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Geometry and Laplacian on discrete magic carpets

Chunyin Siu and Robert S. Strichartz

Abstract. We study several variants of the classical Sierpinski carpet (SC) fractal. The main
examples we call infinite magic carpets (IMC), obtained by taking an infinite blowup of a dis-
crete graph approximation to SC and identifying edges using torus, Klein bottle or projective
plane type identifications. We use both theoretical and experimental methods. We prove esti-
mates for the size of metric balls that are close to optimal. We obtain numerical approximations
to the spectrum of the graph Laplacian on IMC and to solutions of the associated differential
equations: Laplace equation, heat equation and wave equation. We present evidence that the
random walk on IMC is transient, and that the full spectral resolution of the Laplacian on IMC
involves only continuous spectrum. This paper is a contribution to a general program of elimi-
nating unwanted boundaries in the theory of analysis on fractals.

1. Introduction

The Sierpinski carpet (SC) is a classical self-similar fractal generated by an iter-
ated function system of eight contractive similarities in the plane with contraction
ratio 1=3. Figure 1 shows the first three iterations of the approximation to SC obtained
from the unit square by applying the contractions. Two constructions of a Brownian

Figure 1. Approximations to SC.
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Figure 2. Approximations to MC.

motion on SC were given by Barlow and Bass [3] and Kusuoka and Zhou [22], and
these give rise to a symmetric, self-similar energy (Dirichlet form) and Laplacian.
Only recently, in [7] has it been shown that there is, up to a constant multiple, a
unique symmetric self-similar Laplacian on SC, so the two constructions are equiva-
lent, and also certain passages to subsequences in the constructions are unnecessary.
Although the Brownian motion approach yields sub-Gaussian heat kernel estimates,
it does not yield detailed information about the eigenvalues and eigenfunctions of the
Laplacian (with appropriate boundary conditions). Nevertheless, several experimental
approaches have yielded good numerical approximations to the spectrum [9].

One rather vexing question concerns the nature of the analytic boundary of SC.
(Note that there is no meaningful notion of topological boundary, since SC has no
interior.) This is usually taken to be the boundary of the square containing SC. But a
glance at Figure 1 shows that there are infinitely many line segments in SC that are
locally isometric to portions of this boundary, so the standard choice appears some-
what arbitrary and capricious. In an attempt to get rid of the boundary altogether, a
related fractal called the Magic carpet (MC) was introduced in [11] and further studied
in [25] where potential boundary line segments are identified. Thus the opposite sides
of the original square are identified with the same orientation to produce a torus. At
stage m of the approximation, 8m�1 vacant squares are cut into the previous approx-
imation, and again the opposite sides are identified with the same orientation. This
yields a set of 8m squares (called m-cells) of side length 1=3m, and each square has
exactly four neighboring squares on the top, bottom, left, and right. We call this cell
graph MCm. See Figure 2 for an illustration of themD 1 andmD 2 approximations.
Of course, these approximations do not embed in the plane. They should be thought
of as surfaces that are flat except for singular points at the corners of identified edges.

In this paper we will denote the above magic carpet by MCT to indicate that we
have made torus-type identifications of edges. We will also consider MCK and MCP,
where we make Klein bottle or projective plane identifications, as shown in Figure 3.
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Figure 3. Identification types.

(Note that we could make horizontal or vertical Klein bottle identifications, denoted
KH and KV , but in this uniform case the two fractals are isometric.) Later, in Sec-
tion 9, we will consider still other fractals of homogeneous type, where we make one
of the four identification types—T; P;KH , or KV—on each level.

We will also consider infinite graphs obtained by blowing up the approximations.
In other words, take the level-m approximation to MC and regard each m-cell as the
vertex of a graph MCm, and then take the appropriate limit as m!1 to obtain the
infinite magic carpet graph IMC. More precisely, we write eMCm to be the cell graph of
MCm without identifying the boundary of the outer square. Then we have embeddings

eMC1 �eMC2 � � � �

and IMC is simply the union. Note that there are many different embedding choices
(eight on each level) so IMC is not unique. In the generic case where there is no
boundary, it turns out not to matter for what we do here. In the future there may be
questions that have different answers depending on these choices. Note that IMC is
an infinite 4-regular graph.

We begin by investigating the geometry of the graph IMC. For each fixed ver-
tex, x, let B.x; r/ denote the ball of radius r in the geodesic graph metric. What is
the cardinality #B.x; r/ as r !1? In Section 2 we prove that #B.x; r/ D O.r3/.
More precisely, for IMCT and IMCK we have upper and lower bounds of a constant
times r3. For IMCP we obtain the same type of upper bound, but our best lower
bound is c.r= log r/3. We also undertake some numerical experiments that suggest
limr!1 #B.x; r/=r3 exists for torus and Klein bottle identifications. If this is true for
one x, then the same limit holds for all x.

In Section 3 we examine random walks on IMC. The main question is to decide
whether these are recurrent or transient. Random walks on fractals (or associated
graphs) have been studied extensively [2, 4–6, 8, 10, 19]. We gather numerical data
of random walks on the IMC on two fronts: (i) we compute the percentage of walks
that return to the starting point as the length of the walk varies, and (ii) we compute
the effective resistance from a fixed point to the boundary of a large square (which
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should tend to infinity if the walk is recurrent and remain bounded if the walk is
transient, cf. [12, 34]). Neither test is decisive, but we present the data.

In Section 4 we study the spectrum of the graph Laplacian, ��u.x/ D u.x/ �
1
4

P
y�x u.y/, on IMC. Here the main question is whether the spectrum is pure-

point, continuous, or a mixture of the two. In order to explore the possibility of
square-summable eigenfunctions (point spectrum), we numerically solve the Dirichlet
problem ��u D �u inside eMCm for large m with u � 0 on the boundary. If u were
a square-summable eigenfunction, then eventually it would be very close to zero on a
large neighborhood of the boundary of eMCm, and so it would be very close to one of
the Dirichlet eigenfunctions, and this Dirichlet eigenfunction would vanish rapidly as
you approach the boundary. We do not see any such Dirichlet eigenfunctions, so this
provides strong numerical evidence that the spectrum is continuous.

This also tells us that the Dirichlet spectrum is unrelated to the spectrum of IMC.
Nevertheless, as we will see later, the data is not completely useless, as it allows us to
study the heat kernel.

In Section 5 we study the heat kernel on IMC by approximating it by the Dirichlet
heat kernel on eMCm, given by

H
.m/
t .x; y/ D

X
i

e��i tui .x/ui .y/;

where ¹uiº is an orthonormal basis of Dirichlet eigenfunctions on eMCm with eigen-
values �i (all of these depend onm, of course, but we prefer not to burden the notation
to make this explicit). Since the heat kernel is highly localized, if x and y are not too
close to the boundary, the choice of Dirichlet boundary conditions should have only
a negligible effect on the heat kernel. The two fundamental questions here concern
the on-diagonal behavior and the off-diagonal behavior. For x D y, we ask if there is
some power law behavior

Ht .x; x/ D O.t
�ˇ / as t !1 (1.1)

for some ˇ. Surprisingly, our data suggest that instead of (1.1), it is more likely that

Ht .x; x/ D O.t
�ˇ.x// as t !1

where ˇ.x/ depends on x. We present data to support this. The ˇ.x/ values for x far
from the boundary satisfy ˇ.x/ > 1. For the off-diagonal behavior, we fix y and t ,
and examine the decay of Ht .x; y/ as x moves away from y. We present two types
of data: (i) the graph of Ht .x; y/ as a function of x as x varies along a line segment
in IMC containing y, and (ii) a scatter plot of the values of Ht .x; y/, where x varies
over all points of distance r to y, with r varying. Because these values of the heat
kernel are close to zero, the graphs of logHt .x; y/ reveal more information.
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In Section 6 we study the wave propagator

W
.m/
t .x; y/ D

X
i

sin
p
�i t

p
�i

ui .x/ui .y/ (1.2)

that provides the solution

u.x; t/ D
X
y

�
W
.m/
t .x; y/ g.y/C

dW
.m/
t

dt

ˇ̌̌
.x;y/

f .y/
�

to the wave equation
@2u

@t2
D �.m/u

(where �.m/ denotes the Laplacian on eMCm) with initial conditions

u.x; 0/ D f .x/ and
@u

@t
.x; 0/ D g.x/:

The wave propagator is relatively localized for small t , so that our approximations
give interesting information about wave propagation on the IMC graph.

In Section 7 we study harmonic functions and the analog of the Poisson kernel
on eMCm obtained by setting boundary values P.x; y/ D ıxy for y a fixed point, x a
variable point on the boundary, and�.m/x P.x;y/D 0 for x in the interior. The Poisson
kernel decays as x moves away from y, as seen in the graphs and scatter plots, but
not as rapidly as the heat kernel. An interesting question that we have not been able
to deal with is whether or not there is an analog of Liouville’s Theorem: are bounded
harmonic functions necessarily constant?

