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On the dimension spectra of infinite conformal iterated
function systems

Tushar Das and David Simmons

Abstract. The dimension spectrum of a conformal iterated function system (CIFS) is the set
of all Hausdorff dimensions of its various subsystem limit sets. This brief note provides two
constructions — (i) a compact perfect set that cannot be realized as the dimension spectrum of a
CIFS; and (ii) a similarity IFS whose dimension spectrum has zero Hausdorff dimension, and
thus is not uniformly perfect — which resolve questions posed by Chousionis, Leykekhman and
Urbariski, and goes on to provoke fresh conjectures and questions regarding the topological and
metric properties of IFS dimension spectra.

1. Introduction

The study of iterated function systems (IFSes), which began in earnest in the early
1980s, increased in popularity during the renaissance following Benoit Mandelbrot’s
seminal work Les objets fractals [32] and his invention of the word fractal to describe
“a mathematical set or concrete object whose form is extremely irregular and/or frag-
mented at all scales”. Leading researchers who worked on IFS theory and developed a
variety of extensions include Bandt, Barnsley, Dekking, Falconer, Graf, Hata, Hutch-
inson, Mauldin, Schief, Simon, Solomyak and Urbanski; see [2,4, 11, 14, 18,24, 33,
35,40,41] for a small sample of their seminal research. For applications in engineer-
ing and science, e.g., in computer graphics, image processing, wavelets, probabilistic
growth models and stochastic dynamical systems, see [1,12,13,27,30,31].

Several pioneering works focussed on IFSes consisting of finitely many Euclidean
similarities; afterwards the theory was extended to handle systems with infinitely
many maps (called infinite IFSes) that were conformal. Mauldin and Urbanski were
among the pioneers of this extension of IFS theory, first to the study of infinite con-
formal iterated function systems (CIFSes), and then to their generalizations, namely
conformal graph directed Markov systems (CGDMSes); see [33,35]. The CIFS and
CGDMS limit sets model several among the intensively studied fractals arising from
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either side of Sullivan’s dictionary [36, 42] (see also [10, Table 1]); namely, certain
Julia sets associated with holomorphic and meromorphic iteration, as well as certain
Fuchsian and Kleinian limit sets associated with actions of discrete subgroups of iso-
metries of hyperbolic (negatively curved) spaces.

In particular, the CIFS framework is perfectly suited to encode various sets that
appear naturally at the interface of dynamical systems, fractal geometry and Diophant-
ine approximation. For instance, one can encode real numbers via their continued
fraction expansions and this leads to the Gauss continued fraction IFS, which is a
prime example of an infinite CIFS that comprises of the Mdbius maps x — 1/(a + x)
for a € N. Given any subset A C N, let A4 denote the set of all irrationals x € [0, 1]
whose continued fraction partial quotients all lie in A. Then, A4 may be expressed as
the limit set of the subsystem of the Gauss IFS that comprises the maps x — 1/(a + x)
for a € A; see [21]. The elements of A4 when A is a finite set are known as bounded
type numbers. For instance, studying Ey; ») relates to the problem of finding rational
numbers of given denominator having all partial quotients equal to 1 or 2. The Haus-
dorff dimensions of such sets have continued to be intensely investigated since several
decades; see, e.g., [5,26,34,37,38] and the references therein.

It was conjectured independently by Hensley [20] and by Mauldin and Urbarski
[34] in the 1990s that the set {dimy(A4) : A C N with |A| < oo} is a dense subset
of the interval [0, 1]. This conjecture, dubbed the Texan conjecture by Jenkinson [25],
was resolved in the affirmative in 2006 by Kessebohmer and Zhu [29]. The research
surrounding the Texan conjecture gave birth to the study of topological and metric
features of the dimension spectrum of an infinite CIFS.

