On the Hausdorff dimension of the recurrent sets induced from endomorphisms of free groups

Yutaka Ishii and Tatsuya Oka

Abstract. We show that F. Dekking's recurrent sets in \mathbb{R}^2 , which correspond to Markov partitions for conformally expanding maps of the 2-torus, have Hausdorff dimension strictly greater than one. This is a counterpart to the classical result of R. Bowen on the non-smoothness of the Markov partitions for Anosov diffeomorphisms of the 3-torus. We also present a non-conformal example where the recurrent set is a parallelogram and hence its Hausdorff dimension is one.

1. Introduction and main results

This paper investigates the Hausdorff dimension of recurrent sets in \mathbb{R}^2 . The notion of recurrent sets has been introduced by Dekking [5] as a method to construct fractal tilings of the Euclidean spaces. To grasp the idea of his construction, let us start with a particular example.

Let $G = \langle a, b \rangle$ be the free group generated by two elements a and b. We first associate vectors in \mathbb{R}^2 to the generators as f(a) := (1,0), f(b) := (0,1), $f(a^{-1}) :=$ (-1,0) and $f(b^{-1}) := (0,-1)$. Then for a reduced word $c = c_1 \cdots c_k \in G$ (where each c_j is either a, b, a^{-1} or b^{-1}), we define the *geometric realization* of c denoted by K[c] to be the broken line in \mathbb{R}^2 obtained as the successive concatenation of the arrows $f(c_1), \ldots, f(c_k)$. For example, when $c = aba^{-1}b^{-1}$, its geometric realization $K[aba^{-1}b^{-1}]$ is the unit square with vertices at (0, 0), (1, 0), (1, 1) and (0, 1).

Let $\theta: G \to G$ be the endomorphism of G given by

$$a \mapsto ab^{-1},$$
$$b \mapsto a^{-1}b^{-2}.$$

Then $K[\theta^n(aba^{-1}b^{-1})]$ becomes a broken loop in \mathbb{R}^2 for every $n \ge 0$. Let L_θ : $\mathbb{R}^2 \to \mathbb{R}^2$ be the invertible linear map given by

$$L_{\theta}(x, y) = (x - y, -x - 2y).$$

²⁰²⁰ Mathematics Subject Classification. Primary 28A80; Secondary 11K55. *Keywords*. Recurrent set, Hausdorff dimension, Markov partition.

Figure 1. $L_{\theta}^{-n} K[\theta^n (aba^{-1}b^{-1})]$ for n = 1, 2, 3 and 4 (from left to right).

Figure 2. The recurrent set K_{θ} .

This map is introduced so that its inverse iteration L_{θ}^{-n} "rescales" the size of $K[\theta^n(aba^{-1}b^{-1})]$ (see Figure 1 for n = 1, 2, 3 and 4). Moreover, it can be shown [1,8] that the limit

$$K_{\theta} = \lim_{n \to \infty} L_{\theta}^{-n} K \big[\theta^n (aba^{-1}b^{-1}) \big]$$

exists in the sense of the Hausdorff topology (see, e.g., [6] for the definition of the Hausdorff topology); we call it the *recurrent set* of θ (see Figure 2).

The purpose of this paper is to show that the recurrent set K_{θ} for an endomorphism θ of the free group of rank two always forms a fractal set under certain assumptions on θ . In Section 3, we introduce three kinds of assumptions on θ : Assumptions \mathfrak{A} , \mathfrak{B} and \mathfrak{C} . Assumption \mathfrak{A} requires that the rescaling map L_{θ} is expanding, Assumption \mathfrak{B} requires that the rescaling map L_{θ} is conformal and expanding (hence Assumption \mathfrak{B} is stronger than Assumption \mathfrak{A}), and Assumption \mathfrak{C} requires the primitivity of a matrix which represents certain reduction of θ .

Our first main result is the following.

Theorem 1.1. If θ : $G \to G$ satisfies Assumptions \mathfrak{B} and \mathfrak{C} , the Hausdorff dimension of its recurrent set K_{θ} is strictly greater than 1.

Indeed, Bedford [1] constructed a Markov partition for the expanding map of the 2-torus induced from the linear map $L_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ in terms of Dekking's formalism (which is different from the classical construction by Sinaĭ [9] and Bowen [2]) and pointed out that the recurrent set K_{θ} forms the boundary of the Markov partition. Therefore, Theorem 1.1 can be seen as a counterpart to the classical result of Bowen [3] on the non-smoothness of the Markov partitions for Anosov diffeomorphisms of the 3-torus.

We also show that the conformality condition in Assumption \mathfrak{B} is essential in Theorem 1.1.

Theorem 1.2. Let *m* be a positive integer and define θ : $G \rightarrow G$ by

$$a \mapsto ab^{-1},$$

 $b \mapsto a^{-m}b^{-1}.$

Then its recurrent set K_{θ} is a parallelogram with vertices (0, 0), (1, 0), (0, 1) and (-1, 1). In particular, the Hausdorff dimension of K_{θ} is equal to 1.

We notice that the endomorphism θ in Theorem 1.2 satisfies Assumptions \mathfrak{A} and \mathfrak{C} but not Assumption \mathfrak{B} , i.e., the induced linear map L_{θ} is expanding but not conformal. Note also that a result of Cawley [4] states the existence of a Markov partition with piecewise smooth boundary for an Anosov diffeomorphism of the *n*-torus for every $n \ge 4$.

The organization of this paper is as follows. In Section 2, we review the precise formulation of Dekking's recurrent sets. In Section 3, Assumptions \mathfrak{A} , \mathfrak{B} and \mathfrak{C} mentioned above are presented and the reduction technique of θ due to Ito and Ohtsuki [8] is examined. Section 4 is devoted to the proof of Theorem 1.1 and Section 5 is devoted to the proof of Theorem 1.2. Finally, in Appendix A, we present Wielandt's theorem which is a key fact in the proof of Theorem 1.1.

2. Dekking's recurrent sets

Let *G* be a free group generated by two elements *a*, *b*. Namely, *G* is considered as the quotient set of the free semigroup S^* generated by $S := \{a, b, a^{-1}, b^{-1}\}$ by the equivalence relation \sim , where for $W, V \in S^*$, we define $W \sim V$ if their reduced words coincide. Therefore, an element of *G* can be identified with a unique reduced word.

We first construct the *canonical homomorphism* $f: G \to \mathbb{Z}^2 \subset \mathbb{R}^2$ as follows. We set

$$f(a) := \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad f(b) := \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \quad f(a^{-1}) := \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \quad f(b^{-1}) := \begin{pmatrix} 0 \\ -1 \end{pmatrix},$$

as in Section 1. Then we extend f to G by the relation

$$f(VW) = f(V) + f(W)$$

for reduced words $V, W \in G$, where $VW \in G$ is the reduced word obtained from the concatenation of V and W.

