Fourier decay for homogeneous self-affine measures

Boris Solomyak

Abstract. We show that for Lebesgue almost all d-tuples $(\theta_1, \ldots, \theta_d)$, with $|\theta_j| > 1$, any self-affine measure for a homogeneous non-degenerate iterated function system $\{Ax + a_j\}_{j=1}^m$ in \mathbb{R}^d , where A^{-1} is a diagonal matrix with the entries $(\theta_1, \ldots, \theta_d)$, has power Fourier decay at infinity.

1. Introduction

For a finite positive Borel measure μ on \mathbb{R}^d , consider the Fourier transform

$$\widehat{\mu}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i \langle \xi, x \rangle} \, d\mu(x).$$

We are interested in the decay properties of $\hat{\mu}$ at infinity. The measure μ is called *Rajchman* if

$$\lim_{|\xi| \to \infty} \hat{\mu}(\xi) = 0,$$

where $|\xi|$ is a norm (say, the Euclidean norm) of $\xi \in \mathbb{R}^d$. Whereas absolutely continuous measures are Rajchman by the Riemann–Lebesgue lemma, it is a subtle question to decide which singular measures are such; see, e.g., the survey of Lyons [14]. A much stronger property, which is useful for many applications, is the following.

Definition 1.1. For $\alpha > 0$, let

$$\mathcal{D}_d(\alpha) = \{ \nu \text{ finite positive measure on } \mathbb{R}^d : |\widehat{\nu}(t)| = O_{\nu}(|t|^{-\alpha}) \text{ as } |t| \to \infty \},$$

and define $\mathcal{D}_d = \bigcup_{\alpha>0} \mathcal{D}_d(\alpha)$. A measure ν is said to have *power Fourier decay* if $\nu \in \mathcal{D}_d$.

Many recent papers have been devoted to the question of Fourier decay for classes of "fractal" measures; see, e.g., [1–3,9,11–13,17,19,23,25]. Here, we continue this line of research, focusing on the class of *homogeneous self-affine measures* in \mathbb{R}^d . A measure μ is called *self-affine* if it is the invariant measure for a self-affine iterated

²⁰²⁰ Mathematics Subject Classification. Primary 28A80; Secondary 42A38. *Keywords*. Self-affine measure, Fourier decay, Erdős–Kahane method.

function system (IFS) $\{f_j\}_{j=1}^m$, with $m \ge 2$, where $f_j(x) = A_j x + a_j$, the matrices $A_j : \mathbb{R}^d \to \mathbb{R}^d$ are invertible linear contractions (in some norm), and $a_j \in \mathbb{R}^d$ are "digit" vectors. This means that for some probability vector $\mathbf{p} = (p_j)_{j \le m}$ holds

$$\mu = \sum_{j=1}^{m} p_j (\mu \circ f_j^{-1}). \tag{1.1}$$

It is well known that this equation defines a unique probability Borel measure. The self-affine IFS is homogeneous if all A_j are equal to each other: $A = A_j$ for $j \le m$. Denote the digit set by $\mathcal{D} := \{a_1, \ldots, a_m\}$ and the corresponding self-affine measure by $\mu(A, \mathcal{D}, p)$. We will write p > 0 if all $p_j > 0$. Following [8], we say that the IFS is affinely irreducible if the attractor is not contained in a proper affine subspace of \mathbb{R}^d . It is easy to see that this is a necessary condition for the self-affine measure to be Rajchman, so this will always be our assumption. By a conjugation with a translation, we can always assume that $0 \in \mathcal{D}$. In this case, affine irreducibility is equivalent to the digit set \mathcal{D} being a cyclic family for A, that is, \mathbb{R}^d being the smallest A-invariant subspace containing \mathcal{D} .

The IFS is *self-similar* if all A_j are contracting similitudes, that is, $A_j = \lambda_j \mathcal{O}_j$ for some $\lambda_j \in (0, 1)$ and orthogonal matrices \mathcal{O}_j . In many aspects, "genuine" (i.e., non-self-similar) self-affine and self-similar IFS are very different; of course, the distinction exists only for $d \geq 2$.

Every homogeneous self-affine measure can be expressed as an infinite convolution product

$$\mu(A, \mathcal{D}, \mathbf{p}) = \underset{n=0}{\overset{\infty}{+}} \sum_{j=1}^{m} p_{j} \delta_{A^{n} a_{j}}, \tag{1.2}$$

and for every p > 0, it is supported on the attractor (self-affine set)

$$K_{A,\mathcal{D}} := \left\{ x \in \mathbb{R}^d : x = \sum_{n=0}^{\infty} A^n b_n, b_n \in \mathcal{D} \right\}.$$

By the definition of the self-affine measure,

$$\widehat{\mu}(\xi) = \sum_{j=1}^{m} p_j \int e^{-2\pi i \langle \xi, Ax + a_j \rangle} d\mu = \left(\sum_{j=1}^{m} p_j e^{-2\pi i \langle \xi, a_j \rangle} \right) \widehat{\mu}(A^t \xi),$$

where A^t is the matrix transpose of A. Iterating, we obtain

$$\widehat{\mu}(\xi) = \prod_{n=0}^{\infty} \left(\sum_{j=1}^{m} p_j e^{-2\pi i \langle (A^t)^n \xi, a_j \rangle} \right) = \prod_{n=0}^{\infty} \left(\sum_{j=1}^{m} p_j e^{-2\pi i \langle \xi, A^n a_j \rangle} \right), \tag{1.3}$$

where the infinite product converges, since $||A^n|| \to 0$ exponentially fast as $n \to \infty$.