Understanding the geometry and topology of the IFS and GDMS dimension spec-
tra has since presented researchers with several challenges; see [7, 8, 15-17,28]. In
their recent papers [7,8], Chousionis, Leykekhman and Urbanski leverage the thermo-
dynamic formalism to commence a careful study of the dimension spectra of finitely
irreducible CGDMSes as well as for continued fractions with coefficients restricted to
infinite subsets of natural numbers. In particular, they provide a positive answer to the
analogue of the Texan conjecture for complex continued fractions [7, Theorem 1.4].
They proved that the dimension spectrum of every infinite CIFS satisfying the open
set condition is compact and perfect, and conjectured that every such set may be real-
ized as the dimension spectrum of a similarity IFS. They also asked whether there
exists an IFS whose dimension spectrum is not uniformly perfect. This short note
resolves both these questions posed by Chousionis, Leykekhman and Urbanski in [7]
regarding the dimension spectrum of infinite CIFSes, and concludes with some fresh
conjectures and research directions in this seam.

Notation. In this note, N := {1,2,3,...}. We write x < y to mean that x and y
are multiplicatively comparable, i.e., there exists C > 0 such that 1/C < x/y < C.
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We use O(x) to denote any positive quantity multiplicatively comparable to x. We
use x 3> y to mean that for every ¢ > 1 we have that x is eventually bigger than
cy. We write dimg(X) to denote the Hausdorff dimension of a set X C R”; and
write p(T) to denote the spectral radius of an operator 7. We simplify notation by
writing dimyg(A) := dimg(A4) for the Hausdorff dimension of subsystem limit sets
(see Definitions 2.1 and 2.4).

2. Definitions and statement of results

The definition of a CIFS appears in several places in the literature; see, for example,
[7, Remark 3.2]".

Definition 2.1. Fix d € N. A collection U = (u4)q4er of self-maps of R4 is a con-
formal iterated function system (CIFS) on R4 if:
1. E is acountable (finite or infinite) index set, which is referred to as an alphabet.
2. X c R4 is a nonempty compact set which is equal to the closure of its interior.
3. Foralla € E,u,(X) C X.
4. V c R is an open connected bounded set such that dist(X,R? \ V) > 0.
5

. Foreacha € E, u, is a conformal homeomorphism from V to an open subset
of V.

6. (Cone condition)
. ) A(X N B(x,r))
inf inf ———= >0,
x€X re(0,1) rd
where A denotes the Lebesgue measure on R4,
7. (Open set condition, OSC) For all a € E, the collection (u,(int(X)))ackE is
disjoint, where int(X') denotes the interior of the set X .

8. (Uniform contraction)

sup sup |u,| < 1,
acE

and, if F is infinite,
lim su u’ =0.
ackE P | a |

9. (Bounded distortion property) Foralln € N,w € E" and x,y € V,

g, (X)) < gy (V)]

!The original definition may be found in [33, §2, pp. 6-7].
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Definition 2.2. Given a countable alphabet £ as above, we denote by E” the set of
all words of length n formed using this alphabet, and by E* the set of all finite words
formed using this alphabet. In other words,

o0
E* = UE”
n=0

fweE*UE N, i.e., w is either a finite or infinite word formed using the alphabet E,
then we denote subwords of @ by

WPt = (@nyi)joy € BT

If w € E™ is a finite word, then we define
Ugp(X) 1= Ug, 00Uy, (X).

The coding map of the CIFS U = (uy)qck is the map 7 : EN — X defined by the
formula

7(w) = lim uy,n(xp) = lim Uy, 0+ 0 Uy, (X0),
n—oo 1 n—00

where x( € X is an arbitrary point. By the uniform contraction hypothesis, 7 (w) exists
and is independent of the choice of xg. The limit set of the CIFS is the image of EN
under the coding map, and will be denoted by A = Ag := m(EN).

Note that the uniform contraction hypothesis implies that the coding map is always
Holder continuous, assuming that the metric on EY is given by the formula

d(w,7) = Alent

where A € (0, 1) and w A 7 is the longest word which is an initial segment of both w
and 7.

The class of CIFSes consisting of similarities has been studied particularly intens-
ively. We give the definition below in the basic case where d = 1.

