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Hausdorff dimension

of intersections with planes

and general sets

Pertti Mattila

Abstract. We give conditions on a general family P�WRn ! R
m; � 2 ƒ; of orthogonal

projections which guarantee that the Hausdorff dimension formula dim A\P �1
�

¹uº D s�m

holds generically for measurable sets A � R
n with positive and finite s-dimensional

Hausdorff measure, s > m, and with positive lower density. As an application we prove for

measurable sets A; B � R
n with positive s- and t-dimensional measures, and with positive

lower density that if s C .n � 1/t=n > n, then dim A \ .g.B/ C z/ D s C t � n for almost

all rotations g and for positively many z 2 Rn.
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1. Introduction

Let P�WRn ! R
m; � 2 ƒ; m < n; be a family of orthogonal projections and

suppose that ƒ is equipped with a measure !. By an orthogonal projection we

mean a linear map P WRn ! R
m which maps the orthogonal complement of

the kernel of P isometrically onto Rm. If this is the full family of orthogonal

projections and a Borel set A � R
n has Hausdorff dimension dim A > m,

then according to Marstrand’s projection theorem, [8], the Lebesgue measure

L
m.P�.A// > 0 for almost all �. Kaufman gave a simple proof for this in [7]

which shows that for any finite Borel measure � with finite energy Im.�/ the

push-forward P�]� is absolutely continuous with density in L2.Rm/ for almost

all �. Later this method has been applied to many strict subfamilies of projections

by several people, see [4], [21], [19], and [16], and also Chapters 4, 5, and 18

of [14].

Let A � R
n be measurable with respect to the s-dimensional Hausdorff

measure H
s with 0 < H

s.A/ < 1. If s > m, then for typical .n � m/-planes

https://creativecommons.org/licenses/by/4.0/
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V dim A \ V D s � m due to results originating in [8], see also [13], Chapter 10,

and [14], Chapter 6. In Section 3 we investigate analogues of this for restricted

families of projections. Suppose we know for some s > 0 that P�]� 2 L2.Rm/

for almost all � 2 ƒ for all measures � which satisfy the s-dimensional Frostman

growth condition. Can we then conclude that if A � R
n is Hs measurable with

0 < H
s.A/ < 1, then dim A \ P �1

�
¹uº D s � m holds for u 2 Rm in a set of

positive Lebesgue measure and for almost all � 2 ƒ? In Theorem 3.1 we show

that this is true if the L2-boundedness holds in a quantitative sense and if A has

positive lower density:

lim inf
r!0

.2r/�s
H

s.A \ B.x; r// > 0 for Hs almost all x 2 A: (1.1)

In Section 4 we apply this to the Hausdorff dimension of intersections. We

prove that if A � R
n is H

s measurable with 0 < H
s.A/ < 1, B � R

n is H
t

measurable with 0 < H
t .B/ < 1, and both have positive lower density, and if

s C .n � 1/t=n > n, then for almost all orthogonal transformations g 2 O.n/,

dim A \ .g.B/ C z/ D s C t � n for z 2 Rn in a set of positive Lebesgue measure.

Earlier this was proved in [11] under the conditions s C t > n; t > .n C 1/=2,

and without any lower density assumptions. I believe that both assumptions

t > .n C 1/=2 and s C .n � 1/t=n > n are superfluous, and s C t > n

should suffice. Under the condition s C .n � 1/t=n > n the weaker inequality

dim A \ .g.B/ C z/ � s C .n � 1/t=n � n � "; " > 0; holds for general Borel sets.

This follows combining (4.3) with the results of [12], see Theorem 4.3.

I believe Theorems 3.1 and 3.4 and the inequalities dim A \ .g.B/ C z/ �

s C t � n in Theorem 4.1 should hold without any lower density assumptions, but

the method seems to require it. In general, the opposite inequality can fail very

badly, see [5].

Hausdorff dimension of plane sections has been studied in [8], [9], [20],

and [18], and of general intersections in [6], [10], [11], [12], [15], [3], and [1].

They have also been discussed in the books [13] and [14].

I would like to thank the referee for useful comments.

