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Fourier decay for homogeneous self-affine measures

Boris Solomyak

Abstract. We show that for Lebesgue almost all d -tuples .�1; : : : ; �d /, with j�j j > 1, any
self-affine measure for a homogeneous non-degenerate iterated function system ¹AxC aj º

m
jD1

in Rd , where A�1 is a diagonal matrix with the entries .�1; : : : ; �d /, has power Fourier decay
at infinity.

1. Introduction

For a finite positive Borel measure � on Rd , consider the Fourier transform

y�.�/ D

Z
Rd

e�2�ih�;xi d�.x/:

We are interested in the decay properties of y� at infinity. The measure � is called
Rajchman if

lim
j�j!1

y�.�/ D 0;

where j�j is a norm (say, the Euclidean norm) of � 2Rd . Whereas absolutely continu-
ous measures are Rajchman by the Riemann–Lebesgue lemma, it is a subtle question
to decide which singular measures are such; see, e.g., the survey of Lyons [14]. A
much stronger property, which is useful for many applications, is the following.

Definition 1.1. For ˛ > 0, let

Dd .˛/ D
®
� finite positive measure on Rd W jy�.t/j D O�.jt j

�˛/ as jt j ! 1
¯
;

and define Dd D
S
˛>0Dd .˛/. A measure � is said to have power Fourier decay if

� 2 Dd .

Many recent papers have been devoted to the question of Fourier decay for classes
of “fractal” measures; see, e.g., [1–3, 9, 11–13, 17, 19, 23, 25]. Here, we continue this
line of research, focusing on the class of homogeneous self-affine measures in Rd . A
measure � is called self-affine if it is the invariant measure for a self-affine iterated
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function system (IFS) ¹fj ºmjD1, with m � 2, where fj .x/ D Ajx C aj , the matrices
Aj W Rd ! Rd are invertible linear contractions (in some norm), and aj 2 Rd are
“digit” vectors. This means that for some probability vector p D .pj /j�m holds

� D

mX
jD1

pj .� ı f
�1
j /: (1.1)

It is well known that this equation defines a unique probability Borel measure. The
self-affine IFS is homogeneous if all Aj are equal to each other: A D Aj for j � m.
Denote the digit set by D WD ¹a1; : : : ; amº and the corresponding self-affine measure
by �.A;D ;p/. We will write p > 0 if all pj > 0. Following [8], we say that the IFS is
affinely irreducible if the attractor is not contained in a proper affine subspace of Rd .
It is easy to see that this is a necessary condition for the self-affine measure to be
Rajchman, so this will always be our assumption. By a conjugation with a translation,
we can always assume that 0 2 D . In this case, affine irreducibility is equivalent to
the digit set D being a cyclic family for A, that is, Rd being the smallest A-invariant
subspace containing D .

The IFS is self-similar if all Aj are contracting similitudes, that is, Aj D �jOj

for some �j 2 .0; 1/ and orthogonal matrices Oj . In many aspects, “genuine” (i.e.,
non-self-similar) self-affine and self-similar IFS are very different; of course, the dis-
tinction exists only for d � 2.

Every homogeneous self-affine measure can be expressed as an infinite convolu-
tion product

�.A;D ;p/ D
1©
nD0

mX
jD1

pj ıAnaj
; (1.2)

and for every p > 0, it is supported on the attractor (self-affine set)

KA;D WD
°
x 2 Rd W x D

1X
nD0

Anbn; bn 2 D
±
:

By the definition of the self-affine measure,

y�.�/ D

mX
jD1

pj

Z
e�2�ih�;AxCaj i d� D

� mX
jD1

pj e
�2�ih�;aj i

�
y�.At�/;

where At is the matrix transpose of A. Iterating, we obtain

y�.�/ D

1Y
nD0

� mX
jD1

pj e
�2�ih.At /n�;aj i

�
D

1Y
nD0

� mX
jD1

pj e
�2�ih�;Anaj i

�
; (1.3)

where the infinite product converges, since kAnk ! 0 exponentially fast as n!1.
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1.1. Background

We start with the known results on Fourier decay for classical Bernoulli convolutions
��, namely, self-similar measures on the line, corresponding to the IFS ¹�x; �x C 1º,
with � 2 .0; 1/ and probabilities .1