Definition 2.3. Let E be a countable alphabet, as above. A similarity iterated function
system (SIFS) on R is a uniformly contracting and uniformly bounded collection of
similarities U = Ug := (U4)qer indexed by E. We write each similarity u, : R — R
asug(x) =Agx + by for0 < |A,| < 1and b, € R. A collection (1,) e of similarities
is uniformly contracting or uniformly bounded if

sup |[Aq| <1 or sup |bs| < o0,
acE acE

respectively. To guarantee that our SIFS U is a CIFS as defined above, we assume that
U satisfies the open set condition (OSC), i.e., there exists an open set W C R, whose
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closure satisfies the cone condition, such that the collection (u,(W)),ek is a disjoint
collection of subsets of W. Note that the OSC assumption implies that the collection
of similarities are uniformly bounded, i.e., that

sup |bg| < o0,
acE

and also that limgeg |[A4| = O (by taking the Lebesgue measure of the inclusion
Useg a(W) C W).

As above, the limit set of U = U is the image of the coding map = : EN — R
defined by

m(w) = lim uyn(xp) = lim Uy, 0+ 0 Uy, (Xo),
n—oo 1 n—o00

and will be denoted A = A := n(EN). Note that given any SIFS (not necessar-
ily satisfying the OSC) the uniformly contracting and uniformly bounded condition
implies that 7 is defined. When we write that U is an SIFS, we assume, as is common
[7, Remark 3.2], that the OSC is satisfied.

Definition 2.4. Given an SIFS or CIFS U = U g we will be interested in sub-CIFSes
or sub-SIFSes (called subsystems) formed by restrictions of U to various subsets of
the original alphabet E. Given A C E, the corresponding subsystem, coding map and
limit set are denoted by U4, w4 and A 4, respectively.

Definition 2.5. The (Hausdorff) dimension spectrum of a CIFS U = (ug)aecE is
defined as
DimSpec(U) := {dimy(A4) : A C E}.

Chousionis, Leykekhman and Urbanski proved [7, Theorem 1.2] that the dimen-
sion spectrum of an infinite CIFS is compact and perfect. They went on to conjecture
[7, Conjecture 1.3] that every compact perfect set K C [0, 0o) can be the dimension
spectrum of a CIFS. Note that by taking a one-element subset of the alphabet, we get a
subsystem whose limit set is a singleton and thus of Hausdorff dimension zero. Thus,
0 € DimSpec(U) for all iterated function systems U. Hence, their original conjecture
should be reformulated to only consider compact perfect sets containing zero. Our
first result shows that their (reformulated) conjecture was too optimistic.

Theorem 2.6. There exists a compact and perfect set K C [0, 1] such that 0 € K and
DimSpec(U) # K for all CIFSes U on R.

The proof of Theorem 2.6 shows that it remains true if R is replaced by R4 for
any d € N.

In [7], Chousionis, Leykekhman and Urbariski recognized that their conjecture
had “room for many partial results and open questions”. They asked, in particular,
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whether there exists an IFS whose dimension spectrum is not uniformly perfect. Our
second result answers their question in the affirmative.

Theorem 2.7. There exists an infinite SIFS on R whose dimension spectrum has
Hausdorff dimension zero. In particular, the dimension spectrum is not uniformly

perfect.

Before we present the proofs of these theorems in the following two sections,
let us briefly remark on the salient ideas. The idea of Theorem 2.7 is to construct
an SIFS U whose contraction ratios form a quickly decreasing sequence, and then
simply calculate an upper bound on the Hausdorff dimension of DimSpec(U).

On the other hand, the basic idea of the proof of Theorem 2.6 is to exploit some
geometric structure of the set DimSpec(U). Namely, if F; and F, are two subsets of
the alphabet E, then for each b € E \ F; U F,, we have a quadruple of points

81 =8(F1)., & =08(F1U{b}),
8y = 8(F2), &, = 8(F,U{b}),

where §(F) := dimy (A ). We show that these four points satisfy the relation
(8 —61)C <8 — 8> < (8 —8)V/C,

where C is a constant. We then construct a set K where this relation is satisfied for
only finitely many &} and &5, given fixed §; and &,.

3. Proof of Theorem 2.6

To simplify the notation in the sequel, we will write dimg(A4) := dimg(A4) for all
sets A C E.