2. Preliminaries

We denote by L
n the Lebesgue measure in the Euclidean n-space Rn; n � 2;

and by �n�1 the surface measure on the unit sphere Sn�1. The closed ball

with centre x 2 R
n and radius r > 0 is denoted by B.x; r/ or Bn.x; r/. We

set ˛.n/ D L
n.Bn.0; 1//. The orthogonal group of Rn is O.n/ and its Haar
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probability measure is �n. For A � R
n we denote by M.A/ the set of non-zero

finite Borel measures � on Rn with compact support spt � � A. The Fourier

transform of � is defined by

O�.x/ D

Z
e�2�ix�y d�y; x 2 Rn:

For 0 < s < n the s-energy of � 2 M.Rn/ is

Is.�/ D

“
jx � yj�s d�x d�y D c.n; s/

Z
j O�.x/j2jxjs�n dx: (2.1)

The second equality is a consequence of Parseval’s formula and the fact that the

distributional Fourier transform of the Riesz kernel ks; ks.x/ D jxj�s , is a constant

multiple of kn�s, see, for example, [13], Lemma 12.12, or [14], Theorem 3.10.

These books contain most of the background material needed in this paper.

Notice that if � satisfies the Frostman condition �.B.x; r// � rs for all

x 2 Rn; r > 0, then It .�/ < 1 for all t < s. We have for any Borel set A � R
n

with dim A > 0, cf. Theorem 8.9 in [13],

dim A D sup¹sW there exists � 2 M.A/

such that �.B.x; r// � rs for all x 2 Rn; r > 0º

D sup¹sW 9� 2 M.A/ such that Is.�/ < 1º:

(2.2)

We shall denote by f#� the push-forward of a measure � under a map

f W f#�.A/ D �.f �1.A//. The restriction of � to a set A is defined by �bA.B/ D

�.A \ B/. The notation � stands for absolute continuity.

The lower and upper s-densities of A � R
n are defined by

� s
�.A; x/ D lim inf

r!0
.2r/�s

H
s.A \ B.x; r//;

��s.A; x/ D lim sup
r!0

.2r/�s
H

s.A \ B.x; r//:

If Hs.A/ < 1, we have by [13], Theorem 6.2,

��s.A; x/ � 1 for Hs almost all x 2 A: (2.3)

For � 2 M.Rm/ define the derivative at u 2 Rm by

D.�; u/ D lim
ı!0

˛.m/�1ı�m�.B.u; ı//;

when the limit exists. It does exist and is finite for Lm almost all u 2 Rm.
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The characteristic function of a set A is �A. By the notation M . N we mean

that M � CN for some constant C . The dependence of C should be clear from

the context. The notation M � N means that M . N and N . M . By c we

mean positive constants with obvious dependence on the related parameters.

3. Dimension of level sets

Let P�WRn ! R
m; � 2 ƒ; be orthogonal projections, where ƒ is a compact metric

space. Suppose that � 7! P�x is continuous for every x 2 Rn. Let also ! be a

finite non-zero Borel measure on ƒ. These assumptions are just to guarantee that

the measurability of the various functions appearing later can easily be checked

and that the forthcoming applications of Fubini’s theorem are legitimate. Much

less would suffice, using, for example, the general results of [17].

Theorem 3.1. Let s > m. Suppose that P�]� � L
m for ! almost all � 2 ƒ and

that there exists a positive number C such that

“
D.P�]�; u/2 dLmu d!� < C (3.1)

whenever � 2 M.Bn.0; 1// is such that �.B.x; r// � rs for x 2 Rn; r > 0.

If A � R
n is Hs measurable, 0 < H

s.A/ < 1 and � s
�.A; x/ > 0 for Hs almost

all x 2 A, then for Hs � ! almost all .x; �/ 2 A � ƒ,

dim P �1
� ¹P�xº \ A D s � m; (3.2)

and for ! almost all � 2 ƒ,

L
m.¹u 2 RmW dim P �1

� ¹uº \ A D s � mº/ > 0: (3.3)

Proof. Note first that using (2.3) our assumptions imply that P�].H
sbA/ � L

m

for ! almost all � 2 ƒ.