2
; 1
2
/ (often the digits˙1 are used instead; it is easy

to see that taking any two distinct digits results in the same measure, up to an affine
change of variable). Erdős [5] proved that y��.t/ 6! 0 as t ! 1 when � D 1=� is
a Pisot number. Recall that a Pisot number is an algebraic integer greater than one,
whose algebraic (Galois) conjugates are all less than one in modulus. Salem [18]
showed that if 1=� is not a Pisot number, then y�� is a Rajchman measure. In the other
direction, Erdős [6] proved that for any Œa; b� � .0; 1/, there exists ˛ > 0 such that
�� 2D1.˛/ for a.e. � 2 Œa;b�. Later, Kahane [10] indicated that Erdős’ argument actu-
ally gives that �� 2 D1 for all � 2 .0; 1/ outside a set of zero Hausdorff dimension.
(We should mention that very few specific � are known, for which �� has power Four-
ier decay; see Dai, Feng, and Wang [4].) In the original papers of Erdős and Kahane,
there were no explicit quantitative bounds; this was done in the survey [15], where
the expression “Erdős–Kahane argument” was used first. The general case of a homo-
geneous self-similar measure on the line is treated analogously to that of Bernoulli
convolutions: the self-similar measure is still an infinite convolution and the Erdős–
Kahane argument on power Fourier decay goes through with minor modifications; see
[4, 22]. Although one of the main motivations for the study of the Fourier transform
has been the question of absolute continuity/singularity of ��, here we do not discuss
it but refer the reader to the recent survey [24].

Next, we turn to the non-homogeneous case on the line. Li and Sahlsten [13]
proved that if � is a self-similar measure on the line with contraction ratios ¹riºmiD1
and there exist i ¤ j such that log ri= log rj is irrational, then � is Rajchman. More-
over, they showed logarithmic decay of the Fourier transform under a Diophantine
condition. A related result for self-conformal measures was recently obtained by
Algom, Rodriguez Hertz, and Wang [1]. Brémont [3] obtained an (almost) com-
plete characterization of (non-)Rajchman self-similar measures in the case when rj D
�nj for j � m. To be non-Rajchman, it is necessary for 1=� to be Pisot. For “gen-
eric” choices of the probability vector p, assuming that D � Q.�/ after an affine
conjugation, this is also sufficient, but there are some exceptional cases of positive
co-dimension. Varjú and Yu [25] proved logarithmic decay of the Fourier transform
in the case when rj D �nj for j � m and 1=� is algebraic, but not a Pisot or Salem
number. In [23], we showed that outside a zero Hausdorff dimension exceptional set
of parameters, all self-similar measures on R belong to D1; however, the exceptional
set is not explicit.

Turning to higher dimensions, we mention the recent paper by Rapaport [17],
where he gives an algebraic characterization of self-similar IFS for which there exists
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a probability vector yielding a non-Rajchman self-similar measure. Li and Sahlsten
[12] investigated self-affine measures in Rd and obtained power Fourier decay under
some algebraic conditions, which never hold for a homogeneous self-affine IFS. Their
main assumptions are total irreducibility of the closed group generated by the contrac-
tion linear mapsAj and non-compactness of the projection of this group to PGL.d;R/.
For d D 2; 3 they showed that this is sufficient.

1.2. Statement of the results

We assume thatA is a matrix diagonalizable over R. Then we can reduce the IFS, via a
linear change of variable, to one where A is a diagonal matrix with real entries. Given
A D DiagŒ��11 ; : : : ; ��1

d
�, with j�j j > 1, a set of digits D D ¹a1; : : : ; amº � Rd , and

a probability vector p, we write � D .�1; : : : ; �d / and denote by �.�;D ;p/ the self-
affine measure defined by (1.1). Our main motivation is the class of measures which
can be viewed as “self-affine Bernoulli convolutions”, with A D DiagŒ��11 ; : : : ; ��1

d
�

a diagonal matrix with distinct real entries and D D ¹0; .1; : : : ; 1/º. In this special
case, we denote the self-affine measure by �.�;p/.

Theorem 1.2. There exists an exceptional set E � Rd , with Ld .E/ D 0, such that
for all � 2 Rd n E, with minj j�j j > 1, for all sets of digits D , such that the IFS is
affinely irreducible, and all p > 0, holds �.�;D ;p/ 2 Dd .

