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A fractal interpolation scheme for a possible
sizeable set of data

Radu Miculescu, Alexandru Mihail, and Cristina Maria Pacurar

Abstract. In this paper, we propose a new fractal interpolation scheme. More precisely, we
consider a; b 2 R, a < b, and A � R such that ¹a; bº � A D A � Œa; b� and

ı

A D ; and prove
that for every continuous function f W A!R, there exist a continuous function g� W Œa; b�!R

such that g�
jA
D f and a possible infinite iterated function system whose attractor is the graph

of g�. If A is finite, we obtain the classical Barnsley’s interpolation scheme and for A D ¹xn j
n 2 Nº [ ¹bº, where x1 D a, limn!1 xn D b and xn 2 Œa; b� for every n 2 N, we obtain a
countable scheme due to N. Secelean. Our interpolation scheme permits A to be uncountable as
it is the case for the Cantor ternary set.

1. Introduction

The aim of interpolation is to recover a function when some points of its graph are
available. The usual interpolation techniques (using polynomial, exponential, rational,
trigonometric or spline functions) yield piecewise differentiable interpolation func-
tions, which are not appropriate for many real situations exhibiting a lack of smooth-
ness in their traces. In order to deal even with interpolants which are not differentiable
in a dense subset of their domain, M. Barnsley (see [1]) introduced the fractal interpol-
ation functions which are more flexible for interpolation of irregular data, providing
a large range of interpolants (from nowhere differentiable to infinitely differentiable
ones). More precisely, given a finite subset A of R and a function f W A ! R, he
proved the existence of a continuous function F W ŒminA;maxA�! R having the
following two properties:

(a) FjA D f ;

(b) there exists an iterated function system such that its attractor is the graph of F .

The function F is called a fractal interpolation function (FIF) corresponding to the
set of data ¹.a; f .a// j a 2 Aº.
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In order to get more flexible and diverse fractal interpolation functions, Barnsley’s
original concept has been generalized in different directions. Let us mention some of
them:

(a) multivariable fractal interpolation functions, which are obtained via higher-
dimensional or recurrent iterated function systems (see [3]);

(b) hidden-variable fractal interpolation functions involving the projection of the
attractors of vector-valued iterated function systems to some lower-dimen-
sional spaces (see [2, 6, 8, 15, 27]);

(c) Hermite or spline fractal interpolation functions (see [21, 29]);

(d) bilinear fractal interpolants, which are based on bilinear functions (see [5]);

(e) fractal splines which combine fractal functions and splines (see [4, 13]);

(f) fractal interpolation surfaces (see [7, 11, 14, 16, 31, 34]);

(g) generalization of Barnsley’s fractal interpolation technique for a countable set
of data (see [12, 23–26, 28]);

For very nice and useful expository accounts of fractal interpolation, one can con-
sult [16, 20].

Fractal interpolation functions have applications in image compression (see [10]),
structural mechanic (see [32]), image data reconstruction (see [9]), signal processing
(see [18, 33]), theory of Schauder bases (see [19, 22]), etc.

In this paper, we extend Barnsley’s fractal interpolation technique. We consider
a; b 2 R, a < b, and A � R such that ¹a; bº � A D A � Œa; b� and

ı

A D ;. Our
main result says that for every continuous function f W A ! R, there exist a con-
tinuous function g� W Œa; b� ! R and a possible infinite iterated function system
whose attractor is the graph of g� (see Theorem 3.13) and such that g�

jA
D f (see

Remark 3.9), i.e., there exists a fractal interpolation function corresponding to the set
of data ¹.a; f .a// j a 2 Aº. If A is finite, we obtain the classical Barnsley’s interpola-
tion scheme (see [1]) and forAD ¹xn j n 2Nº [ ¹bº, where x1 D a, limn!1 xn D b,
and xn 2 Œa; b� for every n 2N, we obtain the interpolation scheme presented in [25].
We stress the fact that our interpolation scheme permits A to be uncountable as the
case of the Cantor ternary set shows.

