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On the Hausdorff dimension of the recurrent sets
induced from endomorphisms of free groups

Yutaka Ishii and Tatsuya Oka

Abstract. We show that F. Dekking’s recurrent sets in R2, which correspond to Markov parti-
tions for conformally expanding maps of the 2-torus, have Hausdorff dimension strictly greater
than one. This is a counterpart to the classical result of R. Bowen on the non-smoothness of the
Markov partitions for Anosov diffeomorphisms of the 3-torus. We also present a non-conformal
example where the recurrent set is a parallelogram and hence its Hausdorff dimension is one.

1. Introduction and main results

This paper investigates the Hausdorff dimension of recurrent sets in R2. The notion
of recurrent sets has been introduced by Dekking [5] as a method to construct fractal
tilings of the Euclidean spaces. To grasp the idea of his construction, let us start with
a particular example.

Let G D ha; bi be the free group generated by two elements a and b. We first
associate vectors in R2 to the generators as f .a/ WD .1; 0/, f .b/ WD .0; 1/, f .a�1/ WD
.�1; 0/ and f .b�1/ WD .0;�1/. Then for a reduced word c D c1 � � � ck 2 G (where
each cj is either a, b, a�1 or b�1), we define the geometric realization of c denoted
by KŒc� to be the broken line in R2 obtained as the successive concatenation of the
arrows f .c1/; : : : ;f .ck/. For example, when cD aba�1b�1, its geometric realization
KŒaba�1b�1� is the unit square with vertices at .0; 0/, .1; 0/, .1; 1/ and .0; 1/.

Let � W G ! G be the endomorphism of G given by

a 7! ab�1;

b 7! a�1b�2:

Then KŒ�n.aba�1b�1/� becomes a broken loop in R2 for every n � 0. Let L� W
R2 ! R2 be the invertible linear map given by

L� .x; y/ D .x � y;�x � 2y/:
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Figure 1. L�n
�
KŒ�n.aba�1b�1/� for n D 1; 2; 3 and 4 (from left to right).

Figure 2. The recurrent set K� .

This map is introduced so that its inverse iteration L�n
�

“rescales” the size of
KŒ�n.aba�1b�1/� (see Figure 1 for n D 1; 2; 3 and 4). Moreover, it can be shown
[1, 8] that the limit

K� D lim
n!1

L�n� K
�
�n.aba�1b�1/

�
exists in the sense of the Hausdorff topology (see, e.g., [6] for the definition of the
Hausdorff topology); we call it the recurrent set of � (see Figure 2).

The purpose of this paper is to show that the recurrent setK� for an endomorphism
� of the free group of rank two always forms a fractal set under certain assumptions
on � . In Section 3, we introduce three kinds of assumptions on � : Assumptions A, B

and C. Assumption A requires that the rescaling mapL� is expanding, Assumption B

requires that the rescaling map L� is conformal and expanding (hence Assumption B

is stronger than Assumption A), and Assumption C requires the primitivity of a matrix
which represents certain reduction of � .

Our first main result is the following.

Theorem 1.1. If � WG!G satisfies Assumptions B and C, the Hausdorff dimension
of its recurrent set K� is strictly greater than 1.



Hausdorff dimension of the recurrent sets 173

Indeed, Bedford [1] constructed a Markov partition for the expanding map of the
2-torus induced from the linear map L� W R2 ! R2 in terms of Dekking’s formal-
ism (which is different from the classical construction by Sinaı̆ [9] and Bowen [2])
and pointed out that the recurrent set K� forms the boundary of the Markov parti-
tion. Therefore, Theorem 1.1 can be seen as a counterpart to the classical result of
Bowen [3] on the non-smoothness of the Markov partitions for Anosov diffeomorph-
isms of the 3-torus.

We also show that the conformality condition in Assumption B is essential in
Theorem 1.1.

Theorem 1.2. Let m be a positive integer and define � W G ! G by

a 7! ab�1;

b 7! a�mb�1:

Then its recurrent set K� is a parallelogram with vertices .0; 0/, .1; 0/, .0; 1/ and
.�1; 1/. In particular, the Hausdorff dimension of K� is equal to 1.

We notice that the endomorphism � in Theorem 1.2 satisfies Assumptions A and C

but not Assumption B, i.e., the induced linear mapL� is expanding but not conformal.
Note also that a result of Cawley [4] states the existence of a Markov partition with
piecewise smooth boundary for an Anosov diffeomorphism of the n-torus for every
n � 4.

The organization of this paper is as follows. In Section 2, we review the precise
formulation of Dekking’s recurrent sets. In Section 3, Assumptions A, B and C men-
tioned above are presented and the reduction technique of � due to Ito and Ohtsuki [8]
is examined. Section 4 is devoted to the proof of Theorem 1.1 and Section 5 is devoted
to the proof of Theorem 1.2. Finally, in Appendix A, we present Wielandt’s theorem
which is a key fact in the proof of Theorem 1.1.

