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Baker domains and non-convergent deformations

Rodrigo Robles and Guillermo Sienra

Abstract. For an entire transcendental function f with a non-completely invariant Baker do-
main U , we study the pinching process of paths in U with certain restrictions, that we call
Baker laminations. We show that if some curve in the Baker lamination of f joins a point in
the boundary of U with infinity, then the deformation does not converge. Thus, in this particular
case, the boundary of the space of deformations of f is incomplete.

1. Introduction

This paper studies pinching deformations along certain paths contained in a Baker
domain of an entire transcendental function.

Iterating an entire transcendental function f gives rise to a dynamical system
which partitions the complex plane in two completely invariant sets: the Fatou set and
the Julia set. The domain in C where the sequence of iterates ¹f nºn2N forms a normal
family is called the Fatou set F.f /, and its complement is named the Julia set J.f /.
The Fatou set is an open set, and the Julia set is a closed, perfect and uncountable set.
If F.f / ¤ ;, the Julia set has no interior points, and both sets are unbounded in C.
The dynamics in the Julia set J.f / is chaotic following Devaney [14]. See [6, 30] for
a general explanation on the dynamics of these functions.

Let U be a connected component of F.f /, then f n.U / � F.f /, and proper
containment is possible. We say that U is preperiodic if there are p > q � 0 such that
f p.U / � f q.U /; if q D 0, U is p-periodic. If the component U is not preperiodic,
it is a wandering domain.

If U is a p-periodic Fatou component, we have the following classification for
entire transcendental functions (see [6]):

(1) U is an immediate attracting basin of an attracting p-periodic point z0 2 U
and limn!1 f

np.z/ D z0 for every z 2 U .
(2) U is a parabolic basin of a parabolic point z0 2 @U and limn!1 f

np.z/D z0

for every z 2 U .
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(3) U is a Siegel disk where U is biholomorphic to D, and f pjU is analytically
conjugated to an irrational rotation of the disk.

(4) U is a Baker domain where limn!1 f
np.z/ D1 for every z 2 U .

A completely invariant domain U satisfies that f �1.U / D U ; particular things
happen when this is the case (see [2, 7, 9, 31]).

This article continues the research on deformations of holomorphic transcend-
ental functions by pinching curves in Baker domains which started in [15]. The theory
begins with deformations of rational maps by pinching attracting domains to parabolic
domains (see [21, 22, 27, 35]). In [15], it is proved that when we pinch certain entire
transcendental function along some curves in a completely invariant Baker domain,
the limit converges to another transcendental entire function. This can be interest-
ing because the process of pinching defines a path in the deformation space of the
function, so its limit, if it exists, describes a function at the boundary of such space.
Sometimes such limit exists and sometimes it does not. For instance, if the paths
where the pinching is taking place form a closed path which contains in its interior
part of the Julia set, then the limit does not exist (see [27, 35]); here, we obtain under
the conditions stated in Theorem 2, that the limit of the pinching process does not
exist, even if such closed path does not exist.

In this article, we show that if f is an entire transcendental map with a non-
completely invariant Baker domain, there are deformations (by pinching) of f whose
limit does not converge. In the next subsection, we define the curves where the pinch-
ing process is supported.

1.1. Baker laminations

In this context we introduce the following definition, which is a very natural setting
for a pinching process.

Definition 1. Let f W C ! C be an entire transcendental function with a Baker
domain U such that f .U / D U and U is equipped with the hyperbolic metric, let
ƒ be a set of complete geodesics in U . We say that ƒ is a Baker lamination of U , if
the geodesics � 2 ƒ, called leaves henceforth, satisfy:

(1) The leaves of the lamination do not accumulate in U .

(2) If � 2 ƒ, then f n.�/ 2 ƒ, with n 2 N. Also, � � U is in ƒ, if f n.�/ is an
element of ƒ, for some n > 0.

(3) For any �; �0 2 ƒ, � \ �0 D ;, when � ¤ �0.

(4) For any � 2 ƒ, there exists @� WD limt!˙1 �.t/ and @� � @U � yC.



Baker domains and non-convergent deformations 3

The elements of the boundary @� are called endpoints and we write � WD � [ @�.
Due to a theorem of Carathéodory, there is a dense subset in @U of points that are
accessible from the interior of U . Also, 1 is known to be always accessible from
the interior of U . So, in every Baker domain, there is a geodesic that connects some
point in @U with1 and there always exists some Baker lamination with a leaf con-
necting some point in @U with1. Figures 3.2–3.5 display some graphic examples of
laminations in univalent Baker domains of Section 3.1.

Consider a cycle of Baker domains U with p-periodic components Ui , where
U D

Sp�1
iD0 Ui ,f .Ui / D UiC1 if i ¤ p � 1 and f .Up�1/ D U0, so f p.Ui / D Ui . If

ƒ0 is a Baker lamination in U0 under f p , we induce a Baker lamination in all the
components Ui and in all U by defining ƒk D f k .ƒ0/, which is a Baker lamination
in Uk and ƒ D

Sp�1
iD0 ƒi is a Baker lamination in U .