1.1. Background

We start with the known results on Fourier decay for classical Bernoulli convolutions ν_{λ} , namely, self-similar measures on the line, corresponding to the IFS $\{\lambda x, \lambda x + 1\}$, with $\lambda \in (0,1)$ and probabilities $(\frac{1}{2},\frac{1}{2})$ (often the digits ± 1 are used instead; it is easy to see that taking any two distinct digits results in the same measure, up to an affine change of variable). Erdős [5] proved that $\hat{\nu}_{\lambda}(t) \not\to 0$ as $t \to \infty$ when $\theta = 1/\lambda$ is a Pisot number. Recall that a Pisot number is an algebraic integer greater than one, whose algebraic (Galois) conjugates are all less than one in modulus. Salem [18] showed that if $1/\lambda$ is not a Pisot number, then $\hat{\nu}_{\lambda}$ is a Rajchman measure. In the other direction, Erdős [6] proved that for any $[a, b] \subset (0, 1)$, there exists $\alpha > 0$ such that $v_{\lambda} \in \mathcal{D}_1(\alpha)$ for a.e. $\lambda \in [a,b]$. Later, Kahane [10] indicated that Erdős' argument actually gives that $\nu_{\lambda} \in \mathcal{D}_1$ for all $\lambda \in (0, 1)$ outside a set of zero Hausdorff dimension. (We should mention that very few specific λ are known, for which ν_{λ} has power Fourier decay; see Dai, Feng, and Wang [4].) In the original papers of Erdős and Kahane, there were no explicit quantitative bounds; this was done in the survey [15], where the expression "Erdős-Kahane argument" was used first. The general case of a homogeneous self-similar measure on the line is treated analogously to that of Bernoulli convolutions: the self-similar measure is still an infinite convolution and the Erdős-Kahane argument on power Fourier decay goes through with minor modifications; see [4, 22]. Although one of the main motivations for the study of the Fourier transform has been the question of absolute continuity/singularity of ν_{λ} , here we do not discuss it but refer the reader to the recent survey [24].

Next, we turn to the non-homogeneous case on the line. Li and Sahlsten [13] proved that if μ is a self-similar measure on the line with contraction ratios $\{r_i\}_{i=1}^m$ and there exist $i \neq j$ such that $\log r_i / \log r_j$ is irrational, then μ is Rajchman. Moreover, they showed logarithmic decay of the Fourier transform under a Diophantine condition. A related result for self-conformal measures was recently obtained by Algom, Rodriguez Hertz, and Wang [1]. Brémont [3] obtained an (almost) complete characterization of (non-)Rajchman self-similar measures in the case when $r_j = \lambda^{n_j}$ for $j \leq m$. To be non-Rajchman, it is necessary for $1/\lambda$ to be Pisot. For "generic" choices of the probability vector p, assuming that $\mathcal{D} \subset \mathbb{Q}(\lambda)$ after an affine conjugation, this is also sufficient, but there are some exceptional cases of positive co-dimension. Varjú and Yu [25] proved logarithmic decay of the Fourier transform in the case when $r_j = \lambda^{n_j}$ for $j \leq m$ and $1/\lambda$ is algebraic, but not a Pisot or Salem number. In [23], we showed that outside a zero Hausdorff dimension exceptional set of parameters, all self-similar measures on \mathbb{R} belong to \mathcal{D}_1 ; however, the exceptional set is not explicit.

Turning to higher dimensions, we mention the recent paper by Rapaport [17], where he gives an algebraic characterization of self-similar IFS for which there exists

a probability vector yielding a non-Rajchman self-similar measure. Li and Sahlsten [12] investigated self-affine measures in \mathbb{R}^d and obtained power Fourier decay under some algebraic conditions, which never hold for a homogeneous self-affine IFS. Their main assumptions are total irreducibility of the closed group generated by the contraction linear maps A_j and non-compactness of the projection of this group to $\operatorname{PGL}(d,\mathbb{R})$. For d=2,3 they showed that this is sufficient.

1.2. Statement of the results

We assume that A is a matrix diagonalizable over \mathbb{R} . Then we can reduce the IFS, via a linear change of variable, to one where A is a diagonal matrix with real entries. Given $A = \text{Diag}[\theta_1^{-1}, \dots, \theta_d^{-1}]$, with $|\theta_j| > 1$, a set of digits $\mathcal{D} = \{a_1, \dots, a_m\} \subset \mathbb{R}^d$, and a probability vector \mathbf{p} , we write $\mathbf{\theta} = (\theta_1, \dots, \theta_d)$ and denote by $\mu(\mathbf{\theta}, \mathcal{D}, \mathbf{p})$ the self-affine measure defined by (1.1). Our main motivation is the class of measures which can be viewed as "self-affine Bernoulli convolutions", with $A = \text{Diag}[\theta_1^{-1}, \dots, \theta_d^{-1}]$ a diagonal matrix with distinct real entries and $\mathcal{D} = \{0, (1, \dots, 1)\}$. In this special case, we denote the self-affine measure by $\mu(\mathbf{\theta}, \mathbf{p})$.

Theorem 1.2. There exists an exceptional set $E \subset \mathbb{R}^d$, with $\mathcal{L}^d(E) = 0$, such that for all $\theta \in \mathbb{R}^d \setminus E$, with $\min_j |\theta_j| > 1$, for all sets of digits \mathfrak{D} , such that the IFS is affinely irreducible, and all p > 0, holds $\mu(\theta, \mathfrak{D}, p) \in \mathfrak{D}_d$.

The theorem is a consequence of a more quantitative statement.

Theorem 1.3. Fix $1 < b_1 < b_2 < \infty$ and $c_1, \varepsilon > 0$. Then there exist $\alpha > 0$ and $\mathcal{E} \subset \mathbb{R}^d$, depending on these parameters, such that $\mathcal{L}^d(\mathcal{E}) = 0$ and for all $\theta \notin \mathcal{E}$ satisfying

$$b_1 \le \min_j |\theta_j| < \max_j |\theta_j| \le b_2$$
 and $|\theta_i - \theta_j| \ge c_1, i \ne j$,

for all digit sets \mathcal{D} such that the IFS is affinely irreducible, and all \mathbf{p} such that $\min_i p_i \geq \varepsilon$, we have $\mu(\boldsymbol{\theta}, \mathcal{D}, \mathbf{p}) \in \mathcal{D}_d(\alpha)$.