2. Dekking’s recurrent sets

Let G be a free group generated by two elements a; b. Namely, G is considered as
the quotient set of the free semigroup S� generated by S WD ¹a; b; a�1; b�1º by the
equivalence relation�, where forW;V 2 S�, we defineW � V if their reduced words
coincide. Therefore, an element of G can be identified with a unique reduced word.

We first construct the canonical homomorphism f W G ! Z2 � R2 as follows.
We set

f .a/ WD

 
1

0

!
; f .b/ WD

 
0

1

!
; f .a�1/ WD

 
�1

0

!
; f .b�1/ WD

 
0

�1

!
;
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as in Section 1. Then we extend f to G by the relation

f .V W / D f .V /C f .W /

for reduced words V;W 2 G, where V W 2 G is the reduced word obtained from the
concatenation of V and W .

Let KŒR2� be the set of all non-empty compact sets in R2. We next define a map
K W G ! KŒR2� which assigns a broken line to each reduced word. First, we set

zKŒs� WD
®
f̨ .s/ W 0 � ˛ � 1

¯
for s 2 S , which is a unit segment. For a reduced word W D s1 � � � sm 2 G (si 2 S ),
we set

zKŒW � WD

m[
iD1

�
zKŒsi �C f .s1 � � � si�1/

�
;

where A C z D ¹a C z W a 2 Aº for A � R2 and z 2 R2. When W 2 G satisfies
f .W / ¤ .0; 0/, we set KŒW � WD zKŒW �. When W 2 G satisfies f .W / D .0; 0/, we
set

KŒW � WD zKŒW 0�C f .A/;

where A is the longest word such that W D AW 0A�1 and AW 0A�1 has no cancella-
tions.

Given an endomorphism � of G, there is a linear map L� W R2 ! R2 so that the
following diagram commutes:

G
�

����! G

f

??y f

??y
R2

L�
����! R2

Definition 2.1. We say that � has short range cancellations if for any reduced word
of the form stu 2 G .s; t; u 2 S/, reducing �.s/�.t/�.u/ does not erase all letters of
any of the subwords �.s/; �.t/; �.u/ 2 G.

To clarify this definition, let us consider the following two examples.

Example 2.2. Let � be the endomorphism given by

a 7! ab�1;

b 7! a�2b�1:

It is then easy to check that some letters of any subwords �.s/ (s 2 S ) appeared
in �.a�1ba�1/ D �.a�1/�.b/�.a�1/ and �.b�1ab�1/ D �.b�1/�.a/�.b�1/ are not
erased by the cancellations. Therefore, � has short range cancellations.
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Example 2.3. Let � be the endomorphism given by

a 7! aba2;

b 7! ab2a2:

Then, we see

�.b�1ab�1/ D �.b�1/�.a/�.b�1/

D a�2b�2a�1„ ƒ‚ …
�.b�1/

aba2„ƒ‚…
�.a/

a�2b�2a�1„ ƒ‚ …
�.b�1/

D a�2b�1„ ƒ‚ …
�.b�1/

b�2a�1„ ƒ‚ …
�.b�1/

:

Since all letters in the subwords �.a/ are erased by the cancellations, � does not have
short range cancellations.

Having short range cancellations yields the existence of the recurrent set. Namely,
we have the following result due to Dekking.

Theorem 2.4 (Dekking [5]). If � has short range cancellations, the limit

K� WD lim
n!1

L�n� K
�
�n.aba�1b�1/

�
exists with respect to the Hausdorff topology in KŒR2�.

Let us call the limit K� in Theorem 2.4 the recurrent set of � .

3. Reductions of Ito and Ohtsuki

In this section, we review the reduction technique of � due to Ito and Ohtsuki [8].

Definition 3.1. We say that a broken loopKŒ�.aba�1b�1/� is double point free if no
pairs of edges in the loop intersect topologically transversally.

Here, topological transversality means that the intersection persists under small
perturbations of the broken loop. Figure 3 represents two examples of an overlap of
two edges in a broken loop which are double point free and Figure 4 represents two
examples which are not double point free.

We say that the linear mapL� is expanding if the absolute values of its eigenvalues
are both strictly greater than 1. The next assumption is identical to [8, Assumption 1].
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Figure 3. Double point free broken loop.

Figure 4. Not double point free broken loop.

Definition 3.2 (Assumption A). If an endomorphism � of G satisfies the following
conditions:

(i) � has short range cancellations;

(ii) KŒ�.aba�1b�1/� is double point free;

(iii) L� is expanding;

then we say that � satisfies Assumption A.

We say that the linear map L� is conformally expanding if L� is a rotation fol-
lowed by a scalar multiplication by �� with absolute value strictly greater than 1. The
next assumption is identical to [8, Assumption 10].