Let A = {0, 1}, and let (0,)s>1 be an enumeration of A* such that the map
n > |0, is nondecreasing. Next, let g(0,,) := 47", and let f : AN — [0, 1] be defined
by

f@:= Y g@.
n:wp4+1=1
We define K := f(AN). The map f is continuous, and thus K is compact.

The map f is injective. Indeed, suppose w, v € AN are distinct. Without loss of
generality, we may take them to be of the form w = w{0w;3, and T = Wi 1779,. It
follows from the properties of (0,),>1 and g that g(a){""k) <47k g(wl) for all k.
Therefore, we have that

f@) — f@) = g@)— Y gl > g(w;’)[l -y 4—k] = Zswnn >0,

m>n k>0 3
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Now, since K is the continuous injective image of a perfect space, it itself is thus
perfect.
Next, observe that

f@ = f@) <g@)+ Y gt < g(zi’)[l + 24—"} = 25 A0,

m>n k>0 3

The previous two calculations show that
f(0) = flo) < glo A1) (1

We now want to prove that DimSpec(U) # K for all CIFSes U on R. So let
U = (uq)qek be an infinite CIFS on R with alphabet E and, by way of contradiction,
suppose that DimSpec(U) = K. Next, for a given F C E with 2 < #(F) < oo, we
estimate how much the Hausdorff dimension of F increases after we add an extra
symbol b € E \ F. Note that similar results, though only with upper bounds rather
than two-sided bounds, may be found in [19, Theorem 3.3] and [7, Theorem 5.4].

Claim 3.1. Forevery F C E with2 < #(F) < oo and for every b € E \ F, we have
dimp(F U {b}) = § + ©(D)),

where § = dimy(F) and Dy, = ||uy || := sup |u, |, and the constant associated with ©
depends on the subset F C E.

Proof. Recall from Definition 2.1 of a CIFS that X C R? is a nonempty compact
set which is equal to the closure of its interior. Let C(X) denote the Banach space
of continuous functions from X to (0, 00), and let L : C(X) — C(X) denote the
Perron—Frobenius operator of the CIFS (u,)q4eF, i.e.,

Lf(x) =) Jup () f oualx).

acF

Then there exists a positive continuous map g : X — (0, o0) such that Lg = g, by
[35, Theorem 6.1.2]. Now, fix b € E \ F and let

L' f(x) == LE(x) + luy(x)|° £ oup(x).

Then, the logarithm of the spectral radius of L’ is log p(L’) = P(F U {b},§), the pres-
sure of the CIFS (u4)qeFuipy evaluated at §; see [35, Theorem 2.4.3, Theorem 2.4.6,
and p. 29]. To estimate this, we compute L’g. Now, by the bounded distortion prop-
erty (see Definition 2.1) and since g is bounded from above and below on the compact
set X, we have

(L' = L)g(x) = |uy(x)[°g o up(x) =< Dig(x),
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and thus,
L'g = (1+0(D)))g.

Since g and L’ are both positive, this tells us” that the spectral radius satisfies
exp(P(F U {b},8)) = p(L") = 1 + O(D)).

Thus, we have that
P(F U{b},8) < D}.

On the other hand, from Bowen’s formula, we know that P (F U {b},s) =0, where

s = dimyg(F U {b}); see [35, Theorem 4.2.11]. Moreover, the negative derivative of
pressure satisfies

— P (FU{b},-) =<1 2)

on [§, 00), independently of b. Indeed, the lower bound in (2) follows from direct
calculation, while the upper bound in (2) follows from the convexity of pressure [35,
Proposition 4.2.8(b)] together with the fact that P(F U {b},0) = log(#(F) + 1) is
independent of b, and that § > 0 since #(F) > 2. It thus follows that s = § + @(Dg).
This concludes the proof of Claim 3.1. |

Next, we consider Fy, F> C E such that 2 < | F;| < o0, §; := dimyg(F;) > 0, and
8> > &1; for instance, we could take F; = {a1,as} and F» = {ay, as, asz}, where
(@n)n>1 is an enumeration of E.

