J. Fractal Geom. 9 (2022), 261-271 © 2023 European Mathematical Society
DOI 10.4171/JFG/123 Published by EMS Press
This work is licensed under a CC BY 4.0 license

Nonlinear fractal interpolation functions on the Koch curve
Song-I1 Ri, Vasileios Drakopoulos, Song-Min Nam, and Kyong-Mi Kim

Abstract. Nonlinear fractal interpolation functions defined on the Koch curve by replacing the
usual Banach contractions used to define (linear) fractal interpolation functions with Rakotch
contractions are considered. This allows to take care of the nonlinear term in the associated
Read—Bajraktarevi¢ operator, respectively, the underlying iterated function system. Moreover,
we present an extremely explicit example to demonstrate the effectiveness of the obtained res-
ults.

1. Introduction

The Koch curve, or KC for short, appeared in a 1904 paper entitled “On a Continuous
Curve Without Tangents, Constructible from Elementary Geometry” by the Swedish
mathematician Helge von Koch. It is an example of a compact curve with infinite
length; see [5].

The concept of iterated function system, or IFS for short, was introduced in [4] and
popularised in [2] as a natural generalisation of the well-known Banach fixed-point
theorem (also known as the contraction mapping theorem or contractive mapping the-
orem). The concept of fractal interpolation function, or FIF for short, was introduced
in [1] on the basis of the theory of IFSs. In the development of fractal interpolation
theory, many researchers have generalised the notion in different ways; see [9, 11, 13].

Interpreting the polynomials of degree 1 as classical harmonic functions on an
interval and replacing them on the KC by harmonic functions, the authors of [7]
obtained an analogue of [2, Theorem VI.2.2] for the KC. The existence of FIFs on
the KC follows from Banach fixed-point theorem. As far as we know, the first sig-
nificant generalisation of that principle was obtained in [8]. A method to generate
nonlinear FIFs by using the Rakotch fixed-point theorem instead of the Banach fixed-
point theorem in presented in [9].

The results of [7] and [9] inspire us to find potential contractions (not necessarily
Banach contractions) for the existence of FIFs on the KC. In this article, in order to
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obtain nonaffine FIFs on the KC, we use Rakotch instead of Banach contractions.
Furthermore, we give an explicit illustrative example to demonstrate the effectiveness
of the obtained results. The rest of this article is organised as follows and can be
generally seen as an extension of [12]. In Section 2, we recall some results needed in
constructing nonlinear FIFs on the KC. In Section 3, we introduce a new type of IFSs
that will be used in our discussion and give a nonlinear FIF on the KC as the fixed
point of certain Read—Bajraktarevi¢ operator. The construction is based on previous
generalisations of fractal interpolation by some of the authors. We also give an explicit
illustrative example to demonstrate the effectiveness of the preceding theory.

2. Preliminaries
Firstly, we introduce nonlinear FIFs by recalling some already known results; see also
[11] or [10] and the references therein.

Theorem 2.1. Let X be a complete metric space and f: X — X be a Rakotch
contraction. Then there is a unique fixed point xy € X of f, and for each x € X,
lim, o0 f"(x) = xf.

Let N be a positive integer greater than one and I = [xg, xy] C R. Let a set of

interpolation points {(x;,y;) € I xR :i =0,1,..., N} be given, where xo < x1 <
.- < xy and yg, ¥1,...,¥yN € R. Set I, = [x,—1, xn] C I and define, for all n =
1,2,..., N, contractive homeomorphisms L,: 1 — I, by L,(x) = ayx + b,, where

the real numbers a,, b, are chosen to ensure that L, (/) = I,. Let ¢: (0, +00) —
(0, +00) be a nondecreasing continuous function such that for any ¢ > 0, «(t) =
@(t)/t < 1 and the function (0, +00) > t > ¢(¢)/t is nonincreasing.

Consider an IFS of the form {/ x R; w,,n = 1,2,..., N} in which the maps are
nonlinear transformations of the special structure

w X _ Ly(x) _ anx + by
" y B Fu(x,y) B cnX +Sny +en |’

where the transformations are constrained by the data according to

Wy = and wy, =
Yo Yn—1 YN Yn

forn =1,2,..., N, and s,, are some Rakotch contractions.

