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An upper bound for the intermediate dimensions of
Bedford–McMullen carpets

István Kolossváry

Abstract. The intermediate dimensions of a set ƒ, elsewhere denoted by dim� ƒ, interpolate
between its Hausdorff and box dimensions using the parameter � 2 Œ0; 1�. For a Bedford–
McMullen carpetƒwith distinct Hausdorff and box dimensions, we show that dim� ƒ is strictly
less than the box dimension of ƒ for every � < 1. Moreover, the derivative of the upper bound
is strictly positive at � D 1. This answers a question of Fraser; however, determining a precise
formula for dim� ƒ still remains a challenging problem.

1. Introduction and main result

In fractal geometry, perhaps the most studied notions of dimension of a subset F of
Rd are its Hausdorff and box dimensions. Both quantities can be formulated by means
of covers of the set F . A finite or countable collection of sets ¹Uiº is a cover of F if
F �

S
i Ui : Throughout, the diameter of a set F is denoted by jF j.

The Hausdorff dimension of F is

dimH F D inf
°
s � 0 W for all " > 0; there exists a cover ¹Uiº of F

such that
X
i

jUi j
s
� "

±
;

see [12, Section 3.2], while the (lower) box dimension is

dimBF D inf
°
s � 0 W for all " > 0; there exists a cover ¹Uiº of F

such that jUi j D jUj j for all i; j and
X
i

jUi j
s
� "

±
;

see [12, Chapter 2]. We commonly refer to the quantity
P
i jUi j

s as the s-cost of the
cover ¹Uiº.
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The main difference between the two is that while there are no restrictions on the
diameters of the covering sets for the Hausdorff dimension, for the box dimension we
are restricted to coverings using sets of the same diameter. In particular, if dimH F D

dimBF , then F has an optimal covering strategy where each covering contains sets
with equal diameter. However, if dimH F < dimBF , then it is natural to ask what
different diameters are used in an optimal covering strategy for dimH F ? To obtain
such finer information, the discussion above suggests a way to interpolate between
dimH F and dimBF .

Falconer, Fraser and Kempton [14] introduced a continuum of intermediate di-
mensions that achieve this interpolation by imposing increasing restrictions on the
relative sizes of covering sets governed by a parameter 0 � � � 1. The Hausdorff and
box dimensions are the two extreme cases when � D 0 and 1, respectively.

Definition 1.1. For 0 � � � 1, the lower � -intermediate dimension of a bounded set
F � Rd is defined by

dim�F D inf
°
s � 0 W x for all " > 0 and all ı0 > 0; there exists 0 < ı � ı0 and

a cover ¹Uiº of F such that ı1=� � jUi j � ı and
X
i

jUi j
s
� "

±
;

while its upper � -intermediate dimension is given by

dim�F D inf
°
s � 0 W for all " > 0 there exists ı0 > 0 such that for all 0 < ı � ı0;

there is a cover ¹Uiº of F such that ı1=� � jUi j � ı and
X
i

jUi j
s
� "

±
: (1.1)

For a given � , if the values of dim�F and dim�F coincide, then the common value is
called the � -intermediate dimension and is denoted by dim� F .

Thus, the restriction is to only consider covering sets with diameter in the range
Œı1=� ; ı�. As �! 0, the � -intermediate dimension gives more insight into which scales
are used in the optimal cover to reach the Hausdorff dimension. For � < 1, a natural
covering strategy to improve on the exponent given by the box dimension is to use
covering sets with diameter of the two permissible extremes, i.e., either ı1=� or ı.
It turns out that this strategy is already optimal for the case of elliptical polynomial
spirals [8], for concentric spheres [25] and also for the family of countable convergent
sequences [14]

Fp D
°
0;
1

1p
;
1

2p
;
1

3p
; : : :

±
; where p > 0:

Very recent preprints [4, 5] show examples where the use of more than two scales is
necessary.
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Intermediate dimensions can also be formulated using capacity-theoretic meth-
ods [9], which were used to compute the almost-sure value of the intermediate dimen-
sion of the image of Borel sets under index-˛ fractional Brownian motion [7] and
under more general Rosenblatt processes [10]. Knowledge of intermediate dimen-
sions can lead to results that do not follow from other notions of dimension. For
example, in [7, 9], continuity at � D 0 was used to relate the box dimensions of the
projections of a set to the Hausdorff dimension of the set. Other applications include
gaining information about the Hölder distortion of maps between sets [3, 8] or decid-
ing whether two sets are Lipschitz equivalent [4, Example 2.12].