Let us set L WD
S
k2N f

�k.ƒ/, the full orbit of ƒ.
All these conditions were fulfilled in [15] to obtain the convergence of the maps

in the limit of the pinching.
Geodesic laminations on surfaces where introduced by Thurston [36], precisely as

a tool to deform Kleinian groups and in [34] to study dynamics of polynomials; since
then their importance has been growing in geometry and dynamics.

1.2. Intuitive pinching process and results

In order to produce a deformation of a function in a complex variable, there is a
well-known technique by means of quasiconformal maps, which for the sake of the
reader, we explain in Section 2.2, however a nice geometric property of these kind of
homeomorphisms h W C ! C that preserve the orientation is the following (see, for
instance, [20]): If Q is a quadrilateral on C and M.Q/ denotes its modulus, then

K.h/ D sup
Q

M.h.Q//

M.Q/
<1:

The value K.h/ is called the quasiconformal dilatation of h. This definition of a
quasiconformal homeomorphism is equivalent to the one we give in Section 2.2,
which is more useful to us. The equivalence is formally proven in [11].

As we mention above, in this article we consider paths of deformations of certain
entire transcendental function f by contracting each leaf of a Baker lamination until
it becomes a point in a pinching process, which we describe in detail in Section 4. The
idea of the process is to endow each leaf � 2 ƒ of a lamination with a neighborhood
Vı.�/, so that all neighborhoods are disjoint. Let us define Vı.ƒ/D

S
�2ƒ Vı.�/ and

consider V WD
S
k2N f

�k.Vı.ƒ//.
Then, we consider a family of quasiconformal maps ht , t 2 Œ0; 1/ supported in V

with the property that h0 is the identity and ht deforms quadrilaterals in each Vı.�/
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by contracting along the leaf � or equivalently, expanding along the transversals of �.
Then, for the entire maps ft D ht ı f ı h�1t , the result is that as t ! 1, each of the
leaves of L get shorter and shorter until they collapse to a point (see Figure 4.2).

For an entire transcendental map f with a Baker domain U which is not com-
pletely invariant, our main theorem shows that if there is a curve �1 in the Baker
lamination of U that connects a point z0 to 1, then pinching along the lamination
does not converge. More precisely, we prove the following result.

Theorem 2. Let f be an entire transcendental map with a non-completely invariant
Baker domain U . Consider a Baker lamination ƒ, with a leaf �1 having endpoints
at z0 and1, with z0 a non-exceptional point in @U . Then, the pinching deformation
along L does not converge.

A class of functions satisfying the conditions of Theorem 2 are the known exam-
ples of Baker domains which are univalent and of hyperbolic type I, as defined in
Section 2.1.

The next theorem states another situation where divergence of the pinching defor-
mation occurs.

Theorem 3. Let f be an entire transcendental map with a non-completely invariant
Baker domain. Consider a Baker lamination L, with a leaf �a having endpoints at
non-exceptional points. If �a intersects the set of asymptotic values of f , then the
pinching deformation along L does not converge.

The structure of the paper is as follows. In Section 2, we review the properties
of Baker domains and quasiconformal maps that we require. In Section 3, we define
the collections of paths which are a very natural setting for the pinching process and
that we call Baker laminations. These laminations are also going to be relevant in
a forthcoming paper. This section also treats the case of Baker laminations in uni-
valent Baker domains, which are the main examples for this situation. In Section 4,
we review the technique of pinching that we require, and, in Section 5, we prove the
main theorems. For completeness, in Section 6, we include a brief explanation on the
Teichmüller space of f and its relation with the pinching process.

2. Preliminaries on Baker domains and quasiconformal theory

2.1. Baker domains

In the case that f has a Baker domain, Eremenko and Lyubich, in [17], prove that the
closure of the set of critical and finite asymptotic values of f , sing.f �1/, is unboun-
ded. Baker [2] shows that a Baker domain on f is simply connected. Bergweiler and
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Eremenko [8] prove that the inverse image of a non-invariant Baker domain under the
map f that omits a value is disconnected.

We describe the classification given by Cowen. Let U be a domain and let
f W U ! U be holomorphic. We say that a subdomain V of U is absorbing for f , if
V is simply connected, f .V / � V and for any compact subset K of U , there exists
nD n.K/ such that f n.K/� V . LetH D ¹z 2 C j Re z > 0º be the right half-plane.

Definition 4. Let f W U ! U be holomorphic. Then .V;';T;�/ is called an eventual
conjugacy of f in U , if the following statements hold:

(i) V is absorbing for f ;

(ii) ' W U ! � 2 ¹H;Cº is holomorphic and ' is univalent in V ;

(iii) T is a Möbius transformation mapping � onto itself and '.V / is absorbing
for T ;

(iv) '.f .z// D T .'.z// for z 2 U .

The result of Cowen, when U is a Baker domain, can now be stated as follows.

Lemma 5. Let U ¤ C be a simply connected Baker domain of f . Then f has an
eventual conjugacy .V; '; T;�/. Moreover, T and � may be chosen as exactly one of
the following possibilities:

(a) � D H and T .z/ D �z, where � > 1;

(b) � D H and T .z/ D z C i or T .z/ D z � i ;

(c) � D C and T .z/ D z C 1.