Let $\mathcal{K}[\mathbb{R}^2]$ be the set of all non-empty compact sets in \mathbb{R}^2 . We next define a map $K: G \to \mathcal{K}[\mathbb{R}^2]$ which assigns a broken line to each reduced word. First, we set

$$\widetilde{K}[s] := \left\{ \alpha f(s) : 0 \le \alpha \le 1 \right\}$$

for $s \in S$, which is a unit segment. For a reduced word $W = s_1 \cdots s_m \in G$ $(s_i \in S)$, we set

$$\widetilde{K}[W] := \bigcup_{i=1}^{m} \left(\widetilde{K}[s_i] + f(s_1 \cdots s_{i-1}) \right),$$

where $A + z = \{a + z : a \in A\}$ for $A \subset \mathbb{R}^2$ and $z \in \mathbb{R}^2$. When $W \in G$ satisfies $f(W) \neq (0, 0)$, we set $K[W] := \tilde{K}[W]$. When $W \in G$ satisfies f(W) = (0, 0), we set

$$K[W] := \widetilde{K}[W'] + f(A),$$

where A is the longest word such that $W = AW'A^{-1}$ and $AW'A^{-1}$ has no cancellations.

Given an endomorphism θ of G, there is a linear map $L_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ so that the following diagram commutes:

$$\begin{array}{ccc} G & \stackrel{\theta}{\longrightarrow} & G \\ f \downarrow & & f \downarrow \\ \mathbb{R}^2 & \stackrel{L_{\theta}}{\longrightarrow} & \mathbb{R}^2 \end{array}$$

Definition 2.1. We say that θ has *short range cancellations* if for any reduced word of the form $stu \in G$ ($s, t, u \in S$), reducing $\theta(s)\theta(t)\theta(u)$ does not erase all letters of any of the subwords $\theta(s), \theta(t), \theta(u) \in G$.

To clarify this definition, let us consider the following two examples.

Example 2.2. Let θ be the endomorphism given by

$$a \mapsto ab^{-1},$$
$$b \mapsto a^{-2}b^{-1}.$$

It is then easy to check that some letters of any subwords $\theta(s)$ ($s \in S$) appeared in $\theta(a^{-1}ba^{-1}) = \theta(a^{-1})\theta(b)\theta(a^{-1})$ and $\theta(b^{-1}ab^{-1}) = \theta(b^{-1})\theta(a)\theta(b^{-1})$ are not erased by the cancellations. Therefore, θ has short range cancellations. **Example 2.3.** Let θ be the endomorphism given by

$$a \mapsto aba^2,$$

 $b \mapsto ab^2a^2.$

Then, we see

$$\theta(b^{-1}ab^{-1}) = \theta(b^{-1})\theta(a)\theta(b^{-1})$$

= $\underbrace{a^{-2}b^{-2}a^{-1}}_{\theta(b^{-1})} \underbrace{aba^{2}}_{\theta(a)} \underbrace{a^{-2}b^{-2}a^{-1}}_{\theta(b^{-1})}$
= $\underbrace{a^{-2}b^{-1}}_{\theta(b^{-1})} \underbrace{b^{-2}a^{-1}}_{\theta(b^{-1})}.$

Since all letters in the subwords $\theta(a)$ are erased by the cancellations, θ does not have short range cancellations.

Having short range cancellations yields the existence of the recurrent set. Namely, we have the following result due to Dekking.

Theorem 2.4 (Dekking [5]). If θ has short range cancellations, the limit

$$K_{\theta} := \lim_{n \to \infty} L_{\theta}^{-n} K \big[\theta^n (aba^{-1}b^{-1}) \big]$$

exists with respect to the Hausdorff topology in $\mathcal{K}[\mathbb{R}^2]$.

Let us call the limit K_{θ} in Theorem 2.4 the *recurrent set* of θ .

3. Reductions of Ito and Ohtsuki

In this section, we review the reduction technique of θ due to Ito and Ohtsuki [8].

Definition 3.1. We say that a broken loop $K[\theta(aba^{-1}b^{-1})]$ is *double point free* if no pairs of edges in the loop intersect topologically transversally.

Here, *topological transversality* means that the intersection persists under small perturbations of the broken loop. Figure 3 represents two examples of an overlap of two edges in a broken loop which are double point free and Figure 4 represents two examples which are not double point free.

We say that the linear map L_{θ} is *expanding* if the absolute values of its eigenvalues are both strictly greater than 1. The next assumption is identical to [8, Assumption 1].

Figure 3. Double point free broken loop.

Figure 4. Not double point free broken loop.

Definition 3.2 (Assumption \mathfrak{A}). If an endomorphism θ of *G* satisfies the following conditions:

- (i) θ has short range cancellations;
- (ii) $K[\theta(aba^{-1}b^{-1})]$ is double point free;
- (iii) L_{θ} is expanding;

then we say that θ satisfies Assumption \mathfrak{A} .

We say that the linear map L_{θ} is *conformally expanding* if L_{θ} is a rotation followed by a scalar multiplication by λ_{θ} with absolute value strictly greater than 1. The next assumption is identical to [8, Assumption 1'].

Definition 3.3 (Assumption \mathfrak{B}). If an endomorphism θ of *G* satisfies the following conditions:

- (i) θ has short range cancellations;
- (ii) $K[\theta(aba^{-1}b^{-1})]$ is double point free;
- (iii) L_{θ} is conformally expanding;

then we say that θ satisfies Assumption \mathfrak{B} .

Obviously, Assumption \mathfrak{A} is weaker than Assumption \mathfrak{B} .

The *adjoint* $\theta_W : G \to G$ of θ with respect to $W \in G$ is defined by

$$\theta_W(V) := W\theta(V)W^{-1}$$

for any $V \in G$. We set

$$P_{\theta} := \left\{ \theta(s)\theta(t) : (s,t) = (a,b), (b,a^{-1}), (a^{-1},b^{-1}), (b^{-1},a) \right\}$$

for an endomorphism θ .

Theorem 3.4 ([8, Theorem 2.1]). Let θ be an endomorphism of G satisfying Assumption \mathfrak{A} . Then there exists a word $W \in G$ so that the adjoint θ_W satisfies one of the following conditions:

- (i) θ_W has cancellations only in $\theta_W(b)\theta_W(a^{-1})$ among P_{θ_W} ;
- (ii) θ_W has cancellations only in $\theta_W(a^{-1})\theta_W(b^{-1})$ among P_{θ_W} ;
- (iii) θ_W has no cancellations.

Furthermore, the case (ii) in the previous theorem can be reduced to the case (i). To see this, let η be the automorphism of G defined by $\eta(a) = b$ and $\eta(b) = a^{-1}$.

