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A closed graph theorem for hyperbolic
iterated function systems

Alexander Mundey

Abstract. In this note, we introduce the notion of a morphism between two hyperbolic iterated
function systems. We prove that the graph of such a morphism is the attractor of an iterated
function system, giving a closed graph theorem, and demonstrate how it can be used to approach
the topological conjugacy problem for iterated function systems.

1. Introduction

Since Hutchinson’s seminal paper [7], iterated function systems have remained close
to the heart of fractal geometry. Iterated function systems have continued to be studied
and generalised in numerous directions.

In this article, we focus on the dynamics of hyperbolic iterated function systems
from a topological viewpoint, rather than geometric or measure theoretic perspect-
ives. Although we work in the hyperbolic setting, we take a viewpoint similar to that
of topological iterated function systems [3, 8, 10]. Determining whether two iterated
function systems are topologically conjugate (in the sense of Definition 3.1 below) is
a subtle problem, as highlighted in Example 4.6. In contrast to symbolic dynamical
systems, the topology of both the ambient space and the attractor play a greater role
determining conjugacy for iterated function systems.

The main results of this article—Theorem 4.2 and Corollary 4.3—establish a
closed graph theorem for an elementary notion of morphism between hyperbolic iter-
ated function systems. Closed graph theorems are prevalent throughout mathematics
with the most well-known results being those for continuous linear maps between
Banach spaces, and for continuous maps between compact Hausdorff spaces. In the
latter case, the closed graph theorem states that a function f WX ! Y between com-
pact Hausdorff spaces is continuous if and only if its graph

Gr.f / D
®
.x; f .x//

ˇ̌
x 2 X

¯
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is a closed subspace of X � Y . An alternate formulation—which is perhaps more
relevant to our context—is that f WX ! Y is continuous if and only if Gr.f / is itself
a compact Hausdorff space. Applying a set-theoretic lens to functions—where f is
defined as its graph—one can interpret f itself as a compact Hausdorff space.

In Theorem 4.2, we show that the graph of a morphism between two iterated
function systems is itself the attractor of an associated iterated function system. We
show that by using this closed graph theorem, it is sometimes possible to deduce
that two iterated function systems are not topologically conjugate. We also obtain a
characterisation of the code map from a labelled Cantor space as the attractor of a
certain iterated function system.

In contrast to some of the categorical approaches to self-similarity that have pre-
viously appeared—including Leinster’s general categorical approach [12] and Sumi’s
interaction cohomology [15]—we study self-similarity via morphisms between iter-
ated function systems, rather than focusing on individual self-similar sets or systems.

Finally, we remark that the results in this article build on work appearing in the
author’s Ph.D. dissertation [14].

2. Iterated function systems

Although many generalisations of iterated function systems exist in the literature, in
this article we restrict our attention entirely to the setting of hyperbolic systems. That
is, iterated function systems consisting of contractions.

Definition 2.1. A (hyperbolic) iterated function system .X;�/ consists of a complete
metric space .X; d/ together with a finite collection � of proper contractions on X .
That is, for each 
 2 � , there exists 0 � c
 < 1 such that d.
.x/; 
.y// � c
d.x; y/
for all x; y 2 X .

Denote by K.X/ the collection of non-empty compact subsets of X . Recall that
the Hausdorff metric dH on K.X/ is defined by

dH .A;B/ D max
°

sup
x2A

inf
y2B

d.x; y/; sup
y2B

inf
x2A

d.x; y/
±

for all A; B 2K.X/. It is well known that if .X; d/ is a complete metric space, then
so is .K.X/; dH / (see, for example, [11, Proposition 1.1.5]).

Given an iterated function system .X; �/, we abuse notation and also use � to
denote the Hutchinson operator �WK.X/!K.X/ defined, for all K 2K.X/, by

�.K/ D
[

2�


.K/:
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Hutchinson [7] showed that � is a contraction on .K.X/; dH / and, consequently,
has a unique fixed point A 2K.X/ by the contraction mapping principle. The fixed-
point A is called the attractor of .X; �/. In particular, �.A/ D A and for any
K 2 K.X/, we have dH .�k.K/; A/ ! 0 as k ! 1. This result is collectively
referred to as Hutchinson’s theorem. Hutchinson’s original result was stated for
X D Rn, however the proof of the result for general hyperbolic systems remains
nearly identical (cf. [11, Theorem 1.1.7]).

We require the following result in the sequel.

