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Asymptotic solution of Bowen equation for perturbed
potentials on shift spaces with countable states

Haruyoshi Tanaka

Abstract. In this paper, we study the asymptotic expansions for the zero of the pressure func-
tion s 7! P.s'."; �/ C �."; �// for perturbed potentials '."; �/ and �."; �/ defined on the shift
space with countable state space. In our main result, we give a sufficient condition for the solu-
tion s D s."/ of P.s'."; �/C �."; �//D 0 to have the n-order asymptotic expansion for the small
parameter ". In addition, we also obtain the case where the order of the expansion of the solution
s D s."/ is less than the order of the expansion of the perturbed potentials. Our results can be
applied to problems concerning asymptotic behaviours of Hausdorff dimensions given by the
Bowen formula: conformal graph directed Markov systems and other concrete examples.
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1. Introduction and Main results

Let E1 be a shift space with countable (finite or infinite) state, and g."; �/ and  ."; �/
be two real-valued functions defined on E1 with  ."; �/ > 0 and with a small para-
meter " > 0. We study the asymptotic solution of the pressure function

s 7! P.s'."; �/C �."; �//

with the perturbed potentials '."; �/ WD log jg."; �/j and �."; �/ WD log ."; �/, where P
is the topological pressure defined in (A.1).
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The main result of this paper is the following: we show that if a shift space E1

is finitely irreducible, and the real-valued functions g."; �/ and  ."; �/ on E1 have
asymptotic expansions

g."; �/ D g C g1"C � � � C gn"
n
C Qgn."; �/"

n (1.1)

 ."; �/ D  C  1"C � � � C  n"
n
C Q n."; �/"

n (1.2)

with k Qgn."; �/k1! 0,  > 0 and k Q n."; �/k1! 0 as "! 0, and suitable conditions
are satisfied, then the solution s D s."/ of the equation

P.s log jg."; �/j C log ."; �// D p0

with a fixed real number p0 has an n-order asymptotic behaviour

s."/ D s0 C s1"C � � � C sn"
n
C Qsn."/"

n (1.3)

with Qsn."/! 0 as "! 0 (see Theorem 1.1), where P.f / is the topological pressure
of f defined in (A.1). In particular, each coefficient sk and the small order part Qsn."/
are explicitly determined (see (3.17), (3.18), and (3.19)).

In application, this result can be applied directly to the asymptotic behaviour of
the dimension obtained by a Bowen type formula (Section 2). We will demonstrate
asymptotic expansions for the Hausdorff dimension of the limit set of the perturbed
conformal graph directed Markov system for some concrete examples. We will also
give an example of perturbed linear countable IFS that the dimension of this limit
set has asymptotic behaviour with the order n � 1 but does not have the order n.
Moreover, the coefficient and the remainder of the solution s."/ can be numeric-
ally calculated (Section 2.4). Note that though the functions  ."; �/ may be equal
to  ."; �/ � 1 in our examples of this paper, we shall treat the case of  ."; �/ 6� 1

for the study of a multifractal analysis of a perturbed system in future works. Another
promising direction of future study is to estimate the dimensions of limit sets of non-
conformal graph directed iterated function systems with infinite state ([11, 18], for
example).

Our main result is an infinite state version of our previous result [24, Theorem 2.6].
However, the proof of the finite state version given in [24] cannot be applied directly
to the infinite state version. Indeed, a difficult point between the finite state case and
the infinite state case is that in the infinite state case, even if the potential g."; �/ has
an asymptotic expansion with order nC 1 or more with natural regularity coefficients
and remainder, the order of the asymptotic solution may have only length n or less.
Furthermore, the remainder of s."/ can become any small fractional order even if
Qgn."; �/ � 0 and  ."; �/ � 1 (see Theorem 2.5(2)). This fact suggests that the gen-
eral analytic perturbation theory cannot be applied to the asymptotic behaviour of
the solution s."/ in the infinite state case. Therefore, we need to introduce additional
conditions for expansions with an order of length n (see (g.3)–(g.5) and ( .3)–( .4)).
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By the generalization of asymptotic perturbation theory of linear operators in [24] and
by developing the method of asymptotic solution of the pressure function in the finite
state version, the main result is proved.

