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Ahlfors regular conformal dimension of metrics on infinite
graphs and spectral dimension of the associated random walks

Kôhei Sasaya

Abstract. Quasisymmetry is a well-studied property of homeomorphisms between metric spa-
ces, and the Ahlfors regular conformal dimension is a quasisymmetric invariant. In the present
paper, we consider the Ahlfors regular conformal dimension of metrics on infinite graphs, and
show that this notion coincides with the critical exponent of p-energies. Moreover, we give a
relation between the Ahlfors regular conformal dimension and the spectral dimension of a graph.

1. Introduction

Quasisymmetry is a well-studied property of homeomorphisms between metric spaces
and, roughly speaking, means that the homeomorphism in question preserves ratios
of distances. The Ahlfors regular conformal dimension is a quasisymmetric invari-
ant of metric spaces, which gives a measure of the simplest (in a certain sense)
quasisymmetrically equivalent space. The purpose of this paper is to study the Ahlfors
regular conformal dimension of discrete unbounded metric spaces, and show relations
between the Ahlfors regular conformal dimensions and spectral dimensions of such
spaces.

Quasisymmetry was introduced by Tukia and Väisälä in [19] to generalize the
notion of quasiconformal mappings on the complex plane. In [19], quasisymmetry
was given as a property of a homeomorphism between two metric spaces. A special-
ization of this was given by Kigami [10], for the comparison of metrics on the same
underlying space. This is the definition we will use.

Definition 1.1 (Kigami’s quasisymmetry). Let X be a set and d; � be metrics on X;
and let

� W Œ0;1/! Œ0;1/

be a homeomorphism. Then we say d is � -quasisymmetric to � if for any x; y; z 2 X
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with x ¤ z;
�.x; y/

�.x; z/
� �

�d.x; y/
d.x; z/

�
:

Moreover, if d is � -quasisymmetric to � for some �; then we say that d is quasisym-
metric to � and write d �QS �:

For example, d �QS d
˛ for any ˛ 2 .0; 1/ and any metric space .X; d/. This

notion was also called “quasisymmetrically related by the identity map” in [6], and
“quasisymmetrically equivalent” in [4]. Note that if there exists a quasisymmetric map
f W .X; d/! .Y; �/, then d is quasisymmetric to the pull-back metric �� in the sense
of Kigami’s definition and we can identify .Y; �/ with .X; ��/:

Quasisymmetry has been studied in various fields. For example, a quasi-isometric
map (the definition is in [13, Definition 3.2.11], for example) between Gromov hyper-
bolic spaces induces a quasisymmetric map; see [13, Theorem 3.2.13 and Section 3.6],
or [16]. There is also much research about quasisymmetry and Gromov hyperbolic
spaces; see [13], for example. Quasisymmetry is a weaker notion of bi-Lipschitz equi-
valence, which has been studied extensively for decades; see [6] or [18], for example.
From the viewpoint of global analysis, it is notable that a quasisymmetric modific-
ation preserves the volume doubling property, which plays an important role in heat
kernel estimates. This idea is used in [10,11], and there is a recent application to circle
packing graphs in [14].

The Ahlfors regular conformal dimension is a relatively new quasisymmetric in-
variant. It was introduced by Bourdon and Pajot [3] (see also Bonk and Kleiner [2]),
and is defined as follows.

Definition 1.2 (Ahlfors regularity). Let .X; d/ be a metric space, � be a Borel meas-
ure on .X; d/ and ˛ > 0. We say � is ˛-Ahlfors regular with respect to .X; d/ if there
exists C > 0 such that

C�1r˛ � �.Bd .x; r// � Cr
˛ for any x 2 X and rx � r � diam.X; d/;

where rx D rx;d D infy2Xn¹xº d.x; y/ and Bd .x; r/ D ¹y 2 X j d.x; y/ < rº. The
space .X; d/ is called ˛-Ahlfors regular if there exists a Borel measure � such that
� is ˛-Ahlfors regular with respect to .X; d/:

Definition 1.3 (Ahlfors regular conformal dimension). Let .X; d/ be a metric space.
The Ahlfors regular conformal dimension (or ARC dimension in short) of .X; d/ is
defined by

dimAR.X; d/ D inf
®
˛
ˇ̌

there exists a metric � on X such that

� is ˛-Ahlfors regular and d �QS �
¯
;

where inf; D 1.
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The ARC dimension is related to the conformal dimension, another well-known
quasisymmetric invariant introduced by Pansu [15] in 1989. In this paper, we will
extend the notion of ARC dimension to discrete metric spaces. Note that the ARC
dimension has mainly been studied on bounded metric spaces without isolated points,
in which case rx D 0 and diam.X; d/ <1.

The ARC dimension is related to the well-known Cannon’s conjecture, which
claims that for any hyperbolic group G whose boundary is homeomorphic to the
2-dimensional sphere, there exists a discrete, cocompact and isometric action of G
on the hyperbolic space H3: Bonk and Kleiner [2] proved that Cannon’s conjecture
is equivalent to the following: If G is a hyperbolic group whose boundary is homeo-
morphic to the 2-dimensional sphere, then there exists a metric that attains the value
of the ARC dimension of the boundary.

It is not easy to calculate the ARC dimension in general. Motivated by [4, 5],
Kigami [12] gave a method to calculate the ARC dimension as a critical exponent
of a p-energy, which is defined by successive division of the original metric space.
Furthermore, [12] gives inequalities between the ARC dimension and the p-spectral
dimensions.

In this paper, we extend the results of [12] to infinite graphs and give a relation
between the spectral dimensions and the ARC dimension. Our main results need a lot
of notions, so we postpone the detailed definitions to Sections 2 and 4, and explain
the main results through examples.

In our study, it will be useful to consider partitions of graphs that arise as the
edges are successively unified. One of the simplest cases is the unification of vertices
of ZC D ¹n 2 Z j n � 0º: For a 2 N and n 2 ZC; we identify 2n edges ¹.2n.a � 1/;
2n.a � 1/C 1/; .2n.a � 1/C 1; 2n.a � 1/C 2/; : : : ; .2na � 1; 2na/º DW K.n;a/ and
consider the unified graphs ¹Gn; Enºn�0, where Gn D ¹.n; a/ j a 2 Nº and En is
the set of links between .n; a/ and .n; aC 1/: Let .n; a/ � .m; b/ if n �m D 1 and
K.n;a/ � K.m;b/; or m � n D 1 and K.n;a/ � K.m;b/: Consider T WD

S
n;a.n; a/ as

a tree given by �, then we obtain a correspondence between ¹Gn; Enºn�0 and T
(see Figure 1). We call such a correspondence between unified graphs and a tree, a
partition (see Definition 4.4, and note that we construct K by unification of edges but
we treat K as a subsets of vertices because of technical reasons). Thus, we relate a
division of noncompact space to a tree whose root is an infinite ray. Such an idea has
been considered in the continuous cases, for example, in [7] or [8].

In this paper, we characterize the ARC dimension with a partition. For a given
partition, we can define an upper p-energy Ep of the partition as a certain limit of
p-energies on unification graphs, see Definition 2.10, which is based on definitions
of [12]. The p-energy enjoys a phase transition when p varies, that is, there exists a
p0 > 0 such that Ep > 0, if p < p0, and Ep D 0, if p > p0: We can also define a
lower p-energy Ep; as well.



K. Sasaya 92

(0,1) (0,2) (0,3) (0,4) (0,5)

(1,1) (1,2) (1,3)

(2,1)

0 1 2 3 4 5

Figure 1. A partition of ZC

The main result of this paper is the following.

Theorem 1.4 (Theorem 4.15 (1)). Let .G; E/ be a graph and d be a metric on G.
Under some conditions about d and for partitions within a certain class,

dimAR.G; d/ D inf
®
p
ˇ̌

Ep D 0
¯
D inf

®
p
ˇ̌

Ep D 0
¯
:

For the detailed conditions, see Theorem 4.15. Let us give an interesting example
of the ARC dimension for an unbounded metric space.

Example 1.5. Let f .n/ W ZC ! ZC be such that f .n/ � n for any n: For n � 0;
divide Œ2n; 2nC1� � Œ0; 2n� into 2f .n/ � 2f .n/ blocks and call them Gn; and consider

G D
[
n�0

Gn [
®
.0; 0/

¯
as a subgraph of Z2 (see Figure 2, and Example 5.1 for the precise definition).

Using Theorem 1.4, we obtain the following.

Proposition 1.6 (Proposition 5.2).

(1) If lim supn!1 f .n/ D1; then dimAR.G; d/ D 2:

(2) If lim supn!1 f .n/ <1; then dimAR.G; d/ D 1:

It is remarkable that only lim supn!1 f .n/ D 1 implies that dimAR.G; d/ D 2,
although the size of the boxes, 2n�f .n/, may diverge.

We also compare the Ahlfors conformal dimension with the spectral dimension.
For p > 0, we can define the upper and lower p-spectral dimension, dSp and dSp , of a
partition (see Definition 2.13).
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Figure 2. Example 1.5

We can further obtain the following.

Theorem 1.7 (Theorem 4.15 (2) and (3)). Let .G; E/ be a graph and d is a metric
on G. Under the same conditions as in Theorem 1.4,

� if dimAR.G; d/ < p; then

dimAR.G; d/ � d
S
p � d

S

p < pI

� if dimAR.G; d/ � p; then

dimAR.G; d/ � d
S

p � d
S
p � p:

When p D 2, the p-spectral dimension coincides in many examples with the
notion of the spectral dimension of random walks, where the latter is defined as fol-
lows:

dS .G/ D 2 lim sup
n!1

� logp2n.x; x/
logn

; dS .G/ D 2 lim inf
n!1

� logp2n.x; x/
logn

;

where pn.x; y/ is the transition density of the associated random walk. Hence, where
this occurs, the latter theorem will also relate the ARC dimension and the spectral
dimension of random walks. See Theorem 4.27 and Corollary 4.30 for a sufficient
condition that the 2-spectral dimension and the spectral dimension of random walks
coincide. However, we prove that they can also be different; see Example 5.4 for an
example where this is the case.
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This paper is based on my master’s thesis [17] in Kyoto University. We omit the
proof of some statements; for the full proof, see [17]. The outline of this paper is as
follows. In Section 2, we give the framework and results of [12] for compact spaces
without isolated points, on which the main result of this paper is based. In Section 3,
we extend the results of [12] to � -compact spaces without isolated points. Section 4 is
the main part of this paper, which is devoted to proving our main results. In Section 5,
we give examples that illustrate some properties of the ARC dimension of graphs.