Theorem 3.5 ([8, Theorem 2.2]). Let θ an endomorphism satisfying Assumption \mathfrak{A} and let W be the word as in Theorem 3.4. If the adjoint θ_W satisfies (ii) of Theorem 3.4, then $\theta' = \eta \theta_W \eta^{-1}$ has cancellations only in $\theta'(b)\theta'(a^{-1})$ among $P_{\theta'}$.

Thanks to Theorems 3.4 and 3.5, we may assume that only $\theta(b)\theta(a^{-1})$ can have cancellations among P_{θ} for θ satisfying Assumption \mathfrak{A} . Then $\theta(a)$ and $\theta(b)$ can be uniquely decomposed as

$$\theta(a) = AB \quad \text{and} \quad \theta(b) = CB$$
 (3.1)

by some words $A, B, C \in G$, where

$$AB, CB, BC, BA, C^{-1}A, CA^{-1}$$
 are reduced words. (3.2)

For $W \in G$, we can write $\theta(W) = W_1 W_2 \cdots W_k$, where W_i is either $A^{\pm 1}$, $B^{\pm 1}$ or $C^{\pm 1}$, which we call the *block representation* of $\theta(W)$. Let \mathscr{G} be the directed graph given by

We say that $\theta(W) = W_1 W_2 \cdots W_k$ is *G*-admissible if W_1, \ldots, W_k forms a path in *G*.

Proposition 3.6 ([8, Proposition 3.1]). For any $W \in G$, $\theta(W)$ is \mathcal{G} -admissible.

In order to check whether $\theta(P)\theta(Q)$ has cancellations for $P, Q \in \{A, B, C, A^{-1}, B^{-1}, C^{-1}\}$, we only need to consider the following cases:

$$(P,Q) \in \{(A,B), (C,A^{-1}), (B^{-1},C^{-1}), (B,C), (A^{-1},B^{-1}), (C^{-1},A)\}$$

thanks to Proposition 3.6. To see this, let us decompose A, B and C as

$$A = vA't, \quad B = yB'x \quad \text{and} \quad C = wC'u, \tag{3.3}$$

where $v, t, y, x, w, u \in S$ and $A', B', C' \in G$. Then, from (3.2), we have the following relations:

$$y \neq t^{-1}, u^{-1}, t \neq u, x \neq v^{-1}, w^{-1}$$
 and $v \neq w$.

Lemma 3.7 ([8, Lemma 4.1]). Under the assumption that only $\theta(b)\theta(a^{-1})$ has cancellations among P_{θ} , we have

(1) $\theta(A)\theta(B)$ has cancellations if and only if

$$(t, u, y) \in \{(a, a^{-1}, b^{-1}), (a, b^{-1}, b^{-1}), (b, b^{-1}, a^{-1}), (b, a^{-1}, a^{-1})\};\$$

(2) $\theta(C)\theta(A^{-1})$ has cancellations if and only if

$$(t, u, y) \in \{(b, a, a), (b, a, b), (a, b, a), (a, b, b)\}$$

(3) $\theta(B^{-1})\theta(C^{-1})$ has cancellations if and only if

$$(t, u, y) \in \left\{ (a^{-1}, a, b^{-1}), (b^{-1}, a, b^{-1}), (a^{-1}, b, a^{-1}), (b^{-1}, b, a^{-1}) \right\};$$

(4) $\theta(B)\theta(C)$ has cancellations if and only if

$$(x, v, w) \in \{(a, a, b^{-1}), (a, b, b^{-1}), (b, a, a^{-1}), (b, b, a^{-1})\};\$$

(5) $\theta(A^{-1})\theta(B^{-1})$ has cancellations if and only if

$$(x, v, w) \in \{(a, b^{-1}, a), (a, b^{-1}, b), (b, a^{-1}, a), (b, a^{-1}, b)\};\$$

(6) $\theta(C^{-1})\theta(A)$ has cancellations if and only if

$$(x, v, w) \in \{(a^{-1}, a^{-1}, b^{-1}), (b^{-1}, a^{-1}, b^{-1}), (a^{-1}, b^{-1}, a^{-1}), (b^{-1}, b^{-1}, a^{-1})\}.$$

Lemma 3.8 ([8, Lemma 4.2]). Under the assumption of Lemma 3.7, we have

(1) the cases (1)–(3) in Lemma 3.7 are mutually exclusive;

(2) the cases (4)–(6) in Lemma 3.7 are mutually exclusive.

Let \tilde{G} be the free group of rank 3 where the words A, B and C are regarded as generators. Let $i: \tilde{G} \to G$ be a homomorphism sending the generators A, B, C of \tilde{G} to the words A, B, C of G, and define an endomorphism Θ of \tilde{G} as

$$\Theta(W) := \text{the block representation of } \theta(i(W))$$
(3.4)

for $W \in \tilde{G}$. Then the following diagram commutes:

Based on Lemma 3.8, we define the reduced endomorphism $\widehat{\Theta}$ of Θ as follows.

Definition 3.9. We define the reduced endomorphism $\widehat{\Theta}$ of Θ as follows.

(I) If exactly one of (1)–(3) in Lemma 3.7 holds but any of (4)–(6) in Lemma 3.7 fails, we define

$$\widehat{\Theta}(A) := \Theta(A)B^{-1}, \quad \widehat{\Theta}(B) := B\Theta(B), \quad \widehat{\Theta}(C) := \Theta(C)B^{-1}$$

(II) If exactly one of (4)–(6) in Lemma 3.7 holds but any of (1)–(3) in Lemma 3.7 fails, we define

$$\widehat{\Theta}(A) := B \Theta(A), \quad \widehat{\Theta}(B) := \Theta(B) B^{-1}, \quad \widehat{\Theta}(C) := B \Theta(C)$$

(III) If exactly one of (1)–(3) in Lemma 3.7 holds and exactly one of (4)–(6) in Lemma 3.7 holds, we define

$$\widehat{\Theta}(A) := B \Theta(A) B^{-1}, \quad \widehat{\Theta}(B) := B \Theta(B) B^{-1}, \quad \widehat{\Theta}(C) := B \Theta(C) B^{-1}.$$

Theorem 3.10 ([8, Theorem 4.1]). The endomorphism $\widehat{\Theta} : \widetilde{G} \to \widetilde{G}$ has no cancellations on any \mathcal{G} -admissible words.

Set $X_1 := A$, $X_2 := B$ and $X_3 := C$. Let m_{ij}^+ (resp. m_{ij}^-) be the number of X_i 's (resp. X_i^{-1} 's) in $\widehat{\Theta}(X_j)$. Let $m_{ij} := m_{ij}^+ - m_{ij}^-$ and define a matrix $M_{\widehat{\Theta}} = (m_{ij})$. Similarly, let $n_{ij} := m_{ij}^+ + m_{ij}^-$ and define a matrix $N_{\widehat{\Theta}} = (n_{ij})$. Note that we easily see that $|m_{ij}| \le n_{ij}$. The next assumption is identical to [8, Assumption 2].