Lemma 2.2. Let .X; d/ be a complete metric space. Suppose that .Ki /1iD1 is a
sequence in K.X/ such thatKi �KiC1 for all i 2N and dH .Ki ;K/! 0 as i !1
for some K 2K.X/. Then Ki � K for all i 2 N. In particular, if .X; �/ is a hyper-
bolic iterated function system with attractor A andK 2K.X/ is such thatK ��.K/,
then K � A.

Proof. Suppose for contradiction that there exists i 2 N and x0 2 Ki n K. Since
x0 2 Ki � Kj for all j � i , it follows that

dH .Kj ; K/ � sup
x2Kj

inf
y2K

d.x; y/ � inf
y2K

d.x0; y/ > 0;

where strict positivity is warranted by the compactness of K.
The second statement follows from the first for if K � �.K/, then

�k.K/ � �kC1.K/ for all k 2 N;

and Hutchinson’s theorem implies that dH .�k.K/;A/! 0 as k !1.

Remark 2.3. Lemma 2.2 is immediate if one recalls that a dH -convergent increasing
sequence of compact sets .Ki /i2N has limitK D

S
i2N Ki (see [6, Proposition 1.3]).

Sets K 2 K.X/ satisfying K � �.K/ go by various names in the literature,
including sub-self-similar sets [4] and backward complete sets [13].

3. Morphisms of iterated function systems

Topological conjugacy of iterated function systems is a well-established notion and
the problem of determining whether two systems are topologically conjugate can be
approached in numerous ways (see, for example, [9, Corollary 1.27]). When gener-
alising conjugacy, there are choices to be made about selecting an appropriate notion
of morphism, and several approaches have been taken previously. Kieninger, for ins-
tance, describes semiconjugacy of topological iterated function systems [10, Defin-
ition 4.6.3], which is analogous to the corresponding notion in symbolic dynamics.
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Another approach is via the fractal homeomorphisms of Barnsley [2], which use shift-
invariant sections of a code map.

Expanding on the established definition of conjugacy we use the following—
somewhat naïve—notion of morphism, related to Kieninger’s semiconjugacies.

Definition 3.1. A (topological) morphism from an iterated function system .X; �/

to .Y; ƒ/ is a pair .f; ˛/ consisting of a continuous map f WX ! Y and a function
˛W� ! ƒ such that for each 
 2 � , the diagram

X X

Y Y




f f

˛.
/

commutes. We write .f; ˛/W .X; �/! .Y;ƒ/ to mean that .f; ˛/ is a morphism from
.X; �/ to .Y;ƒ/. We mention some special types of morphism.

(1) .f; ˛/ is an embedding if both f and ˛ are injective.

(2) .f; ˛/ is a semiconjugacy if both f and ˛ are surjective.

(3) .f; ˛/ is an isomorphism or conjugacy if f is a homeomorphism and ˛ is
bijective. In this case, we say that .X;�/ is isomorphic or conjugate to .Y;ƒ/.

Morphisms may be composed by setting .f; ˛/ ı .g; ˇ/ D .f ı g; ˛ ı ˇ/.

In Definition 3.1, we have not made use of the metric space structure of eitherX or
Y , and this has its drawbacks. In particular, if .f; ˛/W .X;�/! .Y;ƒ/ is a morphism,
then it is not typically true that .f .X/; ˛.�// is an iterated function system since
f .X/ is not necessarily a complete metric space. This could be amended by insisting
that f is also a closed map or that X is compact (for example, if X is the attractor
itself), however, we do not require either assumption in what follows.

Morphisms in the sense of Definition 3.1 occur fairly naturally.

Example 3.2. Let�N WD ¹1; : : : ;N ºN . For eachw 2�N , we writewDw1w2w3 � � � ,
where each wi 2 ¹1; : : : ; N º. Equip �N with the metric d W�N � �N ! Œ0;1/

defined by

d.w; v/ D

´
21�min¹k j wk¤vkº; if w ¤ v;

0; if w D v;

for each w; v 2 �N , so that �N is a Cantor space. For each 1 � i � N , consider the
contraction �i W�N !�N defined by �i .w1w2 � � � /D iw1w2 � � � : Then .�N ;†N WD
¹�1; : : : ; �N º/ is a hyperbolic iterated function system. Since �N is invariant under
the Hutchinson operator †N , it is necessarily the attractor.