Now fix some b € E \ (F; U F,). Since we assumed DimSpec(U) = K = f(4Y),
there exist w, w’, T, 7’ € AN such that

flw) = dimg(Fy) =61, f(0') = dimg(F; U {b}),
f(v) = dimp(F2) = 8,  f(z') = dimu(F, U {b}).

By applying Claim 3.1 twice, we have
f@) = f(@) < D'® and f(')— f(r) < D/®,

where D = Dj = [lu}||. Now, let " := @ A " and " := 7 A 7’. Then, using (1),
we have

g@") = f(@) = f(@) = D,
g(¥") < f(') - f(z) < D®,

2Though this is potentially standard to functional analysts, we include a brief argument
for the reader’s convenience: If Lg > Ag, then ||[L"| 2 ||[L"g| > ||A"g|| = A"|/g]| and thus,
p(L) = A, and if Lg < Ag, then for all f, we have [[IL" f| < |/l "Il- IL"g] <
I/ lg= - A lgll and thus, [| L™ ]| < A", yielding p(L) < A.
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and thus,
g(_[//) ~ g(w//)82/51 .

Rewriting this using the definition of g, we see that
4n! - 4sm!

where s = 6,/61,0, = " and 0, = 7"

Note that since limpe g [|[u} || = 0, Claim 3.1 implies that limpe g f(0') = f() or,
equivalently, that limpe g |@”| = oo. Thus, n and m will both become arbitrarily large
as b ranges over E. If n > m for infinitely many b € E, then gnt > gnml 5, gsml o
contradiction. Similarly, if m > n for infinitely many b € E, then since s = 8, /81 > 1,
we have 4! > 41! > 45 _l”!, another contradiction. This concludes the proof of The-
orem 2.6.

4. Proof of Theorem 2.7

Let U = (ugq)qek be a collection of similarities satisfying the OSC such that for all
aeFE: =N,
| =270,

(The precise choice of these similarities does not matter as long as they satisfy the
OSC.)Let A:=1{0,1},andlet f : A* U AN — DimSpec(U) be defined by the formula
f(r) :=dimg(Ag,), where A, :={a e E:1, =1}.

Next we prove an analogue of Claim 3.1, where the associated constant is now
independent of the unperturbed limit set.

Claim 4.1. Fix two elements ay,a, € E, and define A* = {we A" wy, =W, =1}
and AN = {w € AN : w,, = wa, = 1}. Then, for all v € A*, we have

flol) = f(w0) + O(271P /@)

where the associated constants may depend on ay, a;.

Proof. Letw € A*. Then it follows from Bowen’s formula [35, Theorem 4.2.11] that
> e -y,
a:wp=1

and that
3 2@ flen) 4 p—(ol+D?fle) _

a:wp=1
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Hence,

r—(lol+1)* f(wl) _ Z 9—a*f(w0) _ Z p—a> f(w1)

a:wp=1 a:wp=1
= (fl@)) = f@0)- Y @2 ¢a?,
a:wp=1

where £ € (f(w0), f(wl)). It then follows that

2~ (el+D2 7 @) — £(p1) — f(w0),

since
0<2%a? +2%42 < > 2742 < > 274542 < o0,
a:.wp=1 acE
where s := dimy({a1, a»}) > 0. This concludes the proof of Claim 4.1. ]

It then follows from Claim 4.1 that for all a1,a, € E and for all w, t € fT*, we
have

|f(@) = f(1)] = 0(271eA /@) = g(gstentl),

where s = dimg({ay, a2}). Thus, for each n € N, the set f(/TN) can be covered
by #(A)" = 2" balls of radius 0(2_”2). This implies that the box dimension, and
thus that Hausdorff dimension, of f(AY) is zero. By the countable stability of the
Hausdorff dimension,

dimy (DimSpec(U)) = f(AY) = 0.

This concludes the proof of Theorem 2.7.

5. Conjectures and future work

Our investigations of topological and metric properties of the dimension spectra of
various conformal iterated function systems led to the following conjectures.