Let us mention that the main tool used to overcome the difficulties concerning the
step between countable and uncountable data is the theorem concerning the structure
of the open subsets of R. It provides a sequence .In/n2N of disjoint open intervals
having the property that Œa;b� nAD

S
n2N In. Then, via this sequence, we consider an

operator T WC.Œa;b�/!C.Œa;b�/, where C.Œa;b�/D¹g W Œa;b�!R j g is continuous,
g.a/ D a and g.b/ D bº. The most difficult issue that arises in the framework of
uncountable data is to prove that T is well defined, i.e., that T .g/ 2 C.Œa; b�/ for
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each g 2 C.Œa; b�/ (see Proposition 3.7) because one has to overcome some technical
obstacles.

Let us also mention that our main result, namely Theorem 3.13, provides a larger
framework than the results existing in the literature. In particular, let us compare our
interpolation scheme with the one presented in [30], by considering the set A D ¹ 1

n
j

n 2 N, n � 2º [ ¹0º � Œ0; 1� and the continuous function f W A! R given by

f .x/ D

´
1

lnn ; if x D 1
n

, where n 2 N; n � 2;

0; if x D 0:

Theorem 3.13 ensures the existence of a possible infinite iterated function system �

and of a function g� W Œ0; 1�! R such that g�
jA
D f and Gg� D A� . We claim that it

does not exist any iterated function system with variable parameters � 0 (see [30, pp. 3–
4] for details concerning this type of systems) having the property that Gg� D A� 0 .
Indeed, if this is not the case, then, in view of [30, Corollary 3.1], there exist M > 0

and � 2 .0; 1� such that jg�.x/ � g�.x0/j � M jx � x0j� for all x; x0 2 Œ0; 1�. In par-
ticular, we get jg�. 1

n
/ � g�.0/j � M 1

n�
, so 1 � M lnn

n�
for every n 2 N, n � 2. By

passing to the limit as n goes to1 in the previous inequality, we get the contradiction
that 1 � 0.

2. Preliminaries

In the sequel, N denotes the set ¹1; 2; : : :º.
For a function f W A ! B , we use Gf to denote the graph of f , i.e., the set

¹.a; f .a// j a 2 Aº.
For a function f W X ! X and n 2N, we denote the composition of f with itself

n times by f Œn�.
For a metric space .X; d/, x 2 X and " > 0, we shall use the following notation:

� diam.A/ WD supx;y2A d.x; y/;

� Pb.X/ WD ¹A � X j A ¤ ; and A is boundedº;

� Pcl.X/ WD ¹A � X j A ¤ ; and A is closedº;

� Pb;cl.X/ WD Pb.X/ \ Pcl.X/;

� Pcp.X/ WD ¹A � X j A ¤ ; and A is compactº.

If, in addition, A;B 2 Pb.X/ and x 2 X , we shall also use the following notation:

� d.x;A/ WD infx2A d.x; a/;

� d.A;B/ WD supa2A d.a; B/.
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Definition 2.1. For a function f W X ! X , where .X; d/ is a metric space,

lip.f / WD sup
x;y2X Ix 6Dy

d
�
f .x/; f .y/

�
d.x; y/

2 Œ0;C1�

is called the Lipschitz constant of f .
If lip.f / < C1, then f is called Lipschitz and if lip.f / < 1, then f is called a

contraction.

Definition 2.2. Given a metric space .X; d/, the function

h W Pb;cl.X/ � Pb;cl.X/! Œ0;1/

described by
h.A;B/ D max

®
d.A;B/; d.B;A/

¯
for every A; B 2 Pb;cl.X/, which turns out to be a metric, is called the Hausdorff–
Pompeiu metric on X .

Definition 2.3. A possible infinite iterated function system (PIIFS) is a pair � WD

..X; d/; .fi /i2I /, where:

� .X; d/ is a complete metric space;

� fi W X ! X are contractions such that supi2I lip.fi / < 1;

� the family of functions .fi /i2I is bounded, i.e.,
S
i2I fi .A/ 2 Pb.X/ for every

A 2 Pb.X/.

One can associate to � the function F� W Pb;cl.X/! Pb;cl.X/ called the fractal oper-
ator associated to � , given by

F� .B/ D
[
i2I

fi .B/

for all B 2 Pb;cl.X/.

Theorem 2.4 ([17, Theorem 2.2]). For each � D..X; d/; .fi /i2I /, there exists a
unique A� 2 Pb;cl.X/, called the attractor of � , such that

F� .A� / D A� .