A similar concept of dimension interpolation between the (quasi-)Assouad dimen-
sion and the upper box dimension, called the Assouad spectrum was initiated in [18,
19]. Recent surveys [13,17] contain additional background and references in the topic
of dimension interpolation.

Another large, well-known class of sets with distinct Hausdorff and box dimen-
sion are self-affine planar carpets. They are dynamically defined as the attractor of an
iterated function system and already in the simplest case of Bedford–McMullen car-
pets, obtaining a precise formula for the intermediate dimensions seems to be a very
challenging problem [14, 17]. The current bounds are rather crude and far apart; in
particular, the upper bound improves on the trivial bound of the box dimension only
for very small values of � . This is in contrast to the aforementioned Assouad spectrum
of Bedford–McMullen carpets, which was determined in [18].

1.1. Main contribution

By properly adapting the strategy of using the two extreme scales ı1=� and ı, we show
that the upper intermediate dimension of a Bedford–McMullen carpet (provided it has
distinct Hausdorff and box dimension) is strictly smaller than its box dimension for
every � < 1, moreover, the derivative of the upper bound is strictly positive at � D 1.
This answers a question of Fraser [17, Question 2.1]. Using this upper bound, we
construct an example which shows that the � -intermediate dimension is not concave
for the whole range of � 2 Œ0; 1�; see Figure 4.1. This is a new feature compared to all
previous known examples.

1.2. Bedford–McMullen carpets

Independently of each other, Bedford [6] and McMullen [24] were the first to study
non-self-similar planar carpets. They split R D Œ0; 1�2 into m columns of equal width
and n rows of equal height for some integers n > m � 2 and considered orientation
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preserving maps of the form

f.i;j /.x/ WD

 
1=m 0

0 1=n

! 
x

y

!
C

 
i=m

j=n

!
for the index set .i; j / 2 A � ¹0; : : : ; m � 1º � ¹0; : : : ; n � 1º. It is well known
that associated to the iterated function system (IFS) F D ¹f.i;j /º.i;j /2A there exists a
unique non-empty compact subset ƒF D ƒ of R called the attractor, such that

ƒ D
[

.i;j /2A

f.i;j /.ƒ/:

We call ƒ a Bedford–McMullen carpet and refer the interested reader to the recent
survey [16] for further references. Figure 1.1 shows the simplest possible example for
a Bedford–McMullen carpet with distinct Hausdorff and box dimensions.

Figure 1.1. A Bedford–McMullen carpet with non-uniform vertical fibres. Left: the images of
Œ0; 1�2 under the maps of F . Right: the attractor ƒ.

Notation. Let ƒ be the Bedford–McMullen carpet associated to the IFS F . For the
remainder of the paper, we index the maps of F by i 2 ¹1; : : : ; N º. We frequently
use the abbreviation ŒN � WD ¹1; : : : ; N º. We can partition ŒN � into 1 < M � m sets
	1; : : : ;	M with cardinality #	 O| D N O| > 0 so that

	1 D
®
1; : : : ; N1

¯
and 	 O| D

®
N1 C : : :CN O|�1 C 1; : : : ; N1 C : : :CN O|

¯
for O| D 2; : : : ;M . Moreover, this partition satisfies that

i 2 	 O| ” fi maps R to the O| -th non-empty column: (1.2)

Formally, to keep track of this, we use the function

� W
®
1; 2; : : : ; N

¯
!
®
1; 2; : : : ;M

¯
; �.i/ WD O|; if i 2 	 O| :
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Throughout, i is an index from ŒN �, while O| with the hat is an index corresponding to
a column from ŒM � WD ¹1; : : : ;M º; see Section 2.1 for details on symbolic notation.
In Figure 1.1, we have N D 3, M D 2, 	1 D ¹1; 2º, 	2 D ¹3º, �.1/ D �.2/ D 1 and
�.3/ D 2. Let

N WD .N1; : : : ; NM /:

The uniform probability vectors on ŒN � and ŒM � are denoted by

zp WD
� 1
N
; : : : ;

1

N

�
and zq WD

� 1
M
; : : : ;

1

M

�
:

The entropy of a probability vector p isH.p/D�
P
i pi logpi . In particular,H. zp/D

logN and H.zq/ D logM .
We say that ƒ has uniform vertical fibres if and only if

N D
�N
M
; : : : ;