Definition 3.11 (Assumption \mathfrak{C}). We say that an endomorphism θ satisfies *Assumption* \mathfrak{C} if $N_{\widehat{\Theta}}$ is primitive, i.e., there exists $n \ge 1$ such that all entries of the *n*-th power $N_{\widehat{\Theta}}^n$ are strictly positive.

Denote by $\lambda_{\widehat{\Theta}}$ (resp. $\Lambda_{\widehat{\Theta}}$) the greatest eigenvalue of $M_{\widehat{\Theta}}$ (resp. $N_{\widehat{\Theta}}$) in modulus. Then the Hausdorff dimension of K_{θ} is given by the following formula.

Theorem 3.12 ([8, Theorem 6.1 (2)]). If an endomorphism θ satisfies Assumptions \mathfrak{B} and \mathfrak{C} , the Hausdorff dimension of the recurrent set K_{θ} is given by

$$\dim_{\mathrm{H}} K_{\theta} = \frac{\log \Lambda_{\widehat{\Theta}}}{\log |\lambda_{\widehat{\Theta}}|}.$$
(3.6)

We note that the conformality condition (iii) in Assumption \mathfrak{B} implies the existence of a probability measure with local scaling property of order

$$\frac{\log \Lambda_{\widehat{\Theta}}}{\log |\lambda_{\widehat{\Theta}}|}$$

This together with Frostman's lemma (see [6, Mass distribution principle 4.2]) yields that the right-hand side of (3.6) gives a lower bound for dim_H K_{θ} .

4. Proof of Theorem 1.1

 D_4

In this section, we prove Theorem1.1. The proof consists of three steps: first, to find certain restriction on the entries of $M_{\widehat{\Theta}}$ satisfying $|\lambda_{\widehat{\Theta}}| = \Lambda_{\widehat{\Theta}}$ thanks to Wielandt's theorem (see (A.2)); second, to classify such matrices $M_{\widehat{\Theta}}$ into some cases according to Lemma 3.7; and third, to show that these cases do not satisfy the conformality condition in Assumption \mathfrak{B} .

Let $D_i, 0 \le i \le 7$, be the matrices given by

$$D_0 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad D_1 := \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$D_2 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \qquad D_3 := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$
$$:= -D_0, \quad D_5 := -D_1, \quad D_6 := -D_2 \quad \text{and} \quad D_7 := -D_3.$$

Proposition 4.1. Suppose that Assumption \mathfrak{C} holds. Then $|\lambda_{\widehat{\Theta}}| = \Lambda_{\widehat{\Theta}}$ if and only if there exists $0 \le i \le 7$ such that $M_{\widehat{\Theta}} = \pm D_i N_{\widehat{\Theta}} D_i$.

Proof. Recall that we have $|m_{ij}| \le n_{ij}$. Since $N_{\widehat{\Theta}}$ is primitive by Assumption \mathfrak{C} , we apply Wielandt's theorem (see (A.1)) to obtain $|\lambda_{\widehat{\Theta}}| \le \Lambda_{\widehat{\Theta}}$. Moreover, $|\lambda_{\widehat{\Theta}}| = \Lambda_{\widehat{\Theta}}$ holds if and only if there exists $0 \le i \le 7$ such that $M_{\widehat{\Theta}} = \pm D_i N_{\widehat{\Theta}} D_i$.

The condition $M_{\widehat{\Theta}} = \pm D_i N_{\widehat{\Theta}} D_i$ in Proposition 4.1 can be expressed more concretely as

$$M_{\widehat{\Theta}} = \pm D_0 N_{\widehat{\Theta}} D_0 = \pm D_4 N_{\widehat{\Theta}} D_4 = \pm \begin{pmatrix} n_{11} & n_{12} & n_{13} \\ n_{21} & n_{22} & n_{23} \\ n_{31} & n_{32} & n_{33} \end{pmatrix},$$
(4.1)

$$M_{\widehat{\Theta}} = \pm D_1 N_{\widehat{\Theta}} D_1 = \pm D_5 N_{\widehat{\Theta}} D_5 = \pm \begin{pmatrix} n_{11} & -n_{12} & -n_{13} \\ -n_{21} & n_{22} & n_{23} \\ -n_{31} & n_{32} & n_{33} \end{pmatrix},$$
(4.2)

$$M_{\widehat{\Theta}} = \pm D_2 N_{\widehat{\Theta}} D_2 = \pm D_6 N_{\widehat{\Theta}} D_6 = \pm \begin{pmatrix} n_{11} & -n_{12} & n_{13} \\ -n_{21} & n_{22} & -n_{23} \\ n_{31} & -n_{32} & n_{33} \end{pmatrix},$$
(4.3)

$$M_{\widehat{\Theta}} = \pm D_3 N_{\widehat{\Theta}} D_3 = \pm D_7 N_{\widehat{\Theta}} D_7 = \pm \begin{pmatrix} n_{11} & n_{12} & -n_{13} \\ n_{21} & n_{22} & -n_{23} \\ -n_{31} & -n_{32} & n_{33} \end{pmatrix}.$$
 (4.4)

In what follows, when the equation (4.1) holds with positive or negative sign, we write (4.1^+) or (4.1^-) respectively (and the same for (4.2)–(4.4)).

The proofs of the following Propositions 4.2 and 4.3 rely on a detailed discussion of the homomorphism $\widehat{\Theta}$ given in Definition 3.9. This definition is based on Lemma 3.7 which analyzes the cancellations among $\theta(A)$, $\theta(B)$ and $\theta(C)$. Therefore, in what follows, it is important to look at (t, u, y), which are initial or final letters of the words *A*, *B* and *C*.

Proposition 4.2. Suppose that $|\lambda_{\widehat{\Theta}}| = \Lambda_{\widehat{\Theta}}$ holds. If (t, u, y) is either (a, b^{-1}, b^{-1}) , (b, b^{-1}, a^{-1}) , (b, a^{-1}, a^{-1}) , (a^{-1}, a, b^{-1}) , (b^{-1}, a, b^{-1}) or (a^{-1}, b, a^{-1}) , then the endomorphism $\widehat{\Theta}$ satisfies none of (4.1^{\pm}) , (4.2^{\pm}) , (4.3^{\pm}) and (4.4^{\pm}) .

Proof. We examine each case separately.