For any � 2 ƒ the inequality dim P �1
�

¹uº\A � s�m forLm almost all u 2 Rm

follows for example from [13], Theorem 7.7. This implies dim P �1
�

¹P�xº \ A �

s � m for Hs almost all x 2 A whenever P�].H
sbA/ � L

m. Hence we only need

to prove the opposite inequalities.

Define � D 10�s
H

sbA. Due to (2.3) we may assume that �.B.x; r// � .r=2/s

for x 2 Rn; r > 0, by restricting � to a suitable subset of A with large measure;

the positive lower density property is inherited by subsets by Corollary 6.3 in [13].

We may also assume that A is compact, which makes it easier to verify the

measurabilities.
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For ı > 0 define �ı 2 M.Rn/ by

�ı.B/ D ˛.n/�1ı�n

Z

B

�.B.x; ı// dx:

For a; x 2 Rn; r > 0; define

Ta;r.x/ D .x � a/=r

and let

�a;r D r�sTa;r].�bB.a; r// 2 M.B.0; 1//:

Then one easily checks that .�ı/a;r .B.x; �// � �s for x 2 Rn and � > 0. Hence

for all a 2 Rn; r > 0; ı > 0,
“

D.P�].�
ı/a;r ; u/2 dLmu d!� < C: (3.4)

Let 0 < � < ı < r < 1. In the following estimate observe that for any

a; x 2 Rn; u 2 Rm, if jP�.x � a/ � ruj � ı, then

L
n.¹y 2 RnW jx � yj � 2ı; jP�.y � a/ � ruj � �º/ � ın�m�m:

We obtain

�.¹x 2 B.a; 2r/W jP�.x � a/ � ruj � ıº/

� ım�n��m

Z

¹x2B.a;2r/WjP�.x�a/�ruj�ıº

L
n.¹y 2 RnW jx � yj � 2ı; jP�.y � a/ � ruj � �º/ d�x

� ım�n��m

Z

¹y2B.a;4r/WjP�.y�a/�ruj��º

�.B.y; 2ı// dLny

D 2n˛.n/ım��m

Z

¹y2B.a;4r/WjP�..y�a/=4r/�u=4j��=4rº

d�2ıy

D 2n˛.n/.4r/sım��mP�].�
2ı/a;4r .B.u=4; �=4r//:

Thus

�.¹x 2 B.a; 2r/W jP�.x � a/ � ruj � ıº/

. rs�mım lim inf
�!0

.�=4r/�mP�].�
2ı/a;4r .B.u=4; �=4r//

D ˛.m/rs�mımD.P�].�
2ı/a;4r ; u=4/;
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if the limit exists. Therefore

C 4m >

“
D.P�].�

2ı/a;4r ; u=4/2 dLmu d!�

& r2m�2sı�2m

“
.�.¹x 2 B.a; 2r/W jP�.x � a/ � ruj � ıº//2 dLmu d!�

D r2m�2sı�2m

Z Z

B.a;2r/

Z

B.a;2r/

L
m.¹uW jP�.x � a/ � ruj � ı;

jP�.y � a/ � ruj � ıº/ d�x d�y d!�

& rm�2sı�m

Z Z

B.a;2r/

�.¹y 2 B.a; 2r/W jP�.y � x/j � ıº/ d�x d!�

� rm�2sr t

Z Z

B.a;r/

r�tı�m�.¹y 2 B.x; r/W jP�.y � x/j � ıº/ d�x d!�

D r���s

Z Z

B.a;r/

r�tı�m�.¹y 2 B.x; r/W jP�.y � x/j � ıº/ d�x d!�;

(3.5)

where 0 < t < s � m and � D s � m � t > 0.

Next we want to show that for ! almost all � 2 ƒ and � almost all x 2 A,

lim
r!0

lim inf
ı!0

r�tı�m�.¹y 2 B.x; r/W jP�.y � x/j � ıº/ D 0: (3.6)

Let B � A be compact and b and r0 positive numbers such that �.B.a; r// � brs

for a 2 B and 0 < r < r0. By the assumption on positive lower density we can

find them so that �.A n B/ is arbitrarily small, whence it is enough to show (3.6)

for � almost all x 2 B .

