc

.P L
V?.A// > 0

for a.e. V 2 Gh.n; m/.

Conjecture 1.5. For any Borel set A � H
n,

dimVnHn P R
V?.A/ � min¹dimE A; 2n � m C 1º

for a.e. V 2Gh.n; m/.
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Conjecture 1.6. For any Borel set A � H
n,

dimE P L
V?.A/; dimE P R

V?.A/ � min¹dimE A; 2n � m C 1º

for a.e. V 2 Gh.n; m/.

Conjecture 1.7. For any Borel set A � H
n,

dimVnHn P R
V?.A/ � min

°

max
°dimHn A

2
; dimHn A � 1

±

; 2n � m C 1
±

;

for a.e. V 2 Gh.n; m/.

Conjecture 1.8. For any Borel set A � Hn,

dimE P L
V?.A/ � min

°

max
°dimHn A

2
; dimHn A � 1

±

; 2n � m C 1
±

;

for a.e. V 2 Gh.n; m/.

Conjecture 1.9. For any Borel set A � H
n,

dimE P R
V?.A/ � min

°

max
°dimHn A

2
; dimHn A � 1

±

; 2n � m C 1
±

;

for a.e. V 2 Gh.n; m/.

All these conjectures are sharp if true; the connections between them are

pictured below. The relations and sharpness will be shown at the end of Section 3.

Conj. 1.6 () Conj. 1.5

H) H)

Conj. 1.4 H) Conj. 1.8 Conj. 1.7 () Conj. 1.9

(4)

Here we also include graphs summarizing our results on a.e. Heisenberg and

Euclidean dimension distortion.
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0 2 2n C 2 m 2n C 2

0

1

2n m

2n m C 1

2n C 1 m 2n C 1

dimHn A

dimVnHn P R

V?
.A/

Theorem 1.2

Conjecture 1.7

0 2n m 2n 2n C 1

0

2n m

2n m C 1

2n m C 1

dimE A

dimE P R

V?
.A/

Theorem 1.2

Conjecture 1.6
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Finally, in the first Heisenberg group H there is a small improvement possible

to Theorem 1.2, which we show in Section 4. With Euclidean metrics on each side,

Corollary 4.3 is a better a.e. lower bound than Theorem 1.2 for dimE A 2 .1; 5=2/.

2. Right coset projections in H
n

In this section we will first introduce the Grushin plane, which will come back

later in connection with right coset quotient spaces. Then we will describe the

right coset quotient space by vertical subgroups together with the corresponding

vertical projections. Finally we will restrict to the case of vertical subgroups of

co-dimension one where we have a clear description of the metric structure of

the space and the aforementioned connection with the Grushin plane arises. It

is worth mentioning that the connection between the Heisenberg group and the

Grushin plane has been studied before (see for instance [1], [27], and [13, (3),

p. 293]).

In this section we only consider the projections P R
V? which we will simply

denote by PV? . In addition, for 1 � m � n, the notation H
n�m will be frequently

used. It is therefore important to emphasize that this notation signifies the .n�m/th

Heisenberg group, Cn�m �R, with all of its structure. In particular, when n D m,

H
n�m is simply the “t -axis”, C0 � R D R, with standard addition and metric

dHn�m D 2d
1=2
E .

2.1. The Grushin Plane. The Grushin plane is the manifold G D R
2 with vector

fields
8

ˆ

<

ˆ

:

T D �v
@

@�
;

V D @

@v
;

(5)

where .v; �/ 2 R
2. These vector fields span the whole tangent space at every point

outside of the singular set ¹v D 0º, and by taking them to be orthonormal there,

we get a line form

ds2 D dv2 C d�2

v2

on R
2 n¹.0; �/W � 2 Rº. One can check that ŒT; V � D @

@�
, which allows us to extend

this metric to a Carnot–Carathéodory path distance in all of R2. The resulting

metric, denoted by dG, turns G into a non-equiregular sub-Riemannian manifold

whose horizontal curves are curves that have horizontal tangent at every point of
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intersection with the critical line. That is to say,  W Œ0; 1� ! G is horizontal if there

exist integrable functions a and b such that

P.s/ D a.s/T C b.s/V;

for a.e. s 2 Œ0; 1�. The length of  is then given by

1
Z

0

Œa.s/2 C b.s/2�1=2 ds:

If we write .s/ D .v.s/; �.s//, a more explicit formula for the length is

ƒG D
1

Z

0

h

Pv.s/2 C P�.s/2

v.s/2

i1=2

ds: (6)

For each t0 the vertical translation map .v; t / ! .v; t C t0/ is an isometry

of G. This can also be seen as a non-transitive group action by R whose orbits are

vertical lines, in particular, the orbit of 0 is the critical line v D 0. One interesting

property of the Grushin metric, that will come back later in the discussion, is that

the restriction of the distance to the critical line is comparable to the square root

of the Euclidean distance. Therefore, this “copy” of R is embedded into G in a

“snowflaked” way. In contrast, the restriction of the distance to any other vertical

line is Riemannian.

2.2. The right coset quotient space. For 1 � m � n, given V 2 Gh.n; m/ we

consider the quotient space of right cosets of V in H
n,

VnHn WD ¹VpW p 2 H
nº;

endowed with the quotient distance

dVnHn.Vp;Vp0/ D inf¹dcc.qp; p0/W q 2 Vº:

There is a unique way to write elements of VnHn as Vq with q 2 V
?. Therefore

VnHn is identified with V
? by the map Vq 7! q. This map coincides with the

map on VnHn induced by PV? , that is PV?.Vp/ D ¹PV?.p/º.

Lemma 2.1. For each fixed V, the map

PV? W .Hn; dcc/ �! .V?; dVnHn/

is 1-Lipschitz.
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Proof. Indeed, if p; p0 2 H
n we have

dVnHn.PV?.p/; PV?.p0// D inf
q2V

dcc.qPV?.p/; PV?.p0//:

An upper bound is found by choosing a specific q 2 V. In particular, choosing

q D PV.p0/�1PV.p/, and appealing to the left invariance of dcc we see that,

dVnHn.PV?.p/; PV?.p0// � dcc.p; p0/: �

Denoting by �W the Euclidean orthogonal projection onto W , an explicit

formula for the projection is given by

PV?.z; t / D
�

�V ?.z/; t � 1

2
!.�V .z/; �V ?.z//

�

: (7)

The space VnHn inherits a rich structure from H
n which allow us to have a

more intuitive understanding of the space.

The unitary group, U.n/, acts smoothly and transitively on Gh.n; m/ and

isometrically on H
n via .z; t / ! .Rz; t/; .R 2 U.n//, therefore understanding

the metric properties of V0nHn for a fixed V0 will get us the same properties for

VnHn in general. Hence, to simplify computations, fix the horizontal subgroup

V D V0 WD ¹.x1; : : : ; xm; 0; : : : ; 0/W xj 2 Rº;

for the rest of this section. This gives us

V
? D V

?
0 D ¹.0; : : : ; 0; xmC1; : : : ; xn; y1; : : : ; yn; t /W xj ; yj ; t 2 Rº:

With this concrete setting, we discuss some of the symmetries of the space VnHn.

Homogeneous dilations. The space VnHn admits homogeneous dilations. Al-

though these dilations are defined on VnHn we abuse notation using the same

symbol as for the Heisenberg dilations since the dilations on VnHn are nothing

more than the dilations onH
n that factor through the quotient map. For each r > 0

the map ır WVnHn ! VnHn given by

ır .0; : : : ; 0; xmC1; : : : ; yn; t / D .0; : : : ; 0; rxmC1; : : : ; ryn; r2t /;

is homogeneous of degree 1 with respect to dVnHn . Indeed,

dVnHn.ır.p/; ır.p0// D inf
q2V

dcc.qır.p/; ır.p0//

D r inf
q2V

dcc.ı1=r .q/p; p0/

D rdVnHn.p; p0/:

The last equality follows from the fact thatV is homogeneous (so that ı1=r .q/2V).
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Group action by H
n�m. We embed H

n�m in H
n by the map � 7! O� given by

.u1; : : : ; un�m; v1; : : : ; vn�m; �/

7�! .0; : : : ; 0; u1; : : : ; un�m; 0; : : : ; 0; v1; : : : ; vn�m; �/;

where in the right hand side the first m coordinates and coordinates n C 1 through

n C m are all zero. With this notation we can see that Hn�m acts on H
n by “left

translation” via the map

L�p D O�p:

To see that this action is isometric, note that for each � 2 H
n�m, O� commutes with

elements of V. Indeed, writing q D .z; 0/ 2 V and O� D . Ow; �/, it is not hard to

see that ! . Ow; z/ D 0. Because of this,

dVnHn.L�p; L�p0/ D inf
q2V

dcc.q O�p; O�p0/

D inf
q2V

dcc. O�qp; O�p0/

D inf
q2V

dcc.qp; p0/

D dVnHn.p; p0/:

This action is smooth with respect to the quotient topology but it is not transitive.