The theorem is a consequence of a more quantitative statement.

Theorem 1.3. Fix 1< b1 <b2 <1 and c1; " > 0. Then there exist ˛ > 0 and E �Rd ,
depending on these parameters, such that Ld .E/ D 0 and for all � 62 E satisfying

b1 � min
j
j�j j < max

j
j�j j � b2 and j�i � �j j � c1; i ¤ j;

for all digit sets D such that the IFS is affinely irreducible, and all p such that
minj pj � ", we have �.�;D ;p/ 2 Dd .˛/.

Reduction of Theorem 1.2 to Theorem 1.3. For M 2 N, let E.M/ be the exceptional
set obtained from Theorem 1.3 with b1 D 1CM�1; b2 D M , and " D c1 D M�1.
Then the set

E D

1[
MD2

E.M/
[
®
� W 9 i ¤ j; �i D �j

¯
:

has the desired properties.

The proof of Theorem 1.3 uses a version of the Erdős–Kahane technique. We
follow the general scheme of [15, 22], but this is not a trivial extension.

In view of the convolution structure, Theorem 1.3 yields some information on
absolute continuity of self-affine measures, by a standard argument.
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Corollary 1.4. Fix 1 < b1 < b2 <1 and c1; " > 0. Then there exist a sequence .nk/
with nk !1 as n!1 and a set zEk � Rd , depending on these parameters, such
that Ld . zEk/ D 0 and for all � 62 zEk , satisfying

b1 � min
j
j�
nk

j j < max
j
j�
nk

j j � b2 and j�
nk

i � �
nk

j j � c1; i ¤ j;

for all digit sets D such that the IFS is affinely irreducible, and all p such that
minj pj � ", the measure �.�;D ;p/ is absolutely continuous with respect to Ld ,
with a Radon–Nikodym derivative in C k.Rd /; k � 0.

Derivation of Corollary 1.4 from Theorem 1.3. Let n � 2. It follows from (1.2) that

�.A;D ;p/ D �.An;D ;p/ � �.An; AD ;p/ � � � � � �.An; An�1D ;p/:

It is easy to see that if the original IFS is affinely irreducible, then so are the IFS
associated with .An; AjD/ and, moreover, these IFS are all affine conjugate to each
other. Therefore, if �.An;D ;p/ 2 Dd .˛/, then �.A;D ;p/ 2 Dd .n˛/. As it is well
known,

� 2 Dd .ˇ/; ˇ > d C k H)
d�

dLd
2 C k.Rd /;

so we can take nk such that nk˛ > d C k, and zEk D ¹� W �nk 2 Eº, where ˛ and E

are from Theorem 1.3.

Remark 1.5. (a) In general, the power decay cannot hold for all �; for instance, it
is easy to see that the measure �.�; p/ is not Rajchman if at least one of �k is a
Pisot number. Thus, in the most basic case with two digits, the exceptional set has
Hausdorff dimension at least d � 1.

(b) It is natural to ask what happens if A is not diagonalizable over R. A complex
eigenvalue of A corresponds to a 2-dimensional homogeneous self-similar IFS with
rotation, or an IFS of the form ¹�z C aj ºmjD1, with � 2 C, j�j < 1, and aj 2 C.
In [21], it was shown that for all � outside a set of Hausdorff dimension zero, the
corresponding self-similar measure belongs to D2. It may be possible to combine the
methods of [21] with those of the current paper to obtain power Fourier decay for a
typical A diagonalizable over C. It would also be interesting to consider the case of
non-diagonalizable A, starting with a single Jordan block.

(c) In the special case of d D 2 and m D 2, our system reduces to a planar self-
affine IFS, conjugate to ¹.�x; 
y/ ˙ .�1; 1/º for 0 < 
 < � < 1. This system has
been studied by many authors, especially the dimension and topological properties
of its attractor, see [7] and the references therein. For our work, the most relevant
is the paper by Shmerkin [20]. Among other results, he proved absolute continuity
with a density in L2 of the self-affine measure (with some fixed probabilities) almost
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everywhere in some region, in particular, in some explicit neighborhood of .1; 1/. He
also showed that if .��1; 
�1/ forms a Pisot pair, then the measure is not Rajchman
and hence singular.