Let us denote by C(/) the set of all real-valued continuous functions defined on
I,ie.,C(I)={f:1 - R | f continuous} and by C*(I) C C(I) the set of con-
tinuous functions f: I — R such that f(x¢) = yo and f(xy) = yn,ie., C*(I) :=



Nonlinear fractal interpolation functions on the Koch curve 263

{feCl): f(xo) = yo, f(xy) = yn}. Let C**(I) C C*(I) C C(I) be the set
of continuous functions that pass through the given data points {(x;, y;) € I xR :
i =0,1,...,N}, thatis, C*(I) :={f e C*(I): f(x;) =y;,i =0,1,...,N}.
Define a metric dc(ry on C(1) by dc(r)(g. h) := maXye[xy,xy] 1€(x) — h(x)| for all
g, heC(l).Forall f € C*(I),define amapping T:C*({) — C(I) by

Tf(x) = Fa(Ly ' (x), f(Ly (0))) = enly (%) + 50 (f (L () + en

for x € [xy—1,xn]andn = 1,2,..., N. Notice that the above equation can be rewritten
as Tf(Ln(x)) = s,(f(x)) + cnx + e, for x € [xg,xy]andn =1,2,..., N.

Theorem 2.2. Let {I X R;w,,n =1,2,..., N} denote the IFS defined above. Then,
there is a unique continuous function f:I1 — R, which is a fixed point of T, such that
f(xi)=yifori =0,1,...,N.If G C I xR is the graph of f, then

N
G =|Jwa(G).
n=1
Secondly, we give the definition of the KC, the harmonic functions on the KC and
the fractal interpolation theorem for the KC. Let Vo := {p1 = (p}, p?) := (0,0), p» =
(pd, p3) := (1,0)} (see [3]). Let Ko := [0, 1] x {0} C R? (see [7]). Consider for
i =1,2,3,4,u;:R? - R? such that

1
(. y) = @i ) = (5.3) = 30 + 0.0),
3 1 V3
2 9) = ey i (5= Y20 L0
3 1 3 3
u3(x,y) = (uz(x, y),ui(x, ) := (% + % + 5,—% + % + %)
X

W | <

1 2
=—(x,y) + (—,0).
) 30+ (3
Then foralli = 1,2,3,4, u;: R? — R? are Banach contractions, since for all (x’, y’),
(X”, y//) c Rz,

SN IS

ua(x,y) = (ug(x, y), uz(x,y)) = (3 +

1
i (x, p) —ui (x', Y) g2 = gll(x,y) — (", )2
Let V1 := u1 (Vo) Uua (Vo) Uusz(Vo) Uuga(Vy) C R2. Then
1 1 /3y /2
v ={©.0, (3,0), (5,?), (5,0>,(1,O)}.
Also foralln > 1,

Ky = u1(Kp—1) Uua(Kn—1) Uuz(Kn—1) Uus(Kn—1) C R?,
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Figure 1. K> and K3.

and KC = lim,— 00 K, C R? (see [7]). So, KC C R? is the attractor of KC =
U1 (KC) U ur(KC) Uus(KC)Uuy(KC). K, and K3 are illustrated in Figure 1.

Fix a number n € N and consider the iterations uy, = Uy, Uy, * Uy, : R? — R?
for any sequence w = (wy, ws, ..., wy,) € {1,2,3,4}". Let V,, C R? be the union of
the images of Vy C R2 under these iterations. Given any function A: RZ2>V, - R,
there is an operator H,, defined by H, (h):R? D V,, — R, where

Hy(h)(p) = Y (h(q) —h(p)).

qE€Np 1

and N, , C R? denotes the “neighbourhood” of p in V,, C R?, the set of “next neigh-
bours” of p in V,, C R2, two for p € V,,\V; C R? and one or two for p € V; C R2.
Then h: R%2 D V, — R is called harmonic on V, C R? if H,(h)(p) = 0 for all
p € V,\Vi C R2. A continuous function 4: R? D KC — R is called harmonic if
its restriction to ¥, C R? is harmonic for all n € N (see [7]).

Lemma 2.3. For two given numbers o and B, there exists a unique harmonic function
h on the KC satisfying h(p1) = o and h(p,) = B.