Notation. In this paper, we use the following notation.

� Let A be a set and F be a map from A to itself. Then F n denotes the composition

n‚ …„ ƒ
F ı � � � ı F ;

for n > 0, and idA, for n D 0: Moreover, An denotes the product

n‚ …„ ƒ
A � � � � � A :

� Let ¹A�º�2ƒ be a family of sets, then
F
�2ƒ A� denotes

S
�2ƒ A� in the case

that A� \ A� D ; for any �; � 2 ƒ with � ¤ �:

� Let f and g be functions with variables x1; : : : ; xn. We say that f � g for any
.x1; : : : ; xn/ 2 A if there exists C > 0 such that

C�1f .x1; : : : ; xn/ � g.x1; : : : ; xn/ � Cf .x1; : : : ; xn/;

for any .x1; : : : ; xn/ 2 A:

� Let .X; d/ be a metric space and suppose that � is a (Borel) measure on .X; d/,
then we write

Bd .x; r/ D
®
y
ˇ̌
d.x; y/ < r

¯
; Vd;�.x; r/ D �.Bd .x; r//:

Whenever no confusion may occur, we omit d and/or �.

� We also use the notation

Œn;m�Z D
®
k 2 Z

ˇ̌
n � k � m

¯
;

for n;m 2 Z, and

a _ b D max
®
a; b

¯
; a ^ b D min

®
a; b

¯
:

In the following, whenever d �QS � for metrics d; � on a space, � denotes a homeo-
morphism such that d is � -quasisymmetric to �, if no confusion may occur. We will
use the same notation for a vertex and its equivalent class.
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2. Kigami’s results for compact metric spaces

As the preparation for this paper, we introduce the results of [12] on which the results
of this paper are based. For this purpose, we first give the notation we use for graphs.

Definition 2.1 (Graph, tree). Let T be an (at most) countable set and let A � T � T

be such that

� for any w 2 T; .w;w/ 62 AI

� .w; v/ 2 A if .v; w/ 2 A:

We call .T; A/ a simple graph. We write w � v if .w; v/ 2 A:

(1) A simple graph .T; A/ is called locally finite if #.¹y j y � xº/ <1 for any
x 2 T . We say that .T;A/ has bounded degree if supx2T #.¹y j y � xº/ <1.

(2) Let n � 0: We call .w0; w1; : : : ; wn/ 2 T n an n-path (between w0 and wn)
if wi � wi�1 for any i 2 Œ1; n�Z: Furthermore, we call .w0; w1; : : : ; wn/ an
n-simple path (between w0 and wn) if it is an n-path and wi ¤ wj whenever
i ¤ j:

We call .w0;w1; : : : ;wn/ a path if it is an n-path for some n� 0, and a simple
path if it is an n-simple path for some n � 0:

(3) We call .T;A/ connected if there exists a path between w and v for any
w; v 2 T . Moreover, we call .T;A/ a tree if there exists an unique simple
path between w and v for any w; v 2 T .

(4) Let .T;A/ be a simple graph. We define lA by

lA.w; v/ D min
®
n
ˇ̌

there exists an n-path between w and v
¯
:

If .T;A/ is connected, then lA is called the graph metric of .T;A/:

In this paper, we will consider only simple graphs.

Definition 2.2 (Rooted tree). Let .T;A/ be a tree and let � 2 T . We call the triple
.T;A; �/ a rooted tree.

(1) For w 2 T; define jwj D lA.�; w/ and .T /n D ¹w j jwj D nº for any n � 0;
and define � W T ! T by

�.w/ D �.T;A;�/.w/

D

8̂̂<̂
:̂
wn�1; if w ¤ � and .� D w0; : : : ; wn�1; wn D w/

is the unique simple path between � and w;

�; if w D �:
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We use S to denote the inverse of � (excluding �), namely

S.A/ D
®
w 2 T n ¹�º

ˇ̌
�.w/ 2 A

¯
for any A � X; and we write S.w/ instead of S.¹wº/. We call jwj (resp.
�.w/ and S.w/) the depth (resp. parent (or predecessor) and children (or
successors)) of w.

(2) For w; v 2 T; we say that w is an ancestor of v and v is a descendant of
w if there exists n � 1 such that w D �n.v/. Then Tw denotes the subtree
consisting of all descendants of w and w itself.

(3) Define the geodesics of T (from �) by

† D
®
! D .!n/n�0

ˇ̌
!n 2 .T /n; �.!iC1/ D !i for all i � 0

¯
;

and the geodesics passing through w by †w D ¹! 2 † j !jwj D wº for any
w 2 T:

Throughout this section, T D .T;A; �/ is a locally finite rooted tree.

Definition 2.3 (Partition). Let .X;O/ be a compact metrizable space having no isol-
ated points, and let C.X;O/ be the collection of nonempty compact subsets of .X;O/
without single points. A mapK W T ! C.X;O/, where we writeKw instead ofK.w/
for ease of notation, is called a partition of .X;O/ parametrized by T if it satisfies the
following conditions.

(P1) K� D X and for any w 2 T; [
v2S.w/

Kv D Kw :

(P2) For any ! 2 †,
T
m�0K!m is a single point.

We will consider the following notion.

(1) Let K be a partition of X: We define Ow by

Ow D Kw n

� [
v2.T /jwjn¹wº

Kv

�
:

Then K is called minimal if Ow ¤ ; for any w 2 T:

(2) For m � 0; we define Ehm � .T /m � .T /m by

J hm D
®
.w; v/

ˇ̌
w; v 2 .T /m; w ¤ v and Kw \Kv ¤ ;

¯
;

and �n.w/ D ¹v 2 .T /jwj j lJhm.w; v/ � nº for any w 2 T:
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We simply write X for .X;O/ if no confusion may occur.

Definition 2.4 (Weight function). A function g W T ! .0;1� is called a weight function
if it satisfies the following conditions.

(G1) g.�/ D 1:

(G2) For any w 2 T; g.�.w// � g.w/:

(G3) For any ! 2 †; limm!1 g.!m/ D 0:

We also consider the following.

(1) For s > 0; we define the scale ƒgs associated to g by

ƒgs D

´®
w 2 T

ˇ̌
g.w/ � s < g.�.w//

¯
; if 0 < s < 1;

¹�º; otherwise.

We also define Egs � ƒ
g
s �ƒ

g
s by

Egs D
®
.w; v/

ˇ̌
w; v 2 ƒgs ; w ¤ v and Kw \Kv ¤ ;

¯
:

(2) For x 2 X; s > 0; M � 0 and w 2 ƒgs ; we define

ƒ
g
s;M .w/ D

®
v 2 ƒgs

ˇ̌
lEgs .w; v/ �M

¯
; ƒ

g
s;M .x/ D

[
w2ƒ

g
s

with x2Kw

ƒ
g
s;M .w/;

and
U
g
M .x; s/ D

[
w2ƒ

g
s;M

.x/

Kw :

Definition 2.5. Let .X;O/ be a compact metrizable space having no isolated point,
and K be a partition of X . Define

D.X;O/ D
®
d
ˇ̌
d is a metric on X inducing the topology O and diam.X; d/ D 1

¯
:

For d 2 D.X;O/, define gd W T ! .0; 1� by gd .w/ D diam.Kw ; d / for any w 2 T:

Proposition 2.6 ([12, Proposition 2.3.5 (1)]). Let .X;O/ be a compact metrizable
space having no isolated point and K be a partition of X . For any d 2 D.X;O/,
gd is a weight function.

We denote gd by d if no confusion may occur. For example, we will use the
notation U dM .x; r/ (resp. d.w/) instead of U gdM .x; r/ (resp. gd .w/).

For the purpose of stating the main result of [12], we introduce some properties
of weight functions and metrics.
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For the rest of this section, .X;O/ is a compact metrizable space and d 2D.X;O/

(in other words, .X; d/ is a compact metric space with diam.X; d/ D 1; and O is the
induced topology). Moreover, K is a partition of X:

Definition 2.7. Let g be a weight function. Then

� g is called uniformly finite if

sup
®
#.ƒgs;1.w//

ˇ̌
s > 0;w 2 ƒgs

¯
<1: (2.1)

� g is called thick (with respect to K) if there exists ˛ > 0 such that for any w 2 T;
U
g
1 .x; ˛g.�.w/// � Kw for some x 2 Kw :

Furthermore, d is called uniformly finite (resp. thick) if gd is uniformly finite (resp.
thick).

Definition 2.8. d is called adapted if there exist ˛1; ˛2 > 0 and M 2 N such that

Bd .x; ˛1r/ � U
d
M .x; r/ � Bd .x; ˛2r/

for any x 2 X and r � 1:

Example 2.9 (Sierpiński carpet). Let ¹piº8iD1 � C be such that

p1 D 0; p2 D
1

2
; p3 D 1; p4 D 1C

1

2
i;

p5 D 1C i; p6 D
1

2
C i; p7 D i; p8 D

1

2
i;

and let Fi D 1
3
.z � pi /C pi for any i 2 Œ1; 8�Z: It is well known that there exists a

unique compact set X such that
S8
iD1 Fi .X/ D X; called the Sierpiński carpet. Let

T D
S
n�0.Œ1; 8�Z/

n, where .Œ1; 8�Z/0 D ¹�º and define � W T n ¹�º ! T by

�.w/ D

´
.w1; w2; : : : ; wn�1/; if w D .w1; w2; : : : ; wn/ 2

S
n�2.Œ1; 8�Z/

n;

�; if w 2 Œ1; 8�Z:

We also let A D ¹.w; v/ j w D �.v/ or v D �.w/º; then T D .T;A; �/ is a rooted
tree. Moreover, for w 2 T , define Fw W C ! C by

Fw D

´
Fw1 ı Fw2 ı � � � ı Fwn ; if w D .w1; w2; : : : ; wn/ 2

S
n�1Œ1; 8�

n
Z;

idC; if w D �;

and define K W T ! C.X;O/ by Kw D Fw.X/: Then K is a partition of X paramet-
rized by T : We also let d.z; w/ D

p
2
2
jz � wj; then d 2 D.X;O/ and by Proposi-

tion 2.6, gd is a weight function. We can see that d.w/ D diam.Fw.X/; d/ D 3�jwj;
and hence ƒds D .T /m for any s 2 .0; 1/ and m � 1 such that 3�m � s < 3�.m�1/:
This implies that d is uniformly finite, thick, and adapted (for M D 1).
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Definition 2.10. For any N � 1; N2 � N1 � 0 and m � 0; define

J hN;m D
®
.w; v/

ˇ̌
w; v 2 .T /m are such that 0 < lJhm.w; v/ � N

¯
;

and

Ep;k;w.N1; N2; N / D inf
²
1

2

X
.x;y/2Jh

N;jwjCk

jf .x/ � f .y/jp

ˇ̌̌̌
f W .T /jwjCk ! R is such that f jSk.�N1 .w// � 1; f j.Sk.�N2 .w///c � 0

³
:

(We remark that J h1;m D J
h
m.) We also define

Ep;k.N1; N2; N / D sup
w2T

Ep;k;w.N1; N2; N /;

Ep.N1; N2; N / D lim sup
k!1

Ep;k.N1; N2; N /;

Ep.N1; N2; N / D lim inf
k!1

Ep;k.N1; N2; N /;

IE.N1; N2; N / D inf
®
p
ˇ̌

Ep.N1; N2; N / D 0
¯
;

IE.N1; N2; N / D inf
®
p
ˇ̌

Ep.N1; N2; N / D 0
¯
:

As in [12], we define the basic framework as follows.