N

M

�
;

i.e., each non-empty column has the same number of maps. Bedford and McMullen
showed that the Hausdorff dimension of ƒ is equal to

dimHƒ D
H. yp/

logn
C

�
1 �

logm
logn

�H.yq/
logm

; (1.3)

where yp D . yp1; : : : ; ypN / and yq D .yq1; : : : ; yqM / are equal to

ypk D N
logm
logn �1

O{
�

� MX
O|D1

N
logm
logn

O|

��1
and yqO{ D NO{ � ypk; if k 2 	O{ :

Bedford and McMullen also showed a similar formula for the box dimension

dimBƒ D
H. zp/

logn
C

�
1 �

logm
logn

�H.zq/
logm

: (1.4)

In particular, dimHƒ D dimBƒ if and only if ƒ has uniform vertical fibres, in which
case dim� ƒ � dimHƒ for all � 2 Œ0; 1�. Therefore,

we always assume that ƒ has non-uniform vertical fibres:

Formulas (1.3) and (1.4) extend to more general compact .�m;�n/-invariant sets [20,
21].
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1.3. Main result

Before stating our new result, we summarize the results of Falconer, Fraser and Kemp-
ton [14]. The authors of [14] proved that for any non-empty bounded set F � Rd the
functions � 7! dim�F and � 7! dim�F are continuous for � 2 .0; 1�. In addition,
for Bedford–McMullen carpets, they gave an upper bound for dim�ƒ, which implies
continuity also at � D 0. However, this bound only improves on the trivial upper
bound of dimB ƒ for very very small values of � . In particular, it remained open
whether dim� ƒ < dimB ƒ for all � < 1. They also give a linear lower bound which
shows that dim�ƒ> dimHƒ for every � 2 .0;1�, and moreover, a general lower bound
which reaches dimBƒ at � D 1. In essence, their results concentrate on the behaviour
of dim� ƒ near � D 0, while we concentrate more on the behaviour of dim� ƒ near
� D 1.

The concavity of the logarithm function and our standing assumption of non-
uniform vertical fibres imply that

log N WD
1

M

MX
O|D1

logN O| < log
�N
M

�
: (1.5)

LetX denote a uniformly distributed random variable on the set ¹logN1; : : : ; logNM º.
Then log N is the expected value of X . The large deviation rate function of X is

I.x/ D sup
�2R

²
�x � log

�
1

M

MX
O|D1

N �
O|

�³
: (1.6)

It is a convex function, I
�
log N

�
D 0, it is non-decreasing for x � log N , and on this

range of x, the supremum over � 2 R is equivalent to taking � � 0; see [11, Lemma
2.2.5]. Now we state our main result.

Theorem 1.2. Letƒ be a Bedford–McMullen carpet with non-uniform vertical fibres.
Then for every � 2 Œlognm; 1/,

dim�ƒ � dimBƒ �
�0.�/

logn
.1 � �/ < dimBƒ;

where �0.�/ 2 .0; log.N=M/ � log N / is the unique solution of

.1 � �/ ��0.�/ D
� 1
�
� 1

�
� I
�

log
�N
M

�
��0.�/

�
: (1.7)

In particular, the derivative of the upper bound remains strictly positive as � ! 1.
Moreover, since dim�ƒ is non-decreasing, for every � 2 Œ0; lognm/,

dim�ƒ � dimBƒ �
�0.lognm/

logn
.1 � lognm/ < dimBƒ:
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Remark 1.3. In explicit examples, �0.�/ can be numerically calculated; see Fig-
ure 4.1.

Loosely speaking, the upper bound is obtained by constructing a cover ofƒ using
the two extreme scales ı and ı1=� . The cost of each part of the cover is upper bounded
so that, with a properly chosen exponent s, it can be made arbitrarily small. Then for a
fixed � , condition (1.7) defining�0.�/ ensures that the order of magnitude of the two
parts of the cover are equal. The bound in Theorem 1.2 is not the best possible; see
Claim 4.1. However, this is simpler to state and already demonstrates the behaviour
we wanted to show, namely that dim�ƒ < dimBƒ.

Remark 1.4. An unpublished, extended version of this paper on the arXiv [22] also
contains results about the lower bound for dim�ƒ. For most carpets it improves on
current lower bounds, however there are also examples when it does not. Since it is
just an incremental improvement and does not show new qualitative behaviour, we
have decided to omit it from this paper.