• *Case* $(t, u, y) = (a, b^{-1}, b^{-1})$. In this case, we have

$$\Theta(A) = \theta(v)\theta(A')\theta(a) = \cdots AB,$$

$$\Theta(B) = \theta(b^{-1})\theta(B')\theta(x) = B^{-1}C^{-1}\cdots,$$

$$\Theta(C) = \theta(w)\theta(C')\theta(b^{-1}) = \cdots B^{-1}C^{-1},$$

$$\begin{split} \widehat{\Theta}(A) &= \Theta(A)B^{-1} = \cdots A, \\ \widehat{\Theta}(B) &= B\Theta(B) = C^{-1}\cdots, \\ \widehat{\Theta}(C) &= \Theta(C)B^{-1} = \cdots B^{-1}C^{-1}B^{-1} \end{split}$$

If $\widehat{\Theta}(A)$ contains A^{-1} , then $m_{11}^+ > 0$ and $m_{11}^- > 0$. Since

$$m_{11} = m_{11}^+ - m_{11}^-$$
 and $n_{11} = m_{11}^+ + m_{11}^-$,

this implies that $|m_{11}| \neq n_{11}$ and none of (4.1^{\pm}) , (4.2^{\pm}) , (4.3^{\pm}) and (4.4^{\pm}) is satisfied by Proposition 4.1. It follows that $\widehat{\Theta}(A)$ contains A but not A^{-1} , and so $m_{11} > 0$. A similar argument shows that $\widehat{\Theta}(B)$ contains C^{-1} but not C, $\widehat{\Theta}(C)$ contains B^{-1} and C^{-1} but not B and C.¹ This yields that $m_{32} < 0$, $m_{23} < 0$ and $m_{33} < 0$.

All together, we have

$$m_{11} > 0$$
, $m_{32} < 0$, $m_{23} < 0$ and $m_{33} < 0$.

One sees that none of (4.1^{\pm}) , (4.2^{\pm}) , (4.3^{\pm}) and (4.4^{\pm}) is satisfied.

Since the proofs of the other cases are similar, below we only outline them.

• *Case* $(t, u, y) = (b, b^{-1}, a^{-1})$. In this case, we have

$$\Theta(A) = \cdots CB,$$

$$\Theta(B) = B^{-1}A^{-1}\cdots,$$

$$\Theta(C) = \cdots B^{-1}C^{-1},$$

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

$$\begin{split} \widehat{\Theta}(A) &= \cdots C, \\ \widehat{\Theta}(B) &= A^{-1} \cdots, \\ \widehat{\Theta}(C) &= \cdots B^{-1} C^{-1} B^{-1} \end{split}$$

This yields $m_{31} > 0$, $m_{12} < 0$, $m_{23} < 0$ and $m_{33} < 0$. One sees that none of (4.1^{\pm}) , (4.2^{\pm}) , (4.3^{\pm}) and (4.4^{\pm}) is satisfied.

• *Case* $(t, u, y) = (b, a^{-1}, a^{-1})$. In this case, we have

$$\Theta(A) = \cdots CB,$$

$$\Theta(B) = B^{-1}A^{-1}\cdots,$$

$$\Theta(C) = \cdots B^{-1}A^{-1},$$

¹This argument will appear repeatedly in the rest of this paper.

$$\begin{split} \hat{\Theta}(A) &= \cdots C, \\ \hat{\Theta}(B) &= A^{-1} \cdots, \\ \hat{\Theta}(C) &= \cdots B^{-1} A^{-1} B^{-1}. \end{split}$$

This yields $m_{31} > 0$, $m_{12} < 0$, $m_{13} < 0$ and $m_{23} < 0$. One sees that none of (4.1^{\pm}) , (4.2^{\pm}) , (4.3^{\pm}) and (4.4^{\pm}) is satisfied.

• *Case* $(t, u, y) = (a^{-1}, a, b^{-1})$. In this case, we have

$$\Theta(A) = \cdots B^{-1} A^{-1},$$

$$\Theta(B) = B^{-1} C^{-1} \cdots,$$

$$\Theta(C) = \cdots AB,$$

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

$$\widehat{\Theta}(A) = \cdots B^{-1} A^{-1} B^{-1},$$

$$\widehat{\Theta}(B) = C^{-1} \cdots,$$

$$\widehat{\Theta}(C) = \cdots A.$$

This yields $m_{11} < 0$, $m_{21} < 0$, $m_{32} < 0$ and $m_{13} > 0$. One sees that none of (4.1^{\pm}) , (4.2^{\pm}) , (4.3^{\pm}) and (4.4^{\pm}) is satisfied.

• *Case* $(t, u, y) = (b^{-1}, a, b^{-1})$. In this case, we have

$$\Theta(A) = \cdots B^{-1}C^{-1},$$

$$\Theta(B) = B^{-1}C^{-1}\cdots,$$

$$\Theta(C) = \cdots AB,$$

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

$$\widehat{\Theta}(A) = \cdots B^{-1} C^{-1} B^{-1},$$

$$\widehat{\Theta}(B) = C^{-1} \cdots,$$

$$\widehat{\Theta}(C) = \cdots A.$$

This yields $m_{21} < 0$, $m_{31} < 0$, $m_{32} < 0$ and $m_{13} > 0$. One sees that none of (4.1^{\pm}) , (4.2^{\pm}) , (4.3^{\pm}) and (4.4^{\pm}) is satisfied.

• *Case* $(t, u, y) = (a^{-1}, b, a^{-1})$. In this case, we have

$$\Theta(A) = \cdots B^{-1} A^{-1},$$

$$\Theta(B) = B^{-1} A^{-1} \cdots,$$

$$\Theta(C) = \cdots CB,$$

$$\widehat{\Theta}(A) = \cdots B^{-1} A^{-1} B^{-1},$$

$$\widehat{\Theta}(B) = A^{-1} \cdots,$$

$$\widehat{\Theta}(C) = \cdots C.$$

This yields $m_{11} < 0$, $m_{21} < 0$, $m_{12} < 0$ and $m_{33} > 0$. One sees that none of (4.1^{\pm}) , (4.2^{\pm}) , (4.3^{\pm}) and (4.4^{\pm}) is satisfied.

This concludes the proof of Proposition 4.2.

If θ satisfies Assumption \mathfrak{B} , the linear map L_{θ} is conformal. Then its representation matrix M_{θ} must be of the form:

$$M_{\theta} = \begin{pmatrix} \alpha & -\beta \\ \beta & \alpha \end{pmatrix}, \tag{4.5}$$

where α and β are integers.

Proposition 4.3. Suppose that $|\lambda_{\widehat{\Theta}}| = \Lambda_{\widehat{\Theta}}$ holds. If (t, u, y) is either (a, a^{-1}, b^{-1}) , (b, a, a), (b, a, b), (a, b, a), (a, b, b) or (b^{-1}, b, a^{-1}) , the linear map L_{θ} is not conformal.