For j D j0; j0 C 1; : : : , with 2�j0 < r0 choose aj;i 2 B; i D 1; : : : ; kj ; such

that B �
S

i B.aj;i ; 2�j / and the balls Bj;i WD B.aj;i ; 2�j /; i D 1; : : : ; kj ; have

bounded overlap, that is, there is an integer N , depending only on n, such that

for each j any point of Rn belongs to at most N balls Bj;i ; i D 1; : : : ; kj . Let

0 < ı < 2�j and set

fj .x; �; ı/ D 2jtı�m�.¹y 2 B.x; 2�j /W jP�.y � x/j � ıº/;

and

fj .x; �/ D lim inf
ı!0

fj .x; �; ı/:

Then by (3.5)Z Z

Bj;i

fj .x; �; ı/ d�x d!� . 2��j �sj � 2��j b�1�.Bj;i/:
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By the bounded overlap,Z Z

B

fj .x; �; ı/ d�x d!� . 2��j b�1�.A/:

Hence by Fatou’s lemma,Z Z

B

fj .x; �/ d�x d!� . 2��j b�1�.A/;

whence Z Z

B

X
j �j0

fj .x; �/ d�x d!� < 1:

Recalling the definition of fj we have for ! almost all � 2 ƒ and � almost all

x 2 B ,

lim
j !1

lim inf
ı!0

2jtı�m�.¹y 2 B.x; 2�j /W jP�.y � x/j � ıº/ D 0:

This implies (3.6).

To finish the proof set for � 2 ƒ,

E� D ¹x 2 AWHt.P �1
� ¹P�xº \ A/ D 0º:

Then by Lemma 3.2 below

lim sup
r!0

lim inf
ı!0

r�tı�m�.¹y 2 B.x; r/W jP�.y � x/j � ıº/ D 1

for � almost all x 2 E�. On the other hand, by (3.6) for ! almost all � 2 ƒ and �

almost all x 2 A,

lim sup
r!0

lim inf
ı!0

r�tı�m�.¹y 2 B.x; r/W jP�.y � x/j � ıº/ D 0:

Hence �.E�/ D 0 for ! almost all � 2 ƒ. It follows from Fubini’s theorem that

� � !.¹.x; �/W x 2 E�º/ D 0; and so dim P �1
�

¹P�xº \ A � t for � � ! almost all

.x; �/ 2 A � ƒ. Now (3.2) follows by the arbitrariness of t < s � m and then (3.3)

follows from the absolute continuity. �

Lemma 3.2. Let t > 0. Suppose that E � R
n is a Borel set and P WRn ! R

m is

an orthogonal projection. If Ht .E \ P �1¹uº/ D 0 for all u 2 Rm, then for any

� 2 M.E/,

lim sup
r!0

lim inf
ı!0

r�tı�m�.¹y 2 E \ B.x; r/W jP.y � x/j � ıº/ D 1

for � almost all x 2 E.
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Essentially this was proved by Marstrand in [8], Lemma 16, in the plane. The

same proof works here, but I give a partially different argument.

Proof. Let F � E be compact such that for some positive numbers r0 and C we

have for x 2 F and 0 < r < r0,

lim inf
ı!0

r�tı�m�.¹y 2 F \ B.x; r/W jP.y � x/j � ıº/ < C: (3.7)

It suffices to show that �.F / D 0.

For fixed x0 2 F; 0 < r < r0=2, define

� D P].�bF \ B.x0; r// 2 M.P.F \ B.x0; r///:

If u 2 spt � then u D P x for some x 2 F \ B.x0; r/. By (3.7),

lim inf
ı!0

ı�m�.B.u; ı// � lim inf
ı!0

ı�m�.¹y 2 B.x; 2r/W jP.y � x/j � ıº/ < .2r/tC:

This implies that � � L
m and for ı > 0,

�.B.P x0; ı// D

Z

B.P x0;ı/

D.�; u/ dLmu < .2r/tCım;

whence

�.¹y 2 F \ B.x0; r/W jP.y � x0/j � ıº/ < .2r/tCım: (3.8)

We can find a point u 2 Rm and c; ıu > 0 such that

�.F \ P �1.B.u; ı// � cım�.F / (3.9)

for 0 < ı < ıu. This follows by an easy application of Vitali’s covering theorem

in Rm.