In Section 8 we return to the finite fractal setting. By considering MCm as consist-
ing of cells of size 1=3m we obtain approximations to the original magic carpet MCT .
We also do the same for the other identification types to obtain MCP and MCK.
We find the convergence of eigenvalues as we vary m with respect to a Laplacian
renormalization factor R that is slightly larger than 6 (it varies slightly with the iden-
tification type), and we can observe the refinement of eigenfunctions as m increases
by using an averaging process to pass from functions on level mC 1 to functions on
level m. We also see miniaturization of eigenfunctions that produce periodic eigen-
functions that are translates on copies of Vm of a certain size. These may also be
interpreted as periodic eigenfunctions on IMC, analogous to the functions cos�k (for
rational �) on the integers.

We then compute the eigenvalue counting function,

N.t/ D #¹�i W�i � tº;

and the Weyl ratio,

W.t/ D
N.t/

t˛
for ˛ D

log 8
logR

:

(Here, 1=8 is the renormalization factor for the standard measure on MC.) Note that
˛ > 1. This is quite different than for SC [9]. The three different identification types
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yield qualitatively different Weyl ratio graphs. We do not see any periodicity in the
log-log plots of W.t/.

In Section 9 we continue in the finite fractal setting, but we allow the identifica-
tion type to change from level to level. We call these homogeneous magic carpets.
Now there are actually four possibilities since the two Klein bottle identifications—
horizontal,KH , and vertical,KV—are not always interchangeable if used on different
levels. Thus we write T; P; KH ; KV ; T for m D 4 identifications, where the first T
means to identify the outer boundary by T , the sides of the single large vacant square
by P , the next eight largest vacant squares by KH , and so on. We note that the final
identification on the smallest level does not influence the spectrum, but of course, it
would lead to different fractals if we continued in the limit. On level 4, this leads to
256 D 44 possible spectra, some of which are equivalent. Here we look at a repre-
sentative sample, including all sixteen involving just T and P . All cases are included
in the website [15]. The question we would like to answer is the following: is there
a qualitative procedure to use the Weyl ratio to deduce the particular identifications
chosen? An idea proposed in [13] called spectral segmentation is that different seg-
ments of the spectrum relate to the identification types at different levels. While we
are unable to support this hypothesis in full generality, we are able to see the signature
of the first k choices in the beginning segments of increasing length for k D 1; 2; 3.

In Section 10 we discuss the experimental evidence that the spectral resolution of
the Laplacian on IMC is purely continuous.

For the reader’s convenience, the figures used after Section 2 are collected in
Appendix A.

Many of the ideas discussed in this paper are still conjectural, but we present a lot
of data in figures and tables to support these conjectures experimentally. The website
[15] contains much more data. For the general theory of Laplacian on fractals the
reader may consult the books [1], [21] and [30].

2. Cardinality

The distance between cells x and y, d.x; y/, in the identified magic carpet blowup,
IMC, is defined to be the length of the shortest path through cells from x to y. Recall
that we denote the ball of radius r around a cell x by

B.x; r/ D
®
yWy is a cell of IMC with d.x; y/ < r

¯
;

whose cardinality will be denoted #B.x; r/. The level-m approximation to IMC,
including the inner identifications, is denoted by Vm. An identification that is done
at level m C 1 will be called an m-stitch. With this notation, VmC1 contains eight
copies of Vm and one m-stitch.
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2.1. The lower bound for torus and Klein identifications

In this section we derive the r3 lower bound for torus and Klein identifications. In each
case, the argument is the same. Projective identifications are deferred to Section 2.2.

Consider first torus identifications. The left image of Figure 4 shows a path of
length 10 across V2. To find a path across V3, we may duplicate the path across V2
and add six steps through the five red cells. We obtain the path of length 26 in the
image on the right. To find a path across any higher VmC1, we may repeat this process:
duplicate the path across Vm and add six steps through cells positioned as the red cells
are. Letting rm be the length of this path across Vm, these lengths satisfy

rmC1 D 2rm C 6 with r2 D 10;

which has solution

rm D 2
mC2
� 6: (2.1)

V2

V3

Figure 4. Paths of lengths r2 D 10 and r3 D 26 with torus identifications.

Lemma 2.1. Given rm steps, a path from a corner cell of Vm can reach any other
cell in Vm.

Proof. First, consider torus identifications. We induct on m with base case V2. We
check this case by hand on the left of Figure 5; indeed, all cells may be reached
within r2 steps.

Assume that, from a corner in Vm, any cell in Vm can be reached within rm steps.
Consider a corner cell x of VmC1. Starting at x, within rm steps we can reach a cell at
the corner of the m-stitch of VmC1. From here, we can reach a corner of each of the
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Figure 5. A number in a cell indicates, among all paths entirely within V2, the length of a
shortest path to the top right cell. On the left, we use torus identifications, and on the right, we
use Klein horizontal.

other seven copies of Vm within six steps. (These six steps are the steps through some
of the red cells in Figure 4, or through their mirror image after a diagonal reflection.)
Applying the inductive hypothesis again, we can reach any cell in each of these other
copies of Vm within an additional rm steps. Adding these up, we can go from x to any
other cell in VmC1 within 2rm C 6 D rmC1 steps.

For Klein bottle identifications, each cell of V2 can be reached from the corner cell
within nine steps. Again, this can be verified by hand, as in Figure 5. Finally, in VmC1,
any two copies of Vm can be joined by a path across the m-stitch. Such a path can be
found with at most six steps, like the red path in the torus example of Figure 4.

Lemma 2.2. For every cell x, we have #B.x; 2rm C 1/ � 8m.

Proof. By Lemma 2.1, we can travel from x to a corner of the copy of Vm containing
x within rm steps, and from there we can travel to any other cell in the same copy of
Vm with an additional rm steps. Hence B.x; 2rm C 1/ � Vm, and so

#B.x; 2rm C 1/ � 8m:

2.2. A lower bound for projective identifications

Let us now consider the case of projective identifications. We obtain a looser bound.
The issue is that with projective identifications, an m-stitch does not quickly connect
all copies of Vm, and so we must use longer paths.

Consider a sequence Rm satisfying

R0 D 0 and RmC1 D max
®
2Rm C 3; 2Rm C 2

m
C 1

¯
:



Discrete magic carpets 215

Lemma 2.3. Given Rm steps, a path from any cell of Vm can reach any other cell
in Vm.

Proof. It suffices to prove the induction step, as the base casemD 0 is trivial. Suppose
the path goes from cell x to cell y. First suppose x is in the top middle copy of Vm,
as highlighted in Figure 6 (a). Inductively from x, it takes at most Rm steps to reach
a corner cell by the m-stitch, e.g., a blue or green cell in Figure 6 (b). From there, it
can reach any other copy of Vm within three steps, and then it takes at most another
Rm steps to reach y.

(a) (b) (c) (d) (e)

Figure 6. Illustration for the proof of Lemma 2.3.

Next, suppose x is in the corner copy, as in Figure 6 (c). If y is not in one of the
green copies of Vm in Figure 6 (d), a path from x can reach one of the red cells of
Figure 6 (e) using Rm or fewer steps. Thus x and y are at most 2Rm C 3 steps apart.

If y is in a green copy, the path can reach y by traversing one of the blue copies
shown in Figure 6 (d); this can be achieved in 2m � 1 steps straight across the blue
Vm, as in Figure 7. In addition to the (upper bound of) 2Rm steps needed to get from
x to the outer boundary of a blue copy and to get from the outer boundary of a blue
copy to y, it takes one step to enter the blue copy and one step to leave the blue copy.
Hence the path has at most 2Rm C 2m � 1C 2 steps, and the result follows.

Lemma 2.4. When m � m0 � 2,

Rm �
1

2

�
m � 2m

�
C

�Rm0 C 1
2m0

�
m0

2

��
2m
�
� 1:

Figure 7. A path across Vm of length 2m � 1.
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Proof. Note that when m � 2,

Rm D 2Rm�1 C 2
m�1
C 1:

Therefore, when k D 1,

Rm � 2
kRm�k C k � 2

m�1
C 2k � 1:

We prove that this inequality holds for 1 � k � m � m0 � 1 by induction on k as
follows:

Rm � 2
kRm�k C k � 2

m�1
C 2k � 1

� 2k.2Rm�k�1 C 2
m�k�1

C 1/C k � 2m�1 C 2k � 1

� 2kC1Rm�.kC1/ C .k C 1/ � 2
m�1
C 2kC1 C 1:

Then, for k D m �m0,

Rm � 2
m�m0Rm0 C .m �m0/ � 2

m�1
C 2m�m0 � 1

D
1

2
.m � 2m/C

�Rm0 C 1
2m0

�
m0

2

�
.2m/ � 1:

Lemma 2.5. For every cell x and m large enough, #B.x;m � 2m/ � 8m.

Proof. We have #B.x;Rm/ � 8m by Lemma 2.3, and Rm � m � 2m for large enough
m by Lemma 2.4.