Proof. First we determine the possible form of a certain matrix M_{Θ} . Let us write

$$\begin{pmatrix} m_a \\ m_b \end{pmatrix} := f(A), \quad \begin{pmatrix} n_a \\ n_b \end{pmatrix} := f(B), \quad \begin{pmatrix} l_a \\ l_b \end{pmatrix} := f(C).$$

Since M_{θ} is the representation matrix of L_{θ} induced from $\theta : G \to G$ by $f : G \to \mathbb{Z}^2$, and we decompose as $\theta(a) = AB$ and $\theta(b) = CB$, we have

$$M_{\theta} = \begin{pmatrix} f(\theta(a)) & f(\theta(b)) \end{pmatrix} = \begin{pmatrix} f(AB) & f(CB) \end{pmatrix} = \begin{pmatrix} m_a + n_a & n_a + l_a \\ m_b + n_b & n_b + l_b \end{pmatrix},$$

where each vector f(*) is regarded as a column vector.

Let $\tilde{f}: \tilde{G} \to \mathbb{Z}^3 \subset \mathbb{R}^3$ be the canonical homomorphism for Θ determined by

$$\widetilde{f}(A^{\pm 1}) = \begin{pmatrix} \pm 1\\ 0\\ 0 \end{pmatrix}, \quad \widetilde{f}(B^{\pm 1}) = \begin{pmatrix} 0\\ \pm 1\\ 0 \end{pmatrix}, \quad \widetilde{f}(C^{\pm 1}) = \begin{pmatrix} 0\\ 0\\ \pm 1 \end{pmatrix}.$$

The representation matrix of the induced linear map $L_{\Theta} : \mathbb{R}^3 \to \mathbb{R}^3$ is given by

$$M_{\Theta} = \begin{pmatrix} m_{a} & n_{a} & l_{a} \\ m_{a} + m_{b} & n_{a} + n_{b} & l_{a} + l_{b} \\ m_{b} & n_{b} & l_{b} \end{pmatrix}.$$

Suppose that M_{θ} takes the form of (4.5). Then we have

$$M_{\Theta} = \begin{pmatrix} \alpha - n_a & n_a & -\beta - n_a \\ \alpha + \beta - (n_a + n_b) & n_a + n_b & \alpha - \beta - (n_a + n_b) \\ \beta - n_b & n_b & \alpha - n_b \end{pmatrix}.$$
 (4.6)

Below, we examine each case separately.

• *Case* $(t, u, y) = (a, a^{-1}, b^{-1})$. In this case, we have

$$\begin{split} \Theta(A) &= \theta(v)\theta(A')AB, \\ \Theta(B) &= B^{-1}C^{-1}\theta(B')\theta(x), \\ \Theta(C) &= \theta(w)\theta(C')B^{-1}A^{-1}, \end{split}$$

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

$$\begin{split} \hat{\Theta}(A) &= \theta(v)\theta(A')A, \\ \hat{\Theta}(B) &= C^{-1}\theta(B')\theta(x), \\ \hat{\Theta}(C) &= \theta(w)\theta(C')B^{-1}A^{-1}B^{-1} \end{split}$$

This yields that $m_{11} > 0$, $m_{32} < 0$, $m_{13} < 0$ and $m_{23} < 0$. The only possible case which satisfies these conditions is (4.4^+) .

The part $\theta(v)\theta(A')$ consists of some $\theta(a)$, $\theta(a^{-1})$, $\theta(b)$ and $\theta(b^{-1})$, so it consists of an even number of A, A^{-1} , B, B^{-1} , C and C^{-1} . Since $\widehat{\Theta}(A)$ ends with A, the path in Proposition 3.6 representing $\theta(v)\theta(A')$ should start from the vertex p_1 . Therefore, $\theta(v)\theta(A')$ consists of either AB, $B^{-1}A^{-1}$, AC^{-1} , CA^{-1} , CB or $B^{-1}C^{-1}$. Since $\widehat{\Theta}(A)$ contains A, $\theta(v)\theta(A')$ can not contain A^{-1} as in the proof of Proposition 4.2. Suppose that $\theta(v)\theta(A')$ contains C. Then it can not contain C^{-1} by the same reasoning and hence $m_{31} > 0$, contradicting to the condition $m_{31} < 0$ in (4.4^+) . Suppose that $\theta(v)\theta(A')$ contains B^{-1} . Then it can not contain B by the same reasoning, and hence $m_{21} < 0$, contradicting to the condition $m_{21} > 0$ in (4.4^+) .

The argument above shows that $\theta(v)\theta(A')$ consists of only AB and AC^{-1} . Let p_A be the number of AB and q_A be the number of AC^{-1} in $\theta(v)\theta(A')$. Similarly, $\theta(B')\theta(x)$ consists of only AB and AC^{-1} . Let p_B be the number of AB and q_B be the number of AC^{-1} in $\theta(B')\theta(x)$. Finally, $\theta(w)\theta(C')$ consists of only $B^{-1}A^{-1}$ and CA^{-1} . Let p_C be the number of $B^{-1}A^{-1}$ and q_C be the number of AC^{-1} in $\theta(w)\theta(C')$. Then, we see

$$M_{\Theta} = \begin{pmatrix} p_A + q_A + 1 & p_B + q_B & -p_C - q_C - 1 \\ p_A + 1 & p_B - 1 & -p_C - 1 \\ -q_A & -q_B - 1 & q_C \end{pmatrix},$$
(4.7)

where $p_A, q_A, p_B, q_B, p_C, q_C \ge 0$.

By comparing the second columns of (4.6) and (4.7), we obtain

$$n_a = p_B + q_B, \quad n_b = -q_B - 1.$$
 (4.8)

The first columns of (4.6) and (4.7) together with (4.8) yield

$$\alpha = p_A + q_A + p_B + q_B + 1, \quad \beta = -q_B - q_A - 1.$$
(4.9)

The third columns of (4.6) and (4.7), together with (4.8), yield

$$\alpha = -q_B + q_C - 1, \quad \beta = -q_A - q_B + p_C + q_C + 1. \tag{4.10}$$

From (4.9) and (4.10), we obtain $p_A + 2q_A + 2q_B + p_C + 4 = 0$, which leads to a contradiction since $p_A, q_A, p_B, q_B, p_C, q_C \ge 0$.