For a point .0; : : : ; 0; xmC1; : : : ; xn; y1; : : : ; yn; t / 2 V
? its orbit consists exactly

of all other points of the form .0; : : : ; 0; x0
mC1; : : : ; x0

n; y1; : : : ; ym; y0
mC1; y0

n; t 0/.

Therefore, the orbit space is parametrized by R
m.

Group action by U.n � m/. Similarly, we embed U.n � m/ into U.n/ via the

map R 7! zR given for each z D .x1; : : : ; xn; y1; : : : ; yn/ 2 R
2n by

zRz D Qz:

Here

Qz D .x1 : : : ; xm; QxmC1; : : : ; Qxn; y1; : : : ; ym; QymC1; : : : ; Qyn/

with

. QxmC1; : : : ; Qxn; QymC1; : : : ; Qyn/ D R.xmC1; : : : ; xn; ymC1; : : : ; yn/:

In this way U.n � m/ acts on VnHn via

p 7�! yRp WD . zRz; t/;

where p D .z; t / 2 V
? ' VnHn. Once again, it is not hard to check that this

action, as an action naturally extended to all of Hn, fixes V pointwise. Therefore



Right coset projections on the Heisenberg group 13

yR.qp/ D q yRp for each q 2 V and p 2 V
?. Since U.n/ acts isometrically on H

n,

it follows that

dVnHn.yRp; yRp0/ D inf
q2V

dcc.q yRp; yRp0/

D inf
q2V

dcc.yR.qp/; yRp0/

D inf
q2V

dcc.qp; p0/

D dVnHn.p; p0/:

Like the H
n�m action, the action by U.n � m/ is smooth but not transitive. The

orbit of a point .0; : : : ; 0; xmC1; : : : ; xn; y1; : : : ; yn; t / 2 V? consists of all other

points of the form .0; : : : ; 0; x0
mC1; : : : ; x0

n; y1; : : : ym; y0
mC1; y0

n; t /. Therefore, the

orbit space is parametrized by R
mC1.

The group action by H
n�m reveals that there are “Rm many” copies of the

set Hn�m embedded in V
? in a natural way. More precisely, using the notation

p D .x1; x2; y1; y2; t / 2 R
m �R

n�m �R
m �R

n�m �R D H
n, for a fixed Qy 2 R

m

we denote by U Qy the orbit U Qy D ¹L�.0; 0; Qy; 0; 0/ 2 H
nW � 2 H

n�mº. The map

H
n�m ! U Qy given by .x; y; t / ! .0; x; Qy; y; t / gives a natural embedding of the

set Hn�m into V
?.

Proposition 2.2. The restrictions of dVnHn and dcc to UQ0, are bi-Lipschitz equiv-

alent.

Proof. For any x1 2 R
m; x2; y2 2 R

n�m, and t 2 R one can check directly from

the formula for the Koranyi norm that,

dHn..x1; x2; 0; y2; t /; 0/ � dHn..0; x2; 0; y2; t /; 0/: (8)

Now, as mentioned earlier, it is easy to check that !.V; UQ0/ D 0 so that V and UQ0

commute, and moreover, for q 2 V and p 2 UQ0, qp D q C p. In particular, if

p; p0 2 UQ0 it follows that

dVnHn.p0; p/ D inf
q2V

dcc.qp0; p/

D inf
q2V

dcc.p
�1qp0; 0/

D inf
q2V

dcc.q C p�1p0; 0/

' inf
q2V

dHn.q C p�1p0; 0/

D dHn.p�1p0; 0/

' dcc.p
0; p/;
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where the first equality in the last line follows from (8). This completes the proof

of the proposition. �

Corollary 2.3. The map �W .Hn�m; dcc,Hn�m/ ! .V?; dVnHn/ given by �.x; y; t / D
.0; x; 0; y; t / is a bi-Lipchitz embedding.

Proof. It is clear that �WHn�m ! UQ0 � V
? is bijective. By Proposition 2.2,

dVnHn.�.x; y; t /; �.u; v; s// D dVnHn..0; x; 0; y; t /; .0; u; 0; v; s//

' dcc..0; x; 0; y; t /; .0; u; 0; v; s//

' dcc,Hn�m..x; y; t /; .u; v; s//: �

Proposition 2.2 and its corollary, do not hold for Qy ¤ 0. In particular, for Qy ¤ 0,

the natural bijection of Hn�m onto the orbit U Qy is not a bi-Lipschitz, embedding.

Indeed, if Qy ¤ 0 and p D .0; x; Qy; y; 0/; q D .0; u; Qy; v; 0/ 2 U Qy , we have

dHn.p; q/ D Œ.jx � uj2 C jy � vj2/2 C 4.u � y � x � v/2�1=4; (9)

whereas,

dVnHn.p; q/ ' inf
p02V

dHn.p0p; q/

D inf
Qx2Rm







�

Qx; x � u; 0; y � v; � Qx � Qy � 1

2
.x � v � y � u/

�





Hn
:

In particular, choosing Qx D �1
2
.x � v � y � u/ Qy

j Qyj2
gives the upper bound

dVnHn.p; q/ .
h1

4
.x � v � y � u/2 C jx � uj2 C jy � vj2

i1=2

:

Comparing with (9) one sees that dV0nHnbU Qy
cannot be bi-Lipschitz equivalent to

dHnbU Qy
, and therefore to dccbU Qy

.

We expect the spaceVnHn to behave in an analogous way to the Grushin plane,

G, in that the metric should be Riemannian away from the critical subspace UQ0

and extend as a Carnot–Carathéodory metric to UQ0. We were unable to prove

this in general, so it remains an interesting problem to check if .V?; dVnHn/ is

isometrically equivalent (or at least bi-Lipschitz equivalent) to a non equi-regular

Carnot–Carathéodory space. In the specific case m D 1 this is exactly true as we

will see in the following section where we state this formally and give a sketch of

the proof.
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2.3. Vertical subgroups of co-dimension one. Consider the manifoldR
2n, with

typical point denoted .w; u1; : : : ; un�1; w1; : : : ; wn�1; �/, and frame comprised of

the vector fields

� D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

W D @

@w
;

Uj D @

@uj

� wj

2

@

@�
; j D 1; : : : ; n � 1;

Wj D @

@wj

C uj

2

@

@�
; j D 1; : : : ; n � 1;

T D �w
@

@�
:

(10)

These vector fields span the entire tangent plane at every point outside of the

critical .2n�1/-plane ¹w D 0º, thus by declaring it orthonormal there, it induces a

Riemannian distance on R
2n n¹w D 0º. Moreover, since ŒUj ; Wj � D ŒT; W � D @

@�
,

this metric can be extended to a Carnot–Carathéodory metric, d�, on all of R2n.

Note that in the case n D 1, the frame � consist only of the vector fields V and T

and therefore the space .R2; d�/ coincides with the Grushin plane.

Proposition 2.4. The space .V?; dVnHn/ is isometric to .R2n; d�/.

Sketch of proof. It is clear that, as sets, V
? and R

2n can be identified, so we

consider the map PV? as a map from H
n to R

2n. Firstly, we use the analytic

change of variables in H
n

‰.z; t/ D Œz; t � D
�

z; t C 1

2
!.�V .z/; �V ?.z//

�

:

Under this change of variables the horizontal vector fields become

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

zX1 D @

@x1

� y1

@

@t
;

zY1 D @

@y1

;

zXj D @

@xj

� yj

2

@

@t
; j D 2; : : : ; n;

zXj D @

@yj

C xj

2

@

@t
; j D 2; : : : ; n;

(11)

and the projection map becomes

ˆV?.z; t / D PV? Œz; t � D .�V ?.z/; t /:
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The differential of this map is easily computed to be the constant matrix

ˆV?� D
�

0 0

0 I

�

;

where I is the .2n/ � .2n/ identity. Hence, the push forward of the horizontal

vector fields are

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

X1 D ˆV?�
zX1 D �y1

@

@t
;

Y1 D ˆV?�
zY1 D @

@y1

;

Xj D ˆV?�
zXj D @

@xj

� yj

2

@

@t
; j D 2; : : : ; n;

Yj D ˆV?�
zYj D @

@yj

C xj

2

@

@t
; j D 2; : : : ; n:

(12)

Note that these coincide exactly with (10), therefore if �W Œ0; 1� ! H
n is a

horizontal path in H
n, then  D PV? ı� is a horizontal path in .R2n; d�/. Indeed,

� is horizontal in H
n if there are integrable functions aj ; bj W Œ0; 1� ! R such that

P� D
n

X

j D1

aj
zXj C bj

zYj ;

therefore

P D ˆV?�
P� D a1T C b1W C

n
X

j D2

aj Xj C bj Yj :

It follows that  is horizontal in .R2n; d�/ and moreover,

ƒ�./ D
1

Z

0

h

n
X

j D1

a2
j C b2

j

i1=2

ds D ƒHn.�/:

This tells us that given p; p0 2 V
? D R

2n, every H
n-horizontal path between Vp

and Vp0 induces a �-horizontal path between p; p0 2 R
2n of the same length.