Remark 1.5. Well after the initial submission of the paper, Banaji and the author
obtained an explicit formula for dim� ƒ for the complete range of � 2 Œ0; 1� in the
preprint [4]. The same rate function defined in (1.6) appears in their significantly
more complicated formula.

Structure of paper. Section 2 introduces additional notation, defines approximate
squares and outlines the covering strategy for the upper bound. Section 3 contains the
proof of Theorem 1.2. In Section 4, we comment on how to improve the upper bound
and raise a number of questions for further research.

2. Preliminaries

In this section, we collect important notation and outline our strategy for proving the
upper bound.

2.1. Symbolic notation

Let F D ¹fiº be an IFS generating a Bedford–McMullen carpet ƒ. The map fi is
indexed by i 2 ¹1; 2; : : : ;N º. Recall from (1.2) that we partitioned ¹1; 2; : : : ;N º into
non-empty disjoint index sets 	1; : : : ;	M to indicate which column fi maps to. To
keep track of this, we introduced the function

� W
®
1; 2; : : : ; N

¯
!
®
1; 2; : : : ;M

¯
; �.i/ WD O{; if i 2 	O{ :
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For compositions of maps, we use the standard notation fi1::: in WD fi1 ı fi2 ı : : : ı fin ,
where i` 2 ¹1; 2; : : : ; N º.

We define the symbolic spaces

† D
®
1; 2; : : : ; N

¯N and †H D
®
1; 2; : : : ;M

¯N

with elements i D i1i2 : : :2† and O{D O{1O{2 : : :2†H . The function � naturally induces
the map ˆ W †! †H defined by

ˆ.i / WD O{ D �.i1/�.i2/ : : :

Finite words of length n are either denoted with a ‘bar’ like { D i1 : : : in 2 †n or
as a truncation i jn D i1 : : : in of an infinite word i . The length is denoted j � j. The
set of all finite length words is denoted by †� D

S
n†n and, analogously, †�

H
. The

left shift operator on † and †H is � , i.e. �.i / D i2i3 : : : and �.O{/ D O{2O{3 : : : Slightly
abusing notation, ˆ is also defined on finite words: ˆ.i1 : : : in/ D �.i1/ : : : �.in/.

The longest common prefix of i and j is denoted i ^ j , i.e., its length is ji ^ j j D

min¹k W ik ¤ jkº � 1. This is also valid if one of them has or both have finite length.
The nth level cylinder set of i 2 † is Œi jn� WD ¹j 2 † W ji ^ j j � nº. Similarly for
{ 2 †n and O{ 2 †H . The nth level cylinders corresponding to i on the attractor and
Œ0; 1�2 are

ƒn.i / WD fi jn.ƒ/ and Cn.i / WD fi jn

�
Œ0; 1�2

�
:

The sets ¹Cn.i /º1nD1 form a nested sequence of compact sets with diameter tending
to zero; hence their intersection is a unique point x 2 ƒ. This defines the natural
projection … W †! ƒ

….i / WD

1\
nD1

Cn.i / D lim
n!1

fi jn.0/:

In particular,….Œi jn�/Dƒn.i /. The coding of a point x 2ƒ is not necessarily unique,
but … is finite-to-one.

2.2. Approximate squares

The notion of an ‘approximate square’ is crucial in the study of planar carpets. Essen-
tially, they play the role of balls in a cover of the attractor. Sincem > n, a cylinder set
CK.i / has width m�K exponentially larger than its height n�K .

The correct scales at which to achieve approximately equal width and height is K
and

L.K/ WD bK � lognmc < K:
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In other words, L.K/ is the unique integer such that n�L.K/�1 < m�K � n�L.K/.
A level K approximate square is defined as

BK.i / WD
®
….j / W ji ^ j j � L.K/ and jˆ.i / ^ˆ.j /j � K

¯
:

It is essentially a level K column within a level L.K/ cylinder set.

Remark 2.1. One can also consider approximate squares to be the balls in the sym-
bolic space † with metric, say,

d.i ; j / WD m�jˆ.i /^ˆ.j /j C n�ji^j j:

See [23, Section 4] in a slightly more general setting.