Proof. The proof is similar to that in [5] and it is thus omitted. ]

Let forn > 1, v:R? D V,, — R be any given function (not necessarily a harmonic
function on V,, C R?). Let hy: R? D KC — R be a harmonic function on the KC
forw € {1,2,3,4}".
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Theorem 2.4 (See [7, Theorem 1]). For any given numbers o, (w € {1,2,3,4}")
with 0 < || < 1, there exists a unique continuous function f:R?> > KC — R
such that fly, = v:R?2 DV, = R and f(uw(x,y)) = aw f(x,y) + hy(x, y) for
(x,y) € KC C R2

3. Main result

We assume that Vy, V, C R?, u;: R?2 - R2, v:R2 D V,, = R, ¢: (0, +00) — (0, +-00)
and hy,:R? D KC — R keep their meaning from the previous section. Consider
an IFS of the form {R2 xR D KC x R;w;,i =1,2,3,4} in which the maps are
transformations of the special structure

X u;(x,y) ul(x,y)
wil y | =] wixy |= u?(x,y) ,
z Fi(x,y,2) si(z) + hi(x,y)

where (x,y) € R%2, z € R and s;: R — R are Rakotch contractions (with the same
function ¢). We assume that fori = 1, 2, 3, 4, the transformations are constrained by
the data according to

pl 0 u} (0, 0)
w; p? = w; 0 = u?(0, 0) ,
v(pi. pY) v(0,0) v(u}(0,0),uZ(0,0))
25 1 ui (1,0)
w; p3 = w; 0 = u?(1,0) ,
v(p3. P3) v(1,0) \ v} (1,0),22(1,0))

that is, fori = 1,2, 3, 4,

5i (v(0,0)) + h;(0,0) = v(u} (0,0),u?(0,0))
& hi(0,0) = v(u] (0,0),u?(0,0)) — 5; (v(0,0)).

and

5i(v(1,0)) + h; (1,0) = v(u; (1,0),u(1,0))
& hi(1,0) = v(u)! (1,0),u?(1,0) — s; (v(1,0)).

Then, for all (x, y,z’), (x,y,z”) € KC xR C R? xR,

|Fi(x,y.2') = Fi(x.y.2")| = |si(z') — 5:(z")]

< Isi(z) —si(z")] < (|2 = 2")).
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That is, each w; is chosen so that F; is a Rakotch contraction with respect to the third
variable.
Notice, that the function s; is a substantial generalisation of the function «;z
(0 < @; < 1) in the FIF on the KC. Obviously, in [7], s; (z) = «;z. Hence, each w;
is chosen so that F; is a Banach contraction with respect to the third variable z. Also,
fori =1,2,3,4,
;v(0,0) + h;(0,0) = v(u] (0,0), 47 (0,0))
& 1i(0.0) = v(1}(0,0).u7(0,0)) — ;v(0.0), 3.1)

and

iv(1,0) + h;(1,0) = v(u; (1,0),u7(1,0))
& hi(1,0) = v(u}(1,0),u7(1,0)) — ;v(1,0).

Secondly, by using Rakotch contractions, we give a FIF as the fixed point of cer-
tain Read—Bajraktarevic¢ operator (see [6]), and we show that the graph of that FIF is
the invariant set of a certain IFS. Let us denote by C(KC) the set of continuous func-
tions f: KC — R. Let C*(KC) C C(KC) denote the set of continuous functions
f:KC — R suchthat f(p1) = v(p1) and f(p2) = v(p2), that is,

C*(KC) := {f e C(KC): f(p) =v(p),p e Vo}.

Let C**(KC) C C*(KC) C C(KC) be the set of continuous functions that pass
through the points v(p) (p € V), that is,

C™(KC):={f € C*(KC): f(p) = v(p),p € Vu}.
Define a metric dc(xc) on C(KC) by

d ,h = ) _h )
cke)(gh) (x’lyr;gclg(x y) —h(x,y)]

forall g,h € C(KC). Then (C(KC),dckc)), (C*(KC),dckc)y) and (C**(KC),
dc(kc)) are complete metric spaces. For all /€ C*(KC), define a mapping

T:C*(KC) — C(KC)

by
Tf(uw(x,y)) = suw(f(x,y) + hy(x,y)

for (x, y) € KC, where h,, are harmonic functions on the KC for all w € {1,2, 3,4}".
That is,

T(x, ) := sw(fuy' (x. 1)) + ho @y (x, )
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for (x,y) € uy(KC) and w € {1, 2, 3,4}", where h,, are harmonic functions on the
KC. The following lemma, similar to [9, Lemma 3.8], is the key element in the proof
of Theorem 3.2.