Definition 2.11. Let .X; d/ be a metric space and assume K is minimal. We say d
satisfies the basic framework (with respect to K) if the following conditions hold:

� supw2T #.S.w// <1.

� d is uniformly finite, thick and adapted.

� There exists r 2 .0; 1/ such that d.w/ � r jwj for any w 2 T .

Theorem 2.12 ([12, Theorems 4.6.4 and 4.6.9]). If K is minimal and d satisfies the
basic framework, then

IE.N1; N2; N / D IE.N1; N2; N / D dimAR.X; d/

for any N;N1; N2 such that N2 �N1 is sufficiently large.

As a corollary of Theorem 2.12, we get the result for comparison between dimAR

and the “p-spectral” dimension, defined for any p > 0, as follows.

Definition 2.13 (p-spectral dimension). Define

N � D lim sup
k!1

sup
w2T

#.Sk.w//1=k;
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Rp.N1; N2; N / D lim sup
k!1

Ep;k.N1; N2; N /
1=k;

Rp.N1; N2; N / D lim inf
k!1

Ep;k.N1; N2; N /
1=k;

and the upper p-spectral dimension d
S

p .N1; N2; N / and the lower p-spectral dimen-
sion dSp .N1; N2; N / by

d
S

p .N1; N2; N / D
p logN �

logN � � logRp.N1; N2; N /
;

dSp .N1; N2; N / D
p logN �

logN � � logRp.N1; N2; N /
:

Corollary 2.14 ([12, Theorem 4.7.9]). AssumeK is minimal and d satisfies the basic
framework. Let N;N1; N2 � 0 be such that N2 �N1 is sufficiently large.

(1) If Rp.N1; N2; N / < 1; then

dimAR.X; d/ � d
S
p .N1; N2; N / � d

S

p .N1; N2; N / < p:

(2) If Rp.N1; N2; N / � 1; then

dimAR.X; d/ � d
S

p .N1; N2; N / � d
S
p .N1; N2; N / � p:

3. Extension to � -compact metric spaces

In order to obtain the former results for infinite graphs, we first extend these theorems
to � -compact spaces. To do that, we introduce the notion of a bi-infinite tree.

Definition 3.1. Let T be a countable set and �T W T ! T be a map which satisfies
the following.

(T1) For any w; v 2 T; there exist n;m � 0 such that �n.w/ D �m.v/:

(T2) For any n � 1 and w 2 T; �n.w/ ¤ w:

Then we define A� D ¹.w; v/ j �.w/ D v or �.v/ D wº and consider the simple
graph .T;A�/: We call .T; �/ a bi-infinite tree.

As for rooted trees, we denote the inverse of � by S and write S.w/ instead of
S.¹wº/:Moreover, we define the subtree Tw D ¹v 2 T j �n.v/D w for some n� 0º:

Lemma 3.2. Let .T; �/ be a bi-infinite tree and fix w; v 2 T: Then n �m is constant
if �n.w/ D �m.v/:
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Proof. Assume �ni .w/ D �mi .v/ .i D 1; 2/: Without loss of generality, we may
assume n1 � n2. Then

�m2.v/ D �n2.w/ D �n2�n1 ı �n1.w/ D �n2�n1 ı �m1.v/:

This together with (T2) shows m2 D .n2 � n1/Cm1, which means that m2 � n2 D
m1 � n1.

Definition 3.3. Let .T; �/ be a bi-infinite tree.

(1) Let � 2T . We call the triple .T;�;�/ a bi-infinite tree with a reference point �,
and for any w 2 T we define the height of vertices by Œw� D Œw�� D n �m,
where �n.w/ D �m.�/. We also define .T /n D ¹w 2 T j Œw� D nº for any
n 2 Z:

(2) We define the set of (descending) geodesics of T by †� D ¹! D .!n/n2Z j

!n 2 .T /n; �.!nC1/ D !n for all n 2 Zº and the set of geodesics passing
through w by †�w D ¹! 2 †

� j !Œw� D wº for any w 2 T:

Remark 3.4. The property (T1) and Lemma 3.2 ensure that Œw� is well-defined.
Moreover, for fixed w; v 2 T; Œw�� � Œv�� is constant for every � 2 T by Lemma 3.2
(that is, the difference of the height of a bi-infinite tree is determined only by � and
does not depend on its reference point).

As the name shows, a bi-infinite tree is a tree.

Proposition 3.5. Let .T; �/ be a bi-infinite tree, then .T;A�/ is a tree.

Proof. For all w; v 2 T , there exists a path between them by (T1), and also a simple
path exists.

Next we prove the uniqueness of a simple path. Fix any reference point � 2 T
and think about .T;A; �/: By definition, if w D �.v/, then Œw� D Œv� � 1. Let
.w0; w1; : : : ; wn/ be a simple path. If Œwi � > ŒwiC1�, then �.wi / D wiC1 and so
wi�1¤�.wi /;which means Œwi�1� > Œwi �. In the same way, we can see ŒwiC1� > Œwi �
if Œwi � > Œwi�1�.

Now let .w;�.w/; : : : ;�n1.w/D�m1.v/; : : : ;�.v/;v/ and .w;�.w/; : : : ;�n2.w/
D �m2.v/; : : : ; �.v/; v/ be simple paths. If n1 < n2 thenm1 < m2 by Lemma 3.2, so
the latter simple path take �n1.w/ D �m1.v/ two times, which is contradiction. The
case n1 > n2 is the same. If n1 D n2 then m1 D m2 by Lemma 3.2, so the paths are
equal. Therefore .T;A/ is a tree.

The root of a bi-infinite tree does not exist, but “�1.w/” is thought to be a virtual
root.

Now we extend notions of partitions and weight functions to � -compact spaces.
For the rest of this section, let T D .T; �; �/ be a locally finite bi-infinite tree with a
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reference point. Note that .T; �/ is locally finite if and only if #.S.w// <1 for any
w 2 T:

Definition 3.6 (Partition). Let .X;O/ be a � compact metrizable space having no
isolated points, and let C.X;O/ be the collection of nonempty compact subsets of
.X;O/ without single points. A map K W T ! C.X;O/, where we denote K.w/ by
kw for ease of notation, is called a partition of .X;O/ parametrized by T if it satisfies
the following conditions.

(P1) For any w 2 T; [
v2S.w/

Kv D Kw :

(P2) For any ! 2 †�;
T
m�0K!m is a single point.

(P3)
S
w2.T /0

K.w/ D X:

We say a partition K is locally finite if it satisfies that for any w 2 .T /0, there exists
an open set Uw which satisfies Kw � Uw and #¹v 2 .T /0 j Kv \ Uw ¤ ;º <1.

We defineOw ; J hM ;�n.w/ and minimality in the same way as in the compact case,
and similarly use X instead of .X;O/:

Remark 3.7. Condition (P3) is the counterpart of K� D X in Definition 2.3. The
locally finiteness of a partition is used to reduce local properties of partitions of � -
compact spaces to the compact case.

Definition 3.8 (Weight function). A function g W T ! .0;1/ is called a weight func-
tion if it satisfies the following conditions.

(G1) limn!1 g.�
n.�// D1:

(G2) For any w 2 T; g.�.w// � g.w/:

(G3) For any ! 2 †�; limm!1 g.!m/ D 0:

For s > 0; we define the scale ƒgs associated to g by

ƒgs D
®
w 2 T

ˇ̌
g.w/ � s < g.�.w//

¯
;

and define Egs ; ƒ
g
s;M .w/;ƒ

g
s;M .x/; U

g
M .x; s/ in the same way as in Definition 2.4.

Definition 3.9. Let .X;O/ be a � -compact metrizable space having no isolated points
and K be a partition of X . Define

D1.X;O/ D
®
d
ˇ̌
d is a metric on X inducing the topology O and

diam.X; d/ D1
¯
:

For d 2D1.X;O/, define gd W T ! .0;1/ by gd .w/D diam.X; d/ for any w 2 T:
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Similar to the compact case, we can obtain the following.

Proposition 3.10. Let .X;O/ be a � -compact metrizable space having no isolated
point andK be a partition ofX , then for any d 2D1.X;O/; gd is a weight function.

Remark 3.11. Condition (G1) follows from (P1).

We denote gd by d if no confusion may occur. For the rest of this section, .X;O/
is a � -compact metrizable space having no isolated points and d 2D1.X;O/:More-
over, K is a partition of X:

We introduce the properties of d and a weight function g in the same way as
in Definitions 2.7, 2.8 and 2.11, and we also introduce variables in the same way as
in Definitions 2.10 and 2.13. By using bi-infinite trees and these properties, we can
extend the theory of [12] to � -compact spaces. In particular, we get the following
result.

Theorem 3.12. AssumeK is locally finite and minimal. If d satisfies the basic frame-
work, then for any N;N1; N2 such that N2 �N1 is sufficiently large,

(1) IE.N1; N2; N / D IE.N1; N2; N / D dimAR.X; d/:

(2) If Rp.N1; N2; N / < 1; then

dimAR.X; d/ � d
S
p .N1; N2; N / � d

S

p .N1; N2; N / < p:

(3) If Rp.N1; N2; N / � 1; then

dimAR.X; d/ � d
S

p .N1; N2; N / � d
S
p .N1; N2; N / � p:

Idea of the proof. Most of the results in [12] do not use the property T D T� nor
compactness of X: Therefore if K is locally finite, we can prove � -compact version
for most of the statements in [12] line by line in the same way. In order to prove the
rest of statements, we essentially need the following lemma.