In addition, we have
lim
n!1

h
�
F
Œn�

�
.B/; A�

�
D 0

for every B 2 Pb;cl.X/.



A fractal interpolation scheme 341

3. The main result

Remark 3.1. Let us consider a; b 2 R, a < b, and A � R having the following prop-
erties:

(i) ¹a; bº � A D A � Œa; b�;

(ii)
ı

A D ;.

Then there exists a sequence .In/n2N of disjoint open intervals such that

Œa; b� n A D
[
n2N

In;

where
In D .˛n; ˇn/

for every n 2 N.

Remark 3.2. (a) If x 2 A is not an accumulation point of A \ .x;1/, then there
exists n 2 N such that

x D ˛n:

Indeed, there exists " > 0 such that .x; x C "/ �
S
n2N In so, as x 2 A, there exists

n 2 N such that x D ˛n.
(b) Similarly, if x is not an accumulation point of A \ .�1; x/, then there exists

n 2 N such that
x D ˇn:

Remark 3.3. (a) If x 2 A is an accumulation point of A \ .x;1/, then for every
sequence .xk/k2N � .x; b/ nA having the property that limk!1 xk D x, there exists
a sequence ..˛nk ; ˇnk //k2N of elements from the family ¹.˛n; ˇn/ j n 2Nº such that:

(i) x < ˛nk < ˇnk for every k 2 N;

(ii) xk 2 .˛nk ; ˇnk / for every k 2 N;

(iii) the set ¹xk j k 2 Nº \ .˛nk ; ˇnk / is finite for every k 2 N;

(iv) limk!1 ˛nk D limk!1 ˇnk D x.

Indeed, there exists a sequence .an/n2N � A such that

lim
n!1

an D x

and
x < anC1 < an

for every n 2 N. As .anC1; an/ n A is an at most countable union of intervals In, the
conclusion follows.
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(b) Similarly, one could prove that if x 2 A is an accumulation point of the set
A\ .�1; x/, then for every sequence .xk/k2N � .a; x/ nA having the property that
limk!1 xk D x, there exists a sequence ..˛nk ;ˇnk //k2N of elements from the family
¹.˛n; ˇn/ j n 2 Nº such that:

(i) ˛nk < ˇnk < x for every k 2 N;

(ii) xk 2 .˛nk ; ˇnk / for every k 2 N;

(iii) the set ¹xk j k 2 Nº \ .˛nk ; ˇnk / is finite for every k 2 N;

(iv) limk!1 ˛nk D limk!1 ˇnk D x.

We consider the functions ln W Œa; b�! Œ˛n; ˇn� given by

ln.x/ D
ˇn � ˛n

b � a
x C

˛nb � ˇna

b � a

for every x 2 Œa; b� and every n 2 N. With the notation

an WD
ˇn � ˛n

b � a
and bn WD

˛nb � ˇna

b � a
;

we have
ln.x/ D anx C bn

for every x 2 Œa; b� and every n 2 N.

Remark 3.4. The function ln has the following properties:

(a) ln.a/ D ˛n and ln.b/ D ˇn for every n 2 N;

(b) l�1n W Œ˛n; ˇn�! Œa; b� is given by

l�1n .x/ D
b � a

ˇn � ˛n
x C

ˇna � ˛nb

ˇn � ˛n

for every x 2 Œ˛n; ˇn� and every n 2 N;

(c) l�1n .˛n/ D a and l�1n .ˇn/ D b for every n 2 N.

For a continuous function f WA!R, one can consider the functions gn WR2!R

given by

gn.x; y/ D
�f .ˇn/ � f .˛n/

b � a
� dn

f .b/ � f .a/

b � a

�
x

C dny C
bf .˛n/ � af .ˇn/

b � a
� dn

bf .a/ � af .b/

b � a

for every .x; y/ 2 R2 and every n 2 N, where .dn/n2N � Œ0; 1/ is such that

lim
n!1

dn D 0:
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With the notation

cn WD
f .ˇn/ � f .˛n/

b � a
� dn

f .b/ � f .a/

b � a

and

en WD
bf .˛n/ � af .ˇn/

b � a
� dn

bf .a/ � af .b/

b � a
;

we have
gn.x; y/ D cnx C dny C en

for every .x; y/ 2 R2 and every n 2 N.