Reduction of Theorem 1.2 to Theorem 1.3. For $M \in \mathbb{N}$, let $\mathcal{E}^{(M)}$ be the exceptional set obtained from Theorem 1.3 with $b_1 = 1 + M^{-1}$, $b_2 = M$, and $\varepsilon = c_1 = M^{-1}$. Then the set

$$E = \bigcup_{M=2}^{\infty} \mathcal{E}^{(M)} \cup \{ \boldsymbol{\theta} : \exists i \neq j, \ \theta_i = \theta_j \}.$$

has the desired properties.

The proof of Theorem 1.3 uses a version of the Erdős–Kahane technique. We follow the general scheme of [15, 22], but this is not a trivial extension.

In view of the convolution structure, Theorem 1.3 yields some information on absolute continuity of self-affine measures, by a standard argument.

Corollary 1.4. Fix $1 < b_1 < b_2 < \infty$ and $c_1, \varepsilon > 0$. Then there exist a sequence (n_k) with $n_k \to \infty$ as $n \to \infty$ and a set $\widetilde{\mathcal{E}}_k \subset \mathbb{R}^d$, depending on these parameters, such that $\mathcal{L}^d(\widetilde{\mathcal{E}}_k) = 0$ and for all $\theta \notin \widetilde{\mathcal{E}}_k$, satisfying

$$b_1 \le \min_{j} |\theta_j^{n_k}| < \max_{j} |\theta_j^{n_k}| \le b_2 \quad and \quad |\theta_i^{n_k} - \theta_j^{n_k}| \ge c_1, \ i \ne j,$$

for all digit sets \mathcal{D} such that the IFS is affinely irreducible, and all \mathbf{p} such that $\min_j p_j \geq \varepsilon$, the measure $\mu(\boldsymbol{\theta}, \mathcal{D}, \mathbf{p})$ is absolutely continuous with respect to \mathcal{L}^d , with a Radon–Nikodym derivative in $C^k(\mathbb{R}^d)$, $k \geq 0$.

Derivation of Corollary 1.4 *from Theorem* 1.3. Let $n \ge 2$. It follows from (1.2) that

$$\mu(A, \mathcal{D}, \mathbf{p}) = \mu(A^n, \mathcal{D}, \mathbf{p}) * \mu(A^n, A\mathcal{D}, \mathbf{p}) * \cdots * \mu(A^n, A^{n-1}\mathcal{D}, \mathbf{p}).$$

It is easy to see that if the original IFS is affinely irreducible, then so are the IFS associated with $(A^n, A^j \mathcal{D})$ and, moreover, these IFS are all affine conjugate to each other. Therefore, if $\mu(A^n, \mathcal{D}, \mathbf{p}) \in \mathcal{D}_d(\alpha)$, then $\mu(A, \mathcal{D}, \mathbf{p}) \in \mathcal{D}_d(n\alpha)$. As it is well known,

$$\mu \in \mathcal{D}_d(\beta), \ \beta > d + k \implies \frac{d\mu}{d\mathcal{L}^d} \in C^k(\mathbb{R}^d),$$

so we can take n_k such that $n_k \alpha > d + k$, and $\widetilde{\mathcal{E}}_k = \{ \theta : \theta^{n_k} \in \mathcal{E} \}$, where α and \mathcal{E} are from Theorem 1.3.

- **Remark 1.5.** (a) In general, the power decay cannot hold for all θ ; for instance, it is easy to see that the measure $\mu(\theta, p)$ is not Rajchman if at least one of θ_k is a Pisot number. Thus, in the most basic case with two digits, the exceptional set has Hausdorff dimension at least d-1.
- (b) It is natural to ask what happens if A is not diagonalizable over \mathbb{R} . A complex eigenvalue of A corresponds to a 2-dimensional homogeneous self-similar IFS with rotation, or an IFS of the form $\{\lambda z + a_j\}_{j=1}^m$, with $\lambda \in \mathbb{C}$, $|\lambda| < 1$, and $a_j \in \mathbb{C}$. In [21], it was shown that for all λ outside a set of Hausdorff dimension zero, the corresponding self-similar measure belongs to \mathcal{D}_2 . It may be possible to combine the methods of [21] with those of the current paper to obtain power Fourier decay for a typical A diagonalizable over \mathbb{C} . It would also be interesting to consider the case of non-diagonalizable A, starting with a single Jordan block.
- (c) In the special case of d=2 and m=2, our system reduces to a planar self-affine IFS, conjugate to $\{(\lambda x, \gamma y) \pm (-1, 1)\}$ for $0 < \gamma < \lambda < 1$. This system has been studied by many authors, especially the dimension and topological properties of its attractor, see [7] and the references therein. For our work, the most relevant is the paper by Shmerkin [20]. Among other results, he proved absolute continuity with a density in L^2 of the self-affine measure (with some fixed probabilities) almost

everywhere in some region, in particular, in some explicit neighborhood of (1, 1). He also showed that if $(\lambda^{-1}, \gamma^{-1})$ forms a *Pisot pair*, then the measure is not Rajchman and hence singular.

1.3. Rajchman self-affine measures

The question "when is $\mu(A, \mathcal{D}, p)$ Rajchman?" is not addressed here. Recently, Rapaport [17] obtained an (almost) complete characterization of *self-similar* Rajchman measures in \mathbb{R}^d . Of course, our situation is vastly simplified by the assumption that the IFS is homogeneous, but still it is not completely straightforward. The key notion here is the following.