Let � > 0 and V D P �1¹uº: As H
t .F \ V / D 0 and F \ V is compact,

there are balls Bi D B.xi ; ri/; xi 2 F \ V; i D 1; : : : ; k; with the balls B.xi ; ri=2/

covering F \V , such that ri < r0 and
Pk

iD1 r t
i < �. Notice that unless �.F / D 0,

F \ V 6D ; by (3.9). For sufficiently small ı > 0,

F \ P �1.B.u; ı// �

k[
iD1

F \ B.xi ; ri/ \ P �1.B.u; ı//; (3.10)

and by (3.8),

ı�m�.F \ B.xi ; ri / \ P �1.B.u; ı/// < .2ri/
t C: (3.11)
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Putting together (3.9), (3.10) and (3.11), we obtain

c�.F / � 2tC

kX
iD1

r t
i < 2tC�;

from which the lemma follows. �

Remark 3.3. If P WRn ! R
m is an orthogonal projection, we can take in Theo-

rem 3.1 ƒ D ¹P º and ! the point mass to get a result for an individual projection.

However I don’t know of any case where this could be useful.

The assumptions of Theorem 3.1 are known to hold in many cases, conse-

quently we obtain dimension formulas for the corresponding plane sections. For

example, .x; y/ 7! x � ty; x; y 2 Rn; t 2 R; is a special case of projections con-

sidered by Oberlin in [19] and .x; y/ 7! x � g.y/; x; y 2 R
n; g 2 O.n/; was

studied in [16]. Then (3.1) holds for the first family if s > 2n � 1 and for the

second if s > n C 1, see the proof of Theorem 3.4 in [16]. However, it seems that

Orponen’s methods from [20], see also [14], Chapter 6, yield the same level set

results and without any lower density assumptions.

For an application to intersections we shall need the following product set

version of Theorem 3.1. There P�WRn � Rp ! R
m; � 2 ƒ; m < n C p; are

orthogonal projections with the same assumptions as before.

Theorem 3.4. Let s; t > 0 with s C t > m. Suppose that P�].� � �/ � L
m for !

almost all � 2 ƒ and there exists a positive number C such that

“
D.P�].� � �/; u/2 dLmu d!� < C (3.12)

whenever � 2 M.Bn.0; 1//; � 2 M.Bp.0; 1// are such that �.B.x; r// � rs for

x 2 Rn; r > 0, and �.B.y; r// � r t for y 2 Rp; r > 0.

If A � R
n is H

s measurable, 0 < H
s.A/ < 1, B � R

p is H
t measurable,

0 < H
t .B/ < 1, � s

�.A; x/ > 0 for Hs almost all x 2 A, and � t
�.B; y/ > 0 for Ht

almost all y 2 B , then for Hs � H
t � ! almost all .x; y; �/ 2 A � B � ƒ,

dim P �1
� ¹P�.x; y/º \ .A � B/ D s C t � m; (3.13)

and for ! almost all � 2 ƒ,

L
m.¹u 2 RmW dim P �1

� ¹uº \ .A � B/ D s C t � mº/ > 0: (3.14)
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Proof. The proof is essentially the same as that of Theorem 3.1. We now have the

inequality dim P �1
�

¹uº \ .A �B/ � dim A �B �m for almost all u 2 Rm by [13],

Theorem 7.7, and by [13], Theorem 6.13 and Corollary 8.11, the positive lower

densities imply dim A�B D sCt . The corresponding inequality for (3.13) follows

from absolute continuity. So we again only need to prove the opposite inequalities.

For them we just apply the same argument to � � � D .HsbA/ � .HtbB/ in place

of � D H
sbA. �

4. Intersections

We now apply Theorem 3.4 to the Hausdorff dimension of intersections.

Theorem 4.1. Let s; t > 0 with s C .n � 1/t=n > n and let A � R
n be H

s mea-

surable, 0 < H
s.A/ < 1, and let B � R

n be H
t measurable, 0 < H

t .B/ < 1,

� s
�.A; x/ > 0 for Hs almost all x 2 A, and � t

�.B; y/ > 0 for Ht almost all y 2 B .