For the existence of the different Baker domains that can appear in the dynamics
of a map see, for instance, [10, 24, 33].

An important class of examples for this article are univalent Baker domains.
Barański and Fagella [5] gave the classification of univalent Baker domains of entire
transcendental functions. A point � 2 yC in the boundary of a simply connected domain
U � C is called accessible from U if there exists a curve  W Œ0;1/! U which lands
at �, i.e., .t/ tends to � as t !1. In this context, an access is a homotopy class
within the family of curves b W Œ0; 1�! yC, such that b..0; 1// � U and b.1/ D �,
which is an equivalence relation.

Baker [3] showed that1 is accessible for every Baker domain U ; Barański and
Fagella [5] saw that the iterations of every point in U tend to 1 through the same
access. In the case that f is not univalent, Baker and Domínguez [4] proved that there
exists infinitely many accesses to1 and, in particular, @U is disconnected.

Let f W C ! C be an entire transcendental map and let U � C be an invariant
univalent Baker domain. Then there exists a point � 2 yC, such that the backward
iterates under .f jU /

�1of all points in U tend to � through the same access (which we
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called the backward dynamical access). Moreover, by [5], exactly one of the following
occurs:

� � ¤1 is an attracting fixed point (under .f jU /
�1) in the boundary of U and U is

of hyperbolic type I.

� � D 1 where the backward dynamical access is different from the forward one
and U is of hyperbolic type II.

� � D 1 where the backward dynamical access is equal to the forward one and U
is of parabolic type.

2.2. Quasiconformal theory

In this section, we give basic elements of quasiconformal theory that will be used
in the construction of the pinching deformation. For further study, see Ahlfors [1],
Lehto [25], Gardiner [20], Zakeri and Zeinalian [37] and, specifically for holomorphic
dynamics and for this paper, Branner and Fagella [5].

We say that f W I !R is absolutely continuous on the interval I if for every " > 0,
there exists ı > 0 so that for finite intervals .xk; yk/� I satisfying

P
k jxk � ykj< ı,

this implies
P
k jf .xk/ � f .yk/j < ". Now, a continuous real-valued function u is

said to be absolutely continuous on lines (ACL) in a domain U � C if for each
closed rectangle ¹x C iy j a � x � b; c � y � dº � U , the function x 7! u.xC iy/

is absolutely continuous in Œa; b� for almost all y 2 Œc; d � and the function y 7!
u.xC iy/ is absolutely continuous in Œc; d � for almost all x 2 Œa; b�. A complex func-
tion is absolutely continuous in A (ACL) if its real and imaginary parts are ACL in U .

A mapping h W U ! V isK-quasiconformal if and only if h is a homeomorphism,
h is ACL in U , and j@ Nzhj � k j@zhj almost everywhere, with

k WD
K � 1

K C 1
< 1:

In this context, the complex dilatation or Beltrami coefficient of h is defined as

�h.z/ WD
@ Nzh.z/

@zh.z/
:

Conversely, let �.z/ be a measurable complex-valued function defined on U for
which k�k1 D k < 1 almost everywhere, then we say that � is a k-Beltrami coeffi-
cient of U . And then we ask if there is a quasiconformal map h satisfying the Beltrami
equation @ Nzh.z/D �.z/@zh.z/. The answer is the next theorem, written as it is in the
standard reference from Ahlfors and Bers [1]. Bojarski, in [12], explains that “the first
sketch for a complete proof for the existence problem” is due to Morrey [32].
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Theorem 6 (Measurable Riemann mapping theorem). The Beltrami equation gives a
one-to-one correspondence between the set of quasiconformal homeomorphisms of yC
that fix the points 0; 1;1, and the set of measurable complex-valued functions � on
yC for which k�k1 < 1.

Extending the theory to Riemann surfaces S; S 0, if we have a homemorphism
h W S ! S 0 and there exists a K � 1 so that h is locally K � quasiconformal when
it is expressed in all the charts, then h is quasiconformal. As explained in [5], Duf
defines ellipsesEu � TuU via the inverse image of circles centered at the origin under
Duf with Beltrami coefficient

�h.z/ WD
@ Nzh.z/

@zh.z/
:

A Beltrami form or a Beltrami differential � on a Riemann surface S is a .�1; 1/
differential on S , which is expressed as �.z/d Nz=dz.

Let h W S! S 0 be a quasiconformal map between two Riemann surfaces S and S 0,
with arbitrary charts ' W US ! U and '0 W US 0 ! U 0 on points s 2 S and h.s/ 2 S 0

where z D '.s/ and z0 D '0.s/, respectively. If �0 is a Beltrami form on S 0 then the
pullback h��0 is defined as the Beltrami form on S , which in the chart ' has the
Beltrami coefficient

.h��0/'.z/ D h
�.'��0/ D .' ı h/

��0 D �'ıh;

where �0'0 .z
0/ is the Beltrami coefficient of �0 in the chart '0 and �0 D 0.

So, if we have a holomorphic map f , it is required that � is invariant under pull-
back by f and we want to deform it via quasiconformal conjugation in such a way
the deformations will be holomorphic; we can do it via a quasiconformal map such
that h��0 D �. The measurable Riemann mapping theorem guarantees its existence
via integration (see [13]).