In order to state our main results precisely, we introduce some notions of a sym-
bolic system below. Let G D .V;E; i.�/; t.�// be a directed multigraph endowed with
countable vertex set V , countable edge setE, and two maps, i.�/ and t .�/ fromE to V .
For each e 2 E, i.e/ is called the initial vertex of e, and t .e/ is called the terminal
vertex of e. Denote by E1 the one-sided shift space

E1 D

²
! D !0!1 � � � 2

1Y
kD0

EW t .!n/ D i.!nC1/ for any n � 0
³

endowed with the shift transformation � WE1 ! E1 defined as .�!/n D !nC1 for
any n � 0. For � 2 .0; 1/, a metric d� on E1 is given by d� .!; �/D � inf¹n�0W!n¤�nº.
The incidence matrix A of E1 is defined by A D .A.ee0//E�E with A.ee0/ D 1

if t .e/ D i.e0/, and A.ee0/ D 0 if t .e/ ¤ i.e0/. The matrix A is finitely irreducible
if there exists a finite subset F of

S1
nD1 E

n such that for any e; e0 2 E, ewe0 is a
path on the graph G for some w 2 F . A function f WE1 ! K is called weakly d� -
Lipschitz continuous if the number supe2E sup!;�2Œe�W!¤� jf .!/� f .�/j=d� .!;�/ is
finite. A function f WE1 ! K is a weakly Hölder continuous function if it is weakly
d� -Lipschitz continuous for some � 2 .0; 1/. Denote by k � k1 the supremum norm
defined as kf k1 D sup!2E1 jf .!/j.

To state our main result, we introduce some conditions for potentials. Let n be
a nonnegative integer. We consider conditions (g.1)–(g.5) below for the function
g."; �/WE1 ! R with a small parameter " 2 .0; 1/:

(g.1) The function g."; �/W E1 ! R has the form (1.1) for some real-valued
weakly Hölder continuous functions g, g1, : : :, gn, Qgn."; �/ with

lim
"!0
k Qgn."; �/k1 D 0:

(g.2) g.!/ ¤ 0 for each ! 2 E1 and kgk1 < 1.

(g.3) jg.!/ � g.�/j � c1jg.!/jd� .!; �/ for !; � 2 E1 with !0 D �0 for some
c1 > 0, � 2 .0; 1/.

(g.4) jgk.!/j � c2jg.!/j
tk and jgk.!/ � gk.�/j � c3jg.!/j

tkd� .!; �/ for any
!; � 2 E1 with !0 D �0 for some constants c2; c3 > 0 and tk 2 .0; 1� for
k D 1; 2; : : : ; n.

(g.5) j Qgn.";!/j � c4."/jg.!/j
Qt for any ! 2 E1 for some constants Qt 2 .0; 1� and

c4."/ > 0 with c4."/! 0.

Moreover, we assume that the function  ."; �/WE1 ! R satisfies conditions ( .1)–
( .4) below:



H. Tanaka 276

( .1) The function  ."; �/WE1 ! R has the form (1.2) for some real-valued
weakly Hölder continuous functions  ,  1, : : :,  n, Q n."; �/ with

lim
"!0
k Q n."; �/k1 D 0:

( .2)  .!/ > 0 for any ! 2 E1.

( .3) j k.!/j � c5j .!/j and j k.!/ �  k.�/j � c6j .!/jd� .!; �/ for any
!; � 2 E1 with !0 D �0 and for some c5; c6 > 0 for k D 1; 2; : : : ; n.

( .4) j Q n."; !/j � c7."/j .!/j for any ! 2 E1 for some c7."/ > 0 with
c7."/! 0.