Definition 3.3 (Assumption B). If an endomorphism � of G satisfies the following
conditions:

(i) � has short range cancellations;

(ii) KŒ�.aba�1b�1/� is double point free;

(iii) L� is conformally expanding;

then we say that � satisfies Assumption B.

Obviously, Assumption A is weaker than Assumption B.
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The adjoint �W W G ! G of � with respect to W 2 G is defined by

�W .V / WD W �.V /W
�1

for any V 2 G. We set

P� WD
®
�.s/�.t/ W .s; t/ D .a; b/; .b; a�1/; .a�1; b�1/; .b�1; a/

¯
for an endomorphism � .

Theorem 3.4 ([8, Theorem 2.1]). Let � be an endomorphism ofG satisfying Assump-
tion A. Then there exists a word W 2 G so that the adjoint �W satisfies one of the
following conditions:

(i) �W has cancellations only in �W .b/�W .a�1/ among P�W ;

(ii) �W has cancellations only in �W .a�1/�W .b�1/ among P�W ;

(iii) �W has no cancellations.

Furthermore, the case (ii) in the previous theorem can be reduced to the case (i).
To see this, let � be the automorphism of G defined by �.a/ D b and �.b/ D a�1.

Theorem 3.5 ([8, Theorem 2.2]). Let � an endomorphism satisfying Assumption A

and let W be the word as in Theorem 3.4. If the adjoint �W satisfies (ii) of The-
orem 3.4, then � 0 D ��W ��1 has cancellations only in � 0.b/� 0.a�1/ among P� 0 .

Thanks to Theorems 3.4 and 3.5, we may assume that only �.b/�.a�1/ can have
cancellations among P� for � satisfying Assumption A. Then �.a/ and �.b/ can be
uniquely decomposed as

�.a/ D AB and �.b/ D CB (3.1)

by some words A;B;C 2 G, where

AB;CB;BC;BA;C�1A;CA�1 are reduced words. (3.2)

For W 2 G, we can write �.W / D W1W2 � � �Wk , where Wi is either A˙1, B˙1 or
C˙1, which we call the block representation of �.W /. Let G be the directed graph
given by

p1 p2

A

B

C

We say that �.W / D W1W2 � � �Wk is G -admissible if W1; : : : ; Wk forms a path in G .
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Proposition 3.6 ([8, Proposition 3.1]). For any W 2 G, �.W / is G -admissible.

In order to check whether �.P /�.Q/ has cancellations for P;Q 2 ¹A;B;C;A�1;
B�1; C�1º, we only need to consider the following cases:

.P;Q/ 2
®
.A;B/; .C;A�1/; .B�1; C�1/; .B; C /; .A�1; B�1/; .C�1; A/

¯
thanks to Proposition 3.6. To see this, let us decompose A, B and C as

A D vA0t; B D yB 0x and C D wC 0u; (3.3)

where v; t; y; x;w;u 2 S and A0;B 0;C 0 2G. Then, from (3.2), we have the following
relations:

y ¤ t�1; u�1; t ¤ u; x ¤ v�1; w�1 and v ¤ w:

Lemma 3.7 ([8, Lemma 4.1]). Under the assumption that only �.b/�.a�1/ has can-
cellations among P� , we have

(1) �.A/�.B/ has cancellations if and only if

.t; u; y/ 2
®
.a; a�1; b�1/; .a; b�1; b�1/; .b; b�1; a�1/; .b; a�1; a�1/

¯
I

(2) �.C /�.A�1/ has cancellations if and only if

.t; u; y/ 2
®
.b; a; a/; .b; a; b/; .a; b; a/; .a; b; b/

¯
I

(3) �.B�1/�.C�1/ has cancellations if and only if

.t; u; y/ 2
®
.a�1; a; b�1/; .b�1; a; b�1/; .a�1; b; a�1/; .b�1; b; a�1/

¯
I

(4) �.B/�.C / has cancellations if and only if

.x; v; w/ 2
®
.a; a; b�1/; .a; b; b�1/; .b; a; a�1/; .b; b; a�1/

¯
I

(5) �.A�1/�.B�1/ has cancellations if and only if

.x; v; w/ 2
®
.a; b�1; a/; .a; b�1; b/; .b; a�1; a/; .b; a�1; b/

¯
I

(6) �.C�1/�.A/ has cancellations if and only if

.x; v; w/ 2
®
.a�1; a�1; b�1/; .b�1; a�1; b�1/;

.a�1; b�1; a�1/; .b�1; b�1; a�1/
¯
:
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Lemma 3.8 ([8, Lemma 4.2]). Under the assumption of Lemma 3.7, we have

(1) the cases (1)–(3) in Lemma 3.7 are mutually exclusive;

(2) the cases (4)–(6) in Lemma 3.7 are mutually exclusive.