Lemma3.1. Tf € C**(KC) forall f € C*(KC), that is,
T:C*(KC) - C*(KC).
Therefore, T": C**(KC) — C**(KC) foralln > 2.

Proof. Since f € C*(KC), (x,y) € uy(KC)and w € {1, 2, 3, 4}",
Tf(x,y) = Fuuy' (x,p), f(uy' (6, 9))) = 0 (f (g (x, ) + b (uy)! (x, )

and for all i = 1,2, 3, u;(p2) = ui+1(p1), we obtain that if u;41(p1) = u;i(p2) €
[ui(p1), ui(p2)] fori =1,2,3, then

Tf(uiv1(p1) = Tf(ui(p2)) = Fi(uy ' (ui(p2)), fu; ' wi(p2))))
= si (f (uy " (ui(p2)))) + hi (ui ' (ui (p2)))
=5i(f(p2)) + hi(p2) = Fi(p2, f(p2))
= Fi(p2,v(p2)) = v(ui(p2)) = v(ui+1(p1)),

and if u; 1(p1) = ui(p2) € [ui+1(p1).ui+1(p2)] fori = 1,2,3, then

Tf(ui(p2)) = Tf wit1(p1)) = Fip1(ui}y is1(p1)). fuidy ig1(p1))))
= i1 (S @i @ie1(pO)) + hier (i (i1 (p1)))
= si+1(f(p1) + hi+1(p1) = Fit1(p1, f(p1))
= Fit1(p1,v(p1) = v(ui+1(p1) = v(u;i(p2)).
So Tf is continuous at each of the points of V1\Vy. Tf is continuous on the seg-

ment [u; (p1), u;(p2)] for all i = 1,2, 3, 4 by definition. Hence, by induction, 7f €
C*(KC)and T":C**(KC) - C**(KC) forall n > 2. ]

Theorem 3.2. Let {KC x R;w;,i = 1,2,3,4} denote the IFS defined above, associ-
ated with the points (p,v(p)) € R3, where p € V,, CR? and n > 1. Then the operator
T is a Rakotch contraction (considered as a map T: C*(KC) — C*(KC)). Hence
there is a unique continuous function f: KC — R which is a fixed point of T, that is,

S uw(x, ) = 5w (f(x, ) + hw(x, y)

forall (x,y)e KC, where hy, are harmonic functions on the KC forall w € {1,2,3,4}"
In particular, f(p) = v(p) forall p € Vy, that is, f|y, = v. Moreover, the graph G



S.-1. Ri, V. Drakopoulos, S.-M. Nam, and K.-M. Kim 268

of f is invariant with respect to {KC x R;w;,i = 1,2,3,4}, i.e,,

4
G = Jwi(G).

i=1

Proof. Forall g,h € C*(KC),
dckc)(Tg, Th) = max |Tg(x,y)—Th(x,y)]
(x,y)eKC

= max max Tg(x,y)—Th(x,
i=1,2,3,4 (x,y)eui(KC)| g( y) ( y)|

—1 -1
= 1 i ) — J] h 1 )
;max (x,y)‘?li’iK = |si (g(u; " (x,¥))) —si(h(u; (x, )|

< max sup  @(lg(uy (x, y)) = h(ui ! (x, ),
i=1,2,3,4 (x,y)€u; (KC)

where ¢ : (0, +00) — (0, +00) is some nondecreasing function such that ¢(¢) < ¢ for
t>0and? +— @ is nonincreasing. Since ¢ : (0, +00) — (0, +00) is a nondecreasing
continuous function and ui_1 ‘u;(KC) — KC foralli =1,2,3,4, we obtain that for
io € {1,2,3,4} and (xiy, yiy) € uiy(KC),

o(lg iy (xig. yig) — Rz (xig. yig))|)

= max ul(x,y)) = h(ui(x, )
- (p((an’)Euio(KC) 18 iy (x, 3)) = hlwgg (x, y))

< w((x,rygeg;(c lg(x,y) — h(x, y)l)

= ¢(dcikc)(g. h)).