Thus

d�.p; p0/ � inf¹dcc.qp; p0/W q 2 Vº D dVnHn.p; p0/:

Now we aim to show that every horizontal path in .R2n; �/ between p; p0 has

a H
n-horizontal lift between Vp and Vp0 of the same length. This would imply

dVnHn.p; p0/ � d�.p; p0/ and complete the proof.
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To this end, let  D .w; u1; : : : ; un�1; w1; : : : ; wn�1; �/W Œ0; 1� ! R
2n be a

horizontal path in .R2n; �/ with

P D aW C
n�1
X

j D1

aj Wj C bj Uj C bT:

Put

u.s/ D u0 C
s

Z

0

b.�/d�;

where u0 is arbitrarily chosen, so that uW Œ0; 1� ! R is continuous and Pu.s/ D b.s/.

Then, set

�.s/ D .u.s/; w.s/; u1.s/; : : : ; vn�1.s/; �.s//:

It follows that ˆV?.�/ D  and

P� D Pu @

@u
C P D b

� @

@u
� w

@

@�

�

C a
@

@w
C

n�1
X

j D1

aj Wj C bj Uj ;

so � is a horizontal path in H
n between the fibers ˆ�1

V?.0; .0// and ˆ�1
V?.0; .1//.

Furthermore,

ƒHn.�/ D
1

Z

0

h

n�1
X

j D1

a2
j .s/ C b2

j .s/ C a2.s/ C b2.s/
i1=2

ds D ƒ�./;

and this completes the proof. �

Note that whenever n > 1 the vector fields ¹Uj ; Wj W j D 1; : : : ; n�1º give rise

to the embedded copy of Hn�1 in .V?; dVnHn/ that was mentioned in last section.

On the other hand, as mentioned above, when n D 1 the frame � only consist

of V and T , and the Carnot–Carathéodory manifold .V?; dVnHn/ is exactly the

Grushin plane G with the embedded copy of “H0” corresponding to the critical

line. This last fact has been well known and used in conjunction with the right

coset projections in the first Heisenberg group to solve certain iso-perimetric

problems in the Grushin plane by projecting Heisenberg geodesics via PV? ([1]).

3. Dimension distortion by right coset projections in H
n

We now have the appropriate setup to study dimension distortion by right coset

projections. We have a family of 1-Lipschitz maps

¹PV? W .Hn; dcc/ �! .V?; dVnHn/; V 2 Gh.n; m/º
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and would like to study the generic dimension of the sets PV?.A/ for a given

Borel set A � H
n. First we note that since the maps are Lipschitz, the upper

bound dimVnHn PV?.A/ � dimHn.A/ holds trivially for all V. Therefore, our

main result focuses on almost sure dimension lower bounds. As we will see in the

proof of the main result, lower bounds for the Euclidean Hausdorff dimension of

projections will help us obtain lower bounds for their dimension with respect to

the metric dVnHn .

For any Borel subset A of a complete separable metric space .X; d/, the

Hausdorff dimension dim A of A can be characterised using energy: dim A is the

supremum over all s � 0 such that there exists a compactly supported probability

measure � on A with

Is.�; d/ WD
“

d.x; y/�s d�.x/ d�.y/ < 1:

The first four lemmas will show that for dimension lower bounds, the a.e. be-

haviour of projections with respect to the right coset metric is the same as with

respect to the Euclidean metric.

Lemma 3.1. For fixed V 2 Gh.n; m/, the identity map from .V?; dVnHn/ to

.V?; dE / is locally Lipschitz.

Proof. Fix R > 0 and .z; t /; .�; �/ 2 V? \ BE .0; R/. To prove

dE ..z; t /; .�; �// .R dVnHn..z; t /; .�; �//;

it suffices to show that

jz � �j C jt � � j .R jz C w � �j C
ˇ

ˇ

ˇt � � C 1

2
!.z; �/ � 1

2
!.z C �; w/

ˇ

ˇ

ˇ

1=2

; (13)

uniformly for all w 2 V . If jt�� j � 2Rjz��j then (13) follows from orthogonality,

using only the first term in the right hand side. Hence it may be assumed that

jt � � j � 2R jz � �j :

If jwj � jt�� j
4R

then (13) again follows from orthogonality, so it may be assumed

that

jwj � jt � � j
4R

:

Thus
ˇ

ˇ

ˇt � � C 1

2
!.z; �/ � 1

2
!.z C �; w/

ˇ

ˇ

ˇ � jt � � j � R

2
jz � �j � Rjwj

� jt � � j
2

&R jt � � j2:

Taking square roots gives (13), and therefore proves the lemma. �
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The following lemma gives a sufficient condition under which the preceding

inequality can be reversed.

Lemma 3.2. Fix V 2 Gh.n; m/ and .z; t /; .�; �/ 2 V
?. If

j.z; t /j; j.�; �/j � C;

and there exists a unit vector e 2 V such that

j!.z C �; e/j � c > 0;

then

dVnHn ..z; t /; .�; �// .c;C dE ..z; t /; .�; �// :

Proof. By definition,

dVnHn..z; t /; .�; �//

� inf
w2V

�

jz � � C wj C
ˇ

ˇ

ˇt � � C 1

2
!.z; �/ C 1

2
!.w; z C �/

ˇ

ˇ

ˇ

1=2�

:
(14)

The point

w D
�2

�

t � � C 1
2
!.z; �/

�

e

!.e; z C �/
; (15)

lies in V and satisfies jwj .c;C dE ..z; t /; .�; �//. Putting the w from (15) into (14)

makes the second term vanish, and so

dVnHn..z; t /; .�; �// .c;C dE ..z; t /; .�; �//: �

Lemma 3.3. Fix ˇ � 0, n � 1, m 2 ¹1; : : : ; nº and ˛ 2 Œ2; 2n C 2/. The following

two statements are equivalent.

(i) For any Borel set A � H
n with dimHn A > ˛,

dimVnHn P R
V?.A/ � ˇ for a.e. V 2 Gh.n; m/:

(ii) For any Borel set A � H
n with dimHn A > ˛,

dimE P R
V?.A/ � ˇ for a.e. V 2 Gh.n; m/:

Proof. The implication (ii) ) (i) follows directly from Lemma 3.1, so assume

that (i) holds. Let A � H
n be a compact set with dimHn A > ˛ � 2. Let � be a

Borel probability measure on A with

�.BHn..z; t /; r// . rs for all .z; t / 2 H
n and r > 0;
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where 2 � ˛ < s < dimHn A. Fix s0 > 0 with

s0 < min¹s � 2; mº: (16)

By a similar covering argument to the proof of Theorem 1.1 in [3],
Z

A

Z

A

Z

Gh.n;m/

1

j�V .z � �/js0
d�n;m.V / d�.z; t / d�.�; �/ < 1; (17)

where the inner integral is bounded using the inequality from the proof of Theo-

rem 1.2 in [3]. Let U be a nonempty open subset of Gh.n; m/ such that there exists

a continuously varying orthonormal basis ¹v1.V /; : : : ; vm.V /º for V as V varies

over U (which exists e.g. by Gram-Schmidt). By covering Gh.n; m/ with a finite

number of such sets, it will suffice to show that

dimE PV?.A/ � ˇ for a.e. V 2 U:

Coordinate-wise multiplication by i from C
n to C

n is a linear map in the complex

unitary group U.n/, and since �m;n is U.n/-invariant (see [3]), (17) yields

j�iV .z � �/j > 0; (18)

for � � � � �n;m almost every ..z; t /; .�; �/; V / 2 A � A � U. Let � > 0; the

preceding statement gives a ı > 0 such that

.� � � � �n;m/¹..z; t /; .�; �/; V / 2 A � A � UW j�iV .z � �/j � ıº < �:

By Fubini, this in turn implies that

�m;n.U0/ � �n;m.U/ �
p

�; (19)

where

U0 WD ¹V 2 UW .� � �/¹..z; t /; .�; �// 2 A � AW j�iV .z � �/j � ıº �
p

�º: (20)

Let

U0 D
N
[

kD1

U
.k/
0 ;

be a finite, disjoint partition of U0 into nonempty sets U
.k/
0 such that

ˇ

ˇvj .V / � vj .V 0/
ˇ

ˇ < ı2 for all V; V 0 2 U
.k/
0 and for all j; k: (21)

The definition of U0 in (20) implies that for each V 2 U0,

�¹.z; t / 2 AW j�iV .z/j > ı=2º � 1 � �1=4:
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Hence for each k there exists Vk 2 U
.k/
0 and a Borel set Bk � A with

�.Bk/ & 1 and j�iVk
.z/j & ı for all .z; t / 2 Bk :

Therefore for each k there exists j D j.k/ 2 ¹1; : : : ; mº, � D �.k/ 2 ¹0; 1º and a

Borel set Ak � A such that

�.Ak/ & 1 and !.z; .�1/�vj .Vk// & ı for all .z; t / 2 Ak: (22)

If ı is sufficiently small (which may be assumed), then by (21) and (22),

j!.z C �; vj .V //j & ı for all .z; t /; .�; �/ 2 Ak ; V 2 U
.k/
0 ; and j D j.k/:

Since each V is isotropic, it then follows from Lemmas 3.1 and 3.2 that

dVnHn.PV?.z; t /; PV?.�; �// �ı dE .PV?.z; t /; PV?.�; �//;

for all .z; t /; .�; �/ 2 Ak and V 2 U
.k/
0 . Therefore

dimE .PV?.A// � dimE .PV?.Ak// D dimVnHn.PV?.Ak//;

for all k and V 2 U
.k/
0 . Applying (i) for each k gives

dimE .PV?.A// � ˇ;

for �n;m-a.e. V 2 U0. But �n;m.U0/ � �n;m.U/ � p
� by (19), so letting � ! 0

and covering Gh.n; m/ with a finite number of such sets U gives

dimE .PV?.A// � ˇ;

for a.e. V 2 Gh.n; m/. This proves that (i) and (ii) are equivalent. �

The preceding lemma and the following one actually hold for ˛ � 0, but for

small ˛ this follows from Theorem 1.2 (since the a.e. lower bounds for dimension

that follow from Theorem 1.2 are the same in the smaller range of ˛, and by

Theorem 1.2 they are both sharp). The proof of the following lemma is omitted

since it is virtually identical to the previous one, except that s � 1 is used in (16)

instead of s � 2.

Lemma 3.4. Fix ˇ � 0, n � 1, m 2 ¹1; : : : ; nº and ˛ 2 Œ1; 2n C 1/. The following

two statements are equivalent.

(1) For any Borel set A � H
n with dimE A > ˛,

dimVnHn P R
V?.A/ � ˇ for a.e. V 2 Gh.n; m/:
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(2) For any Borel set A � H
n with dimE A > ˛,

dimE P R
V?.A/ � ˇ for a.e. V 2 Gh.n; m/:

We restate Theorem 1.2 here.

Theorem 3.5. For 1 � m � n and any Borel set A � H
n,

dimE P L
V?.A/; dimE P R

V?.A/ � max ¹min ¹dimE A; 2n � mº ; dimE A � mº
(23)

for �n;m-a.e. V 2 Gh.n; m/, and

dimVnHn P R
V?.A/

� max
°

min
°

max
°dimHn A

2
; dimHn A � 1

±

; 2n � m
±

; dimHn A � m � 1
±

(24)

for �n;m-a.e. V 2 Gh.n; m/. If dimE A � 2n � m then (23) is sharp, and if

dimHn A � 2n C 1 � m then (24) is sharp.

Remark 3.6. By Lemmas 3.3 and 3.4, and by the method of proof used, this

theorem holds verbatim if the left hand sides of (23) and (24) are interchanged.

Proof of Theorem 1.2. The cases P L
V? and P R

V? in (23) are equivalent since

P L
V?.p/ D �P R

V?.�p/. For the remainder of the proof, the notation PV? will

therefore denote P R
V? .

The quotient distance on V
? is defined through the identification of V? with

VnHn explained in Section 2.2; the formula is given by

dVnHn.p; q/ D inf
q02V

dcc.q
0p; q/; where p; q 2 V

?:

Since the metric dHn is bi-Lipschitz equivalent to dcc, one can set

d 0
VnHn.p; q/ D inf

q02V
dHn.q0p; q/;

and trivially obtain that dVnHn and d 0
VnHn are bi-Lipschitz equivalent. For ease of

computation we use d 0
VnHn instead of dVnHn , and to simplify notation we denote

d 0
VnHn by dVnHn as well.
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It may be assumed without loss of generality that A is bounded. Let �

be a measure on A with Euclidean s-energy Is.�; dE / < 1, where s WD
min¹dimE A; 2n � mº � � for an arbitrarily small � > 0. Assume s > 0 with-

out loss of generality. By Fubini, the average energy of the pushforward measure

is

Z

Gh.n;m/

Is.PV?#�; dE / d�n;m.V /

D
Z

Hn

Z

Hn

Z

Gh.n;m/

dE .PV?.z; t /; PV?.�; �//�s d�n;m.V / d�.z; t / d�.�; �/:

To prove the Euclidean lower bound in the first part of the minimum of (23), it

suffices to show

Z

Gh.n;m/

dE .PV?.z; t /; PV?.�; �//�s d�n;m.V / . dE ..z; t /; .�; �//�s: (25)

The first half of this proof will be essentially the same as the proof of Theorem 1.2

in [3]. Let B.0; R/ be a Euclidean ball containing A. If jz � �j � jt�� j
4R

, then

Z

Gh.n;m/

dE .PV?.z; t /; PV?.�; �//�s d�n;m.V /

.

Z

Gh.n;m/

j�V ?.z/ � �V ?.�/j�s d�n;m.V /

.s jz � �j�s (26)

(since s < 2n � m)

.R dE ..z; t /; .�; �//�sI

the Euclidean inequality used in (26) is explained in [3, pp. 584–585], and has a

fairly straightforward proof. This proves (25) in the case where jz � �j � jt�� j
4R

.

In the second case with jz � �j < jt�� j
4R

, Cauchy–Schwarz gives

j!.�V�
.z/; �V ?

�
.z// � !.�V�

.�/; �V ?
�

.�//j

D j!.�V�
.z � �/; �V ?

�
.z// � !.�V�

.�/; �V ?
�

.� � z//j � 2Rjz � �j:
(27)
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Hence
Z

Gh.n;m/

dE .PV?.z; t /; PV?.�; �//�s d�n;m.V /

.

Z

Gh.n;m/

ˇ

ˇ

ˇt � � � 1

2
!.�V .z/; �V ?.z// C 1

2
!.�V .�/; �V ?.�//

ˇ

ˇ

ˇ

�s

d�n;m.V /;

. .jt � � j � R jz � �j/�s ;

. jt � � j�s

.R dE ..z; t /; .�; �//�s:

This proves the Euclidean lower bound for the first term in the maximum of (23),

which finishes the proof of (23) in the case dimE A � 2n.

The lower bound

dimE PV?.A/ � dimE .A/ � m

actually holds for all V?, provided dimE A > m C 1: Since the previous bound

is stronger whenever dimE A � 2n, we may assume, without loss of generality,

that dimE A > 2n. In particular dimE A > m C 1. From here the proof follows

the same lines as the proof of the same lower bound for the H
n-dimension of

(left coset) vertical projections from [3, Theorem 1.4]. Given V 2 Gh.n; m/ the

set ¹U 2 Gh.n; m/W U ? \ V D ¹0ºº is open, nonempty and in particular has

positive �n;m measure. This, together with Theorem A.1, lets us pick for � > 0,

U 2 Gh.n; m/ and u 2 U such that the map �V ?bU ? W U ? ! V ? is injective, and

dimE ŒA \ .U? � u/� � dimE A � m � �. For this particular choice of U and u,

we will see that PV?bU?�uWU? � u ! V
? is a locally bi-Lipschitz bijection with

respect to the Euclidean norm.