2.3. The upper bound

We present the upper bound in the case of any of our three identifications: torus, Klein,
or projective. The main idea is if a path has fewer than 2m � 1 steps, then it cannot
cross a copy of Vm (Lemma 2.7), hence is trapped in certain neighboring copies of Vm
(Corollary 2.16). Crossing is made rigorous using m-edges, which we now define.

If ` is a line segment in IMC along which two distinct copies of Vm intersect after
identifications, then call ` an m-edge. Denote by EV;W the m-edge along which the
copies V andW of Vm intersect. We say that a cell is on anm-edge if one of its edges
lies on the m-edge.

An m-edge is vertical (or horizontal, respectively) if it is vertical (horizontal) in
the IMC before identification (more precisely, if its preimage before identification is
a union of vertical edges). Two copies of Vm are horizontal neighbors (or vertical
neighbors, respectively) if they intersect along a vertical (horizontal) m-edge.

Lemma 2.6. Within a copy of Vm, there are 2m columns of cells that do not hit any
vertical m0-stitch for m0 � m � 1.
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Proof. Starting withmD 0, for which there is indeed 1D 20 column, we induct onm.
Consider VmC1, which contains eight copies of Vm. Notice that the three copies of Vm
on the left of the central m-stitch—and hence the 2m columns of cells they contain—
stack one on top of the next (Figure 8). Since there is an m-stitch, the same does not
happen in the center, but it does happen on the right side; so, there are 2 � 2m D 2mC1

columns in VmC1 that do not hit any m-stitch, as desired.

Figure 8. The two columns in V1 and the four columns in V2.

Lemma 2.7. Consider a path inside a copy of Vm with at most 2m � 1 steps. If the
path begins along anm-edge of the copy of Vm, then it cannot leave along the opposite
m-edge.

Proof. Without loss of generality, assume a path goes between the left and right
sides. From Lemma 2.6 we obtain 2m columns of cells in Vm that do not inter-
sect any m0-stitches for m0 � m � 1. Since the path is constrained to Vm, it cannot
use any M -stitches for M � m, so it must traverse each of these 2m columns. This
requires 2m�1 steps, and so the path cannot leave the copy of Vm through the opposite
m-edge.

Lemma 2.7 prevents paths that are too short from crossing a copy of Vm.

Example 2.8. In Figure 9, a path cannot connect the bluem-edge to the greenm-edge
without leaving the copy of Vm shown, unless it has 2m � 1 or more steps.

Our last result was restricted to paths inside a particular copy of Vm; we must now
remove this restriction. Our goal is to show first that a short path remains within a few
consecutive copies of Vm, and second that these copies all share a vertex. Because our
path must whirl around this common vertex, we shall call it the center. To make this
precise, let us first introduce m-stacks, m-sequences, and m-segments-of-two.
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Figure 9. Opposite m-edges in a copy of Vm.

An m-stack is a finite sequence of copies of Vm such that consecutive copies are
all horizontal neighbors or all vertical neighbors. A cell is in an m-stack if it is in a
copy of Vm in the stack. Observe that every m-stack—as a cell graph—is isomorphic
to a sequence of copies of Vm with the bottom edge of each copy glued to the top
edge to the previous one with edge orientations preserved (Figure 10). Hence, every
m-stack has a rectangular outer boundary. A side of an m-stack is a side of this outer
boundary. A cell is on a side if it intersects with the side.

Lemma 2.7 essentially provides the following result, as well:

Corollary 2.9. If a path is contained in an m-stack and has cells on two opposite
sides, then its length is at least 2m � 1.

Consider a finite path  as a sequence of cells: c0; c1; c2; : : : ; cn. From  we form
a sequence of copies of Vm as follows:

(1) For each ci , find the copy V cim of Vm containing ci , and form a new sequence
V
c1
m ; : : : ; V

cn
m .

(2) While consecutive elements in this new sequence are equal, delete all but one
of them.

What remains after these deletions, we call the m-sequence of  . In other words,
the first copy in the m-sequence is the copy of Vm that contains the starting cell, the
second term is the copy containing the first cell ci that is not in the first copy, the third
copy is that containing the first cell after ci that is not in the second copy, and so on.

For an m-sequence, we define an m-segment-of-two as a tuple .i; V;W / such that
V is the i th copy of Vm in the m-sequence, W is the .i C 1/st copy, and neither V
nor W is the .i � 1/st copy (if it exists). The m-segments-of-two from a particular
m-sequence are clearly ordered by their first entries. Note that if .i; V; W / is an m-
segment-of-two, then V and W form an m-stack.

The j th copy of Vm in the m-sequence of a path is in an m-segment-of-two
.i; V; W / if and only if all copies inclusively between the i th and the j th copies
are either V or W . A cell c is in an m-segment-of-two if and only if the copy of
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Figure 10. Two different 2-stacks (one blue, one green, and containing four copies of V2 each)
in a copy of V4 with Klein identifications. Both 2-stacks are equivalent to the rectangular 2-
stack shown on the right.

Vm containing c is in the m-segment-of-two. Observe that all copies of Vm in an m-
segment-of-two .i; V;W / are either V or W .

Example 2.10. FixmD 1 and consider the blue path through V2 shown in Figure 11.
The figure marks four copies of V1, namely, U , V , W and X . The m-sequence of the
path isU;V;U;W;X . There are threem-segments-of-two: the first, .1;U;V /, contains
the first three terms of the m-sequence; the next, .3; U;W /, contains the third and the
fourth terms; and the last, .4;W;X/, contains the final two terms.

A path .c0; c1; : : : / is said to enter an m-segment-of-two .i; V; W / through an
m-edge if there are consecutive cells cn; cnC1 so that (1) both are on the m-edge, and
(2) only cnC1 is within .i; V; W /. The notion of a path exiting is analogous, with cn
in .i; V;W / instead. The m-edge along which the path enters .i; V;W / is denoted by
Ent.i/, and the m-edge along which it exits is denoted Exit.i/.

Example 2.11 (Continuing Example 2.10). Figure 11 distinguishes the following
m-edges:
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� �

� �

Figure 11. A sample path in V2 (proceeding downwards, roughly, and then to the right).

m-segment-of-two Enter Color Exit Color
.1; U; V / – – Exit.1/ red
.3; U;W / Ent.3/ green Exit.3/ pink
.4;W;X/ Ent.4/ red – –

Recall here that if V and W are copies of Vm, then EV;W is the m-edge along
which V and W intersect.

Lemma 2.12. Let .i; V;W / be anm-segment-of-two associated to a path of length at
most 2m.

(1) Each of Ent.i/ and Exit.i/ (assuming it exists) is distinct from EV;W , al-
though, it intersects EV;W .

(2) If Ent.i/ and Exit.i/ both exist (i.e., the path comes from and goes to other
copies of Vm), then they are on the same side of the m-stack formed by V
and W , and hence, Ent.i/, Exit.i/ and EV;W all intersect at one vertex.

Proof. For the first claim, it suffices to consider Ent.i/; the case for Exit.i/ is simi-
lar. By the definitions of m-segments-of-two and entering, Ent.i/, if it exists, cannot
be EV;W . Since the path must go from V to W , it has cells on EV;W ; furthermore,
since the path has at most 2m steps, and one step is required to enter the m-segment-
of-two, Corollary 2.9 prevents it from entering through an m-edge parallel to EV;W .
The first claim follows, for the remaining edges of the m-stack formed by V and W
all intersect EV;W .
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For the second statement, suppose Ent.i/ and Exit.i/ are on different sides of the
m-segment-of-two. Counting the steps needed to enter and exit, Lemma 2.9 implies
the path has more than 2m cells, a contradiction. Since Ent.i/ and Exit.i/ are on the
same side, they both intersect the same endpoint of EV;W , which, since Ent.i/ and
EV;W are distinct, is the only point where Ent.i/ and EV;W intersect.

Consider a path with at most 2m steps and at least two m-segments-of-two. Since
the path has at least two m-segments-of-two, for each m-segment-of-two .i; V; W /,
at least one of Ent.i/ and Exit.i/ exists. Define the center of the m-segment-of-two
.i; V;W / to be the vertex where EV;W , Ent.i/ and Exit.i/ (or those that exist) inter-
sect. Notice that the center will always be a corner vertex of V and W . The lemma
above ensures the center is well-defined.

Example 2.13. Figure 12 shows a green path of length 3 and a blue path of length 4.
Forming the 0-sequence associated to the green path, we see its center is marked by
the pink dot. Due to the torus identifications taken in this picture, the center of the
blue path is represented by four points, the red dots.

Figure 12. The centers of two paths.

Lemma 2.14. Consider a path with at most 2m steps and at least two m-segments-
of-two. The centers of the m-segments-of-two are the same.