Remark 3.5. The function gn satisfies that

gn.a; f .a// D f .˛n/ and gn.b; f .b// D f .ˇn/

for every n 2 N.

Let us consider

C.Œa; b�/ D
®
g W Œa; b�! R

ˇ̌
g is continuous, g.a/ D f .a/ and g.b/ D f .b/

¯
and, for g 2 C.Œa; b�/, consider the function Tg W Œa; b�! R given by

Tg.x/ D

´
f .x/; if x 2 A;

cnl
�1
n .x/C dng.l

�1
n .x//C en; if x 2 .˛n; ˇn/:

Remark 3.6. (a) One has

Tg.˛n/ D cnl
�1
n .˛n/C dng.l

�1
n .˛n//C en

for every g 2 C.Œa; b�/ and every n 2 N.
Indeed, we have

Tg.˛n/
(1)
D f .˛n/

(2)
D gn.a; f .a//

(3)
D gn.a; g.a//

D cnaC dng.a/C en
(4)
D cnl

�1
n .˛n/C dng.l

�1
n .˛n//C en;

where (1) holds because ˛n 2 A, (2) is due to Remark 3.5, (3) uses that g 2 C.Œa; b�/,
and (4) is due to Remark 3.4 (c).

(b) In a similar way, one can prove that

Tg.ˇn/ D cnl
�1
n .ˇn/C dng.l

�1
n .ˇn//C en

for every g 2 C.Œa; b�/ and every n 2 N.
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Proposition 3.7. In the above framework, we have

Tg 2 C.Œa; b�/

for every g 2 C.Œa; b�/.

Proof. As a; b 2 A, we have

Tg.a/ D f .a/ and Tg.b/ D f .b/

by the definition of Tg .
From the definition of Tg , as ln is a homeomorphism and g is continuous, we infer

that Tg is continuous on Œa; b� n A.
Now let us consider x0 2 A.
If x0 is not an accumulation point of A \ .x0;1/, in view of Remark 3.2, there

exists n 2 N such that x0 D ˛n. Consequently,

lim
x!x

C

0

Tg.x/
(1)
D lim
x!x

C

0

�
cnl
�1
n .x/C dng.l

�1
n .x//C en

�
(2)
D cnl

�1
n .˛n/C dng.l

�1
n .˛n//C en

(3)
D cnaC dng.a/C en

(4)
D cnaC dnf .a/C en D gn.a; f .a//

(5)
D f .˛n/ D f .x0/

(6)
D Tg.x0/,

where (1) follows from the definition of Tg , (2) uses the continuity of g and l�1n ,
(3) follows from Remark 3.4 (c), (4) uses the fact that g 2 C.Œa; b�/, (5) follows from
Remark 3.5, and (6) uses that x0 2 A together with the definition of Tg . So

lim
x!x

C

0

Tg.x/ D Tg.x0/: (3.1)

In a similar manner, we get that if x0 is not an accumulation point ofA\ .�1; x0/,
then

lim
x!x

C

0

Tg.x/ D Tg.x0/: (3.2)

If x0 2A is an accumulation point ofA\ .x0;1/, let us consider a fixed but arbit-
rarily chosen sequence .xk/k2N � .x0; b� with the property that limk!1 xk D x0.

We are going to prove that

lim
k!1

Tg.xk/ D Tg.x0/: (3.3)

If ¹k 2 N j xk … Aº is finite, then, according to the definition of Tg , (3.3) takes
the form limk!1 f .xk/ D f .x0/ whose validity is ensured by the continuity of f .
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If ¹k 2 N j xk 2 Aº is finite, according to Remark 3.3, we can suppose that there
exists a sequence ..˛nk ; ˇnk //k2N of elements from the family ¹.˛n; ˇn/ j n 2 Nº

such that:

(i) x0 < ˛nk < ˇnk for every k 2 N;

(ii) xk 2 .˛nk ; ˇnk / for every k 2 N;

(iii) the set ¹xk j k 2 Nº \ .˛nk ; ˇnk / is finite for every k 2 N;

(iv) limk!1 ˛nk D limk!1 ˇnk D x0.