Let zG be the free group of rank 3 where the words A; B and C are regarded as
generators. Let i W zG ! G be a homomorphism sending the generators A;B;C of zG
to the words A;B;C of G, and define an endomorphism ‚ of zG as

‚.W / WD the block representation of �.i.W // (3.4)

for W 2 zG. Then the following diagram commutes:

zG
‚

����! zG

i

??y i

??y
G

�
����! G

(3.5)

Based on Lemma 3.8, we define the reduced endomorphism y‚ of ‚ as follows.

Definition 3.9. We define the reduced endomorphism y‚ of ‚ as follows.

(I) If exactly one of (1)–(3) in Lemma 3.7 holds but any of (4)–(6) in Lemma 3.7
fails, we define

y‚.A/ WD ‚.A/B�1; y‚.B/ WD B‚.B/; y‚.C/ WD ‚.C/B�1:

(II) If exactly one of (4)–(6) in Lemma 3.7 holds but any of (1)–(3) in Lemma 3.7
fails, we define

y‚.A/ WD B‚.A/; y‚.B/ WD ‚.B/B�1; y‚.C/ WD B‚.C/:

(III) If exactly one of (1)–(3) in Lemma 3.7 holds and exactly one of (4)–(6) in
Lemma 3.7 holds, we define

y‚.A/ WD B‚.A/B�1; y‚.B/ WD B‚.B/B�1; y‚.C/ WD B‚.C/B�1:

Theorem 3.10 ([8, Theorem 4.1]). The endomorphism y‚ W zG ! zG has no cancella-
tions on any G -admissible words.

Set X1 WD A, X2 WD B and X3 WD C . Let mCij (resp. m�ij ) be the number of Xi ’s
(resp. X�1i ’s) in y‚.Xj /. Let mij WD mCij � m

�
ij and define a matrix My‚ D .mij /.

Similarly, let nij WD mCij Cm
�
ij and define a matrix Ny‚ D .nij /. Note that we easily

see that jmij j � nij . The next assumption is identical to [8, Assumption 2].
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Definition 3.11 (Assumption C). We say that an endomorphism � satisfies Assump-
tion C if Ny‚ is primitive, i.e., there exists n � 1 such that all entries of the n-th power
N n
y‚

are strictly positive.

Denote by �y‚ (resp. ƒy‚) the greatest eigenvalue of My‚ (resp. Ny‚) in modulus.
Then the Hausdorff dimension of K� is given by the following formula.

Theorem 3.12 ([8, Theorem 6.1 (2)]). If an endomorphism � satisfies Assumptions
B and C, the Hausdorff dimension of the recurrent set K� is given by

dimHK� D
logƒy‚
log j�y‚j

: (3.6)

We note that the conformality condition (iii) in Assumption B implies the exist-
ence of a probability measure with local scaling property of order

logƒy‚
log j�y‚j

:

This together with Frostman’s lemma (see [6, Mass distribution principle 4.2]) yields
that the right-hand side of (3.6) gives a lower bound for dimHK� .

4. Proof of Theorem 1.1

In this section, we prove Theorem1.1. The proof consists of three steps: first, to find
certain restriction on the entries of My‚ satisfying j�y‚j D ƒy‚ thanks to Wielandt’s
theorem (see (A.2)); second, to classify such matrices My‚ into some cases according
to Lemma 3.7; and third, to show that these cases do not satisfy the conformality
condition in Assumption B.

Let Di , 0 � i � 7, be the matrices given by

D0 WD

0B@1 0 0

0 1 0

0 0 1

1CA ; D1 WD

0B@�1 0 0

0 1 0

0 0 1

1CA ;
D2 WD

0B@1 0 0

0 �1 0

0 0 1

1CA ; D3 WD

0B@1 0 0

0 1 0

0 0 �1

1CA ;
D4 WD �D0; D5 WD �D1; D6 WD �D2 and D7 WD �D3:

Proposition 4.1. Suppose that Assumption C holds. Then j�y‚j D ƒy‚ if and only if
there exists 0 � i � 7 such that My‚ D ˙DiNy‚Di .
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Proof. Recall that we have jmij j � nij . Since Ny‚ is primitive by Assumption C, we
apply Wielandt’s theorem (see (A.1)) to obtain j�y‚j � ƒy‚. Moreover, j�y‚j D ƒy‚
holds if and only if there exists 0 � i � 7 such that My‚ D ˙DiNy‚Di .