Then for Hs � H
t � �n almost all .x; y; g/ 2 A � B � O.n/,

dim A \ .g.B � y/ C x/ D s C t � n; (4.1)

and for �n almost all g 2 O.n/,

L
n.¹z 2 RnW dim A \ .g.B/ C z/ D s C t � nº/ > 0: (4.2)

Proof. We apply Theorem 3.4 with Pg WR2n ! R
n; Pg.x; y/ D x � g.y/;

x; y 2 R
n; g 2 O.n/. The validity of its assumptions follows from the proof

of Theorem 4.2 in [16], but I give the short argument here. It is based on the

estimates of Wolff [22] and Du and Zhang [2] on quadratic spherical averages of

the Fourier transform.

Let �; � 2 M.Bn.0; 1//; with �.B.x; r// � rs; �.B.x; r// � r t for x 2 Rn;

r > 0. Set for r > 1,

�.�/.r/ D

Z

Sn�1

j O�.rv/j2 d�n�1v:

Let 0 < t 0 < t with s C .n � 1/t 0=n > n. Then by [2], Theorem 2.8,

�.�/.r/ . r�.n�1/t 0=n: (4.3)

To apply Theorem 3.4 we need that the implicit constant here is independent of �

as long as � 2 M.Bn.0; 1// and �.B.x; r// � r t for x 2 Rn; r > 0. It is not stated

in [2], but it can be checked from the proofs.
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As 4Pg].� � �/.�/ D O�.�/ O�.�g�1.�// we have

“
j4Pg].� � �/.�/j2 d� d�ng D c

Z
�.�/.j�j/j O�.�/j2 d�

. L
n.B.0; 1// C

Z

j�j>1

j O�.�/j2j�j�.n�1/t 0=n d�

D L
n.B.0; 1// C c0In�.n�1/t 0=n.�/

� C.n; s; t 0/ < 1:

(4.4)

since n � .n � 1/t 0=n < s.

We can now apply (3.13) of Theorem 3.4. It gives

dim P �1
g ¹Pg.x; y/º \ .A � B/ D s C t � n

for H
s � H

t � �n almost all .x; y; g/ 2 A � B � O.n/. Notice that .u; v/ 2

P �1
g ¹Pg.x; y/º \ .A � B/ if and only if u 2 A; v 2 B and u D g.v � y/ C x, that

is,

A \ .g.B � y/ C x/ D ….P �1
g ¹Pg.x; y/º \ .A � B//;

where the projection ….x; y/ D x is a constant times isometry on any n-plane

¹.u; v/W u D g.v/ C wº. Hence (4.1) follows. In the same way (4.2) follows

from (3.14) of Theorem 3.4. �

In [16], (4.4) was proven also for other measures on O.n/ in place of �n

yielding dimension estimates for exceptional subsets of O.n/. More precisely,

if � 2 M.O.n// satisfies the Frostman condition �.B.g; r// � r�, then by the

proof of Theorem 4.3 in [16] (4.4) holds provided s C .n � 1/t=n � 2n � 1 � � C

.n�1/.n�2/=2. Combining this with Theorem 3.4 we obtain with the same proof

as above:

Theorem 4.2. Suppose the assumptions of Theorem 4.1 are valid. Let E be

the set of g 2 O.n/ for which one of the conclusions (4.1) or (4.2) fails. Then

dim E � 2n � 1 � s � .n � 1/t=n C .n � 1/.n � 2/=2:

We still state a weaker estimate without any positive lower density assump-

tions:

Theorem 4.3. Let A; B � R
n be Borel sets with dim A C .n � 1/ dim B=n > n.

Then for all 
 < dim A C .n � 1/ dim B=n � n and for �n almost all g 2 O.n/,

L
n.¹z 2 RnW dim A \ .g.B/ C z/ > 
º/ > 0: (4.5)
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Proof. Theorem 6.4 of [12] tells us that for �n almost all g 2 O.n/ we have

dim A \ .g.B/ C z/ � dim A C ˛ � n for z 2 Rn in a set of positive Lebesgue

measure provided there is � 2 M.B/ such that �.�/.r/ . r�ˇ for some ˇ > 
 .

Hence the theorem follows from Frostman’s lemma and (4.3). �

A version of Theorem 6.4 of [12] with estimates for the dimension of excep-

tional orthogonal transformations was proved in [15], Theorem 4.1.
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