Conjecture 5.1. The only sets K C [0, oo) such that both K and its mirror image
sup(K) — K are dimension spectra of CIFSes are intervals, i.e., K = [0, A] for some
A > 0.

Let us recall the definition of local Hausdorff dimension in the setting of a metric
space.
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Definition 5.2. Let X be a metric space and let ' C X. For all x € X, we define the
local Hausdorff dimension of F at x as

dimy (F) := inf{dimH(F N B(x,¢)) :e> 0}.

The monotonicity of the Hausdorff dimension implies that the infimum in the defini-
tion above is actually a limit as ¢ tends to zero, i.e.,

dimy(F) = lim dimyy(F 1 B(x.)).

Conjecture 5.3. Let F C [0, oo) be the dimension spectrum of a CIFS. The map
x +— dimy (F) restricted to x € F is a continuous, weakly decreasing (i.e., nonin-
creasing) function.

Conjecture 5.4. Let F' C [0, 00) be the dimension spectrum of a CIFS. Then, one of
the following three mutually exclusive scenarios holds:

e Type I: F is equal to the union of finitely many intervals.
e Type II: F has zero Hausdorff dimension.

e Type III: The local Hausdorff dimension satisfies dim, (¥) = min(1, ¢/x) for all
x € F, forsome 0 < ¢ < sup(F); i.e., the graph of the function F' > x > dim, (F)
is a horizontal line followed by a hyperbola.

Remark 5.5. For each of the three scenarios in Conjecture 5.4, there exists a set K
exemplifying the scenario, which can be realized as the dimension spectrum of a SIFS.
Indeed, this observation led us to Conjecture 5.4. Theorem 2.7 provides an example of
Type II. We leave it as an exercise for the interested reader to verify that the dimension
spectrum of any SIFS whose similarities have contraction ratios 1/2,1/4,1/8, ... is
of Type I, and similarly that the spectrum of one whose similarities have contraction
ratios 1/3,1/3,1/9,1/27, ... is of Type IIL.

Remark 5.6. If Conjecture 5.4 is true, then for each F C [0, co) that is a dimension
spectrum of a CIFS, the local Hausdorff dimension satisfies dimy () = min(1, ¢/x)
for all x € F, for some 0 < ¢ < sup(F). The cases where ¢ = sup(F) and ¢ = 0
correspond to Types I and II, respectively.

In general, it appears difficult to distinguish between sets that can be SIFS or
CIFS dimension spectra and those that cannot. In particular, it would be interesting
to understand when an SIFS dimension spectrum could be realized as that of a CIFS
that is not an SIFS, and vice versa.

The study of finite SIFSes with overlaps has witnessed several breakthroughs in
the last decade; see [22,23]. It would be interesting to know whether dimension spec-
tra behave differently in the absence of the OSC. For instance, recall that Chousionis,
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Leykekhman and Urbanski proved [7, Theorem 1.2] that the dimension spectrum of
an infinite conformal iterated function system satisfying the open set condition is
compact and perfect. However, this theorem is false for some systems that satisfy
all conditions of being a CIFS except for the OSC. Indeed, take the family of maps
U = {ug : R > R}zeg defined by u,(x) := (1/2)x +a fora € E :=Q N[0, 1].
Then, for any F' C E, the dimension of A F is either 0 or 1 depending on whether or
not #(F) > 2, and thus, DimSpec(U) = {0, 1}.

Given that a finite alphabet CIFS will have a finite dimension spectrum, it is nat-
ural to ask the following inverse problem.

Question 5.7. If D is a finite subset of the nonnegative real numbers containing zero
does there exist a finite CIFS whose dimension spectrum is D?

Beyond similarity and conformal IFSes, the dimension spectra of affine IFSes
remain unanalyzed. It may be fruitful to first focus on infinitely generated versions of
certain well-studied classes of finitely generated affine or other non-conformal IFSes;
see, e.g., [3,6,9,39]. See [28] for some recent progress in this direction.

In a different direction, rather than focussing on solely the Hausdorff dimension
spectra, the study of spectra of other fractal dimensions — such as packing dimension,
box dimension, and Assouad dimension — also awaits investigation.
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