On the other hand, let U � C, and let T U D
S
u2U TuU be the tangent bundle

over U . An almost complex structure on U is a measurable field of ellipses � � T U ,
i.e., we put an ellipse Eu � TuU defined up to scaling for almost every point u 2 U ,
with semi-major axis M , semi-minor axis m, and � 2 Œ0; �/ the chosen argument of
the direction of the minor axis, such that the map u 7! �.u/ from U to D is Lebesgue
measurable, where�.u/D M�m

MCm
ei2� and is denoted as the Beltrami coefficient ofEu.

Also, �0 is defined as the standard complex structure made with a field of circles,
i.e., M D m.

Actually, the Beltrami coefficient of a quasiconformal map h has the same inform-
ation of the Beltrami coefficient of an ellipse Eu. This fact gives an equivalence
between quasiconformal maps and almost complex structures.
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3. Baker laminations and univalent Baker domains

The pinching deformations is done along differentiable curves and a specific neigh-
borhood of each curve. Since a Baker domainU of an entire transcendental function is
simply connected then there exists a uniformization  W H! U of U , hence inherits
a hyperbolic metric from  . Here H WD ¹z 2 C j Im z > 0º. We choose the pinching
curves to be sets of geodesics in U and the neighborhoods to be hyperbolic neighbor-
hoods as follows:

Let ˛ WD t C i.�=2/ with t 2 R and Bı WD R � .�
2
� ı; �

2
C ı/ � C with ı < �

2
.

Applying the exponential map, we define ˇ WD exp.˛/ D ¹i t j t 2 RCº and

V 0ı .ˇ/ WD exp .Bı/ � H;

where V 0
ı
.ˇ/ is called a good neighborhood of thickness ı of the complete geo-

desic ˇ. If  is any other complete geodesic in H, there is a unique oriented isometry
M 2 PSL.2;R/ of H such that M.ˇ/ D  and we say that

V 0ı ./ WDM.V
0
ı .ˇ//

is a good neighborhood (of thickness ı) for  (see Figure 3.1).

Figure 3.1. Definition of a good neighborhood of a geodesic.
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Now, consider that � 2 U is a complete geodesic and  2 H any geodesic such
that  ./ D �, to which we put a good neighborhood V 0

ı
./, and we define Vı.�/ WD

 .V 0
ı
.//:

3.1. Univalent Baker domains

The simplest situation for constructing Baker laminations is when the domain is an
univalent Baker domain of hyperbolic type I.

In this case we extend the uniformization  W H ! U to the boundary and we
name it  W H! U , and we do it such that  .1/ D .1/ and  .0/ D �, where � is
the repelling fixed point from section 2.1, in fact all points of @U different to � tend
to1 under iteration.

Baker laminations in U can be classified in three categories:

(a) Consider the geodesic�1which goes from � to1, which is invariant under f .
It is the only leaf in ƒ. In this case, ƒ D ¹�1º is a Baker lamination and
L D

S
n f
�n.�1/ (see Figure 3.2).

(b) Geodesic leaves that none of their endpoints are attached to1 (see Figure 3.3).

(c) The geodesic lamination that contains a leaf of type (a) and leaf of type (b)
(see Figure 3.4).

Figure 3.2. Case (a). In light blue, the action of f in U and the geodesic �1.

Figure 3.3. Case (b). A Baker lamination with no endpoints attached to1.
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Figure 3.4. Case (c). An example of a mixture of case (a) and case (b).

Figure 3.5. The geodesic � and all of its forward and backward iterates in U . This is not a Baker
lamination.

Theorem 2 states that the pinching along laminations of case (a) or (c) does not
converge. The case (b) will be studied in a forthcoming paper.

Note that in cases (a) and (c), there cannot exist a leaf � 2 ƒ connecting z0 2 @U
to 1 with z0 ¤ �. Because then, by condition (2) in the definition of Baker lami-
nations, there would be preimages of � accumulating on �1 in contradiction with
condition (1). The situation is illustrated in Figure 3.5.

Let us interpret geometrically the above situation. If U is a Riemann surface and
f is an endomorphism of U , the grand orbit of z 2 U is defined as the set ¹z0 2 U j
f n.z0/ D f m.z/ for some n;m � 0º. We say that z � z0 if their grand orbits are the
same, which is an equivalence relation and we call it the grand orbit relation. Under
this relation, we build the quotient space U=f . So, if U is of hyperbolic type I, f jU
is conjugated to g WH!H with g.w/D aw, a 2 R. Let ˇ D ¹i t j t > 0º, then H=g

is an annulus A with core geodesic Q̌ WD ˇ=g, i.e., the unique closed geodesic. Since
g.1/ D a, length. Q̌/ D log.a/ D �=mod.A/ (see [28]).
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An example by Bergweiler (see, for instance, [5]), shows that each of the family
of functions fn.z/ D n � .n � 1/ log.n/C nz � ez , n > 1, has a Baker domain U
of hyperbolic type I , which is not completely invariant and contains a left half-plane
¹Re.z/ < nº. Its boundary is locally connected, and Postcrit.f / \ U D ;, � is real,
with multiplier n. In this case we set �1 to be the interval .�1; �/.