The condition My‚ D ˙DiNy‚Di in Proposition 4.1 can be expressed more con-
cretely as

My‚ D ˙D0Ny‚D0 D ˙D4Ny‚D4 D ˙

0B@n11 n12 n13

n21 n22 n23

n31 n32 n33

1CA ; (4.1)

My‚ D ˙D1Ny‚D1 D ˙D5Ny‚D5 D ˙

0B@ n11 �n12 �n13

�n21 n22 n23

�n31 n32 n33

1CA ; (4.2)

My‚ D ˙D2Ny‚D2 D ˙D6Ny‚D6 D ˙

0B@ n11 �n12 n13

�n21 n22 �n23

n31 �n32 n33

1CA ; (4.3)

My‚ D ˙D3Ny‚D3 D ˙D7Ny‚D7 D ˙

0B@ n11 n12 �n13

n21 n22 �n23

�n31 �n32 n33

1CA : (4.4)

In what follows, when the equation (4.1) holds with positive or negative sign, we write
(4.1C) or (4.1�) respectively (and the same for (4.2)–(4.4)).

The proofs of the following Propositions 4.2 and 4.3 rely on a detailed discus-
sion of the homomorphism y‚ given in Definition 3.9. This definition is based on
Lemma 3.7 which analyzes the cancellations among �.A/, �.B/ and �.C /. There-
fore, in what follows, it is important to look at .t; u; y/, which are initial or final
letters of the words A, B and C .

Proposition 4.2. Suppose that j�y‚j D ƒy‚ holds. If .t; u; y/ is either .a; b�1; b�1/,
.b; b�1; a�1/, .b; a�1; a�1/, .a�1; a; b�1/, .b�1; a; b�1/ or .a�1; b; a�1/, then the
endomorphism y‚ satisfies none of (4.1˙), (4.2˙), (4.3˙) and (4.4˙).

Proof. We examine each case separately.

� Case .t; u; y/ D .a; b�1; b�1/. In this case, we have

‚.A/ D �.v/�.A0/�.a/ D � � �AB;

‚.B/ D �.b�1/�.B 0/�.x/ D B�1C�1 � � � ;

‚.C / D �.w/�.C 0/�.b�1/ D � � �B�1C�1;
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by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

y‚.A/ D ‚.A/B�1 D � � �A;

y‚.B/ D B‚.B/ D C�1 � � � ;

y‚.C/ D ‚.C/B�1 D � � �B�1C�1B�1:

If y‚.A/ contains A�1, then mC11 > 0 and m�11 > 0. Since

m11 D m
C
11 �m

�
11 and n11 D m

C
11 Cm

�
11;

this implies that jm11j ¤ n11 and none of (4.1˙), (4.2˙), (4.3˙) and (4.4˙) is satisfied
by Proposition 4.1. It follows that y‚.A/ contains A but not A�1, and so m11 > 0. A
similar argument shows that y‚.B/ contains C�1 but not C , y‚.C/ contains B�1 and
C�1 but not B and C .1 This yields that m32 < 0, m23 < 0 and m33 < 0.

All together, we have

m11 > 0; m32 < 0; m23 < 0 and m33 < 0:

One sees that none of (4.1˙), (4.2˙), (4.3˙) and (4.4˙) is satisfied.

Since the proofs of the other cases are similar, below we only outline them.

� Case .t; u; y/ D .b; b�1; a�1/. In this case, we have

‚.A/ D � � �CB;

‚.B/ D B�1A�1 � � � ;

‚.C / D � � �B�1C�1;

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

y‚.A/ D � � �C;

y‚.B/ D A�1 � � � ;

y‚.C/ D � � �B�1C�1B�1:

This yields m31 > 0, m12 < 0, m23 < 0 and m33 < 0. One sees that none of (4.1˙),
(4.2˙), (4.3˙) and (4.4˙) is satisfied.

� Case .t; u; y/ D .b; a�1; a�1/. In this case, we have

‚.A/ D � � �CB;

‚.B/ D B�1A�1 � � � ;

‚.C / D � � �B�1A�1;

1This argument will appear repeatedly in the rest of this paper.
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by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

y‚.A/ D � � �C;

y‚.B/ D A�1 � � � ;

y‚.C/ D � � �B�1A�1B�1:

This yields m31 > 0, m12 < 0, m13 < 0 and m23 < 0. One sees that none of (4.1˙),
(4.2˙), (4.3˙) and (4.4˙) is satisfied.

� Case .t; u; y/ D .a�1; a; b�1/. In this case, we have

‚.A/ D � � �B�1A�1;

‚.B/ D B�1C�1 � � � ;

‚.C / D � � �AB;

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

y‚.A/ D � � �B�1A�1B�1;

y‚.B/ D C�1 � � � ;

y‚.C/ D � � �A:

This yields m11 < 0, m21 < 0, m32 < 0 and m13 > 0. One sees that none of (4.1˙),
(4.2˙), (4.3˙) and (4.4˙) is satisfied.