1.3. Rajchman self-affine measures

The question “when is�.A;D ;p/ Rajchman?” is not addressed here. Recently, Rapa-
port [17] obtained an (almost) complete characterization of self-similar Rajchman
measures in Rd . Of course, our situation is vastly simplified by the assumption that
the IFS is homogeneous, but still it is not completely straightforward. The key notion
here is the following.

Definition 1.6. A collection of numbers .�1; : : : ; �m/ (real or complex) is called a
Pisot family or a P.V. m-tuple if

(i) j�j j > 1 for all j � m, and

(ii) there is a monic integer polynomial P.t/, such that P.�j / D 0 for all j � m,
whereas every other root � 0 of P.t/ satisfies j� 0j < 1.

It is not difficult to show, using the classical techniques of Pisot [16] and Salem
[18], as well as some ideas from [17, Section 5], that

� if �.A;D ;p/ is not a Rajchman measure and the IFS is affinely irreducible, then
the spectrum Spec.A�1/ contains a Pisot family;

� if Spec.A�1/ contains a Pisot family, then for a “generic” choice of D , withm� 3,
the measure �.A;D ;p/ is Rajchman; however,

� if Spec.A�1/ contains a Pisot family, then under appropriate conditions the meas-
ure �.A;D ;p/ is not Rajchman. For instance, this holds if there is at least one
conjugate of the elements of the Pisot family less than 1 in absolute value,mD 2,
and A is diagonalizable over R.

We omit the details.

2. Proofs

The following is an elementary inequality.

Lemma 2.1. Let p D .p1; : : : ; pm/ > 0 be a probability vector and ˛1 D 0; j̨ 2 R,
j D 2; : : : ;m. Denote " D minj pj and write kxk D dist.x;Z/. Then for any k � m,ˇ̌̌̌ mX

jD1

pj e
�2�i j̨

ˇ̌̌̌
� 1 � 2�"k˛kk

2: (2.1)
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Proof. Fix k 2 ¹2; : : : ; mº. We can estimateˇ̌̌̌ mX
jD1

pj e
�2� j̨

ˇ̌̌̌
D

ˇ̌̌̌
p1 C

mX
jD2

pj e
�2� j̨

ˇ̌̌̌
� jp1 C pke

�2�i˛k j C .1 � p1 � pk/:

Assume that p1 � pk; otherwise, write jp1 C pke�2�i˛k j D jp1e
2�i˛k C pkj and

repeat the argument. Then observe that

jp1 C pke
�2�i˛k j � .p1 � pk/C pkj1C e

�2�i˛k j;

j1C e�2�i˛k j D 2j cos.�˛k/j � 2.1 � �k˛kk2/:

This implies the desired inequality.

Recall from (1.3) that

y�.�/ D

1Y
nD0

� mX
jD1

pj e
�2�ih�;Anaj i

�
:

For � 2 Rd , with k�k1 � 1, let �.�/ D .At /N.�/� , where N.�/ � 0 is maximal, such
that k�.�/k1 � 1. Then k�.�/k1 2 Œ1; kA�1k1� and (1.3) implies

y�.�/ D y�.�.�// �

N.�/Y
nD1

� mX
jD1

pj e
�2�ih�.�/;A�naj i

�
: (2.2)

Proof of Theorem 1.3. First, we show that the case of a general digit set may be
reduced to D D ¹0; .1; : : : ; 1/º. We start with the formula (2.2), which, under the
current assumptions, becomes

y�.�/ D y�.�.�// �

N.�/Y
nD1

� mX
jD1

pj exp
�
�2�i

dX
kD1

�ka
.k/
j �nk

��
;

where aj D .a
.k/
j /d

kD1
and �.�/ D .�k/

d
kD1

. Note that k�.�/k1 2 Œ1;maxj j�j j� �
Œ1; b2�. Assume without loss of generality that a1 D 0. Then we have, by (2.1), that
for any fixed j 2 ¹2; : : : ; mº,

jy�.�/j �

N.�/Y
nD1

�
1 � 2�"





 dX
kD1

�ka
.k/
j �nk





2�;
where k � k denotes the distance to the nearest integer. Further, we can assume that all
the coordinates of aj are non-zero; otherwise, we can work in the subspace

H WD
®
x 2 Rd W xk D 0, a

.k/
j D 0

¯
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and with the corresponding variables �k , and then get the exceptional set of zero Ld

measure as a product of a set of zero measure in H and the entire H?. Finally, apply
a linear change of variables, so that a.k/j D 1 for all k, to obtain

jy�.�/j �

N.�/Y
nD1

�
1 � 2�"





 dX
kD1

�k�
n
k





2�: (2.3)

This is exactly the situation corresponding to the measure �.�;p/, and we will be
showing (typical) power decay for the right-hand side of (2.3). This completes the
reduction.