The choice of L.K/ implies that there exists a uniform constant C > 1 such that
C�1m�K � jBK.i /j � Cm

�K for every K and i . Since this does not influence the
behaviour of the s-cost of any cover with approximate squares, we simply neglect C
henceforth. Each approximate square can be identified with the unique sequence

BK.i / D
�
i1; : : : ; iL.K/; O{L.K/C1; : : : ; O{K

�
; (2.1)

where i1; : : : ; iL.K/ 2 ¹1; : : : ; N º and O{L.K/C1; : : : ; O{K 2 ¹1; : : : ;M º. The set of level
K approximate squares, denoted by BK , clearly gives a cover of ƒ with cardinality

#BK D N
L.K/

�MK�L.K/
D mK dimBƒ;

where the second equality follows from (1.4). Moreover, the number of level K cyl-
inder sets within BK.i / is

#BK.i / WD #
®
ƒK.j / W j jL.K/ D i jL.K/ and ˆ.j jK/ D ˆ.i jK/

¯
D

KY
`DL.K/C1

N�.i`/:

2.3. Covering strategy

For a fixed ı > 0, we chooseK so thatm�K � ı < m�.K�1/. In our covering strategy,
we start from BK and decide for each BK.i / 2 BK if it is more ‘cost efficient’ to
subdivide it into smaller approximate squares or not. When working with dim� ƒ,
we are allowed to use scales k D K; : : : ; bK=�c, corresponding to covering sets of
diameter between ı and ı1=� . We first determine the number of level k2 approximate
squares within an approximate square of level k1 < k2. Let B

k1;i

k2
denote the set of

level k2 approximate squares Bk1;i
k2

.j / within the approximate square Bk1.i /.

Claim 2.2. Let K � k1 < k2 � bK=�c.



I. Kolossváry 160

(i) If � 2 Œ lognm; 1/, then #B
k1;i

k2
DM k2�k1 �

QL.k2/

`DL.k1/C1
NO{` .

(ii) If � 2 .0; lognm/ and

(a) k2 2 .K;K � logm n�, then

#B
k1;i

k2
DM k2�k1 �

L.k2/Y
`DL.k1/C1

NO{` I

(b) k2 2 .K � logm n;K=��, then

#B
K;i
k2
D NL.k2/�K �M k2�L.k2/ �

KY
`DL.K/C1

NO{` :

Proof. Observe that

� 2 Œlognm; 1/ ” L.k/ � K for all k D K; : : : ; bK=�c:

In particular, L.k2/ � k1.
Let us compare the sequences that define Bk1.i / and Bk1;i

k2
.j /:

i1 � � � iL.k1/ O{L.k1/C1 � � � O{L.k2/ O{L.k2/C1 � � � O{k1
j1 � � � jL.k1/ jL.k1/C1 � � � jL.k2/ O|L.k2/C1 � � � O|k1 O|k1C1 � � � O|k2 :

For the first L.k1/ indices, i` D j`. For indices `D L.k1/C 1; : : : ;L.k2/, we require
that �.j`/ D O{`, hence the term

QL.k2/

`DL.k1/C1
NO{` . For indices ` D L.k2/C 1; : : : ; k1,

there is equality again, O{`D O|`. Finally, there is no restriction on O|k1C1; : : : ; O|k2 , hence
the term M k2�k1 .

In case (ii) (a), it is also true that L.k2/ � k1. As a result, the same formula holds.
Case (ii) (b) can be analyzed analogously to get the formula.

We say that it is more cost efficient to subdivide Bk1.i / into level k2 approximate
squares Bk1;i

k2
.j / if and only if

m�k1s D jBk1.i /j
s
�

X
B
k1;i

k2
.j /2B

k1;i

k2

ˇ̌
B
k1;i

k2
.j /

ˇ̌s
D #B

k1;i

k2
�m�k2s:

In particular, if k1DK and k2DbK=�c for some � 2 Œlognm;1/, then from Claim 2.2
(i), it follows after algebraic manipulations that it is more cost efficient to subdivide
if and only if

s �
logM
logm

C
1

logn

�
1

L.K=�/ � L.K/

L.K=�/X
`DL.K/C1

logNO{`

�
:
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Moreover, at the same time, we want to be able to choose

s � dimBƒ �
�0

logn
D

logM
logm

C
log.N=M/

logn
�

�0

logn
;

where the parameter �0 D �0.�/ 2 Œ0; log.N=M/ � 1
M

PM
O|D1 logN O| / will be made

explicit later in the proof. Thus, we will subdivide BK.i / if and only if

1

L.K=�/ � L.K/

L.K=�/X
`DL.K/C1

logNO{` � log
�N
M

�
��0: (2.2)

It is important to note that only indices O{L.K/C1; : : : ; O{L.K=�/ determine whetherBK.i /
gets subdivided into level bK=�c approximate squares or not.