Now suppose that .X; �/ is an iterated function system with attractor A, and sup-
pose that LW ¹1; : : : ; N º ! � is a bijective labelling of the maps in � . Denoting L.i/
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by 
i , there is a continuous surjection �LW�N !A called the code map associated to
the labelling L which satisfies �L ı �i D 
i ı �L for all 1 � i � N [5, Theorem 3.2].
The code map may be defined explicitly by

¹�L.w1w2 � � � /º D

1\
kD1


w1 ı � � � ı 
wk .A/:

Let ˇLW†N ! � denote the bijection ˇL.�i / D 
i . Then .�L; ˇL/W .�N ; †N / !
.A; �/ is a semiconjugacy.

Example 3.3. Subsystems of iterated function systems give examples of embeddings.
Indeed, if .X;ƒ/ is an iterated function system and � �ƒ, then the pair .idX ;� ,!ƒ/

is an embedding.

Example 3.4. Consider the iterated function system .R;� D¹
1;
2º/with 
1.x/ D x
2

and 
2.x/D 1Cx
2

. Then Œ0;1� is the attractor of .R;�/. Now let .R2;ƒD¹�1;�2;�3º/
with �1.x; y/ D .x2 ;

y
2
/ , �2.x; y/ D .1Cx2 ; y

2
/, and �3.x; y/ D .2xC14 ; 2yC

p
3

4
/. The

attractor of .R2; ƒ/ is a Sierpiński gasket with outer vertices at .0; 0/; .1; 0/ and
.1
2
;
p
3
2
/. Let f WR! R2 be the closed embedding given by f .x/ D .x

2
;
p
3x
2
/ and let

˛W� ! ƒ be given by ˛.
1/ D �1 and ˛.
2/ D �3. Then .f; ˛/W .R; �/! .R2; ƒ/

is an embedding.

In the previous examples, ˛ was an injection, but this is not always the case.

Example 3.5. Let .X; �/ be an iterated function system and consider the product
system .X2; �2 D ¹
 � 
 0 j 
; 
 0 2 �º/, where 
 � 
 0.x; y/ D .
.x/; 
 0.y// for
.x; y/ 2 X2. The pair ..x; y/ 7! x; 
 � 
 0 7! 
/ defines a semiconjugacy.

Morphisms intertwine the induced dynamics on compact sets.

Lemma 3.6 (cf. [10, Proposition 4.6.4 (vi)]). Let .f;˛/W .X;�/! .Y;ƒ/ be a morph-
ism and consider the dH -continuous map f WK.X/! K.Y / induced by f . Then
f is a homomorphism between the single-map dynamical systems .K.X/; �/ and
.K.Y /; ˛.�// in the sense that f ı � D ˛.�/ ı f . Here, ˛.�/ is the Hutchinson
operator for the system .Y; ˛.�//.

Proof. For K 2K.X/, we simply compute

f .�.K// D
[

2�

f ı 
.K/ D
[

2�

˛.
/ ı f .K/ D ˛.�/.f .K//:

Remark 3.7. A morphism .f; ˛/W .X;�/! .Y;ƒ/ is distinct from a homomorphism
between the single-map systems .K.X/; �/ and .K.Y /; ˛.�//. Indeed, if X D Y

and �.K/ D ƒ.K/ for all K 2 K.X/, then as a single-map system .K.X/; �/ is
equal, not just conjugate, to .K.X/;ƒ/.
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For example, fix 
 2 � and let 
0 be a distinct copy of 
 . Form the disjoint union
�0 D � t ¹
0º so that 
0 is a “redundant” map. Then .idX ; � ,! �0/ is a morph-
ism that is not a conjugacy as � ,! �0 does not surject, but the single-map systems
.K.X/; �/ and .K.X/; �0/ are equal.

For hyperbolic systems, morphisms always map attractors to compact subsets of
attractors so that the image is a subsystem of the codomain.

Lemma 3.8. Let .X; �/ and .Y; ƒ/ be iterated function systems with attractors A

and B, respectively. If .f; ˛/W .X; �/ ! .Y; ƒ/ is a morphism, then f .A/ � B. In
particular, .f .A/; ˛.�// embeds in .B; ƒ/.

Proof. Lemma 3.6 implies that

f .A/ D f .�.A// D ˛.�/.f .A// � ƒ.f .A//:

Since f .A/ is compact, it follows from Lemma 2.2 that f .A/ � B.

4. A closed graph theorem for morphisms

In this section we prove the main result of this article, a closed graph theorem for
morphisms of hyperbolic iterated function systems. We show that, when restricted to
attractors, the graph of a morphism is itself the attractor of an iterated function system.
To this end, we introduce a fibred system.