Lemma 3.13. Let g be a weight function on T . Then for any s 2 .0;1/, w 2 ƒgs ,
M � 0; there exists v 2 T such that ƒgs;M .w/ � Tv:

Proof. Let Qƒgs;1.w/ WD ¹�
0_.Œv��Œw�/.v/ j v 2ƒ

g
s;1.w/º; then # Qƒgs;1.w/ <1 because

K is locally finite. And, inductively, we define

Qƒ
g
s;nC1.w/ WD

[®
Qƒ
g

g.v/;1
.v0/

ˇ̌
for some v 2 Qƒgs;n.w/; v

0
2 ƒ

g

g.v/
and v 2 Tv0

¯
;

then # Qƒgs;M .w/ <1 for all M .
Moreover, for any v 2ƒgs;n.w/, there exists v0 2 Qƒgs;n.w/ such that v 2 Tv0 : There-

fore ƒgs;M .w/ � [v2 Qƒg
s;M

.w/Tv � Tu for some u because of (T1).
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Using this lemma, we can consider the problems in subtrees and so can apply the
results of the compact case. See [17, Section 3] for details.

4. Ahlfors regular conformal dimension of infinite graphs

In this section, we give results about the ARC dimensions and the spectral dimensions
of metrics on infinite graphs, which are the main results of this paper. To get these
results, the cable systems of graphs play an important role. Technically, the main
contribution of this paper is to show that the ARC dimension and a partition of a graph
coincide with those of its cable system. Cable systems do not appear in statements
of main results, but we use them and adapt the results of former sections and lead
results for graphs. Throughout this section, G is a countable (infinite) set, .G; E/
is a connected, bounded degree graph and T D .T; �; �/ is a bi-infinite tree with a
reference point.

4.1. Ahlfors regular conformal dimension of metrics on infinite graphs

We first denote a class of metrics on .G;E/, which we consider in this paper.

Definition 4.1 (Fitting metric). We say a metric d on G fits to .G; E/ if it satisfies
the following conditions.

(F1) There exists C > 0 such that d.x; y/ � Cd.x; z/ for any x; y; z 2 G with
x � y and x ¤ z:

(F2) For any " > 0; there exist r > 0, n � 1 and ¹xiºniD0 � G such that

� xi 2 Bd .x0; r/ for any i 2 Œ0; n � 1�Z and xn 62 Bd .x0; r/;

� d.xi ; xi�1/ � "r and xi � xi�1 for any i 2 Œ1; n�Z:

If the graph .G;E/ is fixed or clear, we simply say d is fitting when d fits to .G;E/:

Condition (F1) is a natural condition for metrics onG: For example, the graph dis-
tance lE and “gently weighted” graph distances satisfy (F1). Moreover, the effective
resistance of a weighted graph with controlled weight, which we will introduce later,
also satisfies (F1). Condition (F2) is a little technical, which is needed to evaluate
dimAR.G; d/:

Example 4.2. Let G D Z and E D ¹.n;m/ j jn�mj D 1º: For any k � 1; let xi D i
for i 2 Œ0; k�Z, then lE .i C 1; i/ � k

k
and xk 62 BlE .x0; k/; so lE satisfies (F2). On

the other hand, let d.n;m/ WD j2n � 2mj. For any simple path .n; nC 1; : : : ; nC k/,
d.nC k � 1;nC k/D 2nCk�1 � d.n;nCk/

2
: Hence in this case d does not satisfy (F2)

for " < 1=2:
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We remark that for any .G;E/; lE satisfies (F2).

Lemma 4.3. Let d; � be metrics on G and suppose that d �QS �: If d fits to .G;E/;
then � fits to .G;E/:

For this lemma and later statements, now we recall basic properties of quasisym-
metry. Let .X; d/ and .X; �/ be metric spaces.

(1) Let � W Œ0;1/! Œ0;1/ be a homeomorphism, then the following conditions
are equal:

(a) d is � -quasisymmetric to �:

(b) �.x; z/ � �.t/�.x; z/ whenever d.x; y/ � td.x; z/:

(c) �.x; z/ < �.t/�.x; z/ whenever d.x; y/ < td.x; z/:

(2) If d �QS � and diam.X; d/ D1; then diam.X; �/ D1:

(3) �QS is an equivalence relation between metrics on X:

(4) If d �QS �; then both .X; d/ and .X; �/ induce the same topology (in other
words, idX is a homeomorphism between .X; d/ and .X; �/).

Property (1) follows from the monotonicity of �: For properties (2)–(4), see [6, Sec-
tion 10], for example.

Proof of Lemma 4.3. Since d satisfies (F1) and d �QS �; �.x; y/ � �.C /�.x; z/ for
any x; y; z 2 G with x � y and x ¤ z; so � satisfies (F1). Next, we show � satisfies
(F2). Fix any " > 0: Let ı < 1=2 such that �.2ı/�.3/ < ": Since d satisfies (F2), there
exists ¹xiºniD0 � G such that

� xi 2 Bd .x0; r/ for any i 2 Œ0; n � 1�Z and xn 62 Bd .x0; r/;

� d.xi ; xi�1/ � ır and xi � xi�1 for any i 2 Œ1; n�Z:

Let i 2 Œ0; n � 1�Z: Since d.x0; xn/ � r and xi ; xn 2 Bd .x0; .1C ı/r/;

r

2
� d.x0; xi / _ d.xi ; xn/ < 3r

and hence

�.xi ; xiC1/ � �.2ı/.�.x0; xi / _ �.xi ; xn// � �.2ı/�.3/�.x0; xn/:

Let m D min¹i j xi 62 B�.x0; �.x0; xn//º, then r D �.x0; xn/ and ¹xiºmiD0 satisfies
(F2) for ":

Next, we introduce partitions of infinite graphs.
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Definition 4.4 (Partition). A mapK W T ! ¹A� G j #.A/ <1º is called a partition
of .G;E/ parametrized by T if it satisfies following conditions.

(PG1)
S
v2S.w/Kv D Kw for any w 2 T:

(PG2) For any ! 2 †�; there exist n0.!/ 2 Z and x; y 2 G such that x � y and
K!n D ¹x; yº for any n � n0.!/:

(PG3) For any .x; y/ 2 E; there exists w 2 T such that Kw D ¹x; yº:

For the rest of this section, K is a partition of .G;E/ parametrized by T :

Lemma 4.5. Let ƒe D ¹w 2 T j #.Kw/ D 2 and #.K�.w// > 2º; thenG
w2ƒe

†�w D †
�:

Proof. [w2ƒe†
�
w D †� directly follows from (PG2). By (PG1), #.K!n/ is non-

increasing for any ! 2 †�; so there exists a unique n 2 Z such that !n 2 ƒe: This
shows †�w \†

�
v D ; for any w; v 2 ƒe with w ¤ v:

Definition 4.6. (1) We denote !n0.!/ by !e where n0.!/ is in condition (PG2).
We also define Te by

Te D
®
w 2 T

ˇ̌
Tw \ƒe ¤ ;

¯
D
®
w 2 T

ˇ̌
#.K�.w// > 2

¯
:

For w 2 .T n Te/ [ƒe; we define we 2 ƒe such that w 2 Twe :

(2) K is called minimal if Kw ¤ Kv for any w; v 2 ƒe with w ¤ v:

Definition 4.7 (Discrete weight function). Recall that K is a partition of .G; E/: A
function g W Te ! .0;1/ is called a discrete weight function (with respect to K) if it
satisfies following conditions.

(GG1) For some w 2 Te; limn!1 g.�
n.w// D1:

(GG2) For any w 2 Te; g.�.w// � g.w/:

For s > 0; we define the scale ƒgs associated to g by

ƒgs D
®
w 2 Te

ˇ̌
g.w/ � s < g.�.w//

¯
;

and define Egs ; ƒ
g
s;M .w/; ƒ

g
s;M .x/ in the same way as in the compact case. We also

define U gM .x; s/ for M � 0; x 2 G and s > 0 by

U
g
M .x; s/ D

´
¹xº; if ƒgs;M .x/ D ;;S
w2ƒ

g
s;M

.x/Kw ; otherwise.
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Remark 4.8. In contrast to the compact and � -compact cases, †� is not necessarily
equal to

F
w2ƒ

g
s
†�w since they are restricted to Te: The difference also appears in the

definition of U gM .x; s/:

Lemma 4.9. Define

D1.G/ D
®
d
ˇ̌
d is a metric on G such that diam.G; d/ D1

¯
and let d 2 D1.G/: We also define gd W Te ! .0;1/ by gd .w/ D max

x;w2Kw
d.x; y/.

Then gd is a discrete weight function.

We denote gd by d if no confusion may occur.

Definition 4.10. Let g be a discrete weight function.

� g is called uniformly finite if (2.1) holds (see Definition 2.7).

� g is called thick (with respect toK) if there exists ˛ > 0 such that for any w 2 Te;
ƒ
g

˛g.�.w//;1
.x/ � Tw for some x 2 Kw :

The metric d 2 D1.G/ is called uniformly finite and thick if gd is uniformly finite
and thick, respectively.

We define adapted in the same way as in the compact case, and define the follow-
ing properties.

Definition 4.11. Let .G; d/ be a metric space and assume K is minimal. We say
.G; d/ satisfies the basic framework (with respect to K) if the following conditions
hold.

� supw2Tenƒe #.S.w// <1:

� d is uniformly finite, thick and adapted.

� There exists r 2 .0; 1/ such that d.w/ � r Œw� for any w 2 Te:

The difference between these definitions and those in the compact case is given
by the Te’s in the notation.

Definition 4.12. Let r 2 .0; 1/: For w 2 ƒe and n � 0, let

Sw;m D
®
¹.x; k/; .y; 2n.m/ � 1 � k/ºw;m

ˇ̌
k 2 Œ0; 2n.m/ � 1�Z

¯
where x;y 2 G, n.m/ 2N such thatKw D ¹x;yº and 2�n.m/ � rm < 21�n.m/: Then
we define

Tr D Te t

� [
w2ƒe

G
m�1

Sw;m

�
and � 0 W Tr ! Tr by
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� 0.w/ D8̂̂̂̂
<̂
ˆ̂̂:
�.w/; if w 2 Te;

v; if w 2 Sv;1;®
.x; l/; .y; 2n.m�1/ � 1 � l/

¯
v;n�1

; if w D
®
.x; k/; .y; 2n.m/ � 1 � k/

¯
v;m

and
�

k

2n.m/
; kC1

2.n.m//

�
�
�

l

2n.m�1/
; lC1

2n.m�1/

�
:

Moreover, we define K 0 by K 0w D Kw (if w 2 Te) and Kv (if w 2
F
m�1 Sv;m).