� Case .t; u; y/ D .b�1; a; b�1/. In this case, we have

‚.A/ D � � �B�1C�1;

‚.B/ D B�1C�1 � � � ;

‚.C / D � � �AB;

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

y‚.A/ D � � �B�1C�1B�1;

y‚.B/ D C�1 � � � ;

y‚.C/ D � � �A:

This yields m21 < 0, m31 < 0, m32 < 0 and m13 > 0. One sees that none of (4.1˙),
(4.2˙), (4.3˙) and (4.4˙) is satisfied.

� Case .t; u; y/ D .a�1; b; a�1/. In this case, we have

‚.A/ D � � �B�1A�1;

‚.B/ D B�1A�1 � � � ;

‚.C / D � � �CB;
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by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

y‚.A/ D � � �B�1A�1B�1;

y‚.B/ D A�1 � � � ;

y‚.C/ D � � �C:

This yields m11 < 0, m21 < 0, m12 < 0 and m33 > 0. One sees that none of (4.1˙),
(4.2˙), (4.3˙) and (4.4˙) is satisfied.

This concludes the proof of Proposition 4.2.

If � satisfies Assumption B, the linear map L� is conformal. Then its representa-
tion matrix M� must be of the form:

M� D

 
˛ �ˇ

ˇ ˛

!
; (4.5)

where ˛ and ˇ are integers.

Proposition 4.3. Suppose that j�y‚j D ƒy‚ holds. If .t; u; y/ is either .a; a�1; b�1/,
.b; a; a/, .b; a; b/, .a; b; a/, .a; b; b/ or .b�1; b; a�1/, the linear map L� is not con-
formal.

Proof. First we determine the possible form of a certain matrix M‚. Let us write 
ma

mb

!
WD f .A/;

 
na

nb

!
WD f .B/;

 
la

lb

!
WD f .C /:

SinceM� is the representation matrix ofL� induced from � WG!G by f WG!Z2,
and we decompose as �.a/ D AB and �.b/ D CB , we have

M� D
�
f .�.a// f .�.b//

�
D
�
f .AB/ f .CB/

�
D

 
ma C na na C la

mb C nb nb C lb

!
;

where each vector f .�/ is regarded as a column vector.
Let zf W zG ! Z3 � R3 be the canonical homomorphism for ‚ determined by

zf .A˙1/ D

0B@˙10
0

1CA ; zf .B˙1/ D

0B@ 0

˙1

0

1CA ; zf .C˙1/ D

0B@ 0

0

˙1

1CA :
The representation matrix of the induced linear map L‚ W R3 ! R3 is given by

M‚ D

0B@ ma na la

ma Cmb na C nb la C lb
mb nb lb

1CA :
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Suppose that M� takes the form of (4.5). Then we have

M‚ D

0B@ ˛ � na na �ˇ � na

˛ C ˇ � .na C nb/ na C nb ˛ � ˇ � .na C nb/

ˇ � nb nb ˛ � nb

1CA : (4.6)

Below, we examine each case separately.

� Case .t; u; y/ D .a; a�1; b�1/. In this case, we have

‚.A/ D �.v/�.A0/AB;

‚.B/ D B�1C�1�.B 0/�.x/;

‚.C / D �.w/�.C 0/B�1A�1;

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

y‚.A/ D �.v/�.A0/A;

y‚.B/ D C�1�.B 0/�.x/;

y‚.C/ D �.w/�.C 0/B�1A�1B�1:

This yields that m11 > 0, m32 < 0, m13 < 0 and m23 < 0. The only possible case
which satisfies these conditions is (4.4C).

The part �.v/�.A0/ consists of some �.a/, �.a�1/, �.b/ and �.b�1/, so it consists
of an even number of A, A�1, B , B�1, C and C�1. Since y‚.A/ ends with A, the path
in Proposition 3.6 representing �.v/�.A0/ should start from the vertex p1. Therefore,
�.v/�.A0/ consists of either AB , B�1A�1, AC�1, CA�1, CB or B�1C�1. Since
y‚.A/ contains A, �.v/�.A0/ can not contain A�1 as in the proof of Proposition 4.2.
Suppose that �.v/�.A0/ contains C . Then it can not contain C�1 by the same reas-
oning and hence m31 > 0, contradicting to the condition m31 < 0 in (4.4C). Suppose
that �.v/�.A0/ contains B�1. Then it can not contain B by the same reasoning, and
hence m21 < 0, contradicting to the condition m21 > 0 in (4.4C).