Definition 1.6. A collection of numbers $(\theta_1, \dots, \theta_m)$ (real or complex) is called a *Pisot family* or a *P.V. m-tuple* if

- (i) $|\theta_j| > 1$ for all $j \leq m$, and
- (ii) there is a monic integer polynomial P(t), such that $P(\theta_j) = 0$ for all $j \le m$, whereas every other root θ' of P(t) satisfies $|\theta'| < 1$.

It is not difficult to show, using the classical techniques of Pisot [16] and Salem [18], as well as some ideas from [17, Section 5], that

- if $\mu(A, \mathcal{D}, p)$ is not a Rajchman measure and the IFS is affinely irreducible, then the spectrum $\text{Spec}(A^{-1})$ contains a Pisot family;
- if Spec(A^{-1}) contains a Pisot family, then for a "generic" choice of \mathcal{D} , with $m \ge 3$, the measure $\mu(A, \mathcal{D}, p)$ is Rajchman; however,
- if Spec(A^{-1}) contains a Pisot family, then under appropriate conditions the measure $\mu(A, \mathcal{D}, \mathbf{p})$ is not Rajchman. For instance, this holds if there is at least one conjugate of the elements of the Pisot family less than 1 in absolute value, m = 2, and A is diagonalizable over \mathbb{R} .

We omit the details.

2. Proofs

The following is an elementary inequality.

Lemma 2.1. Let $p = (p_1, ..., p_m) > 0$ be a probability vector and $\alpha_1 = 0$, $\alpha_j \in \mathbb{R}$, j = 2, ..., m. Denote $\varepsilon = \min_j p_j$ and write $||x|| = \operatorname{dist}(x, \mathbb{Z})$. Then for any $k \leq m$,

$$\left| \sum_{j=1}^{m} p_j e^{-2\pi i \alpha_j} \right| \le 1 - 2\pi \varepsilon \|\alpha_k\|^2. \tag{2.1}$$

Proof. Fix $k \in \{2, ..., m\}$. We can estimate

$$\left| \sum_{j=1}^{m} p_j e^{-2\pi\alpha_j} \right| = \left| p_1 + \sum_{j=2}^{m} p_j e^{-2\pi\alpha_j} \right| \le |p_1 + p_k e^{-2\pi i \alpha_k}| + (1 - p_1 - p_k).$$

Assume that $p_1 \ge p_k$; otherwise, write $|p_1 + p_k e^{-2\pi i \alpha_k}| = |p_1 e^{2\pi i \alpha_k} + p_k|$ and repeat the argument. Then observe that

$$|p_1 + p_k e^{-2\pi i \alpha_k}| \le (p_1 - p_k) + p_k |1 + e^{-2\pi i \alpha_k}|,$$

$$|1 + e^{-2\pi i \alpha_k}| = 2|\cos(\pi \alpha_k)| \le 2(1 - \pi ||\alpha_k||^2).$$

This implies the desired inequality.

Recall from (1.3) that

$$\widehat{\mu}(\xi) = \prod_{n=0}^{\infty} \left(\sum_{j=1}^{m} p_j e^{-2\pi i \langle \xi, A^n a_j \rangle} \right).$$

For $\xi \in \mathbb{R}^d$, with $\|\xi\|_{\infty} \ge 1$, let $\eta(\xi) = (A^t)^{N(\xi)}\xi$, where $N(\xi) \ge 0$ is maximal, such that $\|\eta(\xi)\|_{\infty} \ge 1$. Then $\|\eta(\xi)\|_{\infty} \in [1, \|A^{-1}\|_{\infty}]$ and (1.3) implies

$$\widehat{\mu}(\xi) = \widehat{\mu}(\eta(\xi)) \cdot \prod_{n=1}^{N(\xi)} \left(\sum_{j=1}^{m} p_j e^{-2\pi i \langle \eta(\xi), A^{-n} a_j \rangle} \right). \tag{2.2}$$

Proof of Theorem 1.3. First, we show that the case of a general digit set may be reduced to $\mathcal{D} = \{0, (1, ..., 1)\}$. We start with the formula (2.2), which, under the current assumptions, becomes

$$\widehat{\mu}(\xi) = \widehat{\mu}(\eta(\xi)) \cdot \prod_{n=1}^{N(\xi)} \left(\sum_{j=1}^{m} p_j \exp \left[-2\pi i \sum_{k=1}^{d} \eta_k a_j^{(k)} \theta_k^n \right] \right),$$

where $a_j = (a_j^{(k)})_{k=1}^d$ and $\eta(\xi) = (\eta_k)_{k=1}^d$. Note that $\|\eta(\xi)\|_{\infty} \in [1, \max_j |\theta_j|] \subset [1, b_2]$. Assume without loss of generality that $a_1 = 0$. Then we have, by (2.1), that for any fixed $j \in \{2, \dots, m\}$,

$$|\widehat{\mu}(\xi)| \leq \prod_{n=1}^{N(\xi)} \left(1 - 2\pi\varepsilon \left\| \sum_{k=1}^{d} \eta_k a_j^{(k)} \theta_k^n \right\|^2 \right),$$

where $\|\cdot\|$ denotes the distance to the nearest integer. Further, we can assume that all the coordinates of a_j are non-zero; otherwise, we can work in the subspace

$$\mathcal{H} := \left\{ x \in \mathbb{R}^d : x_k = 0 \Leftrightarrow a_j^{(k)} = 0 \right\}$$

and with the corresponding variables θ_k , and then get the exceptional set of zero \mathcal{L}^d measure as a product of a set of zero measure in \mathcal{H} and the entire \mathcal{H}^{\perp} . Finally, apply a linear change of variables, so that $a_i^{(k)} = 1$ for all k, to obtain

$$|\widehat{\mu}(\xi)| \le \prod_{n=1}^{N(\xi)} \left(1 - 2\pi\varepsilon \left\| \sum_{k=1}^{d} \eta_k \theta_k^n \right\|^2 \right). \tag{2.3}$$

This is exactly the situation corresponding to the measure $\mu(\theta, p)$, and we will be showing (typical) power decay for the right-hand side of (2.3). This completes the reduction.