4. Pinching deformation on Baker laminations

It is pretty common to study the theory of holomorphic dynamics introducing deform-
ations of a map via conjugation classes, i.e., analyzing certain space of functions. One
of these tools is the pinching deformations introduced by [27] to prove that the com-
ponent of J-stability is unbounded in CP2dC1 for rational maps with disconnected
Julia sets and with connected Julia sets with some restrictions on accesses. Tan Lei,
in [35], generalized this concept and gave it a different approach. In general terms,
it consists on taking a function f and a curve  with an attracting fixed point and a
repelling fixed point as boundary points and deform f , via quasiconformal conjuga-
tions, shrinking  to a point, i.e., to fuse the attracting point with the repelling fixed
point creating a parabolic fixed point. It is this approach we want to adapt to tran-
scendental entire maps with Baker domains, where the final points of the pinching
curves are both in J.f /.

We will follow [22] closely to build the deformations in this particular case.
Let f be an entire transcendental mapping with at least one periodic cycle of

Baker domains of period p, U D ¹U0; U1; : : : ; Up�1º, with a Baker lamination ƒ
in U .

Take Lb; Ly ; Lr 2 R such that 0 < Lb < Ly < Lr and a function � W Œ0; 1/!
ŒLr ;1/ such that � 2 C 1 Œ0; 1/ and it is an increasing function. With � we build the
closed set M � R2 bounded by�

Œ0; 1� � ¹Lbº
�
[
�
¹0º � ŒLb; Lr �

�
[
�
¹1º � ŒLb;1/

�
[
®
.t; �.t//

ˇ̌
t 2 Œ0; 1/

¯
:

Now choose vt .y/ such that vt .y/ D y for y 2
�
Lb; Ly

�
and .t; y/ 7! .t; vt .y// is a

C 1-diffeomorphism from Œ0; 1� � ŒLb; Lr � n ¹.1; Lr/º onto M (see Figure 4.1).
For t D 1; y ¤ Lr consider this technical assumption: For any L0 < Lr , there

is t .L0/ 2 .0; 1/ with t .L0/! 1 as L0 ! Lr such that for any .s; y/ 2 .t.L0/; 1� �
ŒLb; L

0�, we take vs.y/ D vt.L0/.y/.
With vt , we build a map zPt defined on the strip ¹x C iy j x 2 R; y 2 ŒLb; Lr �º

with t 2 Œ0; 1�, where
zPt .x C iy/ D x C ivt .y/
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Figure 4.1. The diffeomorphism .t; y/ 7! .t; vt .y//.

and it has the next properties:

(1) It commutes with any real translation.

(2) It is the identity map on R � ŒLb; Ly �.

(3) Its coefficient of the Beltrami form is

@ Nz zPt

@z zPt
.x C iy/ D

1 � @yvt .y/

1C @yvt .y/
;

which is continuous on

.t; x C iy/ 2
�
Œ0; 1� �R � ŒLb; Lr �

�
n
®
.1; x; Lr/ W x 2 R

¯
;

its norm for every t 2 Œ0; 1/ is locally uniformly bounded away from 1 and
tends to 1 as .t; x; y/! .1; x; Lr/.

Now we have to connect these bands with those in the Baker lamination. If BC
ı
WD

R� Œ�
2
; �
2
C ı�, i.e., the upper part ofBı , we define the map SC WR� ŒLb; Lr �!BC

ı

as SC.z/ D ı
Lr�Lb

.z C iLr/C i.
�
2
/. Also for ‰ W H! U a Riemann mapping and

M 2 PSL.2;R/, we define the map �C WD‰ ıA ı expıSC WR� ŒLb; Lr �!V C�Ui

where V C�V , with V a good neighborhood of �2ƒ, and with a well defined inverse
branch  C W V C ! R � ŒLb; Lr �.
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For t 2 Œ0; 1/, let .� 0t /C WD . QPt ı C/
�.�0/ be the pullback of the standard almost

complex structure on BC
ı

.
Similarly, forB�

ı
WDR� Œ�

2
� ı; �

2
�we define the map S� WR� ŒLb;Lr �!B�

ı
as

S�.z/D
ı

Lr�Lb
.z � iLr/C i.

�
2
/ for V � � V , making the deformation is symmetric.

We define the map �� WD ‰ ıM ı exp ıS� W R� ŒLb;Lr �! V � � Ui , with inverse
branch  � W V � ! R � ŒLb; Lr �. For t 2 Œ0; 1/, let .� 0t /� WD . QPt ı  �/

�.�0/ be the
pullback of the standard almost complex structure on B�

ı
.

Then, we spread .� 0t /C and .� 0t /� to the grand orbit V by defining

�t WD
[
n

�
.f n/�.� 0t /C [ .f

n/�.� 0t /�
�
;

and we define �t outside of V on the Riemann sphere by setting �t WD �0.