Then, we haveˇ̌
Tg.xk/ � Tg.x0/

ˇ̌ (1)
D
ˇ̌
Tg.xk/ � f .x0/

ˇ̌
�
ˇ̌
Tg.xk/ � Tg.˛nk /

ˇ̌
C
ˇ̌
Tg.˛nk / � f .x0/

ˇ̌
(2)
D
ˇ̌
Tg.xk/ � Tg.˛nk /

ˇ̌
C
ˇ̌
f .˛nk / � f .x0/

ˇ̌
(3)
D
ˇ̌
cnk l

�1
nk
.xk/C dnkg.l

�1
nk
.xk//C enk

� .cnkaC dnkf .a/C enk /
ˇ̌
C
ˇ̌
f .˛nk / � f .x0/

ˇ̌
� jcnk j

ˇ̌
l�1nk .xk/ � a

ˇ̌
C dnk

ˇ̌
g.l�1nk .xk// � f .a/

ˇ̌
C
ˇ̌
f .˛nk / � f .x0/

ˇ̌
(4)
D jcnk j

ˇ̌
l�1nk .xk/ � l

�1
nk
.˛nk /

ˇ̌
C dnk

ˇ̌
g.l�1nk .xk// � g.a/

ˇ̌
C
ˇ̌
f .˛nk / � f .x0/

ˇ̌
� 2.b � a/jcnk j C 2 diam.Img/dnk

C
ˇ̌
f .˛nk / � f .x0/

ˇ̌
(3.4)

for every k 2 N, where (1) follows from the fact that x0 2 A and the definition of Tg ,
(2) is due the fact that ˛nk 2 A and the definition of Tg , (3) follows from Remark 3.6
and the defintion of Tg , and, finally, for (4), we refer to Remark 3.4 (c) and the fact
that g 2 C.Œa; b�/.

Note that as limn!1 dn D 0, f is continuous and limk!1 ˛nk D limk!1 ˇnk D

x0, we infer that limk!1 cnk D 0, so we get

lim
k!1

�
2.b � a/jcnk j C 2 diam.Img/dnk C

ˇ̌
f .˛nk / � f .x0/

ˇ̌�
D 0

and therefore, via (3.4), (3.3) is valid.
If the sets ¹k 2 N jxk … Aº and ¹k 2 N jxk 2 Aº are infinite, then there exist two

subsequences .un/n2N � .x0; b� nA and .vn/n2N � .x0; b�\A of .xk/k2N such that®
xk j k 2 N

¯
D
®
un j n 2 N

¯
[
®
vn j n 2 N

¯
:
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As the previous cases ensure that

lim
n!1

Tg.un/ D lim
n!1

Tg.vn/ D Tg.x0/;

we infer that (3.3) is also valid in this case.
We conclude that if x0 2 A is an accumulation point of A \ .x0;1/, then

lim
x!x

C

0

Tg.x/ D Tg.x0/: (3.5)

One can similarly prove that if x0 is an accumulation point of A\ .�1; x0/, then

lim
x!x

C

0

Tg.x/ D Tg.x0/: (3.6)

Relations (3.1), (3.2), (3.5) and (3.6) ensure that Tg is continuous. This concludes
the proof of Proposition 3.7.

Proposition 3.7 allows us to define the operator T W C.Œa; b�/! C.Œa; b�/ given
by

T .g/ D Tg

for every g 2 C.Œa; b�/.

Proposition 3.8. In the above mentioned framework, we have

du
�
T .g1/; T .g2/

�
�
�

sup
n2N

dn
�
du.g1; g2/

for all g1; g2 2 C.Œa; b�/, so T is a contraction with respect to the uniform metric du.

Proof. We have

du
�
T .g1/; T .g2/

�
D sup
x2Œa;b�

ˇ̌
T .g1/.x/ � T .g2/.x/

ˇ̌
(1)
D sup
x2Œa;b�nA

ˇ̌
T .g1/.x/ � T .g2/.x/

ˇ̌
(2)
D sup
n2N;x2.˛n;ˇn/

dn
ˇ̌
g1.l

�1
n .x// � g2.l

�1
n .x//

ˇ̌
�
�

sup
n2N

dn
�

sup
x2Œa;b�

ˇ̌
g1.x/ � g2.x/

ˇ̌
D
�

sup
n2N

dn
�
du.g1; g2/

for all g1; g2 2 C.Œa; b�/, where (1) and (2) follow from the definition of T .