Next, we use a variant of the Erdős–Kahane argument; see, e.g., [15,22] for other versions of it. Intuitively, we will get power decay if $\|\sum_{k=1}^d \eta_k \theta_k^n\|$ is uniformly bounded away from zero for a set of n's of positive lower density, uniformly in η .

Fix $c_1 > 0$ and $1 < b_1 < b_2 < \infty$, and consider the compact set

$$H = \{ \boldsymbol{\theta} = (\theta_1, \dots, \theta_d) \in ([-b_2, -b_1] \cup [b_1, b_2])^d : |\theta_i - \theta_j| \ge c_1, \ i \ne j \}.$$

We will use the notation $[N] = \{1, ..., N\}$ and $[n, N] = \{n, ..., N\}$. For $\rho, \delta > 0$, we define the "bad set" at scale N:

$$E_{H,N}(\delta,\rho) = \left\{ \theta \in H : \max_{\eta: \ 1 \le \|\eta\|_{\infty} \le b_2} \frac{1}{N} \left| \left\{ n \in [N] : \left\| \sum_{k=1}^{d} \eta_k \theta_k^n \right\| < \rho \right\} \right| > 1 - \delta \right\}.$$
(2.4)

Now, we can define the exceptional set

$$\mathcal{E}_H(\delta,\rho) := \bigcap_{N_0=1}^{\infty} \bigcup_{N=N_0}^{\infty} E_{H,N}(\delta,\rho).$$

Theorem 1.3 will immediately follow from the next two propositions.

Proposition 2.2. For any positive ρ and δ , we have $\mu(\theta, p) \in \mathcal{D}_d(\alpha)$ whenever $\theta \in H \setminus \mathcal{E}_H(\delta, \rho)$, where α depends only on δ, ρ, H , and $\varepsilon = \min\{p, 1 - p\}$.

Proposition 2.3. There exist $\rho = \rho_H > 0$ and $\delta = \delta_H > 0$ such that

$$\mathcal{L}^d(\mathcal{E}_H(\delta,\rho)) = 0.$$

Proof of Proposition 2.2. Suppose that $\theta \in H \setminus \mathcal{E}_H(\delta, \rho)$. This implies that there is $N_0 \in \mathbb{N}$ such that $\theta \notin E_{H,N}(\delta, \rho)$ for all $N \geq N_0$. Let $\xi \in \mathbb{R}^d$ be such that $\|\xi\|_{\infty} > b_2^{N_0}$. Then $N = N(\xi) \geq N_0$, where, as above, $\eta = \eta(\xi) = (A^t)^{N(\xi)} \xi = A^{N(\xi)} \xi$ and $N(\xi)$ is maximal with $\|\eta\|_{\infty} \geq 1$. From the fact that $\theta \notin E_{H,N}(\delta, \rho)$, it follows that

$$\frac{1}{N} \left| \left\{ n \in [N] : \ \left\| \sum_{k=1}^{d} \eta_k \theta_k^n \right\| < \rho \right\} \right| \le 1 - \delta.$$

Then, by (2.3),

$$|\widehat{\mu}(\boldsymbol{\theta}, \boldsymbol{p})(\xi)| \leq (1 - 2\pi\varepsilon\rho^2)^{\lfloor\delta N\rfloor}.$$

By the definition of $N = N(\xi)$, we have

$$\|\xi\|_{\infty} \le b_2^{N+1}.$$

It follows that

$$|\widehat{\mu}(\boldsymbol{\theta}, \boldsymbol{p})(\xi)| = O_{H,\varepsilon}(1) \cdot ||\xi||_{\infty}^{-\alpha},$$

for $\alpha = -\delta \log(1 - 2\pi \varepsilon \rho^2)/\log b_2$, and the proof is complete.

Proof of Proposition 2.3. It is convenient to express the exceptional set as a union, according to a dominant coordinate of η (which may be non-unique, of course):

$$E_{H,N}(\delta,\rho) = \bigcup_{j=1}^{d} E_{H,N,j}(\delta,\rho),$$

where

$$E_{H,N,j}(\delta,\rho) := \left\{ \boldsymbol{\theta} \in H : \exists \, \eta, \, 1 \le |\eta_j| = \|\eta\|_{\infty} \le b_2, \right.$$

$$\left. \frac{1}{N} \left| \left\{ n \in [N] : \left\| \sum_{k=1}^d \eta_k \theta_k^n \right\| < \rho \right\} \right| > 1 - \delta \right\}. \quad (2.5)$$

It is easy to see that $E_{H,N,j}(\delta,\rho)$ is measurable. Observe that

$$\mathcal{E}_{H}(\delta,\rho) := \bigcup_{j=1}^{d} \mathcal{E}_{H,j}(\delta,\rho), \quad \text{where} \quad \mathcal{E}_{H,j}(\delta,\rho) := \bigcap_{N_{0}=1}^{\infty} \bigcup_{N=N_{0}}^{\infty} E_{H,N,j}(\delta,\rho).$$

It is, of course, sufficient to show that $\mathcal{L}^d(\mathcal{E}_{H,j}(\delta,\rho))=0$ for every $j\in[d]$, for some $\delta,\rho>0$. Without loss of generality, assume that j=d. Since $\mathcal{E}_{H,d}(\delta,\rho)$ is measurable, the desired claim will follow if we prove that every slice of $\mathcal{E}_{H,d}(\delta,\rho)$ in the direction of the x_d -axis has zero \mathcal{L}^1 measure. Namely, for fixed $\theta'=(\theta_1,\ldots,\theta_{d-1})$, let

$$\mathcal{E}_{H,d}(\delta,\rho,\boldsymbol{\theta}') := \big\{\theta_d: (\boldsymbol{\theta}',\theta_d) \in \mathcal{E}_{H,d}(\delta,\rho)\big\}.$$