Definition 4.1. Let .X; �/ and .Y; ƒ/ be hyperbolic iterated function systems and
suppose that ˛W� ! ƒ. For each 
 2 � define 
˛WX � Y ! X � Y by


˛.x; y/ D .
.x/; ˛.
/.y//

and let � �˛ ƒ WD ¹
˛ j 
 2 �º: Equipping X � Y with the metric

d1
�
.x1; y1/; .x2; y2/

�
D max

®
dX .x1; x2/; dY .y1; y2/

¯
;

the pair .X � Y; � �˛ ƒ/ is a hyperbolic iterated function system which we call the
system fibred over ˛2.

The system .X � Y; � �˛ ƒ/ is fibred in the sense that � �˛ ƒ is a fibre product
in the category of sets and functions. Typically, .X � Y; � �˛ ƒ/ itself is not a fibre
product in a categorical sense, however the restriction of the system to its attractor
is a fibre product in the category of iterated function systems with morphisms (see
Corollary 4.9).

2Any metric for which .X � Y; � �˛ ƒ/ is hyperbolic may be used.
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In the case that .X; �/ D .�N ; †N / and jƒj D N , the system fibred over an
associated code map is referred to as the lifted system by Barnsley, who uses it to
describe fractal tops [1, Definition 4.9.1]. We now come to the main result.

Theorem 4.2. Let .X; �/ and .Y; ƒ/ be hyperbolic iterated function systems with
attractors A and B, respectively. If .f; ˛/W .X; �/! .Y; ƒ/ is a morphism, then the
attractor of the system .X � Y; � �˛ ƒ/ is the graph

Gr.f jA/ WD
®
.x; f .x// 2 X � Y j x 2 A

¯
of f restricted to A. Moreover, suppose that ˇW � ! ƒ and D is the attractor of
.X � Y; � �ˇ ƒ/. Then there is a continuous function gWA ! B making .g; ˇ/W
.A; �/ ! .B; ƒ/ a morphism if and only if D is the graph of a function from A

to B (continuity is automatic).

Proof. Lemma 3.8 implies that f .A/ � B, so Gr.f jA/ is a subset of the compact set
A � B. Since f is continuous, Gr.f jA/ is closed in A � B, and therefore compact.
The iterated function system .X � Y;� �˛ ƒ/ has a unique attractor by Hutchinson’s
theorem. Hence, it suffices to show that

Gr.f jA/ D
[

2�


˛.Gr.f jA//:

Since f ı 
 D ˛.
/ ı f , it follows that if .x; f .x// 2 Gr.f jA/, then 
˛.x; f .x// 2
Gr.f jA/ for all 
 2 � . For the reverse inclusion, fix .x; f .x// 2 Gr.f jA/. Since
AD

S

2� 
.A/, for each x 2 A, there exists 
 2 � and x0 2 A such that x D 
.x0/.

Then


˛.x0; f .x0// D .
.x0/; ˛.
/ ı f .x0// D .x; f ı 
.x0// D .x; f .x//;

so .x; f .x// 2 
˛.Gr.f jA//. As such, Gr.f jA/ is the attractor of .X � Y; � �˛ ƒ/.
The “only if” direction of the second statement follows from the first statement.

For the “if” direction, suppose that D is the graph of a function gWA! B. Since D is
closed in A � B, it follows from the closed graph theorem for compact Hausdorff
spaces that g is continuous. If .x; g.x// 2 D, then invariance under the Hutchinson
operator implies that for each 
 2 � , we have .
.x/; ˇ.
/ ı g.x// 2 D. Since D D

Gr.g/, it follows that ˇ.
/ ı g.x/D g ı 
.x/. Consequently, .g;ˇ/W .A; �/! .B;ƒ/

is a morphism.

Restricting to attractors yields the following closed graph theorem.

Corollary 4.3 (Closed graph theorem). Let .A; �/ and .B; ƒ/ be hyperbolic iter-
ated function systems with attractors A and B, respectively. Suppose f WA! B and
˛W � ! ƒ. Then .f; ˛/ is a morphism if and only if Gr.f / is the attractor of
.X � Y; � �˛ ƒ/.
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Remark 4.4. Set-theoretically, a function is its graph. Consequently, Corollary 4.3
may be interpreted as saying that f is the attractor of an iterated function system.

Theorem 4.2 implies that morphisms between hyperbolic iterated function sys-
tems are rare.