3. Proof of Theorem 1.2

The proof goes by constructing a cover ofƒ using approximate squares of levelK and
bK=�c, which correspond to covering sets of diameter ı and ı1=� . Recall from (1.5)
that

log N D
1

M

MX
O{D1

logNO{ < log
�N
M

�
:

For the remainder of the proof we fix � 2 Œlognm; 1/ and we choose

�0 D �0.�/ 2
�
0; log

�N
M

�
� log N

�
;

which will be optimized at the end of the proof. Based on condition (2.2), we start
from the set BK of level K approximate squares and partition it into two sets:

GoodK WD
®
BK.i / 2 BK W BK.i / satisfies (2.2)

¯
and BadK WD BK n GoodK :

It is more cost efficient to subdivide allBK.i /2GoodK into level bK=�c approximate
squares. Thus, let us define the cover

UK WD

²
BadK [

[
BK.i /2GoodK

B
K;i
K=�

³
;

where recall that B
K;i
K=�

denotes the set of level bK=�c approximate squares within
BK.i /. Claim 2.2 (i) implies that the cost of this cover is

X
Ui2UK

jUi j
s
D #BadK �m�Ks C

X
GoodK

MK=��K

L.K=�/Y
`DL.K/C1

NO{` �m
�sK=� : (3.1)
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The following two lemmas guarantee that for properly chosen s, this cost can be made
arbitrarily small for large enough K.

Lemma 3.1. For every � 2 Œlognm; 1/;

log #BadK
K logm

D dimBƒ �
I
�
log.N=M/ ��0

�
logn

� 1
�
� 1

�
C o.1/;

where I.x/ is the large deviation rate function of the random variable X uniformly
distributed on the set ¹logN1; : : : ; logNM º; recall (1.6). As a result,

#BadK �m�Ks ! 0 as K !1 ” s > dimBƒ�
I
�
log.N=M/ ��0

�
logn

� 1
�
� 1

�
:

Proof. Recall, the fact that an approximate square BK.i / 2 BadK depends only on
the indices O{L.K/C1; : : : ; O{L.K=�/. We introduce

D WD

²
.O{L.K/C1; : : : ; O{L.K=�// W

1

L.K=�/ � L.K/

L.K=�/X
`DL.K/C1

logNO{` > log
�N
M

�
��0

³
:

Since all other indices of BK.i / can be chosen freely, recall (2.1), we get that

#BadK D NL.K/
�MK�L.K=�/

� #D : (3.2)

Let ¹I`º
L.K=�/

`DL.K/C1
be independent uniformly distributed random variables on the dis-

crete set ¹1; : : : ; M º and X` WD logNI` . Then log N is the expected value of X`.
Introduce

X WD
1

L.K=�/ � L.K/

L.K=�/X
`DL.K/C1

X`:

Since all I` are uniformly distributed, we have that

P
�
X > log

�N
M

�
��0

�
D

#D

ML.K=�/�L.K/
:

Hence, combining this with (3.2), we obtain that

#BadK D mK dimBƒ � P
�
X > log

�N
M

�
��0

�
: (3.3)

Cramér’s theorem [11, Theorem 2.1.24] implies that for any x > log N ,

lim
K!1

logP.X > x/

L.K=�/ � L.K/
D � inf

y>x
I.y/:

The infimum is equal to I.x/, because I is continuous and non-decreasing. Apply-
ing this with x D log.N=M/ � �0 proves the lemma after algebraic manipulations
of (3.3).
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Lemma 3.2. For every � 2 Œlognm; 1/, if s > dimBƒ �
�0

logn .1 � �/, then

X
GoodK

MK=��K

L.K=�/Y
`DL.K/C1

NO{` �m
�sK=�

! 0 as K !1:

Proof. For every BK.i / 2 GoodK , we have the uniform upper bound

L.K=�/Y
`DL.K/C1

NO{` �
�N
M
� e��0

�L.K=�/�L.K/
:

Moreover, trivially #GoodK � #BK D N
L.K/MK�L.K/ D mK dimBƒ. Thus,X

GoodK

MK=��K

L.K=�/Y
`DL.K/C1

NO{` �m
�sK=�

� #BK �M
K=��K

�

�N
M
� e��0

�L.K=�/�L.K/
�m�sK=�

D m
�K
�
.s�dimBƒ/=�C

�0
logn .1=��1/

�
;

which tends to 0 as K !1 if and only if s > dimBƒ �
�0

logn .1 � �/.