As .C.Œa; b�/; du/ is a complete metric space, Proposition 3.8, via the Picard–
Banach–Caccioppoli principle, ensures that there exists a unique g� 2 C.Œa; b�/ such
that

T .g�/ D g�.
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Remark 3.9. g�
jA
D f .

We are going to prove that there exists a possible infinite iterated function system
whose attractor is the graph of g�.

Let us consider the functions fn W R2 ! R2 given by

fn.x; y/ D .anx C bn; cnx C dny C en/

for all x; y 2 R and n 2 N.

Remark 3.10. (a) supn2N an < 1.
Indeed, the set ¹n 2 N j an >

1
2
º has at most one element since otherwise there

exist n1; n2 2N, n1 ¤ n2, such that an1 >
1
2

and an2 >
1
2

and we get 1 < an1 C an2 ,
which is a contradiction: since .˛n1 ; ˇn1/ and .˛n2 ; ˇn2/ are disjoint intervals lying
inside .a; b/, we have an1 C an2 < 1. As an < 1 for every n 2 N, the conclusion
follows.

(b) The sequence .cn/n2N is bounded.
Indeed, this follows from the compactness of f .A/ (note that f is continuous and

A is compact) and the boundedness of .dn/n2N .

Remark 3.10 allows us to consider

� 2
�
0;
1 � supn2N an

C

�
;

with C > 0 being such that

jcnj � C for every n 2 N;

and the metric �, on R2, given by

�
�
.x1; y1/; .x2; y2/

�
D jx1 � x2j C � jy1 � y2j

for all .x1; y1/; .x2; y2/ 2 R2.

Proposition 3.11. In the above mentioned framework, the functions fn are contrac-
tions with respect to the metric �.

Proof. We have

�
�
fn.x1; y1/; fn.x2; y2/

�
D �

�
.anx1 C bn; cnx1 C dny1 C en/; .anx2 C bn; cnx2 C dny2 C en/

�
D
ˇ̌
.anx1 C bn/ � .anx2 C bn/

ˇ̌
C �

ˇ̌
.cnx1 C dny1 C en/ � .cnx2 C dny2 C en/

ˇ̌
D anjx1 � x2j C �

ˇ̌
cn.x1 � x2/C dn.y1 � y2/

ˇ̌
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� an jx1 � x2j C �
�
jcnj jx1 � x2j C dn jy1 � y2j

�
D
�
an C � jcnj

�
jx1 � x2j C �dn jy1 � y2j

�
�

sup
n2N

an C �C
�
jx1 � x2j C �

�
sup
n2N

dn
�
jy1 � y2j

� max
®

sup
n2N

an C �C; sup
n2N

dn
¯�
jx1 � x2j C � jy1 � y2j

�
D max

®
sup
n2N

an C �C; sup
n2N

dn
¯
�
�
.x1; y1/; .x2; y2/

�
for all .x1; y1/; .x2; y2/ 2 R2 and n 2 N. As

max
®

sup
n2N

an C �C; sup
n2N

dn
¯
< 1;

the proof is complete.

Remark 3.12. (a) .R2; �/ is a complete metric space.
(b) One has

sup
n2N

lip.fn/ � max
®

sup
n2N

an C �C; sup
n2N

dn
¯
< 1:

(c) The family .fn/n2N is bounded since the sequences .an/n2N , .bn/n2N ,
.cn/n2N , .dn/n2N and .en/n2N are bounded, as .˛n/n2N and .ˇn/n2N are bounded
and f is bounded (as a continuous function on a compact subset of R).