Corollary 4.5 (Morphism rigidity). Suppose .f; ˛/W .X; �/! .Y;ƒ/ is a morphism
between hyperbolic iterated function systems with attractors A and B, respectively.
Then the restricted morphism .f jA; ˛/W .A; �/! .B; ƒ/ is determined entirely by ˛
in the sense that if .g; ˛/W .X; �/! .Y;ƒ/ is another morphism, then f jA D gjA.

Proof. Theorem 4.2 implies that the graphs Gr.f / and Gr.g/ are both attractors of
.X � Y; � �˛ ƒ/, so the uniqueness of the attractor gives the result.

In light of Corollary 4.5, we may use Theorem 4.2 to approach the problem of
determining whether there exists a morphism between two hyperbolic iterated func-
tion systems. Since a morphism .f; ˛/W .A; �/! .B; ƒ/ is determined by ˛, to find
such a morphism, it suffices to check whether the attractor of .A � B; � �˛ ƒ/ is the
graph of a function for each of the jƒjj�j possible choices of maps ˛ from ƒ to � .
Moreover, if j�j D jƒj, we can determine whether a conjugacy exists by checking
each of the j�jŠ possible choices of bijections.

For concrete iterated function systems, the attractor of .X � Y; � �˛ ƒ/ may
be approximated numerically using the chaos game algorithm. This can be used to
determine whether or not morphisms or conjugacies exist as seen in Example 4.6
below.

Example 4.6. Consider the unit interval Œ0; 1� with the Euclidean metric, and define
iterated function systems .Œ0; 1�; � D ¹
1; 
2º/ and .Œ0; 1�;ƒ D ¹�1; �2º/, where


1.x/ D
2x

3
; 
2.x/ D

2x

3
C
1

3
; �1.x/ D

3x

4
; and �2.x/ D

3x

4
C
1

4
:

At a first glance, the systems .Œ0; 1�; �/ and .Œ0; 1�; ƒ/ exhibit a similar behaviour.
Both have attractor Œ0; 1�, and the sets of overlap are closed intervals given by


1.Œ0; 1�/ \ 
2.Œ0; 1�/ D
h1
3
;
2

3

i
and �1.Œ0; 1�/ \ �2.Œ0; 1�/ D

h1
4
;
3

4

i
;

respectively. It is natural to ask whether these two systems are conjugate.
In Figure 4.1, a chaos game approximation for the attractor D of .Œ0; 1�2; � �˛ ƒ/

is pictured for the bijection ˛W � ! ƒ given by ˛.
1/ D �1 and ˛.
2/ D �2. The
attractor of the other bijection is given by a horizontal reflection of Figure 4.1. The
approximation makes it easy to see that the systems .Œ0; 1�; �/ and .Œ0; 1�; ƒ/ are not
conjugate as D is not the graph of a bijection.
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.0; 0/

.1; 1/

. 4
9
; 9
16
/

. 5
9
; 7
16
/

Figure 4.1. A chaos game approximation of the attractor D of the system .Œ0; 1�2; � �˛ ƒ/

from Example 4.6.

Formalising the observation, .0; 0/ and .1; 1/ belong to D as the respective fixed
points of 
˛1 and 
˛2 . Then .5

9
; 7
16
/ D 
˛2 ı 


˛
2 .0; 0/ and .4

9
; 9
16
/ D 
˛1 ı 


˛
1 .1; 1/ also

belong to D. If D were the graph of a (necessarily continuous) function f , then
f .0/ D 0, f .1/ D 1, f .4

9
/ D 9

16
, and f .5

9
/ D 7

16
. The intermediate value theorem

implies that f could not be injective.

Corollary 4.3 also provides an alternative definition of the code map.

Example 4.7. Consider an iterated function system .A; �/ with attractor A. Let
LW ¹1; : : : ; N º ! � be a bijective labelling of the maps in � and let ˇLW†N 7! �

denote the induced map as in Example 3.2. Then the code map �LW�N ! A is
uniquely determined as the function whose graph is the attractor of the fibred sys-
tem .�N �A; †N �ˇL �/.

Restricting to attractors, the fibred system associated to a morphism is always
conjugate to the domain.

Corollary 4.8. Suppose that .f; ˛/W .A; �/ ! .B; ƒ/ is a morphism of hyperbolic
iterated function systems with respective attractors A and B. Then .Gr.f /; � �˛ ƒ/
is conjugate to .A; �/.