We want to show that $\mathcal{L}^1(\mathcal{E}_{H,d}(\delta, \rho, \theta')) = 0$ for all θ' . Clearly,

$$\mathcal{E}_{H,d}(\delta,\rho,\boldsymbol{\theta}') := \bigcap_{N_0=1}^{\infty} \bigcup_{N=N_0}^{\infty} E_{H,N,d}(\delta,\rho,\boldsymbol{\theta}'),$$

where

$$E_{H,N,d}(\delta, \rho, \boldsymbol{\theta}') = \left\{ \theta_d : (\boldsymbol{\theta}', \theta_d) \in H : \right.$$

$$\max_{\substack{\eta: 1 \le |\eta_d| \le b_2 \\ \|\eta\|_{\infty} = |\eta_d|}} \frac{1}{N} \left| \left\{ n \in [N] : \left\| \sum_{k=1}^d \eta_k \theta_k^n \right\| < \rho \right\} \right| > 1 - \delta \right\}.$$

$$(2.6)$$

Lemma 2.4. There exists a constant $\rho > 0$ such that for any $N \in \mathbb{N}$ and $\delta \in (0, \frac{1}{2})$, the set $E_{H,N,d}(\delta, \rho, \theta')$ can be covered by $\exp(O_H(\delta \log(1/\delta)N))$ intervals of length b_1^{-N} .

We first complete the proof of the proposition assuming the lemma. By Lemma 2.4,

$$\mathcal{L}^1\left(\bigcup_{N=N_0}^{\infty} E_{H,N,d}(\delta,\rho,\boldsymbol{\theta}')\right) \leq \sum_{N=N_0}^{\infty} \exp(O_H(\delta \log(1/\delta)N)) \cdot b_1^{-N} \to 0$$

as $N_0 \to \infty$, provided $\delta > 0$ is so small that $\log b_1 > O_H(\delta \log(1/\delta))$. Thus, we have $\mathcal{L}^1(\mathcal{E}_{H,d}(\delta, \rho, \theta')) = 0$.

Proof of Lemma 2.4. Fix θ' in the projection of H to the first (d-1) coordinates and $\eta \in \mathbb{R}^d$, with $1 \le |\eta_d| = \|\eta\|_{\infty} \le b_2$. Below, all the constants implicit in the $O(\cdot)$ notation are allowed to depend on H and d. Let θ_d be such that $(\theta', \theta_d) \in H$ and write

$$\sum_{k=1}^{d} \eta_k \theta_k^n = K_n + \varepsilon_n, \quad n \ge 0,$$

where $K_n \in \mathbb{Z}$ is the nearest integer to the expression in the left-hand side, so that $|\varepsilon_n| \leq \frac{1}{2}$. We emphasize that K_n depends on η and on θ_d . Define $A_n^{(0)} = K_n$, $\widetilde{A}_n^{(0)} = K_n + \varepsilon_n$, and then for all n, inductively:

$$A_n^{(j)} = A_{n+1}^{(j-1)} - \theta_j A_n^{(j-1)}, \quad \widetilde{A}_n^{(j)} = \widetilde{A}_{n+1}^{(j-1)} - \theta_j \widetilde{A}_n^{(j-1)}, \quad j = 1, \dots, d-1.$$
 (2.7)

It is easy to check by induction that

$$\widetilde{A}_{n}^{(j)} = \sum_{i=j+1}^{d} \eta_{i} \prod_{k=1}^{j} (\theta_{i} - \theta_{k}) \theta_{i}^{n}, \quad j = 1, \dots, d-1,$$

hence

$$\widetilde{A}_{n}^{(d-1)} = \eta_{d} \prod_{k=1}^{d-1} (\theta_{d} - \theta_{k}) \theta_{d}^{n}, \quad \theta_{d} = \frac{\widetilde{A}_{n+1}^{(d-1)}}{\widetilde{A}_{n}^{(d-1)}}, \quad n \in \mathbb{N}.$$
 (2.8)

We have $\|\eta\|_{\infty} \leq b_2$ and $|\widetilde{A}_n^{(0)} - A_n^{(0)}| \leq |\varepsilon_n|$, and then by induction, by (2.7),

$$\left| \tilde{A}_{n}^{(j)} - A_{n}^{(j)} \right| \le (1 + b_2)^{j} \max \left\{ |\varepsilon_{n}|, \dots, |\varepsilon_{n+j}| \right\}, \quad j = 1, \dots, d - 1.$$
 (2.9)

Another easy calculation gives

$$K_{n+d+1} = \theta_1 K_{n+d} + A_{n+d}^{(1)}$$

$$= \left[\theta_1 K_{n+d} + \theta_2 A_{n+d-1}^{(1)} + \dots + \theta_{d-1} A_{n+2}^{(d-2)} \right] + A_{n+2}^{(d-1)}. \tag{2.10}$$

Since

$$\frac{A_{n+2}^{(d-1)}}{A_{n+1}^{(d-1)}} \approx \frac{\widetilde{A}_{n+1}^{(d-1)}}{\widetilde{A}_{n}^{(d-1)}} = \theta_d,$$

we have

$$K_{n+d+1} \approx \left[\theta_1 K_{n+d} + \theta_2 A_{n+d-1}^{(1)} + \dots + \theta_{d-1} A_{n+2}^{(d-2)}\right] + \frac{(A_{n+1}^{(d-1)})^2}{A_n^{(d-1)}}$$

$$=: R_{\theta_1,\dots,\theta_{d-1}}(K_n,\dots,K_{n+d}),$$
(2.11)

where $R_{\theta_1,\dots,\theta_{d-1}}(K_n,\dots,K_{n+d})$ is a rational function, depending on the (fixed) parameters $\theta_1,\dots,\theta_{d-1}$. To make the approximate equality precise, note that, by (2.8) and our assumptions,

$$\left| \widetilde{A}_n^{(d-1)} \right| \ge c_1^{d-1} b_1^n,$$

where $b_1 > 1$, and $|\widetilde{A}_n^{(d-1)} - A_n^{(d-1)}| \le (1 + b_2)^{d-1}/2$ by (2.9). Hence

$$|A_n^{(d-1)}| \ge c_1^{d-1} b_1^n / 2 \quad \text{for } n \ge n_0 = n_0(H),$$
 (2.12)

and so

$$\left| \frac{A_{n+1}^{(d-1)}}{A_n^{(d-1)}} \right| \le O(1), \quad n \ge n_0.$$