Proof. Let us limit our focus to consecutive m-segments-of-two: say, .i; V; W / and
.j; X; Y /, where i < j , X 2 ¹V;W º, and Y … ¹V;W º. We show that the centers are
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the same, and induction completes the argument. Note that the path enters .j; X; Y /
throughEV;W and exits .i; V;W / atEX;Y . The center of .i; V;W /, therefore, is where
Exit.i/D EX;Y intersects EV;W , and the center of .j;X;Y / is where Ent.j /D EV;W
intersects EX;Y . Hence, the intersection of EV;W and EX;Y marks both centers.

Lemma 2.15. For a path of length at most 2m, let U be the first copy of Vm in the
associated m-sequence. There exists a corner vertex x of U shared by every copy of
Vm in the m-sequence.

Proof. First, if U is the only copy of Vm in the m-sequence, the result holds. Sec-
ond, when there is only one m-segment-of-two, .1; V;W /, we may choose any vertex
shared by the two relevant copies V and W .

If the path has at least twom-segments-of-two, then the centers of allm-segments-
of-two are the same by Lemma 2.14. In particular, the centers are the same as that
of the first m-segment-of-two. Since the center of the first m-segment-of-two is a
vertex of U , the result follows from the fact that everym-cell touches the center of an
m-segment-of-two.

The proof shows the center often suffices for this common vertex. The only time
it does not is for paths with onem-segment-of-two, when the center is undefined. The
existence of this vertex then gives:

Corollary 2.16. Consider z 2 IMC, and denote by Vz the copy of Vm containing z.
Define V to be the set of all copies of Vm � IMC that share a corner vertex with Vz .
Any path from z with length at most 2m � 1 remains within

S
V 2V V ; that is,

B .z; 2m/ �
[
V 2V

V:

Lemma 2.17. With the notation of Corollary 2.16, #V � 45.

Proof. Consider a corner x of Vz . If x is a corner of a stitch, then Vz touches at most
11 other copies of Vm at x (Figure 13). Otherwise, it touches only 3 other copies of
Vm at x. Counting at most 11 copies for each of the four outer vertices of Vz , along
with Vz itself, we have

#V � 4 � 11C 1 D 45:

Remark 2.18. The count of 45 in Lemma 2.17 is sufficient for our purposes, but it can
be improved to 21. Doing so improves the constant 2880 appearing within the proof
of Theorem 2.19. Briefly, given a copy V of Vm, we must count all 8 copies of Vm in
the same copy of VmC1 as vertex-sharing neighbors. Next, find the smallest copy of
VM containing V but not with V along an M -edge (so V is not on the “boundary” of
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Figure 13. A copy of Vm can share a vertex with eleven other copies through the stitch.

this copy of VM ). Then V is on an .M � 1/-edge inside this copy of VM . If V touches
an .M � 1/-stitch at exactly one vertex, a corner, as in the case shown in Figure 14,
then it has 13 additional neighbors: 11 near corners of the stitch and 2 not touching the
.M � 1/-stitch, colored green and red in the figure. If V touches the .M � 1/-stitch
along its side or not at all, then it has fewer neighbors.

Figure 14. The main case needed to improve the count, where V (purple) touches the stitch at
one corner.

2.4. Full bound

Here we combine the upper and lower bounds above, first for torus and Klein identi-
fications and then for projective identifications.

Theorem 2.19. Let x 2 IMC with either torus or Klein identifications. Then we have
#B.x; r/ � r3; that is, there are constants c and C so that when r is sufficiently large,

cr3 � #B.x; r/ � Cr3:

Proof. For any r , we can find m so that

2m�1 � r C 1 � 2m:

With the notation of Section 2.1, specifically (2.1), we can write

2rm�4 C 1 D 2
m�1
� 11 � r � 2m:

Lemma 2.2 then gives us the lower bound

#B.x; r/ � #B.x; 2rm�4 C 1/ � 8m�4:
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Further, Corollary 2.16 and Lemma 2.17 yield the upper bound

#B .x; r/ � #B .x; 2m/ � #V � 8m � 45 � 8m:

Additionally, if r is sufficiently large, then 2m�2 � r � 2m, in which case

1

8m
�
1

r3
�

1

8m�2
:

Apply the lower and upper bounds to obtain

8m�4

8m
�

#B.x; 2rm�4 C 1/
r3

�
#B.x; r/
r3

�
#B.x; 2m/

r3
�
45 � 8m

8m�2
:

Hence
1

4096
r3 � #B.x; r/ � 2880r3:

Remark 2.20. The upper bound holds on the infinite magic carpet with any identifi-
cations. The lower bound holds even when torus and Klein styles are mixed together,
so long as there are no projective identifications. Hence #B.x; r/� r3 for any mixture
of torus and Klein identifications.

Now we turn to projective identifications.

Theorem 2.21. With projective identifications, for large enough r ,

c

�
r

log r

�3
� #B.x; r/ � Cr3:

Proof. The upper bound holds as mentioned above, so it suffices to consider the lower
bound. Choose m � 2m < r � .mC 1/ � 2mC1; then

logmCm log 2 < log r;

in which case m log 2 < log r . Then, for sufficiently large r ,

mC 1 < 2 �
log r
log 2

:

Using this to substitute for log r along with Lemma 2.5, we find

#B.x; r/

.r= log r/3
�

8m � .log r/3

..mC 1/ � 2mC1/
3

�
8m � .mC 1/3 .log 2=2/3

..mC 1/ � 2mC1/
3

D
8m�1 � .log 2/3

8mC1

D
.log 2/3

64
:



Discrete magic carpets 225

2.5. The cardinality ratio

Let us briefly consider the cardinality ratio #B.x; r/=r3. We show how this ratio
behaves with each identification type around two sample points in Figure 15. The plots
suggest this ratio may converge, although we do not have proof of this. Of course, this
conjecture is less certain for projective identifications, where even the � r3 growth
rate is unknown. We can say, however, that if this ratio converges, then it will converge
consistently over all cells.
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Figure 15. The ball cardinality ratio #B.x; r/=r3 around two sample points (left), each beside
a corresponding log #B.x; r/-to-log r plot (right).

Proposition 2.22. Fix any identification type and any two cells x and y. If

lim
r!1

#B.x; r/
r3

D c; then also lim
r!1

#B.y; r/
r3

D c:
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Proof. For large r , the triangle inequality provides #B.x; r � d.x; y// � #B.y; r/ �
#B.x; r C d.x; y//, from which

lim
r!1

#B.x; r � d.x; y//
r3

� lim
r!1

#B.y; r/
r3

� lim
r!1

#B.x; r C d.x; y//
r3

:

Our assumption #B.x; r/=r3 ! c may be used to compute these bounds. For the
lower bound,

lim
r!1

#B.x; r � d.x; y//
r3

D lim
r!1

#B.x; r � d.x; y//
.r � d.x; y//3

�
.r � d.x; y//3

r3
D c;

and similarly for the upper bound.

3. Random walks

In this section, we present data from our computer simulation concerning random
walks on the IMC and the effective resistance from a fixed point to the boundaries of
large squares.

The random walk simulation was carried out on the IMC obtained by applying the
repeated application of the inverses of the contractions that fix two opposite vertices.
The starting points were chosen to be the cell whose lower left hand corner is .0; 0/
before identification. Only the simple symmetric random walk was considered, i.e.,
the random walker has equal probability, 1=4, of moving upwards, downwards, to the
left, and to the right. A trial terminates either when the random walker has returned to
the starting point, in which case the walk is said to be empirically recurrent, or when
the walker has walked a prescribed number of steps, the maximum length. If a trial is
not empirically recurrent, it is said to be empirically transient. The length of a trial is
the number of steps the walker has walked when the trial terminates.

We note that in each simulation, roughly 2=3 of all trials are empirically recurrent.
Even though the computations are not conclusive, they suggest the walk is transient.
The results of the simulations are summarized in Table 1.

Concerning the lengths of empirically recurrent trials, a power law was observed
for each of IMCT , IMCK and IMCP. We are thankful for an anonymous reviewer’s
suggestion which helped us find this behavior. To be precise, let

pn D P.walk length D n/;

and suppose for some C > 0 and ˛ > 1 that

pn � Cn
�˛:

In estimating ˛, there is the difficulty that for many n no simulated walk returned in
exactly n steps; indeed, there are many more possible lengths than there are simu-
lations. For this reason, we first group the empirically recurrent walk lengths n into
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identification no. of trials max. length
number (percentage) of

empirically recurrent trials

torus 2 000 500 000 1 348 (67.4%)
torus 500 1 000 000 331 (66.1%)

� torus 2 000 10 000 000 1 390 (69.5%)
torus 200 100 000 000 137 (68.5%)

Klein bottle 1 000 500 000 667 (66.7%)
projective plane 1 000 500 000 683 (68.3%)

Table 1. Results of random walk simulations on infinite magic carpets.

logarithmic-scale bins ej�
1
2 � n < ejC

1
2 . This can give an estimate for qj , the prob-

ability that a returning walk has length in the bin ej�
1
2 � n < ejC

1
2 . This ought to be

qj D
X

e
j� 1

2�n<e
jC 1

2

pn �
C

1 � ˛
ej.1�˛/

�
e
1�˛
2 � e�

1�˛
2

�
;

here approximating the sum over n by an integral. Hence,

log qj � .1 � ˛/j C log
h C

1 � ˛

�
e
1�˛
2 � e�

1�˛
2

�i
;

and so the logs of these relative frequencies qj are expected to look linear with slope
1 � ˛ when plotted against j . Estimating qj with the empirically recurrent random
walk simulations and plotting these estimates for log qj against j yields Figures 16
and 17, which are now discussed.