Let
p D inf

®
p � 0WP.p log jgj C log / < C1

¯
; (1.4)

where P.f / means the topological pressure of f which is defined by (A.1). Put

p.n/ D

8̂̂<̂
:̂
p=Qt if n D 0;

max
�
p C n.1 � t1/; p C n.1 � t2/=2; : : : ; p C n.1 � tn/=n;

p=t1; p=t2; : : : ; p=tn; p C 1 � Qt ; p=Qt
�

if n � 1:
(1.5)

Now we are in a position to state our main result.

Theorem 1.1. Fix a nonnegative integer n. Assume that the incidence matrix of E1

is finitely irreducible and the conditions (g.1)–(g.5) and ( .1)–( .4) are satisfied.
Choose any s.0/ 2 .p.n/;C1/ and any compact neighborhood I � .p.n/;C1/
of s.0/. Let p0 D P.s.0/ log jgj C log  /. Then there exist numbers "0 > 0,
s1; : : : ; sn 2 R such that the equationP.s log jg."; �/j C log ."; �//Dp0 has a unique
solution s D s."/ 2 I for each 0 < " < "0, and s."/ forms the asymptotic expansion

s."/ D s.0/C s1"C � � � C sn"
n
C Qsn."/"

n; (1.6)

and jQsn."/j ! 0 as "! 0. In particular,

Qsn."/ D

8<:�
�."; QLn;s."/.";h//

�.h log jgj/ CO."/ if n � 1;

�
�."; QL0;s."/.";h//

�.h log jgj/ C o.k QL0;s."/."; h/k1/ if n D 0;
(1.7)

where h is the Perron eigenfunction of the eigenvalue ep0 of the Ruelle operator
of s.0/ log jgj C log  , � is the Perron eigenvector of this dual operator with
�.h/ D �.E1/ D 1, and �."; �/ is the Perron eigenvector of the dual of the Ruelle
operator of s."/ log jg."; �/j C log ."; �/. Moreover, QLn;s."/."; �/ is an operator of the
remainder of the expansion of the Ruelle operator (see Lemma 3.6 for details).

Note that the coefficients sk and the remainder Qsn."/ are precisely given in (3.17)
and (3.19), respectively. The following result is an immediate consequence of this
theorem.
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Corollary 1.2. Under the same conditions of the above theorem, assume also that
there exists s.0/ > p.n/ such that P.s.0/ log jgj C log / D 0. Then the equation
P.s log jg."; �/j C log ."; �// D 0 for s 2 R has a unique solution s D s."/ for any
small " > 0, and s."/ forms the n-order asymptotic expansion as (1.6).

Next, we give sufficient conditions for a situation when s."/ does not have
.n C 1/-order asymptotic expansion though it is n-order asymptotic behaviour. We
introduce the following conditions:

(g.6) E is infinitely countable.

(g.7) Qgn."; �/ � 0 (i.e., Qt D 1) and  ."; �/ � 1.

(g.8) There exist t0 2 Œt1; .nt1 C 1/=.n C 1// and c8 > 0 such that p.n/ <
p C .1 � t0/.nC 1/ and g1.!/ sign.g.!// � c8jg.!/j

t0 for any ! 2 E1.

(g.9) The numbers t2; : : : ; tn satisfy t0 � tk for any k D 2; : : : ; n.

Proposition 1.3. Assume that the conditions (g.1)–(g.9) with n�1 are satis-
fied. Choose any s.0/2.p.n/; pC.nC1/.1�t0// n ¹1; 2; : : : ; nº and put p0D
P.s.0/ log jgj/. Then the unique solution sDs."/ of the equation P.s log jg."; �/j/D
p0 has the form s."/Ds.0/Cs1"C� � �Csn"

nCQsn."/"
n with lim"!0 jQsn."/j="DC1.