• *Case* (t, u, y) = (b, a, a). In this case, we have

$$\Theta(A) = \theta(v)\theta(A')CB,$$

$$\Theta(B) = AB\theta(B')\theta(x),$$

$$\Theta(C) = \theta(w)\theta(C')AB,$$

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

$$\widehat{\Theta}(A) = \theta(v)\theta(A')C,$$

$$\widehat{\Theta}(B) = BAB\theta(B')\theta(x),$$

$$\widehat{\Theta}(C) = \theta(w)\theta(C')A.$$

This yields that $m_{31} > 0$, $m_{12} > 0$, $m_{22} > 0$ and $m_{13} > 0$. The only possible case which satisfies these conditions is (4.1^+) . Together with (4.6), we obtain

$$\alpha - n_a \ge 0, \quad \beta - n_b \ge 0, \quad n_a \ge 0, \quad n_b \ge 0, \quad -\beta - n_a \ge 0, \quad \alpha - n_b \ge 0.$$

It is then easy to deduce $n_a = n_b = 0$ from these conditions. Since $\Theta(B)$ is not an empty word, this is a contradiction.

The proofs of the cases (t, u, y) = (b, a, b), (a, b, a), (a, b, b) are similar, and hence we omit them.

• *Case* $(t, u, y) = (b^{-1}, b, a^{-1})$. In this case, we have

$$\Theta(A) = \theta(v)\theta(A')AB,$$

$$\Theta(B) = B^{-1}C^{-1}\theta(B')\theta(x),$$

$$\Theta(C) = \theta(w)\theta(C')B^{-1}A^{-1},$$

$$\begin{split} \Theta(A) &= \theta(v)\theta(A')A,\\ \widehat{\Theta}(B) &= C^{-1}\theta(B')\theta(x),\\ \widehat{\Theta}(C) &= \theta(w)\theta(C')B^{-1}A^{-1}B^{-1} \end{split}$$

This yields that $m_{11} > 0$, $m_{32} < 0$, $m_{13} < 0$ and $m_{23} < 0$. The only possible case which satisfies these conditions is (4.4^+) .

An argument similar to the case $(t, u, y) = (a, a^{-1}, b^{-1})$ shows that $\theta(v)\theta(A')$ consists of only AC^{-1} and $B^{-1}C^{-1}$. Let p_A be the number of AC^{-1} and q_A be the number of $B^{-1}C^{-1}$ in $\theta(v)\theta(A')$. Similarly, $\theta(B')\theta(x)$ consists of only $B^{-1}A^{-1}$ and CA^{-1} . Let p_B be the number of AB and q_B be the number of AC^{-1} in $\theta(B')\theta(x)$. Finally, $\theta(w)\theta(C')$ consists of only CB and CA^{-1} . Let p_C be the number of CB and q_C be the number of CA^{-1} in $\theta(w)\theta(C')$. Then, we see

$$M_{\Theta} = \begin{pmatrix} p_A & -p_B - q_B - 1 & -q_C \\ q_A - 1 & -p_B - 1 & p_C + 1 \\ -p_A - q_A - 1 & q_B & p_C + q_C + 1 \end{pmatrix}, \quad (4.11)$$

where $p_A, q_A, p_B, q_B, p_C, q_C \ge 0$.

By comparing the second columns of (4.6) and (4.11), we obtain

$$n_a = -p_B - q_B - 1, \quad n_b = q_B. \tag{4.12}$$

The first columns of (4.6) and (4.11), together with (4.12), yield

$$\alpha = p_A - p_B - q_B - 1, \quad \beta = -p_A - q_A + q_B - 1. \tag{4.13}$$

The third columns of (4.6) and (4.11), together with (4.12), yield

$$\alpha = q_B + p_C + q_C + 1, \quad \beta = p_B + q_B + q_C + 1. \tag{4.14}$$

From (4.13) and (4.14) we obtain $p_B + q_A + 2q_B + p_C + 2q_C + 4 = 0$, which leads to a contradiction since $p_A, q_A, p_B, q_B, p_C, q_C \ge 0$.

This concludes the proof of Proposition 4.3.

*Proof of Theorem*1.1. Since $N_{\widehat{\Theta}}$ is primitive by Assumption \mathfrak{C} and since $|m_{ij}| \leq n_{ij}$, we apply Wielandt's theorem (see (A.1)) to obtain $|\lambda_{\widehat{\Theta}}| \leq \Lambda_{\widehat{\Theta}}$. Since θ satisfies Assumptions \mathfrak{B} and \mathfrak{C} , we can apply Theorem 3.12 to conclude dim_H $K_{\theta} \geq 1$.

Suppose that $\dim_{\mathrm{H}} K_{\theta} = 1$ holds. Then, by Theorem 3.12, we have $\Lambda_{\widehat{\Theta}} = |\lambda_{\widehat{\Theta}}|$. Proposition 4.1 yields that there exists $0 \le i \le 3$ such that $M_{\widehat{\Theta}} = \pm D_i N_{\widehat{\Theta}} D_i$. By Proposition 4.2, the only possibilities are those listed in Proposition 4.3. It follows from Proposition 4.3 that L_{θ} can not be conformal for these cases, contradicting to Assumption \mathfrak{B} . Hence, $\dim_{\mathrm{H}} K_{\theta} > 1$.

Figure 5. Pre-limit sets.

5. A piecewise smooth example

In this section, we prove Theorem 1.2. Recall that the endomorphism $\theta : G \to G$ in Theorem 1.2 is given by $\theta(a) = ab^{-1}$ and $\theta(b) = a^{-m}b^{-1}$ for a positive integer *m*. To clarify the situation, let us first observe the "pre-limit set"

$$K_n = L_{\theta}^{-n} K \left[\theta^n (aba^{-1}b^{-1}) \right]$$

for $1 \le n \le 4$ with m = 5 (see Figure 5).

Proof of Theorem 1.2. Let *P* be the parallelogram with the vertices (0, 0), (1, 0), (0, 1) and (-1, 1), in order. We show that the subsequences of K_n for even *n* and odd *n* both converge to *P*.

Put A := a, $B := b^{-1}$ and $C := a^{-m}$. Then $\Theta(A) = AB$, $\Theta(B) = B^{-1}C^{-1}$ and $\Theta(C) = (B^{-1}A^{-1})^m$. We see that θ belongs to (I) of Definition 3.9 and hence $\widehat{\Theta}$ is given by $\widehat{\Theta}(A) = A$, $\widehat{\Theta}(B) = C^{-1}$ and $\widehat{\Theta}(C) = (B^{-1}A^{-1})^m B^{-1}$. One can then

check that

$$\widehat{\Theta}^2(AB) = (AB)^{m+1},$$

$$\widehat{\Theta}^2(AC^{-1}) = (AC^{-1})^{m+1},$$

$$\widehat{\Theta}^2(CB) = (CA^{-1})^m CB(AB)^m,$$

From this, we have

$$\widehat{\Theta}^{2n}(ABCA^{-1}B^{-1}C^{-1}) = (AC^{-1})^{(m+1)^n}(B^{-1}A^{-1})^{(m+1)^{n+1}}(CA^{-1})^{(m+1)^{n-1}}$$
$$CB(AB)^{(m+1)^{n+1}-1}.$$