The trials on IMCT with maximum length 10 000 000 (row � in Table 1) appear in
Figure 16. The apparent linear trend is consistent with a power law. Linear regres-
sion on the data points—excluding the leftmost (likely not yet convergent) and
rightmost (likely too few walks to be reliable)—gives a linear fit with correlation
coefficient �0:965, indicating a strong correlation. The fitted slope is �0:211, and
hence ˛ � 1:211.

The corresponding plots for IMCK and IMCP, based on data on the last two
rows of Table 1, are shown in Figure 17. The correlation coefficients are �0:921 and
�0:943; the fitted slopes are�0:269 and�0:257, and hence ˛� 1:269 and ˛� 1:257
for IMCK and IMCP.

Walk length data can be found on the website [15].
As for the effective resistance, the resistance from each cell to the outermost

square boundary of the mth approximation of the IMC with torus identification was
computed formD 2;3;4. High computation cost rendered direct computation imprac-
tical for larger m. Instead, a number of cells in the 5th approximation are randomly



C. Siu and R. Strichartz 228

selected to compute their resistances. The resistance of a cell to the boundary is com-
puted by solving the harmonic equation with the value at the cell fixed to be one and
those at the boundary cells fixed to be zero.

If the random walk is transient, the resistances should remain bounded, and if
recurrent, the resistances should diverge as in the case Z2 (cf. [12]). The results are
summarized in Table 2 and Figure 18. Which occurs is unclear from these resistances,
since we only have m D 2; 3; 4. (The resistances of squares in Z2 are included in
Figure 19 for comparison.)

m
max. resistance on mth

approximation

2 0.385
3 0.521
4 0.629

Table 2. Maximum Resistances of Cells on the mth Approximation of the IMC.

As shown in Figure 18, the resistances follow a hill-shaped trend as the distance
from the boundary varies. Unlike the case for Z2, in Figure 19, the maximum resis-
tance for each distance does not increase monotonically as the cell moves away from
the boundary, but peaks at around 2=3 of the maximum distance. Since only data for
mD 2; 3; 4 are gathered, it is difficult to infer the behavior of the resistances for larger
m, and hence the nature of the random walk on the IMC.

4. Spectrum of the graph Laplacian on IMC

For each of the identification types, we would like to speculate on the structure of the
spectrum of the Laplacian on IMC by doing calculations on eMCm form� 4. Suppose,
for example, that there were a square summable eigenfunction �.x/. Then it would
have to vanish as x!1. In particular, on eMCm for large enough m it would have to
be very close to zero on a neighborhood of the boundary squares. It would also have
to be close to a Dirichlet eigenfunction (one that vanishes on the boundary). So we
compute all of the Dirichlet eigenfunctions and examine them to see if they are close
to zero in a neighborhood of the boundary. We show some samples from the first 150
in Figure 20. Many more (the first 150 for each identification type) can be found on
the website [15]. None of the first 150 appears to have this decay property. We take
this as evidence that the spectrum of the Laplacian on IMC is entirely continuous. Of
course, we were limited by our computational resources to m � 4, so it is conceiv-
able, although unlikely, that a discrete spectrum only makes an appearance at larger
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values of m. In Section 8 we will construct a countable family of bounded periodic
eigenfunctions on IMC. In Section 10 we conjecture that these provide the spectral
resolution of the Laplacian on IMC with a purely continuous spectrum.

Our Dirichlet eigenfunctions and corresponding tables of values have no relation-
ship to the IMC spectrum, but we will use them in Section 5 to approximate the heat
kernel on IMC.

5. The heat kernel on IMC

As mentioned in the Introduction, we have computed the heat kernel on MCm for
m D 4. For points x; y far from the boundary and moderate t , we expect this to
be a good approximation to the heat kernel on IMC. It is, of course, interesting to
understand the behavior of the heat kernel on IMC for large values of t , but we are
limited by our computational resources to get a handle on this question. Complete
data is available on the website [15].

The first question we consider is the on-diagonal behavior, Ht .x; x/. From other
fractal models we were led to expect a power law behavior [1], but instead found
that power varies with the point. In Figure 21 we show the graph of Ht .x; x/ as a
function of t for a small sample of points x on a log-log scale. Here and elsewhere
we focus mainly on the cells x bordering the largest removed square, since these are
relatively far from the outer boundary. We take the approximate slope of the portion
of the graph that appears close to linear to estimate �ˇ.x/. In Table 3 we list these
values for the aforementioned cells. In Figure 22 we show histograms of these values.
This supplies evidence that IMC is very inhomogeneous. It is not clear whether or not
the gaps in the histograms would persist if we were able to extend the computation to
higher values of m.

Next, we consider the off-diagonal behavior of the heat kernel. We fix y and t ,
and examine the graph of x 7! Ht .x; y/. In Figure 23 we show some samples. As
expected, we see a rapid decay as x moves away from y. To see this more clearly, we
look at the restriction of x to a line segment passing through y in Figure 24. We have
also graphed scatter plots of the values of Ht .x; y/ for all x of distance k to y as k
varies (again, log-log plots), as shown in Figure 25. From this we obtain conjectural
bounds

c1e
�c2d.x;y/



� Ht .x; y/ � c
0
1e
�c0
2
d.x;y/

0

;

where c1, c2, c01, c02 depend on y and t , and

a �  � b and a0 �  0 � b0:

For estimates of  and  0, plots of log.� log.Ht .x; y/// against distance d.x; y/
suggest linear bounds with slopes  < 1:348 and  0 > 0:7038.
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Slope according to identification type
Cell Torus Projective Klein Cell Klein

0 .1000; 0222/ �1:301726 �1:263855 �1:304539 28 .2000; 1000/ �1:304547

1 .1001; 0222/ �1:253730 �1:239121 �1:257284 29 .2000; 1001/ �1:256358

2 .1002; 0222/ �1:221663 �1:216606 �1:225863 30 .2000; 1002/ �1:223405

3 .1010; 0222/ �1:202318 �1:202270 �1:206413 31 .2000; 1010/ �1:203137

4 .1011; 0222/ �1:198272 �1:199859 �1:201669 32 .2000; 1011/ �1:198634

5 .1012; 0222/ �1:183683 �1:187111 �1:187614 33 .2000; 1012/ �1:184506

6 .1020; 0222/ �1:174705 �1:179356 �1:178552 34 .2000; 1020/ �1:176441

7 .1021; 0222/ �1:171706 �1:176650 �1:174911 35 .2000; 1021/ �1:174205

8 .1022; 0222/ �1:164308 �1:168956 �1:166984 36 .2000; 1022/ �1:166854

9 .1100; 0222/ �1:163814 �1:168638 �1:166578 37 .2000; 1100/ �1:166354

10 .1101; 0222/ �1:170175 �1:175674 �1:173650 38 .2000; 1101/ �1:172659

11 .1102; 0222/ �1:171464 �1:177031 �1:175646 39 .2000; 1102/ �1:173191

12 .1110; 0222/ �1:177146 �1:182105 �1:181406 40 .2000; 1110/ �1:177974

13 .1111; 0222/ �1:186926 �1:190956 �1:190607 41 .2000; 1111/ �1:187285

14 .1112; 0222/ �1:177146 �1:182105 �1:181406 42 .2000; 1112/ �1:177974

15 .1120; 0222/ �1:171464 �1:177031 �1:175646 43 .2000; 1120/ �1:173191

16 .1121; 0222/ �1:170175 �1:175674 �1:173650 44 .2000; 1121/ �1:172659

17 .1122; 0222/ �1:163814 �1:168638 �1:166578 45 .2000; 1122/ �1:166354

18 .1200; 0222/ �1:164308 �1:168956 �1:166984 46 .2000; 1200/ �1:166854

19 .1201; 0222/ �1:171706 �1:176650 �1:174911 47 .2000; 1201/ �1:174205

20 .1202; 0222/ �1:174705 �1:179356 �1:178552 48 .2000; 1202/ �1:176441

21 .1210; 0222/ �1:183683 �1:187111 �1:187614 49 .2000; 1210/ �1:184506

22 .1211; 0222/ �1:198272 �1:199859 �1:201669 50 .2000; 1211/ �1:198634

23 .1212; 0222/ �1:202318 �1:202270 �1:206413 51 .2000; 1212/ �1:203137

24 .1220; 0222/ �1:221663 �1:216606 �1:225863 52 .2000; 1220/ �1:223405

25 .1221; 0222/ �1:253730 �1:239121 �1:257284 53 .2000; 1221/ �1:256358

26 .1222; 0222/ �1:301726 �1:263855 �1:304539 54 .2000; 1222/ �1:304547

27 .2000; 0222/ �1:301722 �1:263856 �1:304540 55 .2000; 2000/ �1:304540

Table 3. Approximate slopes of the log-log Dirichlet heat kernel, calculated along the region
�1 � log t � 3. (Note that the heat kernel is nonlinear.) The cells listed are those along the edge
of the central, removed square. There are twice as many for Klein horizontal identifications
because of the asymmetry in that case.
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6. The wave propagator on IMC

In Figures 26–27 we show the graphs of the wave propagator (1.2) as a function of
x for m D 4 and three different choices of y with t D 1; 2; 3; 4. These are all shown
with torus identifications. Note that we do not expect a finite propagation speed, since
we are working on a graph, but we do expect most of the significant support to be
centered at y and to increase with t (but some other fractals—non-discrete ones—
do have non-finite propagation speed, see [23]). Comparing t D 1 with t D 2 and
t D 2 with t D 4, we see a qualitative spreading of the size of the significant support,
although we do not see how to make this into a quantitative statement.