Lemma 4.13. .Tr ; � 0/ is a bi-infinite tree and K 0 is a partition of .G;E/. Moreover,
if we write Œw�0 for the height of .Tr ; � 0; �0/ for �0 2 Tr and ƒ0e for the K 0 version of
ƒe , then ƒe D ƒ0e and we can take �0 2 Tr such that Œw� D Œw�0:

Proof. For any w 2 Tr n Te , by the definition of � 0; we have

� �n.w/ 2 ƒe for some n > 0:

� For any n > 0, �n.w/ ¤ w:

These and conditions (T1), (T2) of � show conditions (T1), (T2) of � 0, so .Tr ; � 0/ is
a bi-infinite tree. Fix w 2 Te and let �0 2 S Œw�, then Œw� D Œw�0 and, by Lemma 3.2,
Œv� D Œv�0 for any v 2 Te because � D � 0 on Te: The rest of this lemma is clear by
definition.

We remark that discrete weight functions and their properties are given only by
Te , so they do not change if we replace .T; �; �/ by .Tr ; � 0; �0/: For the rest of this
section, assume .T; �; �/ D .Tr ; � 0; �0/:

Definition 4.14. Now we formally define K on Tr by

Kw D

8̂̂<̂
:̂
Kw ; if w 2 Te;

¹xº; if w D
®
.x; 0/; .y; 2n.m/ � 1/

¯
m;v

for some m; v;

;; otherwise.

We also define J hm � .T /m � .T /m by

J hm D J
h
m.K/ D

®
.w; u/

ˇ̌
w; u 2 .T /m; Kw \Kv ¤ ; or there exist v 2 Te; i � 0

such that w D
®
.x; i/; .y; 2n.m�Œv�/ � 1 � i/

¯
w;m�Œv�

;

u D
®
.x; i � 1/; .y; 2n.m�Œv�/ � i/

¯
w;m�Œv�

¯
:

The edges J hm can be constructed as follows: define

OJ hm D
®
.w; v/

ˇ̌
w; v 2 ..T /m \ Te/ [ƒe;m; Kw \Kv ¤ ;

¯
;
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where ƒe;m D ¹we j w 2 .T /m n Teº, and we replace each w 2 ƒe;m by a 2n.m�Œv�/-
path. We will justify this idea later in the cable system. We define IE ; IE ; Rp; Rp;

etc. in the same way as in Definitions 2.10 and 2.13.
The following is one of the two main theorems of this paper.

Theorem 4.15. Let K be a minimal partition of .G;E/: If d 2 D1.G/ satisfies the
basic framework in Definition 2.11 and fits to .G; E/, then for any N; N1; N2 such
that N2 �N1 is sufficiently large,

(1) IE.N1; N2; N / D IE.N1; N2; N / D dimAR.G; d/:

(2) If Rp.N1; N2; N / < 1; then

dimAR.G; d/ � d
S
p .N1; N2; N / � d

S

p .N1; N2; N / < p:

(3) If Rp.N1; N2; N / � 1; then

dimAR.G; d/ � d
S

p .N1; N2; N / � d
S
p .N1; N2; N / � p:

In order to prove the theorem, we introduce the notion of cable system.

Definition 4.16 (Cable system). Let ' denote the minimal equivalence relation on
G �G � Œ0; 1� which satisfies

� ..x; y/; 0/ ' ..x; z/; 0/ for any x; y; z 2 G;

� ..x; y/; t/ ' ..y; x/; 1 � t / for any .x; y/ and t 2 Œ0; 1�:

Then we define the cable system CG of .G;E/ by CG WD .E � Œ0; 1�/= ' :

For .x; y/ 2 E; we also define �.x; y/ D .x; y/ � Œ0; 1�= ' : Moreover, for any
x 2 G; �.x/D ..x; y/; 0/=' where .x; y/ 2 E; is well-defined because of the defin-
ition of' : We equate �.x/ with x and regard G as a subset of CG :

Definition 4.17 (Induced cable metric). Let ˛ 2 .0; 1� and d 2 D1.G/: We define
an induced cable metric dc;˛ W CG � CG ! Œ0;1/ by

dC;˛.x; y/

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
jt � sj˛d.x0; x1/;

if there exists .x0; x1/ 2 E
such that x ' ..x0; x1/; t/
and y ' ..x0; x1/; s/;

min
®
t˛d.x1; x0/Cd.x0; y0/C s

˛d.y0; y1/

j x ' ..x0; x1/; t/ and y ' ..y0; y1/; s/
¯
;

otherwise.

We write dC instead of dC;1: Note that .CG ; dC;˛/ is a metric space. We also note
that d.x; y/ D dC;˛.x; y/ for any x; y 2 G since d satisfies the triangle inequality.

For the notation of a partition, we write Kw D ¹wC; w�º for each w 2 ƒe:
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Definition 4.18. Define K W T D Tr ! CG by

Kw D

´S
!2†�w

�.!Ce ; !
�
e /; if w 2 Te;

.x; y/ �
�

k

2n.m/
; kC1
2n.m/

�
; if w D

®
.x; k/; .y; 2n.m/ � 1 � k/

¯
w;m

:

Lemma 4.19. (1) K is a partition of .CG :dC;˛/:

(2) for any w; v 2 Te; Kw \Kv ¤ ; if and only if Kv \Kw ¤ ;:

The following proposition plays the key role in the proof of the main theorem.

Proposition 4.20. Let d 2 D1.G/ and fitting to .G;E/: Then

1 � dimAR.G; d/ D dimAR.CG ; dC/:

Idea of the proof. The proof of this proposition consists of four steps:

(1) 1 � dimAR.G; d/;

(2) dimAR.G; d/ � dimAR.CG ; dC/;

(3) d �QS � implies that dC�QS �C;1=˛ for ˛ � 1, and

(4) dimAR.G; d/ � dimAR.CG ; dC/:

Property (1) follows from condition (F2). If some ˛-Ahlfors regular metric �X on
CG satisfies dC �QS �X , we can see that �D �X jG�G is ˛-Ahlfors regular (as a metric
on G) and d �QS �; which implies (2). Property (3) essentially follows from condition
(F1). Similar to (2), if a metric � on G is ˛-Ahlfors regular for ˛ � 1 and d �QS �;

we can see �C;1=˛ is ˛-Ahlfors regular. This together with (1) and (3) implies (4).

We can also obtain the following lemma.

Lemma 4.21. Under the same assumption of Theorem 4.15, dC satisfies the assump-
tions of Theorem 3.12 with respect to the partition Kr .

Using these, we can prove Theorem 4.15.

Proof of Theorem 4.15. Let .w; v/ 2 Tm and suppose Kw \Kv does not intersect
with G: Then Kw \Kv ¤ ; if and only if

w D
®
.x; i/; .y; 2n.m�Œwe�/ � 1 � i/

¯
w;m�Œwe�

and

v D
®
.x; j /; .y; 2n.m�Œve�/ � 1 � j /

¯
w;m�Œve�

with we D ve and ji � j j D 1: Therefore

J hM D J
h
M .K/ D J

h
M .K/:
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Hence, IE ; IE ; d
S
p and d

S

p for K and K coincide respectively. Therefore, by Lemma
4.21 and Theorem 3.12,

IE.N1; N2; N / D IE.N1; N2; N / D dimAR.CG ; dC/

if N2 �N1 is sufficiently large. Combining this with Proposition 4.20, we get

IE.N1; N2; N / D IE.N1; N2; N / D dimAR.G; d/:

We also obtain (2) and (3).

4.2. Spectral dimension and Ahlfors regular conformal dimension of weighted
graphs

In Theorem 4.15, we saw a relation between the ARC dimension and the p-spectral
dimension of the associated metrics on graphs. On the other hand, the spectral dimen-
sion of the associated random walks on graphs can be determined. In this subsection,
we consider the relation between these dimensions. Recall that .G;E/ is a connected,
bounded degree simple graph and T D .T;�;�/D .Tr ;�

0;�0/ is a bi-infinite tree with
a reference point. Throughout this section, letK be a partition of .G;E/ parametrized
by T :

Definition 4.22 (Weighted graph). Let � be a positive symmetric function on E,
then we call .G; �/ a weighted graph and � a conductance (or a weight) on .G; E/.
Moreover, we treat � as a measure on G defined by

�x WD
X
yWy�x

�xy ; �.A/ WD
X
x2A

�x

for any x 2 G and A � G:

� (Controlled weight). We say .G; �/ has controlled weight, or satisfies condition
(p0) if there exists p0 > 0 such that

p.x; y/ WD
�xy

�x
� p0 for any x; y 2 G with x � y: (p0)

Note that if .G; �/ has controlled weight, then #¹y j y � xº � bp�10 c for any
x 2 T: (It shows that .G;E/ must be a bounded degree graph.)

� (Heat kernel). We inductively define

p0.x; y/ D ıx;y ; pn.x; y/ D
X
z2G

pn�1.x; z/p.z; y/:
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pn.x; y/ is also thought as transition function of associated random walk; that is,

Px.Xn D y/ D pn.x; y/:

Additionally, we define the heat kernel of this random walk (with respect to �) by
hn.x; y/ D pn.x; y/=�y : It is easy to see that hn.x; y/ D hn.y; x/:

� (Effective resistance). For f 2 RG ; we define

E�.f / D E.f / WD
1

2

X
.x;y/2E

.f .x/ � f .y//2�xy :

For any A;B � G; we also define the effective resistance of .G;�/ by

R.A;B/ D
�

inf
®
E.f /

ˇ̌
f jA D 1; f jB D 0

¯��1
;

where inf ; D 1: We write R.x; A/ (resp. R.x; y/) instead of R.¹xº; A/ (resp.
R.¹xº; ¹yº/).

It is known that the infimum ofR.A;B/�1 is attained and thatR.x;y/ is a distance
on G (for example, see [9]).

For the rest of this paper, .G;�/ is always a weighted graph andR is the associated
effective resistance.