In Section 2, we will illustrate asymptotic perturbations of Hausdorff dimensions
of limit sets from conformal graph directed Markov systems, e.g., continued fractions
and Kleinian groups of Schottky type. Furthermore, we will demonstrate an example
of linear countable IFS such that the coefficients and the remainder of the solution are
explicitly calculated (Section 2.4). In Section 3, we present the proofs of all of our
results. In the appendices, we shall introduce some facts necessary for the proof of
the main theorem. In Appendix A, we recall the notion of thermodynamic formalism
and the Ruelle operators acting on a suitable function space in the infinite graph. In
particular, a version of the Ruelle–Perron–Frobenius Theorem on these operators is
described (Theorem A.2). We state in Appendix B the general theory of asymptotic
behaviours of the eigenvalue and the corresponding eigenvector of bounded linear
operators. This result is obtained by generalizing the results of [24, Theorem 2.1].
Finally, we shall give an upper bound of an intermediate point of the binomial expan-
sion in Appendix C which plays an important role in giving the proof of our results.

2. Examples

2.1. Conformal graph directed Markov systems

Let G D .V; E; i.�/; t.�// be a directed multigraph for which V is finite and E is
countable. In this section, we consider the asymptotic behaviours of the Hausdorff
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dimensions of the limit sets of perturbed graph directed Markov systems introduced
in [17]. We begin with the definition of this system. Let D be a positive integer,
ˇ 2 .0; 1� and r 2 .0;1/. We introduce a set .G;.Jv/; .Ov/; .Te// satisfying conditions
(i)–(v) below:

(i) For each v 2 V , Jv is a compact and connected subset of RD satisfying that
the interior int Jv of Jv is not empty, and int Jv and int Jv0 are disjoint for
v0 2 V with v ¤ v0.

(ii) For each v 2 V , Ov is a bounded, open and connected subset of RD con-
taining Jv .

(iii) For each e 2E, a function TeWOt.e/! Te.Ot.e//�Oi.e/ is aC 1Cˇ -confor-
mal diffeomorphism with Te.intJt.e//�intJi.e/ and supx2Ot.e/kT

0
e.x/k�r ,

where kT 0e.x/k means the operator norm of T 0e.x/. Moreover, for any
e, e0 2 E with e ¤ e0 and i.e0/ D i.e/, Te.int Jt.e// \ Te0.int Jt.e0// D ;,
namely, the open set condition (OSC) is satisfied.

(iv) (Bounded distortion) There exists a constant c9 > 0 such that for any e 2 E
and x; y 2 Ot.e/,

ˇ̌
kT 0e.x/k � kT

0
e.y/k

ˇ̌
� c9kT

0
e.x/kjx � yj

ˇ , where j � j
means a norm of any Euclidean space.

(v) (Cone condition) If #E D 1, then there exist ; l > 0 with  < �=2 such
that for any v 2 V , x 2 Jv , there is a u 2 RD with juj D 1 so that the set®
y 2RDW0 < jy � xj< l and .y � x;u/ > jy � xjcos

¯
is in intJv , where

.y � x; u/ denotes the inner product of y � x and u.

Under conditions (i)–(v), we call the set .G;.Jv/; .Ov/; .Te// a graph directed Markov
system (GDMS for short). The Hausdorff dimension of the limit set of this system has
been studied by many authors [7, 16, 17, 19, 20].

The coding map � WE1! RD is defined by �! D
T1
nD0 T!0 � � �T!n.Jt.!n// for

! 2 E1. Put K D �.E1/. This set is called the limit set of the GDMS. We define a
function 'WE1!R by '.!/D logkT 0!0.��!/k. Put s D inf¹s � 0WP.s'/ <C1º.
We call the GDMS regular if P.s'/ D 0 for some s � s. The GDMS is said to be
strongly regular if 0 <P.s'/ <C1 for some s � s (see [17,19] for the terminology).
It is known that the general Bowen’s formula is satisfied:

Theorem 2.1 ([19]). Let .G; .Jv/; .Ov/; .Te// be a graph directed Markov system.
Assume that E1 is finitely irreducible. Then dimH K D inf¹t 2 RW P.t'/ � 0º.
In addition to the above condition, we also assume that the potential ' is regular.
In this case, s D dimH K if and only if P.s'/ D 0.