First we show injectivity. For any q 2 .U? � u/, there exists a unique wU ? 2
U ? and s > 0 such that q D .wU ? ; s/�.u; 0/. Let q D .wU ? ; s/�.u; 0/ 2 .U?�u/

and q0 D .zU ? ; t / � .u; 0/ 2 .U? � u/ be such that PV?.q/ D PV?.q0/. Then,

�

�V ?.wU ? C u/; s C 1

2
!.wU ? ; u/ � 1

2
!.�V .wU ? C u/; �V ?.wU ? C u//

�

D
�

�V ?.zU ? C u/; t C 1

2
!.zU ? ; u/ � 1

2
!.�V .zU ? C u/; �V ?.zU ? C u//

�

:

(28)

The first coordinate tells us that �V ?.zU ? C u/ D �V ?.wU ? C u/ which says

�V ?.zU ?/ D �V ?.wU ?/. By our choice of U 2 Gh.n; m/ we get that zU ? D
wU ? . Similarly, the second coordinate gives us that t D s so injectivity follows.
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To see that the map is surjective, for .z; t / 2 V
? put

� D .�V ?bU ?/�1.z � �V ?.u// C u;

and

� D t C 1

2
!.�V .�/; �V ?.�//:

It follows that .�; �/ 2 U
? � u and PV?.�; �/ D .z; t /. This shows that the map

is surjective, but also gives us a formula for the inverse which shows this inverse

map is smooth. Hence PVbU?�u is a smooth map with a smooth inverse, and it is

therefore locally bi-Lipschitz with respect to the Euclidean metric. By the choice

of U,

dimE PV?.A/ � dimE PV?.A \ .U? � u//

D dimE ŒA \ .U? � u/�

� dimE A � m � �:

Since � can be chosen arbitrarily small, this proves the lower bound in (23). The

lower bound in (24) follows from Lemma 3.1 and the Dimension Comparison

Principle applied to the lower bound in (23). The Dimension Comparison Princi-

ple says that for any set B � H
n,

max¹dimE B; 2 dimE B � 2nº � dimHn B � min¹2 dimE B; dimE B C 1º: (29)

This comparison principle, as stated here, appears in [3, eq. 1.4], see [4] for the

original proof in H and see [5] for the proof in the more general case of Carnot

groups.

The sharpness of the Euclidean lower bound in (23) will be deduced from

the sharpness of the Heisenberg lower bound in (24). The sharpness of (24) for

dimHn A � 2n C 1 � m will be proved in two separate cases. For an example with

any Heisenberg dimension in the range Œ0; 2�, let ˛ 2 Œ0; 2� and let A be a compact

subset of the vertical segment

¹.e1; s/ 2 R
2n � R D H

nW s 2 Œ�1=4; 1=4�º;

such that dimHn A D 2 dimE A D ˛, where ej is the j -th standard basis vector in

Euclidean space. Let

U D ¹V 2 Gh.n; m/W j!.e1; w/j > 1=2 for some w 2 V with jwj � 1º:
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Then U is a nonempty open set, and so �n;m .U/ > 0. For .e1; s/; .e1; t / 2 A and

V 2 U, there exists w 2 V with jwj � 2js � t j such that !.e1; w/ D s � t . Hence

dVnHn.PV?.e1; s/; PV?.e1; t // � inf
w2V

.jwj4 C js � t C !.w; e1/j2/1=4

� js � t j
� dHn..e1; s/; .e1; t //2:

It follows that

dimVnHn PV?.A/ D dimHn A

2
for V 2 U.

This shows that (24) is sharp for dimHn A � 2, which by (29) and Lemma 3.1,

implies the sharpness of (23) for dimE A � 1.

For an example with any Heisenberg dimension in the range .2; 2n C 1 � m�,

let A be a set in H
n with

A D C˛ � I; dimE A D ˛ C 1; dimHn A D ˛ C 2; (30)

where C˛ � C
n is a compact set of Euclidean dimension ˛ 2 Œ0; 2n � 1� and I is a

compact interval of positive length (this is based on Case 2 from [4, Section 4.1];

see also Appendix B for an explicit construction). Then

dimE PV?.A/ � ˛ C 1 D dimHn A � 1;

for all V 2 Gh.n; m/. By varying ˛ and using Lemma 3.3, this shows that (24) is

sharp if 2 � dimHn A � 2n C 1 � m. By the Dimension Comparison Principle

(see (29)), this implies that the lower bound of (23) is sharp for dimE A �
2n � m. �

Theorem 1.3 now follows directly from Theorem 1.2 and the Dimension Com-

parison Principle.

To finish this section, we prove the relations in (4).

Sharpness of conjectures and proof of implications in equation (4). The equiva-

lence of Conjecture 1.7 and Conjecture 1.9 follows from Theorem 1.2 and

Lemma 3.3. The equivalence of Conjecture 1.5 and Conjecture 1.6 is similar. The

implication Conjecture 1.4 H) Conjecture 1.8 follows from dimension compar-

ison on the left hand side. The two vertical implications in (4) both follow directly

from dimension comparison on the right hand side.

The sharpness of Conjectures 1.8 and 1.9 follows from the same example as in

Theorem 1.2; which works in the slightly larger range. The sharpness of the other

conjectures is a consequence of the relations in (4). �
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4. An improved bound in H

In this section we prove a result for Euclidean dimension distortion under projec-

tions in H D H
1, which for n D 1 improves Theorem 1.2 in a small range.

Since the family of nontrivial horizontal subgroups inH is the one dimensional

family of lines in C � ¹0º through the origin, the symbols V� and V� will be

used for the 1-dimensional subspaces containing .cos �; sin �/ and .cos �; sin �; 0/,

respectively. In this section, the notation P
V

?
�

will indicate either P L

V
?
�

or P R

V
?
�

; the

left/right designation will only be used if necessary. The proofs of Lemmas 4.1

and 4.2 use the right coset formula in computations, but by symmetry this is

inessential.

The following (standard) lemma essentially says that the family of vertical

projections obeys a weak version of transversality with respect to the Euclidean

metric.

Lemma 4.1. Let R > 0. For any distinct .z; t /, .�; �/ 2 H \ BE .0; R/ and any

ı 2 .0; 1/, the set

¹� 2 Œ0; �/W dE.P
V

?
�

.z; t /; P
V

?
�

.�; �// < ıº

is contained in . 1 intervals of length .R
ı

dE..z;t/;.�;�//
.

Proof. Suppose that jz � �j � jt�� j
2R

. Then

¹� 2 Œ0; �/W dE .P
V

?
�

.z; t /; P
V

?
�

.�; �// < ıº

� ¹� 2 Œ0; �/W j�V ?
�

.z/ � �V ?
�

.�/j < ıº:

By scaling, rotation and by transversality of the zeroes of � 7! sin � , the right

hand side is contained in at most 2 intervals of length . ı
jz�� j

.R
ı

dE..z;t/;.�;�//
.

This proves the lemma in case jz � �j � jt�� j
2R

.

Now suppose that jz � �j < jt�� j
2R

. In this case if jt � � j < 2ı the lemma is

trivial, so assume jt � � j � 2ı. Then,

¹� 2 Œ0; �/W dE.P
V

?
�

.z; t /; P
V

?
�

.�; �// < ıº

�
°

� 2 Œ0; �/W
ˇ

ˇ

ˇ
t � � � 1

2
!.�V�

.z/; �V ?
�

.z// C 1

2
!.�V�

.�/; �V ?
�

.�//
ˇ

ˇ

ˇ
< ı

±

:

(31)

Similarly to (27), Cauchy–Schwarz gives
ˇ

ˇ

ˇ

ˇ

t � � � 1

2
!.�V�

.z/; �V ?
�

.z// C 1

2
!.�V�

.�/; �V ?
�

.�//

ˇ

ˇ

ˇ

ˇ

� jt � � j
2

: (32)
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Since jt � � j � 2ı, the set in the right hand side of (31) is empty, and this finishes

the proof. �

The following lemma is the main result of this section, which will be converted

to a projection theorem via a standard technique. The proof will only be sketched

since it is similar to the case of Euclidean projections in R
3 [25], and also to the

Korányi metric case of left projections in H [15]; the main emphasis will be on

the steps which differ from [15].

Lemma 4.2. Fix s > 1, and let � be a compactly supported Borel measure on H

such that

sup
x2H
r>0

�.BE .x; r//

rs
< 1:

For any � > 2.s�1/
3

, there exist ı0, � > 0 such that

�¹x 2 HWH1¹� 2 Œ0; �/W P
V

?
�

#�.BE .P
V

?
�

.x/; ı// � ıs��º � ı�º � ı�; (33)

for all ı 2 .0; ı0/.