The maximum value seems to occur near x D y but not always at x D y, and the
propagator appears to be bounded. This is in contrast to the propagator in R2 that has
a singularity at jx � yj D t .

In Figures 28–29 we show scatter plots of wave propagator values for cells near x.

7. Harmonic functions

Harmonic functions on IMC are characterized by the property that the value at any
cell is equal to the average value on the four neighboring cells. We expect that the
space of harmonic functions is infinite-dimensional, so in particular, on any of the
approximations eMCm, there are nonzero harmonic functions that are close to zero.
Thus we cannot learn very much about the full space of harmonic functions on IMC
by studying harmonic functions on eMCm. Nevertheless, it is interesting to study the
analog of the Poisson kernel on eMCm.

For this purpose we define the boundary of eMCm to be the 4 .3m � 1/ cells along
the boundary of the square containing eMCm, and everything else forms the interior.
We impose the harmonic condition only on interior cells, and prescribe values on the
boundary cells. The Poisson kernel P.x; y/ is the function that provides the interior
values in terms of the boundary values

h.x/ D
X

y2@eMCm

P.x; y/h.y/:

It follows from general principles that such a function exists uniquely and is nonneg-
ative. In fact, x 7! P.x; y/ is the unique harmonic function satisfying P.x; z/ D ıxz
for z in the boundary. So P.y; y/ D 1 and P.x; y/ is expected to decay as x moves
away from y, but not as rapidly as the heat kernel.

In Figure 30 we show graphs of x 7! P.x; y/ for a sampling of points y, all with
torus identifications. We also show scatter plots of the values of P.x; y/ as x varies
over cells of distance k to y.
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8. Spectrum of the Laplacian on magic carpet fractals

Let MCm denote the level-m approximation with the outer boundary identified in the
same manner as the inner boundaries (so we have three versions: MCTm, MCKm, and
MCPm). So MCm has 8m cells; we assign to each of them measure 1=8m, and we take
the side lengths to be 1=3m, so each MCmC1 is a refinement of MCm in the appropriate
sense. Then MCm should be a good proxy of MC for largem. The Laplacian on MCm
is given by

��.m/f .x/ D
X
y�
m
x

.f .x/ � f .y// :

It is a symmetric operator with 8m eigenfunctions with eigenvalues in Œ0; 8� (by the
circle theorem of Geršgorin). We would like to claim the existence of a limiting
operator

��f D lim
m!1

Rm�.m/f

on MC for the appropriate renormalization factor R. Then the spectrum of �� would
be the limit of the spectrum of �.m/ multiplied by Rm. In fact, there is no published
proof of the existence of this limit, but numerical data in this paper and in previous
works ([11], [25] in the torus identification case) leaves little doubt that the limit
exists.

By computing the spectra for m D 2; 3; 4 and taking ratios we can estimate the
renormalization factor R. This data is shown in Tables 4–6 for the beginning of the
spectrum, and the remainder can be found on the website [15].

We notice that the ratios decrease as you move farther up the spectrum, and we
believe that computational error degrades the results as the eigenvalues increase, so
we take the average of the first ten ratios �3=�4 from each table to estimate

RT � 6:441049; RK � 6:373221; and RP � 6:326518:

These are close but not equal. Note that some of the eigenvalues for the torus and
projective identifications have multiplicity two. This is easily explained by the fact
that MCT and MCP have a dihedral D4 group of symmetries, and D4 has a two-
dimensional irreducible representation. The symmetry group of MCK is Z2 � Z2,
which is abelian, so it only has one-dimensional irreducible representations. As can be
seen in Tables 4 and 5, the location in the spectrum of the multiplicity two eigenvalues
agrees from one level m to the next only in the bottom portion of the spectrum, so the
use of ratios is only meaningful below these points.

In Figure 31 we show the graphs of the eigenvalue counting functions, and in
Figure 32 the Weyl ratio (log-log).

We observe that the different identification types produce qualitatively different
Weyl ratios, but for large values of t they are very similar because of the fact that the
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Torus glued identifications
Eigenvalue
�2 for M D 2

Eigenvalue
�3 for M D 3

Eigenvalue
�4 for M D 4

Ratio
�2=�3

Ratio
�3=�4

0 0:0 0:0 � 0:0 – –
1 0:4410218 0:0718171 0:0110916 6:1408993 6:4749219

2 ** 0:690591 ** 0:1119098 ** 0:0173466 6:1709581 6:4513906

3 ** 0:690591 ** 0:1119098 ** 0:0173466 6:1709581 6:4513906

4 0:7587998 0:1205024 0:0185273 6:2969667 6:5040388

5 1:4269914 0:2334006 0:0359611 6:1139159 6:4903591

6 ** 1:482754 ** 0:245267 ** 0:0379436 6:0454696 6:4639853

7 ** 1:482754 ** 0:245267 ** 0:0379436 6:0454696 6:4639853

8 1:4983881 0:2518546 0:0392556 5:949417 6:415758

9 1:5692227 0:2780838 0:0438667 5:6429846 6:3392857

10 1:8746245 0:3402416 0:053536 5:509687 6:3553786

11 ** 1:8836369 ** 0:3455927 ** 0:0552662 5:4504528 6:2532401

12 ** 1:8836369 ** 0:3455927 ** 0:0552662 5:4504528 6:2532401

13 2:0 ** 0:415878 ** 0:0649221 4:8091024 6:4058044

14 2:3293357 ** 0:415878 ** 0:0649221 5:6010068 6:4058044

15 ** 2:4155337 0:4189091 0:0658944 5:7662475 6:3572796

Table 4. The beginning eigenvalues with torus glued identifications at levels m D 2; 3; 4, and
the ratios of these eigenvalues.

Projective plane glued identifications
Eigenvalue
�2 for M D 2

Eigenvalue
�3 for M D 3

Eigenvalue
�4 for M D 4

Ratio
�2=�3

Ratio
�3=�4

0 � 0:0 � 0:0 � 0:0 – –
1 0:3058223 0:0477565 0:0074541 6:4037878 6:406704

2 0:4410218 0:0729375 0:0115116 6:046572 6:3360045

3 0:7587998 0:1233985 0:0194031 6:1491843 6:3597326

4 ** 1:1250751 ** 0:1858666 ** 0:0292749 6:0531309 6:3490018

5 ** 1:1250751 ** 0:1858666 ** 0:0292749 6:0531309 6:3490018

6 1:3324988 0:2338597 0:0373292 5:6978556 6:2647901

7 1:3652037 0:2388857 0:0380849 5:7148832 6:2724489

8 1:4983881 0:254542 0:0403709 5:8866048 6:3050832

9 1:5692227 0:2898892 0:0466163 5:4131807 6:2186257

10 1:8746245 0:3058223 0:0477565 6:1297834 6:4037878

11 ** 2:0 0:3422554 ** 0:0541734 5:8435898 6:3177806

12 ** 2:0 ** 0:343133 ** 0:0541734 5:8286443 6:3339803

13 ** 2:0371299 ** 0:343133 0:0548889 5:9368529 6:2514145

14 ** 2:0371299 0:4275677 0:0690194 4:7644621 6:1948905

15 2:1109942 0:430103 0:0697148 4:9081133 6:1694614

Table 5. As in Table 4, but the identifications here are projective.
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Klein bottle horizontal glued identifications
Eigenvalue
�2 for M D 2

Eigenvalue
�3 for M D 3

Eigenvalue
�4 for M D 4

Ratio
�2=�3

Ratio
�3=�4

0 0:0 0:0 � 0:0 – –
1 0:4410218 0:0723638 0:0112916 6:0945093 6:408612

2 0:690591 0:1119495 0:0173792 6:1687743 6:4415609

3 0:757329 0:121964 0:018978 6:2094458 6:4266102

4 0:7587998 0:123382 0:0193997 6:1500041 6:3599916

5 1:1250751 0:1852829 0:0290511 6:0722031 6:3778205

6 1:482754 0:2465753 0:0384654 6:0133933 6:410307

7 1:4983881 0:2530836 0:0398039 5:920527 6:3582652

8 1:5692227 0:2844123 0:0453381 5:5174219 6:2731406

9 1:8662197 0:3196011 0:0507154 5:8392155 6:3018541

10 1:8746245 0:3415234 0:0535803 5:4890069 6:3740525

11 1:8836369 0:3429855 0:054342 5:491885 6:3116066

12 1:9260699 0:3463405 0:055662 5:5612036 6:2222017

13 2:0 0:356565 0:0576952 5:6090762 6:1801455

14 2:0371299 0:4067644 0:0640321 5:0081327 6:3525108

15 2:3293357 0:4245981 0:0675213 5:4859772 6:2883567

Table 6. As in Table 4, but the identifications here are Klein bottle horizontal.

m D 4 approximation loses accuracy. We also observe that the Weyl ratios are not
multiplicatively periodic. This will have implications in the next section.