4.1. Almost complex structures associated to a Baker lamination

Let f be an entire transcendental mapping with at least one periodic cycle of Baker
domains of period p, U D ¹U0;U1; : : : ;Up�1º, with a Baker laminationƒ in U . Con-
sider an almost complex structure .�t /t2Œ0;1/ as defined above in each of the leaves of
the Baker lamination in U0 in such a way that if l1; l2 2 ƒ \ U0 and l1 D f m.l2/,
for some m 2 N, then the almost complex structure on the neighborhood of l1 is the
pushforward of the almost complex structure on the neighborhood of l2. Now define
an almost complex structure inƒ\Uk by pushforward the almost complex structures
in ƒ \ U0, for k D 1; : : : ; p � 1. Extend the almost complex structure to the grand
orbit V by pulling back the almost complex structures of each Uk 2 U .

Definition 7. Let f be an entire transcendental map with at least one periodic cycle
of Baker domains U D ¹U0; U1; : : : ; Up�1º with a Baker lamination ƒ in U . The
family of almost complex structures .�t /t2Œ0;1/ defined above, defines a pinching
deformation of f with support in V . These structures come with quasiconformal maps
ht W yC! yC via integration by the measurable Riemann mapping theorem, that we can
normalize assuming ht fixes1 and two points p;q 2 J.f /: Then, ft WD ht ı f ı h�1t
is an holomorphic map for t 2 Œ0; 1/.

Furthermore, we say that a pinching deformation converges uniformly if ht � H

(double arrow means uniform convergence, with respect to the spherical metric) and
the non-trivial fibers of H are the leaves in the lamination L, in the sense that
diams.ht . N//! 0, as t ! 1, for each  2 L. Here, diams.A/ denotes the spherical
diameter of a set A � yC.

See Figure 4.2 for a visualization of the pinching process at the time t . Consider
that we have put two bands in the domain and contradomain of QPt that are not well
drawn mathematically but help to visualize the situation.
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Figure 4.2. The map ht .z/ for the pinching process.

We are interested in showing the circumstances when a pinching deformation con-
verges uniformly or does not.

In this context, we have the next lemma.

Lemma 8 ([22, Lemma A]). Let g W C ! C be a continuous surjective map. For
t 2 Œ0; 1/, let Ft ; Gt W yC ! yC two families of homeomorphisms. Assume that Ft ; Gt
converge uniformly with respect to the spherical metric to continuous maps F1; G1
respectively, and g maps each fiber of F1 into a fiber of G1. Then

gt WD Gt ı g ı F
�1
t W C ! C

converges uniformly with respect to the spherical metric to a continuous map g1, and

g1 ı F1 D G1 ı g:

Taking Ft DGt WD ht in the lemma above and g WD f , it implies that if ht �H ,
then gt WD ft � F in the spherical metric.

On the other hand, let us observe that if a sequence of functions ft W C! C does
not converge in the spherical metric (restricted to C), then it does not converge in the
Euclidean metric of C.

We make some remarks related to the convergence of a pinching deformation.
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Remark 9. From condition (3) above, the Beltrami coefficient of zPt .x C iy/ is

1 � @yvt .y/

1C @yvt .y/
:

By the formula in Section 2.2, we have that the quasiconformal dilation of zPt is
K. zPt / D

1
@yvt .y/

. Therefore K. zPt ı  ˙/ D 1
@yvt .y/

, which has support in the grand
orbit of

S
�2ƒ Y.�/ D Y. Since @yvt .y/ ! 0 when y ! Lr and t ! 1, then

K. zPt ı  ˙/!1. From the definition of quasiconformal maps ht by the structures
�t , we obtain thatK.ht .Q//!1, for a quadrilateralQ that intersects ��L. There-
fore, for z1 and z2 two points in a leaf ��L, by taking a quadrilateral with two oppos-
ite sides intersecting the segment � in z1 and z2, we have that de.ht .z1/; ht .z2//! 0

as t ! 1. See the left-hand side of Figure 4.2.

Remark 10. Also, from condition (3) on zPt , we have that the coefficient of Beltrami
of zPt is locally uniformly bounded away from 1 at any point .t; x; y/ ¤ .1; x; Lr/,
therefore following the argument in Remark 9, we have that K.ht .Q// is bounded
away from 1 and so no quadrilateral in the complement of L shrinks to a point in
the process of pinching. This implies that if D is any disc in C n L, then ht .D/ is
homeomorphic to D for t 2 Œ0; 1/. When t D 1, some problems may appear (see
Remark 11 in Section 5).

5. Main theorem

As mentioned in the introduction, the deformations of some completely invariant
Baker domains were studied in [15]. In particular, in that article it is proven that the
Fatou function f .z/ D e�z C z C 1 can be pinched to obtain the Baker–Domínguez
function f .z/D e�z C z (see Figure 5.1). The Fatou function has a completely invari-
ant doubly parabolic Baker domain that contains the right half-plane and it is pinched,
so the result is an infinite union of invariant doubly parabolic Baker domains.

In Theorem 2, we consider the case when the Baker domain is not completely
invariant, we prove that for certain curves, the pinching process along such curves is
divergent.