In view of Remark 3.12, one can consider the PIIFS � D ..R2; �/; .fn/n2N/.
Let us also consider

Gg� D
®
.x; g�.x//

ˇ̌
x 2 Œa; b�

¯
DW G:

Theorem 3.13. In the above framework, we have

G D AS :

Proof. As g� is continuous and Œa; b� is compact, we infer that

G 2 Pcp.R
2/ � Pb;cl.R

2/: (3.7)

We have

fn
�
.x; g�.x//

�
D
�
anx C bn; cnx C dng

�.x/C en
�

D
�
anx C bn; cnl

�1
n .ln.x//C dng

�.l�1n .ln.x///C en
�

(1)
D
�
anx C bn; T .g

�/.ln.x//
�

(2)
D
�
ln.x/; g

�.ln.x//
�
2 G
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for all x 2 Œa; b� and n 2 N, where (1) follows from the definition of T .g�/ and
Remark 3.6, and (2) uses that T .g�/ D g�. So[

n2N

fn.G/ � G:

Consequently, we get

F� .G/ D
[
n2N

fn.G/ � G
(1)
D G; (3.8)

where (1) is by (3.7).
If x 2 Œa; b� nA D

S
n2N.˛n; ˇn/, then there exists n 2 N such that x 2 .˛n; ˇn/

and therefore

.x; g�.x// D
�
ln.l
�1
n .x//; g�.ln.l

�1
n .x///

�
(1)
D
�
ln.l
�1
n .x//; T .g�/.ln.l

�1
n .x///

�
(2)
D
�
ln.l
�1
n .x//; cnl

�1
n .ln.l

�1
n .x///C dng

�.l�1n .ln.l
�1
n .x////C en

�
D
�
anl
�1
n .x/C bn; cnl

�1
n .x/C dng

�.l�1n .x//C en
�

(3)
D fn

�
l�1n .x/; g�.l�1n .x//

�
2 fn.G/ �

[
n2N

fn.G/ �
[
n2N

fn.G/ D F� .G/; (3.9)

where (1) is due to the fact that T .g�/D g�, (2) follows from the definition of T .g�/,
and (3) follows from the definition of fn.

If x 2 A is not an accumulation point of A \ .x;1/, then taking into account
Remark 3.2, there exists n 2 N such that x D ˛n and therefore

.x; g�.x// D .˛n; g
�.˛n//

(1)
D
�
˛n; T .g

�/.˛n/
� (2)
D .˛n; f .˛n//

(3)
D
�
ln.a/; gn.a; f .a//

�
D
�
anaC bn; cnaC dnf .a/C en

�
D fn.a; f .a//

(4)
D fn.a; g

�.a//

2 fn.G/ �
[
n2N

fn.G/ �
[
n2N

fn.G/ D F� .G/; (3.10)

where (1) follows from the fact that T .g�/ D g�, (2) uses that ˛n 2 A, (3) follows
from Remark 3.5, and, finally, (4) uses that g� 2 C.Œa; b�/.

In a similar way, one can prove that if x 2 A is not an accumulation point of
A \ .�1; x/, then

.x; g�.x// 2 F� .G/: (3.11)
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If x 2 A is an accumulation point of A \ .x;1/, in view of Remark 3.3, there
exists a sequence ..˛nk ; ˇnk //k2N of elements from the family ¹.˛n; ˇn/ j n 2 Nº

such that
lim
k!1

˛nk D x:

Consequently,

.x; g�.x//
(1)
D lim
k!1

�
˛nk ; g

�.˛nk /
� (2)
2 F� .G/ D F� .G/; (3.12)

where (1) follows from the fact that g� is continuous, and (2) is by (3.10).
In a similar manner, one can prove that if x 2 A is an accumulation point of

A \ .�1; x/, then
.x; g�.x// 2 F� .G/. (3.13)

Relations (3.9)–(3.13) ensure that

G � F� .G/. (3.14)

From (3.8) and (3.14), we conclude that

F� .G/ D G. (3.15)

From (3.7), (3.15) and the uniqueness of the attractor of � (see Theorem 2.4), we
conclude that

A� D Gg� :

Let us summarize the above results.
We considered a;b 2R, a < b andA�R such that ¹a;bº�ADA� Œa;b�,

ı

AD;

and a continuous function f W A! R. We proved that there exists a fractal interpol-
ation function corresponding to the set of data ¹.a; f .a// j a 2 Aº. More precisely,
we prove that there exist a continuous function g� W Œa; b�! R and a possible infinite
iterated function system � D ..R2; �/; .fn/n2N/ having the following properties:

(a) g�
jA
D f ;

(b) Gg� D A� .