By (3.5), we see $i(\widehat{\Theta}^{n-1}(ABCA^{-1}B^{-1}C^{-1})) = \theta^n(aba^{-1}b^{-1})$, and hence

$$\theta^{2(n+1)}(aba^{-1}b^{-1}) = (AC^{-1})^{(m+1)^n} (B^{-1}A^{-1})^{(m+1)^{n+1}} (CA^{-1})^{(m+1)^{n-1}} CB(AB)^{(m+1)^{n+1}-1}.$$
(5.1)

On the other hand, we have

$$M_{\theta}^{-2(n+1)} = \frac{1}{(m+1)^{n+1}} \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}.$$

See Figure 6 for the shape of $K_{2(n+1)}$. The length of an edge of the "staircase" part of $K_{2(n+1)}$ is $(m+1)^{-(n+1)}$, hence we obtain $P \subset (K_{2(n+1)})_{\varepsilon}$ for $\varepsilon \ge (m+1)^{-(n+1)}$ and $K_{2(n+1)} \subset P_{\varepsilon'}$ for $\varepsilon' \ge \frac{1}{\sqrt{2}}(m+1)^{-(n+1)}$ (see Figure 6 again), where A_{ε} denotes the ε -neighborhood of $A \subset \mathbb{R}^2$ (see [6]). From this, we conclude

$$d_{\rm H}(P, K_{2(n+1)}) \le \frac{1}{(m+1)^{n+1}} \to 0$$

as $n \to \infty$, where $d_{\rm H}$ denotes the Hausdorff distance.

In the case that n is odd, we have

$$\hat{\Theta}^{2(n-1)}(ABCA^{-1}B^{-1}C^{-1}) = (AB)^{(m+1)^n}(CA^{-1})^{(m+1)^n}(B^{-1}A^{-1})^{(m+1)^{n-1}}$$
$$B^{-1}C^{-1}(AC^{-1})^{(m+1)^n-1},$$

and hence

$$\theta^{2n+1}(aba^{-1}b^{-1}) = (AB)^{(m+1)^n}(CA^{-1})^{(m+1)^n}(B^{-1}A^{-1})^{(m+1)^{n-1}}$$
$$B^{-1}C^{-1}(AC^{-1})^{(m+1)^n-1}.$$

Figure 6. Comparison between $K_{2(n+1)}$ and P.

Figure 7. Comparison between K_{2n+1} and P.

On the other hand, we have

$$M_{\theta}^{-(2n+1)} = \frac{1}{(m+1)^{n+1}} \begin{pmatrix} -1 & m \\ 1 & 1 \end{pmatrix}.$$

See Figure 7 for the shape of K_{2n+1} . Similarly, in the case that *n* is even, we see that

$$P \subset (K_{2n+1})_{\varepsilon} \quad \text{for } \varepsilon \ge \sqrt{2}(m+1)^{-(n+1)},$$

$$K_{2n+1} \subset P_{\varepsilon'} \quad \text{for } \varepsilon' \ge (m+1)^{-(n+1)}$$

(see Figure 7 again). From this, we conclude

$$d_{\rm H}(P, K_{2n+1}) \le \frac{\sqrt{2}}{(m+1)^{n+1}} \to 0.$$

as $n \to \infty$. Therefore, $K_{\theta} = P$.

A. Wielandt's theorem

In this appendix, we explain Wielandt's theorem following Gantmacher [7, p. 69, Lemma 2]. The zero matrix is denoted as O. For two matrices $A = (a_{ij})$ and $B = (b_{ij})$ of the same size, we write A > B (resp. $A \ge B$) if $a_{ij} > b_{ij}$ (resp. $a_{ij} \ge b_{ij}$) for all i, j. A matrix A is said to be *positive* (resp. *non-negative*) if A > O (resp. $A \ge O$). Give a matrix A, let A^+ be obtained by replacing every element of A with its absolute value, i.e., $A^+ = (|a_{ij}|)$.

Theorem A.1 (Wielandt's theorem). Let A and C be two square matrices of the same size. Assume that A is primitive, and A and C satisfy $C^+ \leq A$. Then the Perron–Frobenius eigenvalue r of A satisfies

$$|\gamma| \le r \tag{A.1}$$

for arbitrary eigenvalue γ of *C*. In addition, γ is an eigenvalue of *C* satisfying the equality in (A.1) if and only if

$$C = \exp(i\varphi) DAD^{-1}, \tag{A.2}$$

where $\exp(i\varphi) = \gamma/r$ and D is a diagonal matrix such that D^+ is equal to the identity matrix. When moreover C is a real matrix, the diagonal elements of D are equal to ± 1 .

Acknowledgements. This paper is based on the master thesis of the second author written under the supervision of the first author.

Funding. The first author is supported by JSPS KAKENHI grant numbers 20H01809 and 18K18722.

References

- T. Bedford, Crinkly curves, Markov partitions and dimension. Ph.D. thesis, Warwick University, 1984 http://webcat.warwick.ac.uk/record=b1464305~S1
- [2] R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Math. 470, Springer, Berlin-New York, 1975 Zbl 0308.28010 MR 0442989
- [3] R. Bowen, Markov partitions are not smooth. Proc. Amer. Math. Soc. 71 (1978), no. 1, 130–132 Zbl 0417.58011 MR 474415
- [4] E. Cawley, Smooth Markov partitions and toral automorphisms. *Ergodic Theory Dynam.* Systems 11 (1991), no. 4, 633–651 Zbl 0754.58028 MR 1145614
- [5] F. M. Dekking, Recurrent sets. Adv. in Math. 44 (1982), no. 1, 78–104 Zbl 0495.51017 MR 654549

- [6] K. Falconer, *Fractal geometry*. Third edn., John Wiley & Sons, Ltd., Chichester, 2014 Zbl 1285.28011 MR 3236784
- [7] F. R. Gantmacher, *Applications of the theory of matrices*. Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1959 Zbl 0085.01001 MR 0107648
- [8] S. Ito and M. Ohtsuki, On the fractal curves induced from endomorphisms on a free group of rank 2. *Tokyo J. Math.* 14 (1991), no. 2, 277–304 Zbl 0752.11010 MR 1138167
- [9] J. G. Sinaĭ, Construction of Markov partitionings. *Funkcional. Anal. i Priložen.* 2 (1968), no. 3, 70–80 MR 0250352

Received 30 April 2021; revised 23 May 2022.

Yutaka Ishii

Department of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan; yutaka@math.kyushu-u.ac.jp

Tatsuya Oka

Data & Security Research Laboratory, Fujitsu Research, Fujitsu Limited, Nakahara-ku, Kawasaki 211-8588, Japan; oka-tatsuya@fujitsu.com