Since (x;,, yi,) Was arbitrary,

sup  @(lg (i (x.y) — h(u; (x, ¥)]) < eldeke)(g. ),
(x.»)€u;y (KC)

and, since iop was arbitrary,

_ max sup  g(lg(ui ! (x, ) = h(ui ' (x, ¥)I) < ¢(dee)(g. h)).
i=1,2,3,4 (x,y)€u; (KC)

Hence, we obtain

dckey(Tg, Th) < max sup (g (x,y) — h(uy ' (x, ¥))])
i=1,2,3,4 (x,y)eu; (KC)

< ¢(dckey(g - h) = ¢(dcke)(g. h)).

So we conclude that T: C*(KC) — C**(KC) C C*(KC) is a Rakotch contraction
(with the same function ¢) on the complete metric space (C*(KC), dc(kc))- By
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Theorem 2.1, T possesses a unique fixed point in C*(KC). That is, there exists a
continuous function f € C*(KC) such that forall (x,y) € KC, Tf(x,y) = f(x,y).
Since T:C*(KC) — C**(KC) (by Lemma 3.1), we have f =Tf € C**(KC). That
is, there is a continuous function f that passes through the given points (p,v(p)) € R3
(p € Vu C R?). By definition of T, we can see that

Tf(ui(x,y)) = fui(x.y)) = si(f(x,y)) + hi(x, y)

for x € KC, fori = 1,2,3,4. Let G denote the graph of f € C**(KC), that is,
G :={(x,y, f(x,y)):(x,y) € KC}. Since f is a fixed point of the operator T and
if (x,y) € u; (KC), then

Tf(x.y) = Fi(ui' (x. ). fu;'(x. ).
we obtain that for all x € KC,

FiCx,y) = Tf(ui(x,y) = Fuy ui(x, ), fu; wi(x, )
= Fi(x,y, f(x,y)).

Since w; (x,y,z) = (u;j(x, y), Fi(x, y,z)) forall fori = 1,2, 3, 4, we obtain that

wi(G) = wi({(x,y, f(x,y)): (x,y) € KC})
= {wi(x,y, f(x,y)): (x,y) € KC}
={(i(x,y), Fi(x,y, f(x,y))) : (x,y) € KC}
= {(ui(x,y), f(ui(x,y))) : (x,y) € KC}
= {(x,», f(x,¥)) : (x,y) €u; (KC)}.

Hence,

G =1{(x,y, f(x,y): (x,y) € KC}

4
= Gy fxp) s () € ui(KO))
=1

4
= Jwi(G). n
i=1

The function described in Theorem 3.2 generalises the FIF on the KC because in
[71, Fi(x,y,z) =diz + hij(x,y) foralli = 1,2,3,4, and so for all t > 0, ¢(¢) :=
max;=1,2,3,4 |d;|t, where |d;| < 1 for all i = 1,2, 3, 4. Hence, each function F; is
a Banach contraction with respect to the third variable z because for all (x, y, z’),
(x,y.z") e R3,

Fi(x,y,z)—Fi(x,y,2))| < max |d;||z/ —Z"|.
|Fi(x,y.z2") i(x,y )|_(x,y)€KC| ill |
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Figure 2. A nonlinear fractal interpolation function on the KC.

We now present an extremely explicit example to demonstrate the effectiveness of

the obtained results. Let ¢(¢) := ILH fort € (0, +00). Then ¢: (0, +00) — (0, +00)

is a nondecreasing continuous function and ¢ +— %’) is a nonincreasing continuous
function. Let points (p, v(p)) € R?® (p € V,, C R?) be given. For z € [0, +00) and
i=1,2,3,4,let

z
si(z) = .
i) 14+iz
Then, for z’, z” € [0, +00),
Z! Z |Z/—Z//|
/ "
. _ g — — <
I5: (1) = i )] |1+iz’ 1+iz”|_1+i|z’—z”|
|Z/_ZN| / Vi
—— = (' = Z")).
STi =7 (] D

That is, each s; is a Rakotch contraction (with the same function ¢) that is not a
Banach contraction on [0, +00). So, by Theorem 3.2, there exists a continuous func-
tion f: KC — R that interpolates the given (p,v(p)) € R3 (p € V,, C R?). A graph
of a nonlinear fractal interpolation function that is a nonlinear fractal interpolation
function on the KC is given in Figure 2.