Proof. Assume without loss of generality that � is supported in the unit ball, and

that � < s � 1. Choose � with

0 < � � � � 2.s � 1/

3
; (34)

where the right hand side is positive by assumption. Define A / B to mean

A . ı�O.�/B , and write A � B if A / B and B / A.

Let Z be the set of x’s occurring in (33). The argument that follows works

for any ı > 0 sufficiently small, so we assume ı0 has been suitably chosen and

ı 2 .0; ı0/. For any such ı, dyadic pigeonholing gives a set Z0 � Z with

�.Z0/ � �.Z/ and a fixed dyadic number t with ı � t . 1, such that for each

x 2 Z0 there are three sets H1.x/; H2.x/; H3.x/ � Œ0; �/ that are � 1-separated

for each x, each with H1-measure � 1, such that

�.AE .x; t; 2t/ \ P �1

V
?
�

.BE .P
V

?
�

.x/; ı/// ' ıs�� for all � 2 Hi .x/; (35)

where AE .x; t; 2t/ is the Euclidean annulus around x of inner radius t and outer

radius 2t . This pigeonholing step is virtually identical to those in [25] and [15]

(where more details are provided).

Let

˛ D s � 1 � � C O.�/

s � 1
; (36)
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and let

ƒ D

8

ˆ

ˆ

<

ˆ

ˆ

:

¹.x; x1; x2; x3/ 2 Z0 � .H/3 W
dE .z2; `.z1; z3// � ı˛ if jz � z1j; jz � z3j � t=2º; t ' ı˛;

Z0 � .H/3 ; t / ı˛;

where x D .z; �/ and `.z; w/ is the line through z and w in R
2. The lemma will

follow from the outer two parts of

�.Z/t3ı3.s���1/ / �4 ¹.x; x1; x2; x3/ 2 ƒW x �i xi for all iº

/

´

ı.1�˛/st s t ' ı˛;

t3s t / ı˛:

(37)

where x �i xi means that

t � dE .x; xi / < 2t and dE .P
V

?
�

.x/; P
V

?
�

.xi // < ı; (38)

for some angle � 2 Hi .x/.

The lower bound of (37) essentially follows by fixing x 2 Z0, establishing

the lower bound tıs���1 on the �-measure of the set of xi ’s satisfying x �i xi ,

integrating over x1, x2 and x3 to get t3ı3.s���1/, integrating over x 2 Z0 and

using �.Z/ � �.Z0/. This argument is similar to the one in [25], except that here

as in [15] the points .x; x1; x2; x3/ have the additional requirement that they must

be in ƒ. For the lower bound tıs���1 on the �-measure of the set of xi ’s satisfying

x �i xi , the proof proceeds by sorting the points xi according to the interval Ik

of length ı=t containing the corresponding angle � in (38), using (35) to bound

the contribution of these points below by ıs�� and then adding up � tı�1 such

intervals (this is where Lemma 4.1 is needed to ensure disjointness).

If t / ı˛ this proves the lower bound of (37). If t ' ı˛, then to adjust this

argument to accommodate the requirement that .x; x1; x2; x3/ 2 ƒ, group the

intervals Ik of length ı=t into larger intervals Jj of length ı˛=t , so that each

group contributes � ı˛�1ıs�� to the lower bound. It suffices to show that for

fixed x; x1; x3 with

jz � z1j; jz � z3j � t=2;

and fixed j , the set

E WD ¹x2 D .z2; t2/ 2 HW dE .z2; `.z1; z3// < ı˛;

(38) holds for some � 2 H2.x/ \ Jj º
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is contained in a Euclidean ball of radius � ı˛; the excision of this set will

therefore not harm the lower bound of ı˛�1Cs�� since ı˛s is much smaller than

ı˛�1Cs�� , by the definition of ˛ in (36) (provided the O.�/ factor is chosen

sufficiently large).

To see that E is contained in a ball of radius � ı˛, fix some x2 D .z2; �2/ 2 E.

The projection of E down to R
2 � ¹0º will be shown to be contained in

Nı˛ .`.z1; z3// \ NCı˛ .`.z; z2//; (39)

whereN refers to Euclidean neighbourhood. The first set in the intersection comes

from the definition of E. For the second set, by (38) the line `.z; z2/ is at an angle

of � to the x-axis (up to an error . ı=t ), where � is the angle from (38). Since

by definition of E the corresponding angles of all other points in E have been

grouped into one interval of length ı˛=t , all other lines `.z; z0
2/ with x0

2 2 E are

within an angle . ı˛=t of the line `.z; z2/. Since by (38) all points z0
2 2 E satisfy

jz0
2 � zj � 2t , it follows that the part of E in all of these lines is contained in

NCı˛ .`.z; z2// for some large enough constant C . This proves the projection of

E down to R
2 � ¹0º is contained in the set in (39). The set in (39) is contained in

a ball of radius � ı˛; this follows from ıO.�/-transversality of the lines `.z1; z3/

and `.z; z2/. This transversality is a simple geometric consequence of the angle

separation assumption on the sets Hi.x/; an explicit proof is given in [15]. It

remains to bound the distances between the last coordinate. By (38) and the

preceding argument, any two points .z2; �2/ and .z0
2; � 0

2/ in E satisfy

jz2 � z0
2j / ı˛; j�V ?

�
.z � z2/j < ı; j�V ?

�0
.z � z0

2/j < ı; (40)

ˇ

ˇ

ˇ� � �2 � 1

2
!.�V�

.z/; �V ?
�

.z// C 1

2
!.�V�

.z2/; �V ?
�

.z2//
ˇ

ˇ

ˇ < ı; (41)

and
ˇ

ˇ

ˇ� � � 0
2 � 1

2
!.�V�0 .z/; �V ?

�0
.z// C 1

2
!.�V�0 .z

0
2/; �V ?

�0
.z0

2//
ˇ

ˇ

ˇ < ı; (42)

for some � and � 0. Combining the second and third parts of (40) with (41) and (42)

respectively yields

ˇ

ˇ

ˇ� � �2 � 1

2
!.z; z2/

ˇ

ˇ

ˇ . ı;
ˇ

ˇ

ˇ� � � 0
2 � 1

2
!.z; z0

2/
ˇ

ˇ

ˇ . ı: (43)

Combining this with the first part of (40) and using the triangle inequality gives

j�2 � � 0
2j / ı˛;

which proves that E is contained in a Euclidean ball of radius � ı˛, and finishes

the proof of the lower bound of (37).
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For the upper bound, the case t / ı˛ follows by integrating over .x; x1; x2; x3/

and using the Frostman condition on �, so assume that t ' ı˛. Let

A D A.x1; x2; x3/ D ¹x 2 Z0W .x; x1; x2; x3/ 2 ƒ and x �i xi for all iº:

The upper bound in (37) will be shown by bounding �.A/ and then integrating

over .x1; x2; x3/. Let

A0 D ¹x 2 AW j� � �i j=10 � jz � zi j for all iº;

where x D .z; �/. By similar working to that used to show (43),

A0 � G�1.BE .0; Cı//;

for some large constant C , where GWR3 ! R
3 is the affine map

G.z; �/ D

0

B

@

� � �1 � 1
2
!.z; z1/

� � �2 � 1
2
!.z; z2/

� � �3 � 1
2
!.z; z3/

1

C

A
:

As in the left projection case ([15]), the Jacobian satisfies

jdet DGj D 1

4
j!.z1; z2/ C !.z2; z3/ C !.z3; z1/j ' tı˛;

by the definition of ƒ. Hence

A0 � G�1.BE .0; Cı// � BE .G�1.0/; t�1ı1�˛�O.�//:

It follows that

�.A0/ / ı.1�˛/st�s: (44)

To bound �.A/ it remains to bound �.AnA0/. If x 2 AnA0 then jz�zi j < jt �ti j=10

for some i , so by the condition x �i xi and by similar working to (27), there exists

� such that

d.x; xi / . jt � ti j

.
ˇ

ˇ

ˇt � ti � 1

2
!.�V�

.z/; �V ?
�

.z// C 1

2
!.�V�

.zi /; �V ?
�

.zi //
ˇ

ˇ

ˇ

< ı:

Hence �.A n A0/ . ıs. Combining with (44) gives

�.A/ / max¹ı.1�˛/st�s; ısº / ı.1�˛/st�s;
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since t . 1. Integrating over x1; x2; x3 gives

�4 ¹.x; x1; x2; x3/ 2 ƒW x �i xi for all iº / ı.1�˛/st s;

which is the upper bound of (37).