Proof of Theorem 2. As z0 is a non-exceptional point,
S1
nD1 f

�n .z0/ D J.f / and
so there is a subsequence ¹znk

º WD ¹f �nk .z0/º ! z0, as nk !1. Then, we have
a family of curves ¹nk

º WD ¹f �nk .�1/º � L � ¹f �nk .U /º with ¹znk
º and1 as

endpoints of each one.
Since U is not completely invariant we have that the curves ¹nk

º are not in U for
nk ¤ 0 and they are disjoint in C (see [8]). Thus, for "0 > 0, there is a natural number
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Figure 5.1. Pinching the Fatou function (above) to the Baker–Domínguez function (below).

N"0
such that for every nk > N"0

, the subsequence ¹znk
º is contained in D"0

.z0/ \

.yC n U/. Notice that 1 is accessible from yC n ht .U / by the curves ht .¹nk
º/ (all

these curves are attached to1) (see Figure 5.1).
The duality between �1 being in U and ¹nk

º not being in U is the heart of the
problem of convergence, as we will see now.

By the classification of the Baker laminations in Section 3.1, f .�1/D �1. Then

ft .ht .�1// D .ht ı f ı h
�1
t / .ht .�1// D ht .f .�1// D ht .�1/ :

Let us assume that the pinching deformation along L, converges uniformly via
the quasiconformal maps ht , so ht � H as in Definition 7. Then, for  2 L,
diams.ht . N// ! 0 as t ! 1. Since ht fixes infinity for all t , then ht ./ tends to
infinity, if  2 L. In particular, ht .nk

/!1 as t ! 1.
Notice that the set

Ct D

1[
kD0

ht .nk
/ [ ht .�1/;

disconnects the complex plane in two regions�i , such that�i \U ¤ ;, i D 1; 2. We
have two cases: either some region ht .�i / collapse to1 as t ! 1, i.e., h1.�i / D1
or none of the regions collapse. By hypothesis, we have that ft converges uniformly
to a entire transcendental function g and the non-trivial fibers of the pinching are the
leaves of the lamination L, so the family ht .�i / can not collapses to a point when
t ! 1, i D 1; 2 (see Figure 5.2). In Remark 11 below, we explain why we imposed
this requirement on the fibers, in our situation.
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Figure 5.2. The pinching process in the proof of Theorem 2. In this figure, there are two different
regions in the complement of Ct , that intersects ht .U /.

By continuity of ht , limnk!1
ht .znk

/D ht .z0/ for every t 2 Œ0; 1�, and it follows
that ¹ht .znk

/º � D"0
.ht .z0// \ .yC n ht .U //, for some "0 > 0. Since the pinching

deformation is convergent, then by the discussion above,

lim
t!1

ht .z0/ D h1.z0/ D1:

Since, by hypothesis, the regions ht .�i / do not collapse, they contain an open set
for t 2 Œ0; 1�. Then there are two open discs, one at each side of ht .�1/ and contained
in ht .U nƒ/ of radius rt > 0, such that 0 < rt < diams.ht .nk

//, for nk > N"0
, for

all 0 � t � 1.
Observe that there is t0 such that diams.1;ht0.z0//< "0, thereforeD"0

.ht .z0//\

.yC n ht .U // has two components. One component contains the endpoints ¹ht .znk
/º,

the other component contains the access to1 from yC n ht .U /.
This implies that for every curve in ¹ht .nk

/º, its intersection with D"0
.ht .z0//

has two components. But this is a contradiction, because the convergence of the pinch-
ing implies that diams.ht .nk

//! 0 when t ! 1. Thus the pinching along L does
not converge uniformly.

Remark 11. Observe that for every t 2 Œ0; 1�, we have ht .�/ \ J.ft / ¤ ;. If
p 2 J.f /, we have that pt WD ht .p/ 2 J.ft / and, by Montel’s theorem, there is an
m � 0 such that for Vpt

any neighborhood of pt , f mt .Vpt
/\ ht .�/ ¤ ;. The integer

m depends on Vpt
. Therefore Vpt

\ f �mt .ht .�// ¤ ;.
Assuming that the functions ft converge uniformly to an entire function g and

ht .�/ collapses to 1 as t ! 1 then there exists p 2 J.f / but p … �, such that
pt 2 J.ft / but pt … ht .�/ for t 2 Œ0; 1�; otherwise, J.g/D1. Therefore, p1 2 J.g/
and for any neighborhood Vp1

of p1, there is an inverse branch of 1 in Vp1
. This

implies that p1 is either a prepole or the accumulation point of different preimages of
1 and p1 is an essential singularity, so g is not an entire function.
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Example 12 (An example of Theorem 2). Consider the example at the end of Sec-
tion 3.1, where f .z/ D 2 � log.2/C 2z � ez has a Baker domain U of hyperbolic
type I , which is not completely invariant and contains the left half-plane ¹Re z < 2º.
The lamination on U , �1 consists of one leaf which is the interval .�1; �/, where
the point � D z0 is a fixed point of f in J.f / and L D

S
n f
�n.ƒ/. This is case (a).

Hence, by the theorem above, pinching along L does not converge uniformly.

Observe that in this example, the core curve of the cylinder U=f is pinched and
the limit surface exists, but the limit function does not.