Next, we use a variant of the Erdős–Kahane argument; see, e.g., [15,22] for other
versions of it. Intuitively, we will get power decay if k

Pd
kD1 �k�

n
k
k is uniformly

bounded away from zero for a set of n’s of positive lower density, uniformly in �.
Fix c1 > 0 and 1 < b1 < b2 <1, and consider the compact set

H D
®
� D .�1; : : : ; �d / 2 .Œ�b2;�b1� [ Œb1; b2�/

d
W j�i � �j j � c1; i ¤ j

¯
:

We will use the notation ŒN � D ¹1; : : : ; N º and Œn; N � D ¹n; : : : ; N º. For �; ı > 0,
we define the “bad set” at scale N :

EH;N .ı; �/ D

²
� 2 H W max

�W 1�k�k1�b2

1

N

ˇ̌̌̌²
n 2 ŒN � W





 dX
kD1

�k�
n
k





 < �³ˇ̌̌̌ > 1 � ı³:
(2.4)

Now, we can define the exceptional set

EH .ı; �/ WD

1\
N0D1

1[
NDN0

EH;N .ı; �/:

Theorem 1.3 will immediately follow from the next two propositions.

Proposition 2.2. For any positive � and ı, we have �.�; p/ 2 Dd .˛/ whenever
� 2 H n EH .ı; �/, where ˛ depends only on ı; �;H , and " D min¹p; 1 � pº.

Proposition 2.3. There exist � D �H > 0 and ı D ıH > 0 such that

Ld
�
EH .ı; �/

�
D 0:

Proof of Proposition 2.2. Suppose that � 2 H n EH .ı; �/. This implies that there is
N0 2 N such that � 62 EH;N .ı; �/ for all N � N0. Let � 2 Rd be such that k�k1 >

b
N0

2 . Then N D N.�/ � N0, where, as above, � D �.�/ D .At /N.�/� D AN.�/� and
N.�/ is maximal with k�k1 � 1. From the fact that � 62 EH;N .ı; �/, it follows that

1

N

ˇ̌̌̌²
n 2 ŒN � W





 dX
kD1

�k�
n
k





 < �³ˇ̌̌̌ � 1 � ı:
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Then, by (2.3), ˇ̌
y�.�;p/.�/

ˇ̌
� .1 � 2�"�2/bıN c:

By the definition of N D N.�/, we have

k�k1 � b
NC1
2 :

It follows that ˇ̌
y�.�;p/.�/

ˇ̌
D OH;".1/ � k�k

�˛
1 ;

for ˛ D �ı log.1 � 2�"�2/= log b2, and the proof is complete.

Proof of Proposition 2.3. It is convenient to express the exceptional set as a union,
according to a dominant coordinate of � (which may be non-unique, of course):

EH;N .ı; �/ D

d[
jD1

EH;N;j .ı; �/;

where

EH;N;j .ı; �/ WD

²
� 2 H W 9 �; 1 � j�j j D k�k1 � b2;

1

N

ˇ̌̌̌²
n 2 ŒN � W





 dX
kD1

�k�
n
k





 < �³ˇ̌̌̌ > 1 � ı³: (2.5)

It is easy to see that EH;N;j .ı; �/ is measurable. Observe that

EH .ı; �/ WD

d[
jD1

EH;j .ı; �/; where EH;j .ı; �/ WD

1\
N0D1

1[
NDN0

EH;N;j .ı; �/:

It is, of course, sufficient to show that Ld .EH;j .ı; �//D 0 for every j 2 Œd �, for some
ı; � > 0. Without loss of generality, assume that j D d . Since EH;d .ı; �/ is measur-
able, the desired claim will follow if we prove that every slice of EH;d .ı; �/ in the
direction of the xd -axis has zero L1 measure. Namely, for fixed � 0 D .�1; : : : ; �d�1/,
let