If t / ı˛, then combining the lower and upper bounds of (37) gives

�.Z/t3ı3.s���1/ / t3s:

Since s > 1, this simplifies to

�.Z/ / ı3˛.s�1/�3.s���1/;

and therefore �.Z/ � ı� by the definition of ˛ in (36). This finishes the proof if

t / ı˛.

Now assume t ' ı˛. In this case the lower and upper bounds of (37) give

�.Z/t3ı3.s���1/ / ı.1�˛/s t s: (45)

Since s > 1, using t ' ı˛ and simplifying gives

�.Z/ / ı.1�˛/sC˛.s�3/�3.s�1��/

� ı.1�˛/sC˛.s�3/�3.s�1/˛ (by (36))

D ıs.1�3˛/

D ı
3s

s�1
.�� 2.s�1/

3
�O.�// (by (36)):

Hence

�.Z/ � ı�;

by the assumption � � � � 2.s�1/
3

in (34). This proves the lemma. �

Corollary 4.3. Let A � H be a Borel set. If dimE A > 1, then

dimE P
V

?
�

.A/ � 2 C dimE A

3

for a.e. � 2 Œ0; �/, and if dimH A > 2, then

dimV� nH P R

V
?
�

.A/ � 1 C dimH A

3
;

for a.e. � 2 Œ0; �/.

Proof. The Euclidean part follows from [15, Lemma 2.1], which says that any

result of the type in Lemma 4.2 implies a corresponding projection theorem with

lower bound s � � for sets of dimension s.

The non-Euclidean part for right coset projections follows from the Euclidean

bound, the dimension comparison principle and Lemma 3.1. �
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5. Open questions

Sharp Euclidean lower bounds. The Euclidean lower bound in Theorem 1.2

is probably not sharp in the entire range. So the first obvious way to further this

work would be to improve this bound, ideally finding sharp dimension distortion

bounds. Since the projection maps are now viewed as maps from R
2nC1 to

R
2n�mC1, purely Euclidean methods could in principle be applied to improve

dimension distortion bounds. For instance, Fourier restriction methods used for

example in [24] might lead to improvements. As we showed, when studying

the problem as a Euclidean one, left and right coset projections cause the same

dimension distortion. Therefore improving the bound in this direction could

further improve the bound for the two problems relative to the more natural metrics

that go with each one.

Sharp VnHn lower bounds. The method we employed here was to study the

problem as a Euclidean one, and then apply the Dimension Comparison Princi-

ple to obtain dimension distortion bounds with respect to the more natural metric

dVnHn . So our bounds are obtained considering the worst dimension distortion

by projections and the worst dimension drop by dimension comparison. In prin-

ciple, these two things need not happen simultaneously so better bounds could

potentially be obtained by considering the maps P R
V? as maps from .Hn; dHn/ to

.V?; dVnHn/ or .V?; dE / and estimating energy integrals with respect to these

metrics directly.

Projections of subsets with specific structure. In [2] the authors gave evidence

to their conjectured almost sure lower bound, in H, by exhibiting some subsets of

H with specific structure that do adhere to their conjecture. For instance, if the

set S is either a C1 curve or a C1 surface then dimH P L
�

S � dimH S for all but

at most 2 values of � . Does something similar hold in higher dimensions for the

projections P L
V? and/or P R

V??

Structure of .V?; dVnHn/. This problem was mentioned in Section 2.2. The

properties of this space discussed in that section hint that it might have the

structure of a non-equiregular Carnot–Carathéodory space. So the problem is

that of finding bracket generating vector fields in R
2n�mC1 such that R2n�mC1

with the induced Carnot–Carathéodory distance is isometrically (or at least bi-

Lipschitz) equivalent to .V?; dVnHn/. Such a description of the space may also

lead to improvements in dimension distortion bounds by projections as it could

provide a better understanding of the metric itself.
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Appendices

A. A slicing result

Let Hm denote the m-dimensional Hausdorff measure on Euclidean space, with

respect to the Euclidean metric. Let M.A/ be the class of compactly supported,

nonzero, finite Radon measures on a set A � H
n. Let N.E; ı/ be the ı-neighbour-

hood of a set E � H
n with respect to the Euclidean metric.

Theorem A.1 (a slicing result). Let A � H
n be a Borel set such that dimA > mC1

and let 0 < HdimE AA < 1, for 1 � m � n. Then for �n;m-almost every

V 2 Gh.n; m/,

H
m.¹v 2 VW dimE ŒA \ .V?v/� D dimE A � mº/ > 0

Note the great deal of similarity between this theorem and Theorem 1.5 in [3].

In fact the proof follows the same techniques and only differ in that here we

consider Hausdorff dimension with respect to the Euclidean metric.

Proof. Eilenberg’s inequality (Theorem 13.3.1 in [8]) tells us that for every V,

dimE ŒA \ .V?v/� � dimE A � m; for Hm- almost every v 2 V:

Therefore, we only need to prove the dimension lower bound. For this, we will

make use of sliced measures in the sense of [20, Section 10.1]. By eq. (10.6)

in [20], we know that for � 2 M.A/ there exists a family of measures �V?v,

defined for Hm-a.e. v 2 V, each supported onV
?v, such that for any non-negative

continuous function ' compactly supported on H
n and any Borel set B � V, the

map v 7!
R

V?v
'.u/ d�V?v.u/ is Borel measurable and satisfies

Z

B

Z

V?v

'.u/ d�V?v.u/ dHm.v/ �
Z

P �1
V

.B/

'.u/ d�.u/; (46)

with equality if PV#� � Hm. In particular if PV#� � Hm, then we have
R

V
�V?v.A \ V

?v/ dHm.v/ D �.A/ > 0, so that at least a Hm-positive measure

set of the measures �V?v are in M.A \ V
?v/. Hence, we want to pick a measure

� 2 M.A/ such that PV#� � Hm for �n;m- almost every V. As the next claim

will show, this is possible precisely when dimE A > m C 1.

Claim. Let � > m C 1 and assume � 2 M.Hn/ satisfies �.BE .p; r// � r� for

all p 2 H
n and r > 0. Then PV#� � HmbV for �n;m- almost every V.
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To see this, denote by � WHn ! R
2n the bundle map �.z; t / D z, and note that

PV#�.BV.v; r// D �.P �1
V

.BV.v; r/// D �.¹p 2 H
nW jPV.p/ � vj < rº/. Now,

Theorem 2.12 in [22] tells us that PV#� � Hm if and only if

lim inf
ı!0

ı�mPV#�.BV.v; ı// < 1 for PV#�-almost every v 2 V:

Using Fatou’s lemma, and Fubini (see e.g. Theorem 1.14 in [22]), we compute
Z

Gh.n;m/

Z

V

lim inf
ı!0

ı�mPV#�.BV.v; ı// dPV#�.v/ d�n;m.V /

� lim inf
ı!0

ı�m

Z

Gh.n;m/

Z

V

PV#�.BV.v; ı// dPV#�.v/ d�n;m.V /

D lim inf
ı!0

ı�m

Z

Hn

Z

Hn

�n;m¹V 2 Gh.n; m/W jPV.p/ � PV.q/j < ıº d�.q/ d�.p/

� lim inf
ı!0

ı�m

Z

Hn

Z

Hn

�n;m¹V 2 Gh.n; m/W
j�V.�.p// � �V.�.q//j < ıº d�.q/ d�.p/

.

Z

Hn

Z

Hn

j�.q/ � �.p/j�m d�.q/ d�.p/;

where the last step follows from Lemma 2.4 in [3]. We now focus our attention on

showing finiteness of this last integral. Since supp.�/ is compact, we can fix R > 0

such that supp.�/ � BE .0; R/. For z 2 R
2n, ¹q 2 H

nW j�.q/�zj � rº is a cylinder

with radius r , so ¹q 2 H
nW j�.q/ � zj � rº \ supp.�/ � B2n

E .z; r/ � Œ�R; R�. This

cylinder can be covered by at most
˙

C r�1
�

balls of radius r , where C D C.n; R/

is independent of z and r . It follows that �.¹q 2 H
nW j�.q/ � zj � rº/ . r��1.

Therefore,

Z

Hn

j�.q/ � zj�md�.q/ D
1

Z

0

�.¹q 2 H
nW j�.q/ � zj � r�1=mº/ dr

D
1

Z

0

�.¹q 2 H
nW j�.q/ � zj � r�1=mº/ dr

C
1

Z

1

�.¹q 2 H
nW j�.q/ � zj � r�1=mº/ dr

. �.Hn/ C
1

Z

1

r
1��

m dr:
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Since � � 1 > m it follows that

1
Z

1

r
1��

m dr < 1:

This tells us that

Z

Hn

Z

Hn

j�.q/ � �.p/j�m d�.q/ d�.p/ . �.Hn/

�

�.Hn/ C
1

Z

1

r
1��

m dr

�

< 1;

which proves the claim.