On the other hand, there is a possibility that a Baker lamination intersects the set
of asymptotic values of a map f , then we have Theorem 3.

Proof of Theorem 3. If a leaf �a 2L intersects the set of asymptotic values of f , then
there is a leaf � 2 L with f .�/D �a such that � is in some component of the inverse
image of U . Moreover, � has one of its extreme points at 1. Then, we follow the
same argument as in the proof of Theorem 2, to show that the pinching deformation
does not converge.

Remark 13. The set of quasiconformal deformations of a map is really a class of
quasiconformal maps, as we will see in Section 6. This is in order to avoid trivial situ-
ations. For instance, in case that ht .z/ converges, the quasiconformal maps Qht .z/ WD
ht .z/=.1 � t / does not converge, even though it integrates the same structure. How-
ever, in our theorems above, we show that the pinching deformation does not con-
verge, no matter which integrating map ht is chosen for each t .

6. Teichmüller space and pinching

Extending the work of Sullivan and McMullen on rational maps [29], the global study
of deformations of transcendental entire functions is first carried out by Harada and
Taniguchi [23], in the case that the singular values are a discrete set of C. Then Fagella
and Henriksen in [18, 19] generalize the results of Harada and Taniguchi without
restrictions. The aim of this section is to relate briefly pinching deformations and
Teichmüller space.

We say that two quasiconformal automorphisms '1; '2 of V are equivalent if
there exists a conformal automorphism  of V such that '1 D  ı '2. Def.f; V /,
the deformation space of f , is the set of equivalence classes of quasiconformal auto-
morphisms ' of V , which satisfies ' ı f D g ı ' for some holomorphic map g on V .
We say that such a g is quasiconformally conjugated to f . The measurable Riemann
mapping theorem implies that Def.f; V / is identified with the unit ball of the space
of all invariant Beltrami differentials for f (see [29]). Then, we identify the set of
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all quasiconformal automorphisms h of V admitting a quasiconformal isotopy to the
identity compatible with f , and we denote it by QC0.V /.

The group QC0.V / acts on Def.f; V / by !�� D � ı !�1.

Definition 14. The Teichmüller space of f in V , denoted by T .f; V /, is the space
Def.f; V /=QC0.V /:

If f W V ! V is a covering map, then V=f denotes the set of grand orbits of f ,
with the quotient topology. We have the following theorem [19,23,29]: if f W V ! V

is a holomorphic covering map and the grand orbit relation of f is discrete and V=f
is connected, then V=f is a Riemann surface and T .f; V / ' T .V=f /.

When V D U n S , where U is a Baker domain and S is the grand orbit of the
singular values of f that are in U , then f W V ! V is a covering map. When U is
a univalent Baker domain, we have that S is empty and f W U ! U is a covering
map. Since U is attached always to infinity, and f is an entire transcendental map,
the conformal maps  in the definition of Def.f; V / belong to the Affine conformal
group of the complex plane.

The class of quasiconformal pinching maps ht defined in the previous sections,
restrict to U and are elements in Def.f; U / so their class Œht � is in T .f; U /. The
question is what kind of path is the map � W Œ0; 1/! T .f; V /, defined as �.t/D Œht �.

Let us consider the Finsler metric in T .f; V / given by the Teichmüller metric
in T .V=f /, this makes T .f; V / a complete metric space. Then, the so-called Teich-
müller rays, which are associated to quadratic differentials, are geodesic rays that
move to infinity from their origin by a theorem of Marden (see, for instance, [26, Sec-
tion 2]). Such geodesics are described by scaling horizontal and vertical foliations of
a quadratic differential.

To answer the question above, let us consider from here on, the simplest case of
an entire map f with U an invariant Baker domain of hyperbolic type I, with Baker
lamination ƒ which consists of only one leaf which is the geodesic �1, as discussed
in Section 3.1. In this case, U is uniformized by the upper half plane H by a biholo-
morphism and the function f is conjugate to the transformation T .z/D az, for some
a 2 R, as explained in Section 2.1. The curve �1 in the uniformization corresponds
to the imaginary axis in H and T .U=f / isometric to T .H=T /. Pinching H along the
imaginary axis is equivalent, in the Fuchsian context, to the family of transformations
Tt .z/ D ht ı T ı h

�1
t .z/, where ht are the quasiconformal maps ht .z/ D zjzj�t ,

t 2 Œ0; 1/. So if ' is the uniformization of U , pinching along �1 is equivalent to
considering the one parameter family ft , where '.ft .z// D Tt .'.z//.

Now, observe that the Beltrami coefficient

�t .z/ D
@ht=@ Nz

@ht=@z
D Kt

z

Nz
;
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where Kt D
�t=2
1�t=2

and for the quadratic differential  t .z/ D Kt 1z2dz
2, we have that

�t D
j t j

 t
. This implies that the Beltrami coefficient �t is extremal, so the map t 7!

Œ�t � � T .H=T / is an isometry with respect to the Euclidean metric in Œ0; 1/ and
the Teichmüller metric in T .H=T /, according to [16, Theorem 6]. So the pinching
process along �1 is a geodesic in T .U=f /.
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