References

[1] M. F. Barnsley, Fractal functions and interpolation. Constr. Approx. 2 (1986), no. 4, 303—
329 Zbl 0606.41005 MR 892158


https://zbmath.org/?q=an:0606.41005&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=892158

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

[12]

(13]

Nonlinear fractal interpolation functions on the Koch curve 271

M. F. Barnsley, Fractals Everywhere, 3rd ed., Dover Publications, New York, 2012

Zbl 0784.58002 MR 1231795

E. de Amo, M. Diaz Carrillo, and J. Ferndndez Sanchez, PCF self-similar sets and fractal
interpolation. Math. Comput. Simulation 92 (2013), 28-39 Zbl 1499.28010

MR 3082354

J. E. Hutchinson, Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), no. 5,
713-747 7Zbl 0598.28011 MR 625600

J. Kigami, Analysis on fractals. Cambridge Tracts in Mathematics 143, Cambridge Uni-
versity Press, Cambridge, 2001 Zbl 0998.28004 MR 1840042

P. R. Massopust, Fractal functions, fractal surfaces, and wavelets. Academic Press, San
Diego, CA, 1994 Zbl 0817.28004 MR 1313502

P. Paramanathan and R. Uthayakumar, Fractal interpolation on the Koch curve. Comput.
Math. Appl. 59 (2010), no. 10, 3229-3233 Zbl 1198.28012 MR 2651864

E. Rakotch, A note on contractive mappings. Proc. Amer. Math. Soc. 13 (1962), 459-465
Zbl 0105.35202 MR 148046

S. Ri, A new nonlinear fractal interpolation function. Fractals 25 (2017), no. 6, 1750063,
12 7Zbl 1432.41001 MR 3725302

S.-I. Ri and V. Drakopoulos, Generalised fractal interpolation curved lines and surfaces.
Nonlinear Stud. 28 (2021), no. 2, 427-488 MR 4328120

S.-I. Ri and V. Drakopoulos, How are fractal interpolation functions related to several
contractions? In Mathematical Theorems. Boundary Value Problems and Approximations,
edited by L. Alexeyeva, IntechOpen, Rijeka, 2020 DOI 10.5772/intechopen.92662

S.-1. Ri, V. Drakopoulos, and S.-M. Nam, Fractal interpolation using harmonic functions
on the Koch curve. Fractal Fract. 5 (2021), no. 2, 28 DOI 10.3390/fractalfract5020028
H.-J. Ruan, Fractal interpolation functions on post critically finite self-similar sets.
Fractals 18 (2010), no. 1, 119-125 Zbl 1196.28019 MR 2651296

Received 20 April 2021; revised 18 January 2022.

Song-Il Ri
Department of Mathematics, University of Science, Wisong-dong, No 21, Unjong District,
Pyongyang, North Korea; si1974730@star-co.net.kp

Vasileios Drakopoulos
Department of Computer Science and Biomedical Informatics, University of Thessaly,

2-4 Papasiopoulou St., 35131 Lamia, Greece; vdrakop@uth.gr

Song-Min Nam

Department of Management, Pyongyang University of Transport, Hadang-dong, No 1,

Hongzaesan District, Pyongyang, North Korea; saslib201904 @star-co.net.kp

Kyong-Mi Kim
Department of Applied Mathematics, Kim Chaek University of Technology, Dongan-dong,
No 6, Zhong District, Pyongyang, North Korea; kyn1985@star-co.net.kp


https://zbmath.org/?q=an:0784.58002&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1231795
https://zbmath.org/?q=an:1499.28010&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3082354
https://zbmath.org/?q=an:0598.28011&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=625600
https://zbmath.org/?q=an:0998.28004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1840042
https://zbmath.org/?q=an:0817.28004&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1313502
https://zbmath.org/?q=an:1198.28012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2651864
https://zbmath.org/?q=an:0105.35202&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=148046
https://zbmath.org/?q=an:1432.41001&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3725302
https://mathscinet.ams.org/mathscinet-getitem?mr=4328120
https://doi.org/10.5772/intechopen.92662
https://doi.org/10.3390/fractalfract5020028
https://zbmath.org/?q=an:1196.28019&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2651296
mailto:si1974730@star-co.net.kp
mailto:vdrakop@uth.gr
mailto:saslib201904@star-co.net.kp
mailto:kyn1985@star-co.net.kp

	1. Introduction
	2. Preliminaries
	3. Main result
	References