By Frostman’s lemma, if dim A D ˛ > m C 1 with 0 < H˛.A/ < 1,

then we may choose � 2 M.A/ to be a suitable restriction of H˛ such that

�.BE .p; r// � r˛ for all p 2 H
n and r > 0. From the claim, we know

PV#� � Hm for �n;m-almost every V 2 Gh.n; m/. As noted before, it follows

that for �n;m-almost every V 2 Gh.n; m/, the measure �V?v is in M.A \ V
?v/

for all v in a set of positive Hm measure.

We now aim to show that if m C 1 < s < ˛, then for �n;m-almost every

V 2 Gh.n; m/,

Is�m.�V?v; dE / < 1 for Hm-a.e. v 2 V. (47)

By Fatou’s lemma, Tonelli’s theorem, and by applying (46) with B D B.v; ı/ and

letting ı ! 0, we can compute

Z Z

V

Is�m.�V?v; dE / dHm.v/ d�n;m.V /

� lim inf
ı!0

ı�m

Z Z

V

Z

V?v

Z

N.V?v;ı/

jp � qjm�sd�.p/ d�V?v.q/ dHm.v/ d�n;m.V /

� lim inf
ı!0

ı�m

�
Z Z

V

Z

N.V?v;ı/

Z

V?v

jp � qjm�sd�V?v.q/ d�.p/ dHm.v/ d�n;m.V /

� lim inf
ı!0

ı�m

�
Z Z

Hn

Z

¹v2VWdE .p;V?v/�ıº

Z

V?v

jp � qjm�sd�V?v.q/ dHm.v/ d�.p/ d�n;m.V /:
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Now we apply (46) to the inner double integral, use Tonelli’s theorem, and apply

Lemma 2.4 from [3] to get

Z Z

V

Is�m.�V?v; dE / dHm.v/ d�n;m.V /

� lim inf
ı!0

ı�m

Z Z

Hn

Z

¹qWjPV.p�q/j�ıº

jp � qjm�s d�.q/ d�.p/ d�n;m.V /

.

Z

Hn

Z

Hn

jp � qjm�s j�.p/ � �.q/j�m d�.q/ d�.p/:

This last integral is not quite Is.�; dE /, and in fact the singularity in the kernel

jqjm�s j�.q/j�m is stronger than the one in the kernel jqj�s . Nevertheless, we

will show this integral is finite following the same approach as in the proof of

Theorem 1.5 in [3], by showing that the inner integral is finite for all p and using

the fact that �.Hn/ < 1.

If we denote by L�p the Euclidean left translation by �p, the inner integral

can be written as

Z

Hn

jp � qjm�s j�.p/ � �.q/j�m d�.q/ D
Z

Hn

jqjm�s j�.q/j�m dL�p#�.q/:

Moreover, it is clear that L�p#�.Hn/ D �.Hn/ and L�p#�.BE .q; r// � rs for

every q 2 H
n and r > 0. Furthermore, since � is compactly supported, by scaling

we may assume the support of L�p#� is contained in BE .0; 1/. Therefore it is

enough to show that
Z

Hn

jqjm�s j�.q/j�m d�.q/ . 1;

whenever � 2 M.BE .0; 1// and satisfies �.BE.p; r// � r˛ for all p 2 H
n and

r > 0. Writing q D .�; �/ we have

Z

Hn

jqjm�s j�.q/j�m d�.q/ D
Z

ˇ

ˇj�j2 C �2
ˇ

ˇ

m�s
2 j�j�m d�

�
Z

¹j� j�j� jº

jqj�s d� C
Z

¹j� j<j� jº

j� jm�s j�j�m d�

DW I1 C I2:
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We look at these two quantities separately, the first one being the easier to bound.

Indeed, using a change of variables and recalling our choice of s,

I1 �
Z

Hn

jqj�s d� D
1

Z

0

�.¹qW jqj � r�1=sº/ dr

D
1

Z

0

�.BE .0; r�1=s// dr

D s

1
Z

0

�.BE .0; u//u�s�1 du

� s

1
Z

0

u˛�s�1 du C s�.Hn/

1
Z

1

u�s�1 du < 1:

To bound the second integral we first split the domain of integration:

¹.�; �/ 2 BE .0; 1/W j�j < j� jº

D
1
[

iD0

¹.�; �/ 2 BE .0; 1/W 2�i�1j� j � j�j < 2�i j� jº DW
1
[

iD0

Ai :

Note that for .�; �/ 2 Ai , j�j�1 � 2i j� j�1. Therefore,

I2 �
1

X

iD0

Z

Ai

.2�i j� j/�mj� jm�s d�

D
1

X

iD0

Z

Ai

2imj� j�s d�

�
1

X

i;j D0

Z

Ai;j

2im.2�j /�s d�

D
X

i;j

2imCjs�.Ai;j /;

where

Ai;j D
®

.�; �/ 2 BE .0; 1/W 2�i�j �2 � j�j � 2�i�j ; 2�j �1 � j� j < 2�j
¯

:

To estimate �.Ai;j / we see that Ai;j � B2n
E .0; 2�i�j /� Œ�2�j ; 2�j �. Hence, there

exists a constant C > 0 independent of i and j such that Ai;j can be covered by
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at most C 2�j

2�i�j D C 2i balls of radius 2�i�j . The Frostman condition on � now

tells us that �.Ai;j / . 2i2�˛.iCj /. Going back to the sum we are trying to bound,

we get
1

X

i;j D0

2imCjs�.Ai;j / .
1

X

i;j D0

2i.mC1�˛/Cj.s�˛/;

which is finite since m C 1 � ˛ and s � ˛ are both negative.

Now to complete the proof of the proposition, for V 2 Gh.n; m/ write

EV WD ¹v 2 VW �V?v.Hn/ > 0º;

so that for v 2 EV, �V?v 2 M.A \ .V?v//. Since, by the claim, we know

PV#��Hm, equality in (46) with B D V tells us thatHm.EV/ > 0. Furthermore,

by the previous computation it follows that if mC 1 < s < ˛ then for �n;m-almost

every V 2 Gh.n; m/, the energy Is�m.�V?v; dE / is finite for Hm-almost every

v 2 EV. This tell us that dimE ŒA \ .V?v/� � s � m. Since EV is independent of

s and ˛, the theorem follows by letting s ! ˛. �

B. Construction of a product set

with prescribed Euclidean and Heisenberg dimension

In this section we outline the construction of the set in (30) required in part of the

proof of Theorem 1.2, specifically for the sharpness of the lower bound in (24).

Given ˛ 2 Œ0; 2n � 1�, we require a compact set of the form A D C˛ � I such that

dimE A D ˛ C 1; dimHn A D ˛ C 2; (48)

where I � R is a compact interval. There are two cases; either

˛ D 2j C ˇ; j 2 ¹0; 1; : : : ; n � 1º; 0 � ˇ � 1; (49)

or

˛ D 2j C 1 C ˇ; j 2 ¹0; 1; : : : ; n � 2º; 0 < ˇ < 1: (50)

In the first case, let Cˇ be a Cantor set in R with finite, nonzero ˇ-dimensional

Euclidean Hausdorff measure, and let

A0 D .Cˇ � ¹0º/ � C
j � ¹0º2.n�1/�2j � R;

which clearly satisfies dimE A0 D ˛ C 1. Using Ha
b

to denote the a-dimensional

Euclidean Hausdorff measure living on R
b, the measure

� WD .H
ˇ
2 � H

2j

2.n�1/
� H

1
1/jA0 ;
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is nonzero and supported on A0, and satisfies

� .BHn..z; t /; r// . r˛C2;

for all .z; t / 2 A0 and 0 < r < 1. This can be proved similarly to the proof

that the Hausdorff dimension of Hn is 2n C 2; using invariance by left translation

and that the coordinates from Cˇ � ¹0º vanish in the symplectic form. Hence

dimHn.A0/ � ˛ C 2, and therefore dimHn.A0/ D ˛ C 2 by dimension comparison.

By using homogeneous dilations, this implies that the set

A WD .Cˇ � ¹0º/ � Œ0; 1�2j � ¹0º2.n�1/�2j � Œ0; 1�:

satisfies (48). This finishes the construction in the case of (49). The odd case

in (50) is similar, except that A is defined by

A D .C 1Cˇ
2

� ¹0º/2 � Œ0; 1�2j � ¹0º2.n�2/�2j � Œ0; 1�:
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