Remark 3.3. Lemma 3.1 shows that the bound #GoodK < #BK is essentially optimal,
because #BadK grows at an exponentially smaller rate than #BK .

The two lemmas also show that choosing �0 D 0 or log.N=M/ � log N would
result in a bound s > dimBƒ for one of the parts of the cover.

Proof of Theorem 1.2. Fix � 2 Œlognm; 1/ and let

f� .�0/ WD �0 � .1 � �/ and g� .�0/ WD I
�

log
�N
M

�
��0

�
�

� 1
�
� 1

�
:

Lemmas 3.1 and 3.2 imply that for any �0 2 .0; log.N=M/ � log N /, if

s > dimBƒ �
1

logn
min

®
f� .�0/; g� .�0/

¯
; (3.4)

then the cost (3.1) of the cover UK can be made arbitrarily small.
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Observe that f� .0/ D 0 D g� .log.N=M/ � log N /; moreover, f� .�0/ strictly
increases while g� .�0/ strictly decreases as �0 increases. Hence, there is a unique
�0.�/ such that

f� .�0.�// D g� .�0.�//: (3.5)

This is precisely condition (1.7) in Theorem 1.2. It optimizes (3.4) by making the
cost of each part of the cover UK to have the same order of magnitude. Since f� and
g� are continuous in � , so is � 7! �0.�/. Furthermore, �0.�/ can be extended in a
continuous way to be defined for � D 1. Indeed, let � D 1 � ", then (3.5) becomes

" ��0.1 � "/ D
"

1 � "
� I
�

log
�N
M

�
��0.1 � "/

�
:

Hence, we define �0.1/ as the unique solution of �0.1/ D I.log.N=M/ ��0.1//,
which is clearly strictly positive.

The conclusion of the proof goes by the definition of dim�ƒ, recall (1.1). Fix an
arbitrary " > 0 and s > dimBƒ � f� .�0.�//= logn. Choose ı0 > 0 so small that for
K0 D K0.ı0/ defined by m�K0 � ı0 < m�K0C1,

m�K0
�
s�dimBƒCf� .�0.�//= logn

�
< "=2:

For any ı < ı0, we coverƒwith UK , wherem�K � ı <m�KC1. Then
P
U2UK

jU js

< " and ı1=� � jU j � ı for every U 2 UK . Hence,

dim�ƒ � dimBƒ �
f� .�0.�//

logn
:

Moreover,

lim
�!1

d

d�

�
dimBƒ �

f� .�0.�//

logn

�
D
�0.1/

logn
> 0:

4. Further discussion

Here we address a few further questions regarding our results. We first claim that the
bound in Theorem 1.2 is not optimal.

Claim 4.1. Even with just the two extreme scales, a better bound can be achieved
than the one in Theorem 1.2.

Proof. As always in the paper, assume � 2 Œlognm;1/ andƒ has non-uniform vertical
fibres. Let us partition BK into

GoodK WD
²
BK.i / 2 BK W

1

L.K=�/ � L.K/

L.K=�/X
`DL.K/C1

logNO{` � log
�N
M

�
��2

³
;
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where �2 is chosen to be slightly smaller than �0 D �0.�/, recall (1.7), and

BadK WD BK n GoodK :

An approximate square BK.i / 2 GoodK gets subdivided to level bK=�c approximate
squares, while BK.i / 2 BadK remains at level K. Then the argument of Lemma 3.1
implies that

#BadK �m�Ks! 0 as K!1 ” s > dimBƒ�
I
�
log.N=M/ ��2

�
logn

� 1
�
� 1

�
;

which is a smaller number than the bound obtained with �0 in Theorem 1.2.
Now choose�1 > �0.�/ such that�2C I.log.N=M/��1/ > �0.�/. This can

be clearly done if �0 ��2 is small enough. Define

AGoodK WD
²
BK.i /2GoodK W

1

L.K=�/ � L.K/

L.K=�/X
`DL.K/C1

logNO{` � log
�N
M

�
��1

³
:

We bound separately the cost of the cover with the subdivided BK.i / 2AGoodK and
BK.i / 2 GoodK nAGoodK . On one hand, the same argument as in Lemma 3.2 yields
that the sum X

eGoodK

MK=��K

L.K=�/Y
`DL.K/C1

NO{` �m
�sK=�

! 0 as K !1;

if we choose
s > dimBƒ �

�1

logn
.1 � �/;

which again is a smaller number than the bound obtained with�0. On the other hand,
to bound the sum X

GoodKneGoodK

MK=��K

L.K=�/Y
`DL.K/C1

NO{` �m
�sK=� (4.1)

from above, we use that for every BK.i / 2 GoodK nAGoodK ,

L.K=�/Y
`DL.K/C1

NO{` �
�N
M

�L.K=�/�L.K/
� e��2

�
L.K=�/�L.K/

�
;

and, from Lemma 3.1, we can use that

#
�
GoodK nAGoodK

�
� #

�
BK nAGoodK

�
� m

K
�

dimBƒ�
I.log.N=M/��1/

logn .1=��1/Co.1/
�
:
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Substituting these back into (4.1), we obtain that the sum tends to 0 as K !1, if

s > dimBƒ �
�2 C I

�
log.N=M/ ��1

�
logn

.1 � �/;

which is also smaller than dimBƒ� .1� �/�0= logn by the choice of�1. Hence, we
were able to improve on the upper bound in Theorem 1.2 for all parts of the cover.

We strongly believe that for � � lognm, the upper bound is close to capturing the
real value of dim� ƒ. Moving beyond Claim 4.1, it is natural to ask what is the best
achievable bound using just the two extreme scales? Could a matching lower bound
be proved for that? It is clear that in an optimal covering strategy, different scales are
present and tracking the optimal place to subdivide individual approximate squares
seems hard to deal with. The question is, in the optimal covering, whether the squares
at the two extreme scales determine the order of magnitude of the s-cost or do the
scales in between play a role as well?

The next natural thing to ask is how can the argument be extended to � < lognm?
Would it converge to dimH ƒ? Claim 2.2 shows that the number of approximate
squares within a given approximate square behaves differently for � < logn m;
thus it is not clear what could take the place of condition (2.2). Heuristically, if
� 2 ..logn m/

`C1; .logn m/
`/, one could try to extend the argument to a cover in

which ‘almost all’ approximate squares are at level bK=�c and there are some ‘left
over’ squares at levels .lognm/

k for k D 0; 1; : : : ; `. It would be an interesting new
behaviour if it is true that an unbounded number of scales are necessary as � ! 0.

Further interesting questions concern the form of dim� ƒ. It has already been
asked whether dim� ƒ is strictly increasing, differentiable, or analytic [17, Ques-
tion 2.1]. A common feature of almost all sets E whose intermediate dimensions
are known, dim� E is strictly concave for the range of � where dim� E > dimH E.
Bedford–McMullen carpets show a stark contrast to this. The general lower bound
of [2, 14] is a concave function between .0; 0/ and .1; dimB ƒ/, which enables to
construct an example which shows that dim� ƒ is not convex in general; see Fig-
ure 4.1 (a). In addition, with the new bound of Theorem 1.2, we can also construct an
example which shows that dim� ƒ is neither concave in general; see Figure 4.1 (b).
In Figure 4.1, the (orange) plot depicting the upper bound comes from Theorem 1.2,
while the (blue) plot depicting the lower bound comes from a combination of results
in [2, 14, 22]. The ratio logn m has an important role in projection and slicing res-
ults about Bedford–McMullen carpets [1, 15] and the Assouad spectrum has a phase
transition here [18]. These together with Claim 2.2 strongly suggest to us that dim� ƒ

may have a phase transition at lognm. Can dim� ƒ have additional phase transitions
at other integer powers of lognm? Is it piecewise concave on the intervals in between
phase transitions?
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(a) n D 50, m D 2 DM and N D ¹1; 50º.

(b) n D 12, m D 10 DM and N D ¹12; 2; : : : ; 2º.

Figure 4.1. Examples showing that dim� ƒ is neither convex (a) nor concave (b) for the whole
range of � .

We remark that the very recent preprint [4] settles all these questions regarding
the form of dim� ƒ. The intermediate dimensions of sets can have surprisingly highly
varied behaviour; see the very recent preprint of Banaji and Rutar [5], who give a com-
plete characterisation of the possible functions that can be realised as the intermediate
dimensions of a set.
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