In the next estimates we assume that $n \ge n_0(H)$. In view of the above, especially (2.9) for j = d - 1,

$$\left| \frac{A_{n+1}^{(d-1)}}{A_n^{(d-1)}} - \theta_d \right| = \left| \frac{A_{n+1}^{(d-1)}}{A_n^{(d-1)}} - \frac{\widetilde{A}_{n+1}^{(d-1)}}{\widetilde{A}_n^{(d-1)}} \right| \\
\leq \left| \frac{A_{n+1}^{(d-1)} - \widetilde{A}_{n+1}^{(d-1)}}{A_n^{(d-1)}} \right| + \left| \widetilde{A}_{n+1}^{(d-1)} \right| \cdot \left| \frac{1}{A_n^{(d-1)}} - \frac{1}{\widetilde{A}_n^{(d-1)}} \right| \\
\leq O(1) \cdot \max\{ |\varepsilon_n|, \dots, |\varepsilon_{n+d}| \} \cdot |A_n^{(d-1)}|^{-1}.$$

It follows that, on the one hand,

$$\left| \frac{A_{n+1}^{(d-1)}}{A_n^{(d-1)}} - \theta_d \right| \le O(1) \cdot b_1^{-n}; \tag{2.13}$$

and, on the other hand,

$$\left| \frac{\left(A_{n+1}^{(d-1)} \right)^2}{A_n^{(d-1)}} - A_{n+2}^{(d-1)} \right| \le O(1) \cdot \max \left\{ |\varepsilon_n|, \dots, |\varepsilon_{n+d+1}| \right\}. \tag{2.14}$$

Note that $A_n^{(j)}$, for $j \in [d-1]$, is a linear combination of $K_n, K_{n+1}, \ldots, K_{n+j}$ with coefficients that are polynomials in the (fixed) parameters $\theta_1, \ldots, \theta_{d-1}$; hence the inequality (2.13) shows that

given
$$K_n, \ldots, K_{n+d}$$
, we have an $O(1) \cdot b_1^{-n}$ -approximation of θ_d . (2.15)

The inequality (2.14) yields, using (2.11) and (2.10), that, for $n \ge n_0$,

$$\left|K_{n+d+1}-R_{\theta_1,\ldots,\theta_{d-1}}(K_n,\ldots,K_{n+d})\right| \leq O(1) \cdot \max\{|\varepsilon_n|,\ldots,|\varepsilon_{n+d+1}|\}.$$

Thus we have the following.

- (i) Given K_n, \ldots, K_{n+d} , there are at most O(1) possible values for K_{n+d+1} , uniformly in η and $\theta_1, \ldots, \theta_{d-1}$. There are also O(1) possible values for K_1, \ldots, K_{n_0} since $\|\eta\|_{\infty}$ and $\|\theta\|$ are bounded above by b_2 .
- (ii) There is a constant $\rho = \rho(H) > 0$ such that if $\max\{|\varepsilon_n|, \dots, |\varepsilon_{n+d+1}|\} < \rho$, then K_n, \dots, K_{n+d} uniquely determine K_{n+d+1} , as the nearest integer to $R_{\theta_1, \dots, \theta_{d-1}}(K_n, \dots, K_{n+d})$, again independently of η and $\theta_1, \dots, \theta_{d-1}$.

Fix an N sufficiently large. We claim that for each fixed set $J \subset [N]$ with $|J| \ge (1 - \delta)N$, the set

$$\left\{ (K_n)_{n \in [N]} : \varepsilon_n = \left\| \sum_{k=1}^d \eta_k \theta_k^n \right\| < \rho \text{ for some } \theta_d, \eta \text{ and all } n \in J \right\}$$

has cardinality $\exp(O(\delta N))$. Indeed, fix such a J and let

$$\tilde{J} = \{ i \in [n_0 + (d+1), N] : i, i-1, \dots, i-(d+1) \in J \}.$$

We have $|\tilde{J}| > (1 - (d+2)\delta)N - n_0 - (d+1)$. If we set

$$\Lambda_j = (K_i)_{i \in [j]},$$

then (i) and (ii) above show that $|\Lambda_{j+1}| = |\Lambda_j|$, if $j \in \widetilde{J}$, and $|\Lambda_{j+1}| = O(|\Lambda_j|)$, otherwise. Thus, $|\Lambda_N| \leq O(1)^{(d+2)\delta N}$, as claimed.

The number of subsets A of [N] of size greater than or equal to $(1 - \delta)N$ is bounded by $\exp(O(\delta \log(1/\delta)N))$ (using, e.g., Stirling's formula), so we conclude that there are

$$\exp\left(O\left(\delta\log\left(\frac{1}{\delta}\right)N\right)\right)\cdot\exp\left(O(\delta N)\right) = \exp\left(O\left(\delta\log\left(\frac{1}{\delta}\right)N\right)\right)$$

sequences K_1, \ldots, K_N such that $|\varepsilon_n| < \rho$ for at least $(1 - \delta)N$ values of $n \in [N]$. Hence, by (2.15), the set (2.6) can be covered by $\exp(O_H(\delta \log(1/\delta)N))$ intervals of length b_1^{-N} , as desired.