Definition 4.23 (Spectral dimension). Fix x 2 G and define

dS .G;�/ D 2 lim sup
n!1

logp2n.x; x/
logn

; dS .G;�/ D 2 lim inf
n!1

logp2n.x; x/
logn

:

We can see that dS .G;�/ and dS .G;�/ are independent of x: We call dS .G;�/
the upper spectral dimension of .G; �/, and dS .G; �/ the lower spectral dimension
of .G;�/: If dS .G;�/ D dS .G;�/; then we call dS .G;�/ D dS .G;�/ the spectral
dimension of .G;�/:

We introduce other notions related to the partition.

Definition 4.24. We say K is connected if for any w 2 Te and x; y 2 K; there exists
a path between x and y in Kw ; in other words, .Kw ; EjKw�Kw / is connected for any
w 2 Te:

Definition 4.25. We define N ;N ;Rp by

N D sup
w2T

lim sup
k!1

#.¹Sk.�k.w//º/1=k; N D sup
w2T

lim inf
k!1

#.¹Sk.�k.w//º/1=k;

Rp.N1; N2; N / D sup
w2T

lim inf
k!1

Ep;k;�k.w/.N1; N2; N /
1=k :
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We remark that the difference between N � (resp. Rp) and N (resp. Rp) is the
order of the supremum over w 2 T and the limit as k; the index of scales, approaches
infinity. By definition, N � � N � N and Rp � Rp:

Lemma 4.26. Assume supw2Tenƒe #.S.w// <1; then

(1) N D lim supk!1 #.¹Sk.�k.w//º/1=k , N D lim infk!1 #.¹Sk.�k.w//º/1=k

for any w 2 T:

(2) Rp.N1; N2; N / D supl�0 lim infk!1 Ep;k;�kCl .w/.N1; N2; N /
1=k for any

w 2 T:

Idea of the proof. It is easy to see

lim sup
k!1

.#¹Sk.�k.w//º/1=k D lim sup
k!1

.#¹Sk.�k.� l.w///º/1=k;

lim inf
k!1

.Ep;k;�k.w/.N1; N2; N //
1=k
� lim inf

k!1
.Ep;k;�k.�l .w//.N1; N2; N //

1=k :

These inequalities and condition (T1) (of the bi-infinite tree) induce this lemma.

We will consider the case that the weight is uniformly bounded. In the following
theorem, we evaluate dS and dS by a partition.

Theorem 4.27. Assume�xy � 1 for any .x;y/ 2E andK is minimal and connected.
Let d 2 D1.G/; fitting to .G; E/ and satisfying the basic framework. Suppose that
d satisfies the following for some ˛; ˇ > 0:

� We have
d.x; y/ � 1 for any .x; y/ 2 E:

� We have
h2n.x; x/ �

c

Vd .x; n1=ˇ /
for any n: (DHK(ˇ))

� There exist �;C > 0 such that

R.Bd .x; �r/; Bd .x; r/
c/V .x; r/ � Crˇ for any r > rx : (ARL(ˇ))

� There exists C 0 > 0 such that

R.x;Bd .x; r/
c/V .x; r/ � C 0rˇ for any r > rx : (BRU(ˇ))

� There exists C 00 > 0 such that

Vd .x; r/ � C
00.r˛=s˛/Vd .x; s/ for any x 2 G and r > s > 0: (VG(˛))
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Then for any N;N1 � 0 and sufficiently large N2 D N2.N1/;

dS .G;�/ D 2
log N

log N � log R2.N1; N2; N /
;

dS .G;�/ D 2
log N

log N � log R2.N1; N2; N /
:

The assumption on d seems to be too strong, but we can justify the above assump-
tion in the following way.

Theorem 4.28. Assume .G; �/ and the resistance metric R satisfy conditions (p0)
and (VG(˛)) for some ˛ D ˛� > 0. If R 2 D1.G/ and VR.x; r/ <1 for any r > 0
and x 2 G; then there exists a fitting metric d such that d �QS R; d.x; y/ � 1 for
any .x; y/ 2 E and satisfy (DHK(ˇ)), (ARL(ˇ)), (BRU(ˇ)) and (VG(˛)) for some
1 � ˛ < ˇ:

This theorem is a discrete version of the corresponding result in [10], and also
based on [1]. See [17, Section 6] for the proof.

We remark that for a metric space .X; d/ and a measure � on X , d satisfies
(VG(˛)) for some ˛ > 0 if and only if � satisfies the following “volume doubling
condition”, which is used in many papers of heat kernel estimates, including [1] and
[10].

Definition 4.29 (Volume doubling condition). Let .X; d/ be a metric space and � be
a measure on X: We say � satisfies volume doubling condition with respect to d if
there exists C > 0 such that

Vd;�.x; 2r/ � CVd;�.x; r/ for any x 2 X and r > 0: (VDd )

Combining above theorems, we get the following corollary.

Corollary 4.30. Assume that � satisfies (VDd ) with d D R, .G;�/ satisfies �xy � 1
for any .x; y/ 2 E, VR.x; r/ < 1 for any r > 0; x 2 G and diam.X; R/ D 1: If
the metric d from Theorem 4.28 satisfies the basic framework (with respect to some
minimal connected partition K) and

logR2.N1; N2; N /

logN �
�

log R2.N1; N2; N /

log N
(4.1)

for some N;N1 � 0 and sufficiently large N2 > N1: Then

dimAR.G;R/ � dS .G;�/ � dS .G;�/ < 2:
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Condition (4.1) holds in natural settings, including Sierpiński carpets or n-gaskets.
We give an example in Example 5.4 such that all the assumptions of Corollary 4.30
hold except (4.1), and neither dS2 nor d

S

2 coincides with the spectral dimension dS .G;�/:
It helps to understand the difference between R and R:

Proof of Corollary 4.30. Since d satisfies (VG(˛)) and (DHK(ˇ)), it follows that

dS .G;�/ � 2 lim sup
n!1

logVd .x; n1=ˇ /
logn

� 2 lim sup
n!1

logVd .x; 1/C logn˛=ˇ

logn
D 2

˛

ˇ
< 2:

On the other hand, by definition and Theorem 4.27, we have

dS2 .N1; N2; N / D
�
1 �

logR2.N1; N2; N /

logN �

��1
;

d s.G;�/ D
�
1 �

log R2.N1; N2; n/

log N

��1
;

(note that diam.G; d/ D1 because R�QS d ) and hence

dS2 .N1; N2; N / � dS .G;�/ � dS .G;�/ < 2:

Since dS2 .N1;N2;N / < 2; by Theorem 4.15 we have dimAR.G;d/� d
S
2 .N1;N2;N /:

Moreover, dimAR.G;R/ D dimAR.G; d/ because R�QS d; so this shows

dimAR.G;R/ � dS .G;�/ � dS .G;�/ < 2:

In the rest of this section, we prove Theorem 4.27. First, we give general lemmas
and a definition.

Lemma 4.31. Let g be a thick discrete weight function, then for any M � 1, there
exists � D �M > 0 such that for any w 2 Te , there exists x 2 Kw such that

U dM .x; �g.�.w/// � Kw :

Lemma 4.32. Let d 2 D1.G/: If d is adapted for M D M0, then d is adapted for
any M �M0:

Definition 4.33. For w 2 Te and M � 0; define UM .w/ by

UM .w/ D
[®

Kv
ˇ̌
v 2 �M .w/ \ Te

¯
:
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For the rest of this section, we assume d satisfies the basic framework, K is
connected, �xy � 1 and d.x; y/ � 1 for any .x; y/ 2 E: Let �0 > 0 be such that
��10 r

Œw� � d.w/ � �0r
Œw� and write N� D supw2T #.S.w// (observe that N� �

supw2Tenƒe #.S.w// _ 2r�1 <1/:
Moreover, since d.x; y/ � 1 for any .x; y/ 2 E and d.w/ � r Œw� for w 2 ƒe;

there exist m0; m1 2 Z such that m0 � Œw� � m1 for any w 2 ƒe:

Lemma 4.34. supw2T #.�1.w// <1:

We write L� D supw2T #.�1.w//:

Lemma 4.35. Let N1 � 0 and � 2 .0; 1/; then there exist N2 and � > 0 such that for
any x 2 G and w 2 Te such that x 2 Kw ;

UN1.w/ � Bd .x; ��r
Œw�/ and Bd .x; �r

Œw�/ � UN2.w/: (4.2)

Using these lemmas, we have the following key lemmas.

Lemma 4.36. Assume (VG(˛)) holds. Then #.Sm1�Œw�.w// � Vd .x; r
Œw�/ for any

w 2 Te and x 2 Kw :

Proof. Since � � 1 , K is minimal and .G;E/ has a bounded degree,

�.Kw/ �
X

v2Tw\ƒe

�.Kv/ � #
�®
v
ˇ̌
v 2 Tw \ƒe

¯�
:

Moreover, since m0 � Œv� � m1 for any v 2 �e;

#.Sm1�Œw�.w// � #
�®
v
ˇ̌
v 2 Tw \ƒe

¯�
� #.S .m0�Œw�/_0/ � N�2� #.Sm1�Œw�.w//:

On the other hand, let w 2 Te and x 2Kw : Then there exist �1 > 0 andM� 2N such
that

Kw � U
d
M�
.x; �r Œw�/ � Bd .x; �1r

Œw�/;

because d is adapted. This, together with (VG(˛)), shows there exists C1 > 0 such
that �.Kw/ � C1Vd .x; r Œw�/:

Moreover, since d is thick, there exists �2; �3 > 0 and x0 2 Kw such that

Kw � U
d
M�
.x0; �2�

�1r Œw��1/ � Bd .x
0; �3r

Œw�/:

Note that d.x; x0/ � d.w/ � �r Œw�. This, together with (VG(˛)), shows there exists
C2 > 0 such that

Vd .x; r
Œw�/ � Vd .x

0; .1C �/r Œw�/ � C2Vd .x
0; �3r

Œw�/ � C2�.Kw/:
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Therefore
#.Sm1�Œw�.w// � �.Kw/ � Vd .x; r Œw�/

for any w 2 Te and x 2 Kw :

Lemma 4.37. Fix any w 2 T such that Œw� � m0: Then

R.UN1.�
k.w//; UN2.�

k.w//c/�1 � E2;k;�k.w/.N1; N2; N /

for any k � 0:

Proof. Let u; v 2 .T /Œw�: If x 2 Ku; y 2 Kv and x � y; then there exists ! 2 †�

such that K!e D ¹x; yº: Since Œw� � m0; we have !Œw� 2 Te: Then K!Œw� \Ku ¤ ;
and K!Œw� \Kv ¤ ;; so we have lJh

Œw�
.u; v/ � 1: Now, let f be a function on .T /Œw�

such that

f �

´
1; on Sk.�N1.�

k.w///;

0; on Sk.�N2.�
k.w///c :

Define f onG by f .x/DmaxwWx2Kw f .w/, then f � 1 on UN1.�
k.w// and f � 0

on UN2.�
k.w//c : This is because

� if x 2 UN1.�
k.w//; then there exists v 2 Sk.�N1.�

k.w/// such that x 2 Kv by
(PG1),

� if x 62 UN2.�
k.w//; then for any v 2 Sk.�N2.�

k.w///; it follows that x 62Kv by
(PG1).