The argument above shows that �.v/�.A0/ consists of only AB and AC�1. Let
pA be the number of AB and qA be the number of AC�1 in �.v/�.A0/. Similarly,
�.B 0/�.x/ consists of only AB and AC�1. Let pB be the number of AB and qB
be the number of AC�1 in �.B 0/�.x/. Finally, �.w/�.C 0/ consists of only B�1A�1

and CA�1. Let pC be the number of B�1A�1 and qC be the number of AC�1 in
�.w/�.C 0/. Then, we see

M‚ D

0B@pA C qA C 1 pB C qB �pC � qC � 1

pA C 1 pB � 1 �pC � 1

�qA �qB � 1 qC

1CA ; (4.7)

where pA; qA; pB ; qB ; pC ; qC � 0.
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By comparing the second columns of (4.6) and (4.7), we obtain

na D pB C qB ; nb D �qB � 1: (4.8)

The first columns of (4.6) and (4.7) together with (4.8) yield

˛ D pA C qA C pB C qB C 1; ˇ D �qB � qA � 1: (4.9)

The third columns of (4.6) and (4.7), together with (4.8), yield

˛ D �qB C qC � 1; ˇ D �qA � qB C pC C qC C 1: (4.10)

From (4.9) and (4.10), we obtain pA C 2qA C 2qB C pC C 4 D 0, which leads to a
contradiction since pA; qA; pB ; qB ; pC ; qC � 0.

� Case .t; u; y/ D .b; a; a/. In this case, we have

‚.A/ D �.v/�.A0/CB;

‚.B/ D AB�.B 0/�.x/;

‚.C / D �.w/�.C 0/AB;

by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

y‚.A/ D �.v/�.A0/C;

y‚.B/ D BAB�.B 0/�.x/;

y‚.C/ D �.w/�.C 0/A:

This yields that m31 > 0, m12 > 0, m22 > 0 and m13 > 0. The only possible case
which satisfies these conditions is (4.1C). Together with (4.6), we obtain

˛ � na � 0; ˇ � nb � 0; na � 0; nb � 0; �ˇ � na � 0; ˛ � nb � 0:

It is then easy to deduce na D nb D 0 from these conditions. Since ‚.B/ is not an
empty word, this is a contradiction.

The proofs of the cases .t; u; y/ D .b; a; b/; .a; b; a/; .a; b; b/ are similar, and
hence we omit them.

� Case .t; u; y/ D .b�1; b; a�1/. In this case, we have

‚.A/ D �.v/�.A0/AB;

‚.B/ D B�1C�1�.B 0/�.x/;

‚.C / D �.w/�.C 0/B�1A�1;
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by (3.1) and (3.3). Then, by Definition 3.9 (I), we see

y‚.A/ D �.v/�.A0/A;

y‚.B/ D C�1�.B 0/�.x/;

y‚.C/ D �.w/�.C 0/B�1A�1B�1:

This yields that m11 > 0, m32 < 0, m13 < 0 and m23 < 0. The only possible case
which satisfies these conditions is (4.4C).

An argument similar to the case .t; u; y/ D .a; a�1; b�1/ shows that �.v/�.A0/
consists of only AC�1 and B�1C�1. Let pA be the number of AC�1 and qA be the
number of B�1C�1 in �.v/�.A0/. Similarly, �.B 0/�.x/ consists of only B�1A�1 and
CA�1. Let pB be the number of AB and qB be the number of AC�1 in �.B 0/�.x/.
Finally, �.w/�.C 0/ consists of only CB and CA�1. Let pC be the number of CB and
qC be the number of CA�1 in �.w/�.C 0/. Then, we see

M‚ D

0B@ pA �pB � qB � 1 �qC

qA � 1 �pB � 1 pC C 1

�pA � qA � 1 qB pC C qC C 1

1CA ; (4.11)

where pA; qA; pB ; qB ; pC ; qC � 0.
By comparing the second columns of (4.6) and (4.11), we obtain

na D �pB � qB � 1; nb D qB : (4.12)

The first columns of (4.6) and (4.11), together with (4.12), yield

˛ D pA � pB � qB � 1; ˇ D �pA � qA C qB � 1: (4.13)

The third columns of (4.6) and (4.11), together with (4.12), yield

˛ D qB C pC C qC C 1; ˇ D pB C qB C qC C 1: (4.14)

From (4.13) and (4.14) we obtain pB C qAC 2qB C pC C 2qC C 4D 0, which leads
to a contradiction since pA; qA; pB ; qB ; pC ; qC � 0.

This concludes the proof of Proposition 4.3.

Proof of Theorem1.1. Since Ny‚ is primitive by Assumption C and since jmij j � nij ,
we apply Wielandt’s theorem (see (A.1)) to obtain j�y‚j � ƒy‚. Since � satisfies
Assumptions B and C, we can apply Theorem 3.12 to conclude dimHK� � 1.

Suppose that dimH K� D 1 holds. Then, by Theorem 3.12, we have ƒy‚ D j�y‚j.
Proposition 4.1 yields that there exists 0 � i � 3 such that My‚ D ˙DiNy‚Di . By
Proposition 4.2, the only possibilities are those listed in Proposition 4.3. It follows
from Proposition 4.3 that L� can not be conformal for these cases, contradicting to
Assumption B. Hence, dimHK� > 1.
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(a) K1 (b) K2

(c) K3 (d) K4

Figure 5. Pre-limit sets.