In Figure 33, we show a sampling of graphs of eigenfunctions for m D 4. One
interesting phenomenon that we observe among levels is a miniaturization of eigen-
functions, as in Figure 34. Thus, every eigenfunction on levelm� 1 reappears at level
m repeated 8 times on each of the smaller subsquares, with the same eigenvalue, and
of course, this iterates. This happens for all three identifications. The general pro-
cedure is illustrated in Figure 35. We can turn this observation around to attempt to
describe bounded periodic eigenfunctions on IMC. Take any eigenfunction of ��.m/

on MCm and duplicate it on every copy of MCm in IMC. This produces an exact
eigenfunction on IMC that is bounded and periodic. We will use these in Section 10
to attempt to describe the spectral resolution on IMC.

In order to understand the relationship between the eigenfunctions of ��.m/ for
different values of m that should be regarded as refinements, we use the following
reverse comparison by an averaging method. Start with an eigenfunction u on MCm,
so ��.m/uD �.m/u. Now produce a function Nu on MCm�1 by assigning to a cell x in
MCm�1 the average value of u on the eight cells in MCm that comprise x. Compute
��.m�1/ Nu and look for a value �.m�1/ that is an eigenvalue of ��.m�1/ such that
��.m�1/ Nu � �.m�1/ Nu. Then compare Nu to its projection proj Nu on the �.m�1/-eigen-
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space. We consider u a refinement if proj Nu is close to Nu. In many instances, it is, as
shown in Figure 36. However, this cannot always be the case, simply because there
are many more eigenvalues on level m than on level m � 1. We do not see evidence
of the spectral decimation property as established on the Sierpinski gasket in [14].

9. Homogeneous identifications

Rather than use the same type of identification at all levels in constructing MCm, we
may vary the type from level to level. For example,

MC4.T; P;KH ; KV ; T /

means we do torus identifications on the outer boundary, projective identifications on
the one large vacant square, horizontal Klein bottle identifications on the eight next
largest vacant squares, and so on. At the lowest level of a cell-graph approximation,
two cells are neighbors independent of identification type. Unlike higher level gaps,
the orientation of edges does not influence the fact that the cells are neighbors. We
can observe this clearly on MC1, with fixed outer identification, where any identifi-
cation type for the interior, vacant square yields the same cell graph. Hence the final
identification type on the smallest vacant squares does not affect the spectrum at this
level, but of course, if we think of this as an approximation to a magic carpet fractal,
this identification will play a role in the later approximations. The idea for looking at
these is inspired by the work of Hambly [16] on Sierpinski-gasket-type fractals, and
the followup in [13]. We call these homogeneous because we use the same identifi-
cation type across the board on each level. We could also consider the more general
situation where every identification is allowed for each vacant square, as in [17, 18],
but we do not expect to see any structure in the spectrum with such choices.

For m D 4, there are 44 D 256 choices for identification types, although some
interchanges ofKH andKV will yield the same spectrum. To keep things manageable,
we mainly concentrate on torus and projective identifications, which reduces the total
number to sixteen. In Figure 38 we show the simultaneous graphs of eight Weyl ratios
for all identification types that begin with T (respectively, P ). In Figure 39 we show a
zoom of these graphs to the beginning interval Œ�5;�2�. In Figures 40–43 we show the
simultaneous graphs of four Weyl ratios with the same first two identification types,
again with zooms to the interval Œ�5;�2�. In Figures 44–51 we show simultaneous
graphs of two Weyl ratios with the same first three identification types, with zooms to
the interval Œ�5;�2�.

A general principle called spectral segmentation was introduced in [13] to the
effect that it is possible to segment the spectrum of a fractal Laplacian so that each
segment corresponds to the geometry at a certain scale. For the example studied in
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[13], this effect, although only qualitative, was immediately apparent visually. What
made the situation so clear was the fact that the Weyl ratios for the underlying Sierpin-
ski gaskets were asymptotically multiplicatively periodic. That is not the case here, as
mentioned in Section 8.

What the graphical evidence shown in the figures is supposed to suggest is a weak
form of this principle: if two identification sequences agree in the first k places, then
the Weyl ratios are qualitatively the same for log t � ak , where ak increases with k.

10. The spectral resolution on IMC

We can use the periodic eigenfunctions discussed in Section 8 to attempt to describe
the spectral resolution on IMC in a spirit similar to [31]. We refer the reader to [29] for
details on functional analysis. For each interval Œa;b/we need to construct a projection
operator PŒa;b/ on `2.IMC/ that is additive, and so that

f D lim
b!1

PŒ0;b/f (10.1)

and

��f D

Z 1
0

�dPŒ0;�/f: (10.2)

These identities should hold for all f 2 `2.IMC/ but it suffices to verify them for f
having compact support.

Let ¹u.m/
k
º denote an orthonormal basis of eigenfunctions on eMCm, so

��.m/u
.m/

k
D �

.m/

k
u
.m/

k
;

and let Qu.m/
k

denote the periodic extension to IMC as illustrated in Figure 35. Suppose
m is large enough that the support of f is contained in the interior of eMCm. ThenX

k

hf; Qu
.m/

k
i Qu
.m/

k
D f on eMCm; (10.3)

where hf; Qu.m/
k
i denotes

P
x2suppf f .x/ Qu

.m/

k
.x/, andX

k

hf; Qu
.m/

k
i�k Qu

.m/

k
D ��f on eMCm: (10.4)

So we define

P
.m/

Œa;b/
f D

X
�
.m/

k
2Œa;b/

hf; Qu
.m/

k
i Qu
.m/

k
;

and we conjecture that the following limit [24, 27] exists:

PŒa;b/f D lim
m!1

P
.m/

Œa;b/
f:

If so, then (10.1) follows from (10.3), and (10.2) follows from (10.4).
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A. Figures

For the reader’s convenience, the figures referred to in the text from Section 3 onward
are collected in this appendix.
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Figure 16. Estimates for the log relative bin frequencies, log qj , on IMCT using data from
Table 1 row �. The horizontal axis represents j , the log-scale midpoint of the bin ej�
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Figure 17. As in Figure 16, here for IMCK and IMCP.
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Figure 18. Effective resistances with torus identifications, at levels M D 2 (top left), 3 (top
right), 4 (bottom left). For level 5 (bottom right), only some sample points are shown.
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Figure 19. Effective resistances on the Z2 lattice.
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Torus Eigenfunction 1
with eigenvalue 0.0252172008798

Torus Eigenfunction 8
with eigenvalue 0.0693309612134

Torus Eigenfunction 17
with eigenvalue 0.119751158231

Torus Eigenfunction 22
with eigenvalue 0.132786046285

Torus Eigenfunction 31
with eigenvalue 0.165280885153

Torus Eigenfunction 41
with eigenvalue 0.217501132366

Torus Eigenfunction 59
with eigenvalue 0.283969553757

Torus Eigenfunction 84
with eigenvalue 0.379167854833

Torus Eigenfunction 98
with eigenvalue 0.428839098942

Torus Eigenfunction 109
with eigenvalue 0.447701936202

Torus Eigenfunction 127
with eigenvalue 0.533780816235

Torus Eigenfunction 148
with eigenvalue 0.615249349992

Figure 20. Some Dirichlet eigenfunctions with torus identifications.
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Figure 21. Log-log plot of the diagonal Dirichlet heat kernel for torus and projective identifica-
tions. (Klein identifications are similar.) Each plot is for a cell x bordering the interior square.
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Figure 22. Histograms for slope values of Table 3.
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Torus Heat Kernel,
𝑀 = 4, 𝑡 = 0.01,