Hence, noting that �xy � 1; there exists C > 0 such that the following holds:

1

2

X
x�y

jf .x/ � f .y/j2�xy �
1

2
C
X
x�y

X
uWx2Ku

X
vWy2Kv

jf .u/ � f .v/j2

�
1

2
C

X
.u;v/2Jh

Œw�

X
x2Ku

X
y2Kv

jf .u/ � f .v/j2

�
1

2
CN 2.m1�Œw�/
�

X
.u;v/2Jh

Œw�

jf .u/ � f .v/j2:

This implies

R.UN1.�
k.w//; UN2.�

k.w//c/�1 � CN 2.m1�Œw�/
� E2;k;�k.w/.N1; N2; N /:

On the other hand, let h be a function on G such that h � 1 on UN1.�
k.w// and

h � 0 on UN2.�
k.w//c : Define h.w/ D minx2Kw h.w/; then similarly we get h � 1

on Sk.�N1.w// and h � 0 on Sk.�N2.w//
c :
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Let x; y 2 G: If x 2 Ku and y 2 Kv for some .u; v/ 2 J h
Œw�;N

, then

lB.x; y/ � .N C 1/ sup
�2.T /Œw�

#.K�/ � 2.N C 1/Nm1�Œw�
� ;

because K is connected.
Therefore,

1

2

X
.u;v/2Jh

Œw�;n

jh.u/ � h.v/j2 �
1

2

X
.u;v/2Jh

Œw�;n

X
x2Ku

X
y2Kv

jh.x/ � h.y/j2

�
1

2

X
x;yWlE.x;y/�l0

X
uWx2Ku

X
vWy2Kv

jh.x/ � h.y/j2

�
1

2
N 2.m1�Œw�/
�

X
x;yWlE.x;y/�l0

jh.x/ � h.y/j2;

where l0 D 2.N C 1/N
m1�Œw�
� : Note that if lE .x; y/ � l0, then jh.x/ � h.y/j2 �

l0
Pn
iD1 jh.xi�1/� h.xi /j

2 for some n-path ¹xiºniD0 between x and y with n � l0; so
for Ex;y;l0 D ¹.p; q/ j p � q; p 2 BlE .x; l0/; and q 2 BlE .y; l0/º � E;X

x;yWlE.x;y/�l0

jh.x/ � h.y/j2 � l0
X

x;yWlE.x;y/�l0

X
.p;q/2Ex;y;l0

jh.p/ � h.q/j2

� l0
X
p�q

X
x2BlE .x;l0/

X
y2BlE .y;l0/

jh.p/ � h.q/j2

� l0.sup
x2G

#.¹y j y � xº//2l0
X
p�q

jh.p/ � h.q/j2:

These inequalities with �xy � 1 show

C 0R.UN1.�
k.w//; UN2.�

k.w//c/�1 � E2;k;�k.w/.N1; N2; N /

for some C 0 > 0.

Proof of Theorem 4.27. FixN1;N � 0 and letw 2 T such that Œw��m0: Then, using
Lemma 4.35 and the fact that d is adapted, there exist � and � such that for sufficiently
large N2; for any x 2 Kw ; we have

x 2 UN1.w/ � Bd .x; ��r
Œw�/

and
Bd .x; �r

Œw�/ � UN2.w/ � U
d
N2
.�r Œw�/ � Bd .x; �r

Œw�/:
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Hence,

R.x;Bd .x; �r
Œw�/c/ � R.UN1.w/; UN2.w/

c/ � R.Bd .x; ��r
Œw�/; Bd .x; �r

Œw�/c/:

These, with Lemmas 4.36 and 4.37, show that for any k � 0; there exist C1; C2 such
that

C1R.x;Bd .x; �r
Œw��k/c/Vd .x; �r

Œw��k/

� .E2;k;�k.w/.N1; N2; N //
�1#.Sm1�Œw�Ck.�k.w///

� C2R.Bd .x; ��r
Œw�/; Bd .x; �r

Œw�/c/Vd .x; �r
Œw��k/:

This, together with (ARL(ˇ)), (BRU(ˇ)), implies that there exist ı > 0 such that

�kˇ log r � ı � log #.Sm1�Œw�Ck.�k.w/// � log E2;k;�k.w/.N1; N2; N /

� �kˇ log r C ı

and hence, by Lemma 4.26,

log N C ˇ log r D lim inf
k!1

log E2;k;�k.w/.N1; N2; N /
1=k

because

Nm1�Œw�
� #.Sk.�k.w/// � #.Sm1�Œw�Ck.�k.w/// � #.Sk.�k.� l.w////:

This equation also holds for � l.w/ with l � 0, so again using Lemma 4.26, we obtain

log N C ˇ log r D sup
l�0

lim inf
k!1

log E2;k;�k.�l .w//.N1; N2; N /
1=k

D log R2.N1; N2; N /:

Now, by (DHK(ˇ)) and (VG(˛)),

dS
2
D lim inf

n!1

logVd .x; n1=ˇ /
logn

D lim inf
r!1

logVd .x; r1=ˇ /
log r

D lim inf
k!1

logVd .x; r�k/
log r�ˇk

and by Lemma 4.36,

dS D 2
lim infk!1 1

k
logVd .x; r�k/

�ˇ log r
D 2

log N

log N � log R2.N1; N2; N /
:

In the same way, we also get

dS D 2
log N

log N � log R2.N1; N2; N /
:
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Figure 3. f .n/ � 0 Figure 4. f .n/ D bn
2
c

5. Examples

We first give an example that the ARC dimension can be calculated using Theo-
rem 4.15.

Example 5.1. Let f .n/ W ZC! ZC such that f .n/ � n for any n: For n � 0; define
Bn; Ln; Xn 2 R2 by

Bn D Œ2
n; 2nC1� � Œ0; 2n�;

Ln D
[
j2Z

�®
.x; y/

ˇ̌
x D 2n�f .n/j

¯
[
®
.x; y/

ˇ̌
y D 2n�f .n/j

¯�
;

Xn D Bn \ Ln:

We also define X;G;E by

X D
®
.t; 0/

ˇ̌
0 � t � 1

¯
[

� [
n�0

Xn

�
;

G D X \ Z2;

E D
®
.p; q/ 2 G �G

ˇ̌
d2.p; q/ D 1

¯
;

where d2 is the Euclidean metric in R2: See Figure 3 or Figure 4. Next we introduce
a partition of .G;E/: For m; a; b 2 Z; define

�m;a;b D
®
.x; y/

ˇ̌
2ma � x C y � 2m.aC 1/; 2mb � x � y � 2m.b C 1/

¯
;

T�m D
®
�m;a;b

ˇ̌
int.�m;a;b/ \X ¤ ;

¯
;

T D
[
m2Z

Tm;

and for w 2 Tm; define �.w/ as the unique element in Tm�1 such that w � �.w/ as
subsets of R2: Then .T; �/ is a bi-infinite tree, and Tm D .T /m by taking � D �0;0;0:
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Figure 5. Bd .x; 2n/ � U d1 .x; 2
n/ Figure 6. w satisfying (5.1)

We also define K W T ! ¹finite subsets of Gº by

Kw D

´
w \G .as subsets of R2/; if Œw� � 0;

� Œw�.w/ \G.as subsets of R2/; if Œw� > 0:

Then Kw is a partition of .G;E/. Moreover, ƒe D .T /0 and T D T1=2:
Now we let d D lE ; and calculate dimAR.G; d/:

Proposition 5.2.

(1) If lim supn!1 f .n/ D1; then dimAR.G; d/ D 2.

(2) If lim supn!1 f .n/ <1; then dimAR.G; d/ D 1:

Proof. It is easy to check that d;K satisfy the assumptions of Theorem 4.15.
(1) We adapt Theorem 4.15 and show dimAR.G; d/ D 2:

The first step is to show dimAR.G; d/ � 2: Since supn f .n/ D1; for any k � 0;
there exists m 2 N and w D �m;a;b 2 .T /�m such that®

Sm�k;i;j
ˇ̌
i 2 Œ2k.a � 2/ � 1; 2k.aC 2/C 1�Z;

j 2 Œ2k.b � 2/ � 1; 2k.b C 2/C 1�Z
¯
� .T /�.m�k/: (5.1)

Let g be a function on .T /�.m�k/ such that g � 1 on Sk.�0.w// and g � 0 on
Sk.�2.w//

c : We also let Qg D .g _ 0/ ^ 1; then for any p � 1; there exists Cp > 0
such thatX

.u;v/2Eh
�.m�k/

jg.u/ � g.v/jp

�

X
.u;v/2Eh

�.m�k/

j Qg.u/ � Qg.v/jp
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�

X
i2Œ2ka;2k.aC1/�Z

X
j2Œ2k.b�2/;2kb�Z

j Qg.��.m�k/;i;j / � Qg.��.m�k/;i;j�1/j
p

�

X
i

.2kC1 C 1/1�p � C2.2�p/k :

(This follows from Jensen’s inequality, together with Qg.��.m�k/;i;2kb/ D 1 and
Qg.��.m�k/;i;2k.b�2/�1/ D 0 for any i 2 Œ2ka; 2k.aC 1/�Z:) Moreover, for p < 1;X

.u;v/2Eh
�.m�k/

jg.u/ � g.v/jp �
X

.u;v/2Eh
�.m�k/

j Qg.u/ � Qg.v/jp

�

X
j2Œ2k.b�2/;2kb�Z

j Qg.��.m�k/;2ka;j / � Qg.��.m�k/;2ka;j�1/j � 1:

Therefore limk!1 Ep;k.0; 2; 1/ > 0 for any p � 2; hence dimAR.G; d/ � 2:

On the other hand, define g D gw on Eh
�.m�k/

by

g.�m�k;i;j /

D

� .2k.aC 2/� i/ ^ .i � 2k.a� 2// ^ .2k.bC 2/� j / ^ .j � 2k.b � 2//
2k

�
_ 0 ^ 1:

Then f � 1 on Sk.�0.w//; f � 0 on Sk.�2.w//c andX
.u;v/2Eh

�.m�k/

jf .u/ � f .v/jp �
X

v2Sk.�2.w//

8 � 2�kp � C 02.2�p/k

for some C 0 > 0; hence Ep;k;w.0; 2; 1/ � C
02.2�p/k : Moreover, for any v 2 T; this

upper bound holds by the definition of T andK: Therefore limk!1 Ep;k.0; 1; 2/ D 0

for any p > 2 and hence dimAR.G; d/ D 2:

(2) Let m.A/ D #.A/ for any A � G; and Gn D Xn \G for any n � 0: Then

m.Bd .x; r/ \Gn/ � 2.2
f .n/
C 1/

�
diam.Bd .x; r/ \Gn; d /C 1

�
;

becauseGn consists of 2.2f .n/C 1/ segments whose length are 2n:Hence there exists
NC such that for any x 2 G and r � 1;

r � Vd .x; r/ � 1C
X
n�0

m.Bd .x; r/ \Gn/ � NCr;

because
P
n�0 diam.Bd .x; r/ \ Gn; d / � 2r and supn f .n/ < 1: Therefore d is

1-Ahlfors regular. On the other hand, dimAR.G;d/� 1 by Proposition 4.20 and hence
dimAR.G; d/ D 1:
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Figure 7. Gn (if f .n/ D 1) Figure 8. Gn (if f .n/ D 0)

Remark 5.3. If we use a partition parallel to axes, that is, a partition K 0 defined by
� 0
m;a;b

D Œ2ma; 2m.aC 1/� � Œ2mb; 2m.b C 1/� in a similar way to K; then K 0 is not
minimal. For example, both S 00;0;0 and S 00;1;0 include a edge ..1; 0/; .1; 1// 2 E: So
we need some modification to apply Theorem 4.15 to d;K 0:

In the next example, ds.G; �/ ¤ dS2 D d
S

2 although d satisfies (DHK(ˇ)),
(ARL(ˇ)) and (BRU(ˇ)).

Example 5.4. Let f W N ! ¹0; 1º; G0 D ¹0; 1; 12 C
p
3
2
iº 2 C and E0 D ¹.x; y/ 2

G0 �G0 j x ¤ yº: For n 2 N; we inductively define jGn�1j1 D maxz2Gn�1 jzj; and

Fn;1.z/ D z; Fn;2.z/ D z C jGn�1j1;

Fn;3.z/ D z C
�1
2
C

p
3

2
i
�
jGn�1j1; Fn;4.z/ D z C 2jGn�1j1;

Fn;5.z/ D z C
�
1C

1

2
C

p
3

2
i
�
jGn�1j1;

Fn;6.z/ D z C 2
�1
2
C

p
3

2
i
�
jGn�1j1;

Fn.z/ D

´S3
iD1 Fn;i ; if f .n/ D 0;S6
iD1 Fn;i ; if f .n/ D 1:

Now define Gn D Fn.Gn�1/ and

En D
®
.x; y/ 2 Gn �Gn

ˇ̌
there exist x0; y0 2 Gn�1 and i � 0 such that

.x0; y0/ 2 En�1 and x D Fn;i .x0/; y D Fn;i .y0/
¯
:

Note that jGnj1 D 2n�m.n/ � 3m.n/ where m.n/ D #.¹k j k � n; f .k/ D 1º/: Let
G D

S
n�0Gn and E D

S
n�0En:We also let �� 1 on E and consider the effective

resistance R of .G;�/:



K. Sasaya 124

Figure 9. .G;E/ (for some f )

Note that´
R.x; y/�1 � 1; for any .x; y/ 2 E;

R.x; y/�1 � E.1¹xº/ � 6; for any x; y 2 G with x ¤ y;

so R fits to .G;E/:
We will check properties of R in order to apply Theorem 4.28. For the purpose,

we first introduce a partition. For n � 0 and a; b 2 Z; define

40;0;0 D

°
s C

�1
2
C

p
3

2
i
�
t
ˇ̌̌
s � 0; t � 0; s C t � 1

±
;

4n;a;b D

�
40;0;0 C aC

�1
2
C

p
3

2
i
�
b
�
jGnj1;

T�n D
°
4n;a;b

ˇ̌̌
4n;a;b �

[
m�n

Fm ı Fm�1 ı � � � ı Fn.4n;0;0/
±
;

Kn;a;b D 4n;a;b \G (as subsets of C).

For any n � 1; we let Tn D
S
w2T0

S
x;y2Kw

¹x; yº and Kw D w for any w 2 Tn:
Define T D

F
n2Z Tn and �.w/ for w 2 Tn as the unique elements in Tn�1 such that

Kw � K�.w/: Then .T; �/ is a bi-infinite tree, .T /n D Tn with � D 40;0;0, K is
minimal connected partition and ƒe D .T /1: If necessary, we replace T;K by Tr ;K 0

for r 2 .0; 1/ in the way of Definition 4.12.
By the method of resistance on finite sets, we have the following lemma. See

[17, Lemma 5.4] for the proof.
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Lemma 5.5. Let R.n/ D
�
5
3

�n�m.n/ �15
7

�m.n/
for any n � 0 and let

n.x; y/ D min
®
n � 0

ˇ̌
there exist w; v 2 .T /�n such that

x 2 Kw ; y 2 Kv and Kw \Kv ¤ ;
¯

for .x; y/ 2 G: Then R.x; y/ � R.n.x; y// for any x; y 2 G with x ¤ y:

This lemma also implies that R is adapted (for M D 1) and V.x; R.x; y//

�V.n.x; y// where V.n/D 3n�m.n/ � 6m.n/: This inequality also shows (VDd ) with
d D R, and .G;�/ satisfies the conditions of Theorem 4.28.

Next, we modify T in order to satisfy d.w/ � r Œw� for some r 2 .0; 1/, where
d is the metric obtained by Theorem 4.28. For j � 0; let n.j / � 0 be such that
R.n.j //V.n.j // �

�
90
7

�j
< R.n.j /C 1/V.n.j /C 1/ and for j < 0; set n.j /D j:

We consider NT D
S
j2Z.T /�n.j /, and N�.w/D �n.jC1/�n.j / for w 2 .T /�n.j /: Then

. NT ; N�;40;0;0/ is a bi-infinite tree with a reference point, . NT /j D .T /n.j / and Kj NT is
minimal, connected partition, ƒe D .T /1: Moreover, for any w 2

S
j�0.T /�n.j /;

sup
x;y2Kw

R.x; y/V .x;R.x; y// � R.n.j //V.n.j // �
�90
7

�j
and hence d.w/ �

�
7
90

�Œw�=ˇ for any w 2 Te where ˇ is the constant in Theorem
4.28. Comparing with R.x; y/V .x; R.x; y//; we can also see that d is uniformly
finite, thick and adapted because of Lemma 5.5. Now we let

f .n/ D

´
1; if l.l2 � 1/ < n � l3 for some l 2 N;

0; otherwise.

Then, we have the following.

Proposition 5.6. dS .G;�/D 2 log 3= log 5 and dS2 .0; 2; 1/D d
S

2 .0; 2; 1/D 2 log 6=
.log 90 � log 7/:

Proof. Let w D 4n.j /;0;0 for some j � 0: With the �-Y transform (see [9, Lemma
2.1.15]), we can see that Ep;k;�k.w/.0;2;1/�R.n.kC j //=R.n.j // (see Figure 10),
so

lim
k!1

1

k
log Ep;k;�k.w/.0; 2; 1/ D lim

k!1

1

k
log

R.n.k C j //

R.n.j //
D lim
k!1

1

k
log R.n.k//

D lim
k!1

1

k

�
n.k/ log

3

5
Cm.n.k// log

7

15

�
:

Now we consider limk!1 n.k/=k: By definition, we obtain

k
log 90 � log 7

log 5
� n.k/ � k

log 90 � log 7
log 5

�m.n.k// � C
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Figure 10. Ep;k;�k.w/.0; 2; 1/ � R.n.k C j //=R.n.j //

for some C > 0: Note that limk!1m.k/=k D limk!1 k
�1=3 D 0 becausem.k3/DPk

jD1 j D k.k � 1/=2, hence limk!1 k=n.k/ D log 5=.log 90 � log 7/: Therefore,
by Lemma 4.26,

R2.0; 2; 1/ D sup
j�0

lim
k!1

1

k
log Ep;k;�k.4n.j/;0;0/.0; 2; 1/ D

log 90 � log 7
log 5

log
3

5
:

Similarly, we get

N D N D lim
k!1

1

k
log #

�
Sk.�k.40;0;0//

�
D lim
k!1

1

k

�
n.k/ log 3Cm.n.k// log 6

�
D

log 90 � log 7
log 5

log 3:

Therefore, by Theorem 4.27, dS .G;�/ D 2 log 3=.log 3 � log 3
5
/ D 2 log 3= log 5:

On the other hand, since

sup
®
k
ˇ̌

there exist a 2 N such that f .b/ D 1 for any b 2 Œa; aC k�Z
¯
D1;

it follows that

logN� D lim
k!1

1

k

�
log 6k _ log 3.log 907 = log5/k�

D log 6;

because log10 6 > 0:77 > 0:76 >
log90�log7

log5 log10 3: Similarly,

logR2.0; 1; 2/ D logR2.0; 1; 2/ D log
7

15
_

log 90 � log 7
log 5

log
3

5
D log

7

15
:

Therefore,

d
S

2 .0; 2; 1/ D d
S
2 .0; 2; 1/ D 2

log 6
log 6 � log 7

15

D 2
log 6

log 90 � log 7
:
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Remark 5.7. In the same way, we can prove dS .G; �/ D dS2 .0; 2; 1/ D d
S

2 .0; 2; 1/

D 2 log 3= log 5 if f � 0 (Sierpiński gasket graph) and dS .G; �/ D dS2 .0; 2; 1/ D

d
S

2 .0; 2; 1/D 2 log 6=.log 90� log 7/ if f � 1: Clearly the assumptions of Corollary
4.30 hold in these cases.
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