5. A piecewise smooth example

In this section, we prove Theorem 1.2. Recall that the endomorphism � W G ! G in
Theorem 1.2 is given by �.a/ D ab�1 and �.b/ D a�mb�1 for a positive integer m.
To clarify the situation, let us first observe the “pre-limit set”

Kn D L
�n
� K

�
�n.aba�1b�1/

�
for 1 � n � 4 with m D 5 (see Figure 5).

Proof of Theorem 1.2. Let P be the parallelogram with the vertices .0; 0/, .1; 0/,
.0; 1/ and .�1; 1/, in order. We show that the subsequences of Kn for even n and
odd n both converge to P .

Put A WD a, B WD b�1 and C WD a�m. Then‚.A/ D AB ,‚.B/ D B�1C�1 and
‚.C/ D .B�1A�1/m. We see that � belongs to (I) of Definition 3.9 and hence y‚
is given by y‚.A/ D A, y‚.B/ D C�1 and y‚.C/ D .B�1A�1/mB�1. One can then
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check that

y‚2.AB/ D .AB/mC1;

y‚2.AC�1/ D .AC�1/mC1;

y‚2.CB/ D .CA�1/mCB.AB/m:

From this, we have

y‚2n.ABCA�1B�1C�1/ D .AC�1/.mC1/
n

.B�1A�1/.mC1/
nC1

.CA�1/.mC1/
n�1

CB.AB/.mC1/
nC1�1:

By (3.5), we see i.y‚n�1.ABCA�1B�1C�1// D �n.aba�1b�1/, and hence

�2.nC1/.aba�1b�1/ D .AC�1/.mC1/
n

.B�1A�1/.mC1/
nC1

.CA�1/.mC1/
n�1

CB.AB/.mC1/
nC1�1: (5.1)

On the other hand, we have

M
�2.nC1/

�
D

1

.mC 1/nC1

 
1 0

0 1

!
:

See Figure 6 for the shape ofK2.nC1/. The length of an edge of the “staircase” part of
K2.nC1/ is .mC 1/�.nC1/, hence we obtain P � .K2.nC1//" for " � .mC 1/�.nC1/

andK2.nC1/ � P"0 for "0 � 1p
2
.mC 1/�.nC1/ (see Figure 6 again), where A" denotes

the "-neighborhood of A � R2 (see [6]). From this, we conclude

dH.P;K2.nC1// �
1

.mC 1/nC1
! 0

as n!1, where dH denotes the Hausdorff distance.
In the case that n is odd, we have

y‚2.n�1/.ABCA�1B�1C�1/ D .AB/.mC1/
n

.CA�1/.mC1/
n

.B�1A�1/.mC1/
n�1

B�1C�1.AC�1/.mC1/
n�1;

and hence

�2nC1.aba�1b�1/ D .AB/.mC1/
n

.CA�1/.mC1/
n

.B�1A�1/.mC1/
n�1

B�1C�1.AC�1/.mC1/
n�1:
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Figure 6. Comparison between K2.nC1/ and P .

Figure 7. Comparison between K2nC1 and P .

On the other hand, we have

M
�.2nC1/

�
D

1

.mC 1/nC1

 
�1 m

1 1

!
:

See Figure 7 for the shape of K2nC1. Similarly, in the case that n is even, we see that

P � .K2nC1/" for " �
p
2.mC 1/�.nC1/;

K2nC1 � P"0 for "0 � .mC 1/�.nC1/

(see Figure 7 again). From this, we conclude

dH.P;K2nC1/ �

p
2

.mC 1/nC1
! 0:

as n!1. Therefore, K� D P .
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A. Wielandt’s theorem

In this appendix, we explain Wielandt’s theorem following Gantmacher [7, p. 69,
Lemma 2]. The zero matrix is denoted as O. For two matricesAD .aij / andBD .bij /
of the same size, we write A > B (resp. A � B) if aij > bij (resp. aij � bij ) for all
i; j . A matrix A is said to be positive (resp. non-negative) if A > O (resp. A � O).
Give a matrix A, let AC be obtained by replacing every element of A with its absolute
value, i.e., AC D .jaij j/.

Theorem A.1 (Wielandt’s theorem). LetA and C be two square matrices of the same
size. Assume that A is primitive, and A and C satisfy CC � A. Then the Perron–
Frobenius eigenvalue r of A satisfies

j
 j � r (A.1)

for arbitrary eigenvalue 
 of C . In addition, 
 is an eigenvalue of C satisfying the
equality in (A.1) if and only if

C D exp.i'/DAD�1; (A.2)

where exp.i'/D 
=r andD is a diagonal matrix such thatDC is equal to the identity
matrix. When moreover C is a real matrix, the diagonal elements of D are equal to
˙1.
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