Base Cell(‘2000’,‘2000’), cutoff 10−6

Torus Heat Kernel,
𝑀 = 4, 𝑡 = 0.1,

Base Cell(‘2000’,‘2000’), cutoff 10−6

Torus Heat Kernel,
𝑀 = 4, 𝑡 = 1,

Base Cell(‘2000’,‘2000’), cutoff 10−6

Projective Plane Heat Kernel,
𝑀 = 4, 𝑡 = 0.01,

Base Cell(‘2000’,‘2000’), cutoff 10−6

Projective Plane Heat Kernel,
𝑀 = 4, 𝑡 = 0.1,

Base Cell(‘2000’,‘2000’), cutoff 10−6

Projective Plane Heat Kernel,
𝑀 = 4, 𝑡 = 1,

Base Cell(‘2000’,‘2000’), cutoff 10−6

Klein Bottle Horizontal Heat Kernel,
𝑀 = 4, 𝑡 = 0.01,

Base Cell(‘2000’,‘2000’), cutoff 10−6

Klein Bottle Horizontal Heat Kernel,
𝑀 = 4, 𝑡 = 0.1,

Base Cell(‘2000’,‘2000’), cutoff 10−6

Klein Bottle Horizontal Heat Kernel,
𝑀 = 4, 𝑡 = 1,

Base Cell(‘2000’,‘2000’), cutoff 10−6

Figure 23. The off-diagonal heat kernel for torus (top), projective, and Klein horizontal (bottom)
identifications at times t D 0:01 (left), 0:1, and 1 (right). Values with magnitude < 10�6 are
gray.
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Figure 24. With torus identifications, the Dirichlet heat kernel along a horizontal line (left) and
its log (right) at times t D 0:01 (top), 0:1, and 1 (bottom). Log values��30 are partly numerical
error.
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Figure 25. Log Dirichlet heat kernel plotted against distance to base cell, for three base cells
(columns), times t D 0:01 (top), 0:1, 0:5, and 1 (bottom), and torus identifications. (Projective
and Klein yield similar plots.)



Discrete magic carpets 245

Wave Propagator for 𝑀 = 4, 𝑡 = 1,
Base Cell(‘2000’,‘2000’)

Wave Propagator for 𝑀 = 4, 𝑡 = 2,
Base Cell(‘2000’,‘2000’)

Wave Propagator for 𝑀 = 4, 𝑡 = 3,
Base Cell(‘2000’,‘2000’)

Wave Propagator for 𝑀 = 4, 𝑡 = 1,
Base Cell(‘2000’,‘2000’)

Wave Propagator for 𝑀 = 4, 𝑡 = 2,
Base Cell(‘2000’,‘2000’)

Wave Propagator for 𝑀 = 4, 𝑡 = 3,
Base Cell(‘2000’,‘2000’)

Wave Propagator for 𝑀 = 4, 𝑡 = 4,
Base Cell(‘2000’,‘2000’)

Wave Propagator for 𝑀 = 4, 𝑡 = 4,
Base Cell(‘2000’,‘2000’)

Figure 26. The wave propagator with torus identifications for one base cell is shown at times
t D 1; 2; 3 (across the top) and t D 4 (bottom left). Below t D 1; 2; 3 and beside t D 4 are
zoomed pictures showing some of the more prominent behavior.
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Base Cell(‘2000’,‘1111’)

Wave Propagator for 𝑀 = 4, 𝑡 = 2,
Base Cell(‘2000’,‘1111’)

Wave Propagator for 𝑀 = 4, 𝑡 = 3,
Base Cell(‘2000’,‘1111’)

Wave Propagator for 𝑀 = 4, 𝑡 = 1,
Base Cell(‘2000’,‘1111’)

Wave Propagator for 𝑀 = 4, 𝑡 = 2,
Base Cell(‘2000’,‘1111’)

Wave Propagator for 𝑀 = 4, 𝑡 = 3,
Base Cell(‘2000’,‘1111’)

Wave Propagator for 𝑀 = 4, 𝑡 = 4,
Base Cell(‘2000’,‘1111’)

Wave Propagator for 𝑀 = 4, 𝑡 = 4,
Base Cell(‘2000’,‘1111’)

Figure 27. Refer to the description of Figure 26.
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Figure 28. Scatter plots of the wave propagator. Columns (left to right) correspond to the base
cells in Figures 26 and 27. Rows are times t D 1; 2; 3; 4.
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Figure 29. As in Figure 28, but with times t D 5; 6; 7; 8.
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Figure 30. (Top Row) A sampling of x 7! P.x; y/ on M D 4, with y chosen to be three cells
along the boundary. (Middle Row) For the same points y as above, the values of x 7! P.x; y/

plotted against d.x; y/ � 15. (Bottom Row) Log-log versions of the plots shown in the middle
row. Boundary cells are omitted in these plots.
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Figure 31. Eigenvalue counting functions (left) and their log-log counterparts (right).
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Figure 32. Weyl plots for torus (blue), projective (red), and Klein (green) identifications.

Torus Glued
𝑀 = 4 eigenfunction 6

with eigenvalue 0.0379436151302

Projective Plane Glued
𝑀 = 4 eigenfunction 25

with eigenvalue 0.115190142343

Klein Bottle Horizontal Glued
𝑀 = 4 eigenfunction 9

with eigenvalue 0.0507154074765

Torus Glued
𝑀 = 4 eigenfunction 27

with eigenvalue 0.112975771174

Projective Plane Glued
𝑀 = 4 eigenfunction 49

with eigenvalue 0.205966768699

Klein Bottle Horizontal Glued
𝑀 = 4 eigenfunction 28

with eigenvalue 0.120835845842

Figure 33. Sample torus glued (left), projective glued (middle), and Klein glued (right) eigen-
functions at level m D 4.
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Torus Glued 𝑀 = 2 eigenfunction 10
with eigenvalue 1.87462446692

Torus Glued 𝑀 = 3 eigenfunction 82
with eigenvalue 1.87462446692

Torus Glued 𝑀 = 4 eigenfunction 673
with eigenvalue 1.87462446692

Torus Glued 𝑀 = 2 eigenfunction 13
with eigenvalue 2.0

Torus Glued 𝑀 = 3 eigenfunction 95
with eigenvalue 2.0

Torus Glued 𝑀 = 4 eigenfunction 756
with eigenvalue 2.0

Figure 34. Two samples of miniaturization with torus glued identifications across levels
m D 2, 3, 4.
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Figure 35. An eigenfunction on Vm is tiled to obtain an eigenfunction on VmC1, either for torus
(left), projective (middle), or Klein horizontal (right) identifications.
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Torus Glued 𝑀 = 2 eigenfunction 14
with eigenvalue 2.32933565713

Torus Glued 𝑀 = 3 eigenfunction 15
with eigenvalue 0.418909131778

Torus Glued 𝑀 = 4 eigenfunction 15
with eigenvalue 0.0658944006741

Projective Plane Glued 𝑀 =2 eigenfunction 15
with eigenvalue 2.11099415948

Projective Plane Glued 𝑀 =3 eigenfunction 14
with eigenvalue 0.427567665781

Projective Plane Glued 𝑀 =4 eigenfunction 15
with eigenvalue 0.069714834821

Figure 36. The top row shows an eigenfunction refining on MCT from level 2 (left) to lev-
els 3 (middle) and 4 (right, negated). The bottom row is similar, but on MCP.
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Figure 37. Matched eigenvalues from our refinement testing on levelsmD 3;4with torus glued
identifications. (Projective and Klein identifications yield similar plots.) Color indicates result
quality: continuously from dark blue (refines well) to red (poor match); green ( Nu D 0); or cyan
(proj Nu D 0). Since green and cyan dots do not pair with level 3 eigenvalues, they are placed
artificially along the bottom.
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Figure 38. Weyl ratios for identifications beginning with torus (left) or projective (right) identi-
fications.
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Figure 39. Zoomed version of Figure 38.
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Figure 40. Weyl plots for identifications beginning T; T; : : : (left) and a zoom (right).
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Figure 41. Weyl plots for identifications beginning T; P; : : : (left) and a zoom (right).
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Figure 42. Weyl plots for identifications beginning P; T; : : : (left) and a zoom (right).
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Figure 43. Weyl plots for identifications beginning P;P; : : : (left) and a zoom (right).
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Figure 44. Weyl plots for identifications beginning T; T; T; : : : (left) and a zoom (right).
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Figure 45. Weyl plots for identifications beginning T; T; P; : : : (left) and a zoom (right).
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Figure 46. Weyl plots for identifications beginning T; P; T; : : : (left) and a zoom (right).
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Figure 47. Weyl plots for identifications beginning T; P; P : : : (left) and a zoom (right).
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Figure 48. Weyl plots for identifications beginning P; T; T; : : : (left) and a zoom (right).
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Figure 49. Weyl plots for identifications beginning P; T; P; : : : (left) and a zoom (right).
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Figure 50. Weyl plots for identifications beginning P;P; T; : : : (left) and a zoom (right).
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Figure 51. Weyl plots for identifications beginning P;P;P; : : : (left) and a zoom (right).
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