The proof of Theorem 1.3 is now complete.

Acknowledgements. Thanks to Ariel Rapaport for corrections and helpful comments on a preliminary version.

Funding. Supported in part by the Israel Science Foundation grant 911/19.

References

- A. Algom, F. Rodriguez Hertz, and Z. Wang, Pointwise normality and Fourier decay for self-conformal measures. *Adv. Math.* 393 (2021), Paper No. 108096 Zbl 1484.42010 MR 4340230
- [2] J. Bourgain and S. Dyatlov, Fourier dimension and spectral gaps for hyperbolic surfaces. *Geom. Funct. Anal.* 27 (2017), no. 4, 744–771 Zbl 1421.11071 MR 3678500
- [3] J. Brémont, Self-similar measures and the Rajchman property. Ann. H. Lebesgue 4 (2021), 973–1004 Zbl 1480.11094 MR 4315775
- [4] X.-R. Dai, D.-J. Feng, and Y. Wang, Refinable functions with non-integer dilations. *J. Funct. Anal.* **250** (2007), no. 1, 1–20 Zbl 1128.42018 MR 2345903
- [5] P. Erdős, On a family of symmetric Bernoulli convolutions. Amer. J. Math. 61 (1939), 974–976 Zbl 0022.35402 MR 311
- [6] P. Erdős, On the smoothness properties of a family of Bernoulli convolutions. Amer. J. Math. 62 (1940), 180–186 Zbl 0022.35403 MR 858
- [7] K. G. Hare and N. Sidorov, On a family of self-affine sets: topology, uniqueness, simultaneous expansions. *Ergodic Theory Dynam. Systems* 37 (2017), no. 1, 193–227 Zbl 1378.37021 MR 3590500
- [8] M. Hochman, On self-similar sets with overlaps and inverse theorems for entropy. *Ann. of Math.* (2) **180** (2014), no. 2, 773–822 Zbl 1337.28015 MR 3224722
- [9] T. Jordan and T. Sahlsten, Fourier transforms of Gibbs measures for the Gauss map. *Math. Ann.* 364 (2016), no. 3-4, 983–1023 Zbl 1343.42006 MR 3466857
- [10] J.-P. Kahane, Sur la distribution de certaines séries aléatoires. In *Colloque de Théorie des Nombres (Univ. Bordeaux, Bordeaux, 1969)*, pp. 119–122, Bull. Soc. Math. France, Mém. No. 25, Société Mathématique de France, Paris, 1971 Zbl 0234.60002 MR 0360498
- [11] J. Li, Decrease of Fourier coefficients of stationary measures. *Math. Ann.* 372 (2018), no. 3-4, 1189–1238 Zbl 1410.42008 MR 3880297
- [12] J. Li and T. Sahlsten, Fourier transform of self-affine measures. Adv. Math. 374 (2020), Paper No. 107349 Zbl 1448.42012 MR 4133521
- [13] J. Li and T. Sahlsten, Trigonometric series and self-similar sets. *J. Eur. Math. Soc. (JEMS)* **24** (2022), no. 1, 341–368 Zbl 1485.42006 MR 4375453

- [14] R. Lyons, Seventy years of Rajchman measures. In *Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993)*, pp. 363–377, *J. Fourier Anal. Appl.* 1995, Special issue Zbl 0886.43001 MR 1364897
- [15] Y. Peres, W. Schlag, and B. Solomyak, Sixty years of Bernoulli convolutions. In *Fractal geometry and stochastics, II (Greifswald/Koserow, 1998)*, pp. 39–65, Progr. Probab. 46, Birkhäuser, Basel, 2000 Zbl 0961.42006 MR 1785620
- [16] C. Pisot, La répartition modulo 1 et les nombres algébriques. Ann. Scuola Norm. Super. Pisa Cl. Sci. (2) 7 (1938), no. 3-4, 205–248 Zbl 0019.15502 MR 1556807
- [17] A. Rapaport, On the Rajchman property for self-similar measures on \mathbb{R}^d . Adv. Math. 403 (2022), Paper No. 108375 Zbl 07534693 MR 4405371
- [18] R. Salem, Sets of uniqueness and sets of multiplicity. *Trans. Amer. Math. Soc.* 54 (1943), 218–228 Zbl 0060.18604 MR 8428
- [19] T. Sahlsten and C. Stevens, Fourier decay in nonlinear dynamics. 2018, arXiv:1810.01378
- [20] P. Shmerkin, Overlapping self-affine sets. *Indiana Univ. Math. J.* 55 (2006), no. 4, 1291–1331 Zbl 1125.28013 MR 2269414
- [21] P. Shmerkin and B. Solomyak, Absolute continuity of complex Bernoulli convolutions. Math. Proc. Cambridge Philos. Soc. 161 (2016), no. 3, 435–453 Zbl 1371.28030 MR 3569155
- [22] P. Shmerkin and B. Solomyak, Absolute continuity of self-similar measures, their projections and convolutions. *Trans. Amer. Math. Soc.* 368 (2016), no. 7, 5125–5151 Zbl 1334.28013 MR 3456174
- [23] B. Solomyak, Fourier decay for self-similar measures. Proc. Amer. Math. Soc. 149 (2021), no. 8, 3277–3291 Zbl 07357556 MR 4273134
- [24] P. P. Varjú, Recent progress on Bernoulli convolutions. In European Congress of Mathematics. Proceedings of the 7th ECM congress (Berlin, 2016), pp. 847–867, European Mathematical Society, Zürich, 2018 Zbl 1403.28010 MR 3890454
- [25] P. P. Varjú and H. Yu, Fourier decay of self-similar measures and self-similar sets of uniqueness. Anal. PDE 15 (2022), no. 3, 843–858 MR 4442842

Received 24 May 2021.

Boris Solomyak

Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel; bsolom3@gmail.com