EH;d .ı; �;�
0/ WD

®
�d W .�

0; �d / 2 EH;d .ı; �/
¯
:

We want to show that L1.EH;d .ı; �;�
0// D 0 for all � 0. Clearly,

EH;d .ı; �;�
0/ WD

1\
N0D1

1[
NDN0

EH;N;d .ı; �;�
0/;
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where

EH;N;d .ı; �;�
0/ D

²
�d W .�

0; �d / 2 H W

max
�W1�j�d j�b2

k�k1Dj�d j

1

N

ˇ̌̌̌²
n 2 ŒN � W





 dX
kD1

�k�
n
k





 < �³ˇ̌̌̌ > 1 � ı³:
(2.6)

Lemma 2.4. There exists a constant � > 0 such that for any N 2 N and ı 2 .0; 1
2
/,

the set EH;N;d .ı; �;� 0/ can be covered by exp.OH .ı log.1=ı/N // intervals of length
b�N1 .

We first complete the proof of the proposition assuming the lemma. By Lemma 2.4,

L1

� 1[
NDN0

EH;N;d .ı; �;�
0/

�
�

1X
NDN0

exp
�
OH .ı log.1=ı/N /

�
� b�N1 ! 0

as N0!1, provided ı > 0 is so small that log b1 > OH .ı log.1=ı//. Thus, we have
L1.EH;d .ı; �;�

0// D 0.

Proof of Lemma 2.4. Fix � 0 in the projection of H to the first .d � 1/ coordinates
and � 2 Rd , with 1 � j�d j D k�k1 � b2. Below, all the constants implicit in theO.�/
notation are allowed to depend on H and d . Let �d be such that .� 0; �d / 2 H and
write

dX
kD1

�k�
n
k D Kn C "n; n � 0;

where Kn 2 Z is the nearest integer to the expression in the left-hand side, so that
j"nj �

1
2

. We emphasize that Kn depends on � and on �d . Define A.0/n D Kn, zA.0/n D
Kn C "n, and then for all n, inductively:

A.j /n DA
.j�1/
nC1 � �jA

.j�1/
n ; zA.j /n D

zA
.j�1/
nC1 � �j

zA.j�1/n ; j D 1; : : : ;d � 1: (2.7)

It is easy to check by induction that

zA.j /n D

dX
iDjC1

�i

jY
kD1

.�i � �k/�
n
i ; j D 1; : : : ; d � 1;

hence

zA.d�1/n D �d

d�1Y
kD1

.�d � �k/�
n
d ; �d D

zA
.d�1/
nC1

zA
.d�1/
n

; n 2 N: (2.8)
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We have k�k1 � b2 and j zA.0/n � A
.0/
n j � j"nj, and then by induction, by (2.7),ˇ̌

zA.j /n � A
.j /
n

ˇ̌
� .1C b2/

j max
®
j"nj; : : : ; j"nCj j

¯
; j D 1; : : : ; d � 1: (2.9)

Another easy calculation gives

KnCdC1 D �1KnCd C A
.1/

nCd

D
�
�1KnCd C �2A

.1/

nCd�1
C � � � C �d�1A

.d�2/
nC2

�
C A

.d�1/
nC2 : (2.10)

Since
A
.d�1/
nC2

A
.d�1/
nC1

�

zA
.d�1/
nC1

zA
.d�1/
n

D �d ;

we have

KnCdC1 �
�
�1KnCd C �2A

.1/

nCd�1
C � � � C �d�1A

.d�2/
nC2

�
C
.A
.d�1/
nC1 /2

A
.d�1/
n

(2.11)

DW R�1;:::;�d�1
.Kn; : : : ; KnCd /;

where R�1;:::;�d�1
.Kn; : : : ; KnCd / is a rational function, depending on the (fixed)

parameters �1; : : : ; �d�1. To make the approximate equality precise, note that, by
(2.8) and our assumptions, ˇ̌

zA.d�1/n

ˇ̌
� cd�11 bn1 ;

where b1 > 1, and j zA.d�1/n � A
.d�1/
n j � .1C b2/

d�1=2 by (2.9). Henceˇ̌
A.d�1/n

ˇ̌
� cd�11 bn1=2 for n � n0 D n0.H/; (2.12)

and so ˇ̌̌̌
A
.d�1/
nC1

A
.d�1/
n

ˇ̌̌̌
� O.1/; n � n0:

In the next estimates we assume that n � n0.H/. In view of the above, especially
(2.9) for j D d � 1,ˇ̌̌̌

A
.d�1/
nC1

A
.d�1/
n

� �d

ˇ̌̌̌
D

ˇ̌̌̌
A
.d�1/
nC1

A
.d�1/
n

�

zA
.d�1/
nC1

zA
.d�1/
n

ˇ̌̌̌
�

ˇ̌̌̌
A
.d�1/
nC1 �

zA
.d�1/
nC1

A
.d�1/
n

ˇ̌̌̌
C
ˇ̌
zA
.d�1/
nC1

ˇ̌
�

ˇ̌̌̌
1

A
.d�1/
n

�
1

zA
.d�1/
n

ˇ̌̌̌
� O.1/ �max

®
j"nj; : : : ; j"nCd j

¯
�
ˇ̌
A.d�1/n

ˇ̌�1
:

It follows that, on the one hand,ˇ̌̌̌
A
.d�1/
nC1

A
.d�1/
n

� �d

ˇ̌̌̌
� O.1/ � b�n1 I (2.13)
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and, on the other hand,ˇ̌̌̌
.A
.d�1/
nC1 /

2

A
.d�1/
n

� A
.d�1/
nC2

ˇ̌̌̌
� O.1/ �max

®
j"nj; : : : ; j"nCdC1j

¯
: (2.14)

Note that A.j /n , for j 2 Œd � 1�, is a linear combination of Kn; KnC1; : : : ; KnCj with
coefficients that are polynomials in the (fixed) parameters �1; : : : ; �d�1; hence the
inequality (2.13) shows that

given Kn; : : : ; KnCd , we have an O.1/ � b�n1 -approximation of �d . (2.15)

The inequality (2.14) yields, using (2.11) and (2.10), that, for n � n0,ˇ̌
KnCdC1 �R�1;:::;�d�1

.Kn; : : : ; KnCd /
ˇ̌
� O.1/ �max

®
j"nj; : : : ; j"nCdC1j

¯
:

Thus we have the following.

(i) Given Kn; : : : ; KnCd , there are at most O.1/ possible values for KnCdC1,
uniformly in � and �1; : : : ; �d�1. There are also O.1/ possible values for
K1; : : : ; Kn0

since k�k1 and k�k are bounded above by b2.

(ii) There is a constant � D �.H/ > 0 such that if max¹j"nj; : : : ; j"nCdC1jº < �,
then Kn; : : : ; KnCd uniquely determine KnCdC1, as the nearest integer to
R�1;:::;�d�1

.Kn; : : : ; KnCd /, again independently of � and �1; : : : ; �d�1.

Fix an N sufficiently large. We claim that for each fixed set J � ŒN � with jJ j �
.1 � ı/N , the set²

.Kn/n2ŒN � W "n D





 dX
kD1

�k�
n
k





 < � for some �d ; � and all n 2 J
³

has cardinality exp.O.ıN //. Indeed, fix such a J and let

zJ D
®
i 2 Œn0 C .d C 1/;N � W i; i � 1; : : : ; i � .d C 1/ 2 J

¯
:

We have j zJ j � .1 � .d C 2/ı/N � n0 � .d C 1/. If we set

ƒj D .Ki /i2Œj �;

then (i) and (ii) above show that jƒjC1j D jƒj j, if j 2 zJ , and jƒjC1j D O.jƒj j/,
otherwise. Thus, jƒN j � O.1/.dC2/ıN , as claimed.

The number of subsets A of ŒN � of size greater than or equal to .1 � ı/N is
bounded by exp.O.ı log.1=ı/N // (using, e.g., Stirling’s formula), so we conclude
that there are

exp
�
O
�
ı log

�1
ı

�
N
��
� exp

�
O.ıN/

�
D exp

�
O
�
ı log

�1
ı

�
N
��



Fourier decay for homogeneous self-affine measures 205

sequences K1; : : : ; KN such that j"nj < � for at least .1 � ı/N values of n 2 ŒN �.
Hence, by (2.15), the set (2.6) can be covered by exp.OH .ı log.1=ı/N // intervals of
length b�N1 , as desired.

The proof of Theorem 1.3 is now complete.
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