Proof. Theorem 4.2 implies that Gr.f / is the attractor of .Gr.f /; � �˛ ƒ/. Let
pWGr.f /! A denote the projection onto the first factor. Since Gr.f / is the graph of
a function, p is a continuous bijection from a compact space to a Hausdorff space, and
therefore a homeomorphism. It follows that .p; 
˛ 7! 
/ is the desired conjugacy.

As a consequence of Corollary 4.8, the topological properties of the system .A;�/

are shared by .Gr.f /; � �˛ ƒ/. For example, the covering dimension of A is equal to
the covering dimension of Gr.f /. The relationship at the level of geometric properties
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is not so clear, because geometric properties of Gr.f / depend on a choice of metric
on Gr.f /. With Corollary 4.8, we obtain, somewhat trivially, the following universal
property of the system .Gr.f /; � �˛ ƒ/.

Corollary 4.9. Let .f; ˛/W .A; �/! .B; ƒ/ be a morphism between hyperbolic iter-
ated function systems with attractors A and B, respectively. Let pAWGr.f /! A and
pBW Gr.f / ! B be the projections onto the components of Gr.f /. Then the iter-
ated function system .Gr.f /; � �˛ ƒ/ is universal in the following sense: if .X;„/
is another iterated function and .gA; ˇA/W .X;„/! .Gr.f /; � �˛ ƒ/ and .gB; ˇB/W

.X;„/! .Gr.f /;� �˛ ƒ/ are morphisms such that f ı gA D gB and ˛ ı ˇA D ˇB,
then there exists a unique morphism .h; �/W .X; „/! .Gr.f /; � �˛ ƒ/ witnessing
commutativity of the diagram

.A; �/

.X;„/ .Gr.f /; � �˛ ƒ/

.B; ƒ/

.f;˛/
.h;�/

.gA;ˇA/

.gB;ˇB/

.pA;

˛ 7!
/

.pB;
 7!˛.
//

Proof. As .pA; 

˛ 7! 
/ is a conjugacy, it suffices to set h D p�1A ı gA and � D

.
 7! 
˛/ ı ˇA.

We finish by using Corollary 4.3 to deduce that morphisms of iterated function
systems lift uniquely to morphisms between code spaces.

Proposition 4.10. Let .A; � D ¹
1; : : : ; 
N º/ and .B; ƒ D ¹�1; : : : ; �M º/ be hyper-
bolic iterated function systems with chosen labellings of the contractions, and attract-
ors A and B, respectively. Let .�� ; ˇ�/W .�N ; †N / ! .A; �/ and .�ƒ; ˇƒ/W

.�N ;†N /! .B;ƒ/ denote the morphisms induced by the corresponding code maps.
For any morphism .f; ˛/W .A; �/! .B; ƒ/ there exists a unique morphism . zf ; z̨/W

.�N ; †N /! .�M ; †M / making the diagram

.�N ; †N / .�M ; †M /

.A; �/ .B; ƒ/

. zf ;z̨/

.�� ;ˇ� / .�ƒ;ˇƒ/

.f;˛/

(4.1)

commute.

Proof. Since ˇƒ is a bijection, we can define z̨ WD ˇ�1ƒ ı ˛ ı ˇ� . Then z̨ induces
a function hW ¹1; : : : ; N º ! ¹1; : : : ; M º defined by z̨.�i / D �h.i/ and h induces a
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continuous map zf W�N ! �M defined by zf .w1w2w3 � � � / D h.w1/h.w2/h.w3/ � � �
for all wk 2 ¹1; : : : ;N º. In particular, zf ı �i D z̨.�i / ı zf for all i 2 ¹1; : : : ;N º. The
uniqueness of zf follows from Corollary 4.3.

Remark 4.11. It is not the case that every morphism . zf ; z̨/W .�N ;†N /! .�M ;†M /

descends to a morphism .f; ˛/W .A; �/! .B; ƒ/ making (4.1) commute. Indeed, if
M D N , .B; ƒ/ D .�N ; †N /, and . zf ; z̨/ D .�ƒ; ˇƒ/ D .id�N ; id z†N /, then the
commutativity of (4.1) would imply that such an f is an inverse for ��—regardless
of A—which is absurd.

As a final remark, we note that the notion of morphism introduced in Definition 3.1
generalises readily to the topological iterated function systems of Kameyama [8] or
Kieninger [10]. Although we do not pursue it here, the author believes that it would
be interesting to see how the collection of invariant sets in the fibred system affects
the existence of morphisms for more general topological iterated function systems.
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