Let us present some examples of sets A satisfying the above mentioned conditions.
If A is finite, we obtain the classical Barnsley’s interpolation scheme (see [1]).
For

A D
®
xn
ˇ̌
n 2 N

¯
[ ¹bº,

where x1 D a, limn!1 xn D b, and xn 2 Œa; b� for every n 2 N; we obtain the inter-
polation scheme presented in [25].
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We can also choose

A D
®
xn
ˇ̌
n 2 N

¯
[
®
yn
ˇ̌
n 2 N

¯
[ ¹a; bº,

where limn!1 xn D a, limn!1 yn D b, xn 2 Œa; aCb2 �, and yn 2 ŒaCb2 ; b� for every
n 2 N.

An important example is to consider A to be the Cantor ternary set which is not
countable. Hence our scheme is a genuine generalization of the one presented in [25].

Finally, we present a result, namely Theorem 3.15, showing that, for every g 2
C.Œa; b�/, we can approximate, as close as we want, the graph of the interpolation
function by the graph of T Œn�.g/, if n is big enough.

Theorem 3.14. In the above framework, we have

FS .Gg/ D GT.g/

for every g 2 C.Œa; b�/.

Proof. Let g be an arbitrarily chosen, but fixed, element of C.Œa; b�/.
Let us note that since g is continuous,

Gg 2 Pcp.R
2/ � Pb;cl.R

2/:

The relation
FS .Gg/ � GT.g/ (3.16)

could be proven as in [23, Theorem 6].
The relation �

x; T .g/.x/
�
2 FS .Gg/ (3.17)

for every x 2 Œa; b� n A could also be proven as in [23, Theorem 6].
If x 2 A is not an accumulation point of A\ .x;1/, in view of Remark 3.2, there

exists n 2 N such that x D ˛n and we have

.x; T .g/.x// D
�
˛n; T .g/.˛n/

�
(1)
D
�
anaC bn; cnl

�1
n .˛n/C dng.l

�1
n .˛n//C en

�
(2)
D
�
anaC bn; cnaC dng.a/C en

�
D fn.a; g.a//

2 fn.Gg/ �
[
n2N

fn.Gg/ �
[
n2N

fn.Gg/ D FS .Gg/; (3.18)

where (1) follows from Remarks 3.4 (a) and 3.6, and (2) follows from Remark 3.4 (c).
If x 2 A is not an accumulation point of A \ .�1; x/, one can prove in a similar

manner that �
x; T .g/.x/

�
2 FS .Gg/: (3.19)
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If x 2 A is an accumulation point of A \ .x;1/, in view of Remark 3.3, there
exists a sequence ..˛nk ; ˇnk //k2N of elements from the family ¹.˛n; ˇn/ j n 2 Nº

such that limk!1 ˛nk D x and therefore�
x; T .g/.x/

� (1)
D lim
k!1

�
˛nk ; T .g/.˛nk /

� (2)
2 FS .Gg/ D FS .Gg/; (3.20)

where (1) uses that T .g/ is continuous, and (2) is by (3.18).
In a similar way, one can prove that�

x; T .g/.x/
�
2 FS .Gg/; (3.21)

if x 2 A is an accumulation point of A \ .�1; x/.
From (3.17)–(3.21), we deduce that

GT.g/ � FS .Gg/: (3.22)

Relations (3.16) and (3.22) complete the proof.

Theorem 3.15. In the above framework, we have

lim
n!1

h
�
GT Œn�.g/; G

�
D 0

for every g 2 C.Œa; b�/.

Proof. Note that
Gg 2 Pcp.R

2/ � Pb;cl.R
2/: (3.23)

By mathematical induction, one can prove that

F
Œn�
S .Gg/ D GT Œn�.g/ (3.24)

for every g 2 C.Œa; b�/ and every n 2 N. Hence

lim
n!1

h
�
GT Œn�.g/; G

� (1)
D lim
n!1

h
�
F
Œn�
S .Gg/; A�

� (2)
D 0;

where (1) is by (3.24) and Theorem 3.13, and (2) is by (3.23) and Theorem 2.4.
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