Now we formulate an asymptotic perturbation of graph directed Markov systems.
Fix integers n � 0, D � 1 and a number ˇ 2 .0; 1�. Consider conditions (G.1)n and
(G.2)n below:
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(G.1)n The code space E1 is finitely irreducible. The set .G; .Jv/; .Ov/; .Te// is
a strongly regular GDMS on RD and the limit set K has positive dimen-
sion. Moreover, the function Te is of class C 1CnCˇ .Ot.e// for each e 2E.

(G.2)n The set ¹.G; .Jv/; .Ov/; .Te."; �///W " > 0º is a GDMS with a small para-
meter " > 0 satisfying (i)–(iv) below:

(i) For each e 2 E, the function Te."; �/ has the n-order asymptotic
expansion

Te."; �/ D Te C Te;1"C � � � C Te;n"
n
C QTe;n."; �/"

n on Jt.e/

for some functions Te;k 2 C 1Cn�kCˇ .Ot.e/;RD/ (k D 1; 2; : : : ; n)
and QTe;n."; �/ 2 C 1Cˇ."/.Ot.e/;RD/ .ˇ."/ > 0/ satisfying

sup
e2E

sup
x2Jt.e/

j QTe;n."; x/j ! 0:

(ii) There exist constants t .l; k/ 2 .0; 1� (l D 0; 1; : : : ; n, k D 1, : : :,
n � l C 1) such that the function x 7! T

.k/

e;l
.x/=kT 0e.x/k

t.l;k/ is
bounded, ˇ-Hölder continuous and its Hölder constant is bounded
uniformly in e 2 E.

(iii) c10."/ WD supe2E supx2Jt.e/
�
k
@
@x
QTe;n."; x/k=kT

0
e.x/k

Qt0
�
! 0 as

"! 0 for some Qt0 2 .0; 1�.

(iv) dimH K=D > p.n/, where p.n/ is taken from (1.5) with

tk WD min
²
1

D

DX
pD1

t .ip; jp C 1/W

i WD i1 C � � � C iD and j WD j1 C � � � C jD
satisfy i D k and j D 0 or

0 � i < k and 1 � j � k � i
³

(2.1)

Qt WD min
²
tn; Qt0;

Qt0

D
C
D � 1

D
t.1; 1/; : : : ;

Qt0

D
C
D � 1

D
t.n; 1/

³
(2.2)

p WD s=D:

Note that if the edge setE is finite, then the conditions (ii) and (iv) are always satisfied
because kT 0e.x/k is uniformly bounded away from zero, and p.n/ becomes zero by
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taking t .l; k/ � 1. Moreover, c10."/ in (iii) can be taken as

sup
e2E

sup
x2Jt.e/

 @
@x
QTe;n."; x/


when E is finite. Let K."/ be the limit set of the perturbed GDMS�

G; .Jv/; .Ov/; .Te."; �//
�
:

Then we obtain the following result:

Theorem 2.2. Assume that the conditions (G.1)n and (G.2)n are satisfied with a fixed
integer n� 0. Then the perturbed GDMS .G; .Jv/; .Ov/; .Te."; �/// is strongly regular
for any small " > 0, and there exist s1; : : : ; sn 2 R such that the Hausdorff dimension
dimH K."/ of the limit set K."/ of the perturbed system has the form dimH K."/ D
dimH K C s1"C � � � C sn"n C o."n/ as "! 0.

Remark 2.3. Roy and Urbański [19] considered continuous perturbation of infin-
itely conformal iterated function systems given as a special GDMS. They also studied
analytic perturbation of GDMS with D � 3 in [20]. We investigated an asymptotic
perturbation of GDMS with finite graph in [25]. Theorem 2.2 is an infinite graph
version of this previous result in [25].

2.2. Real continued fractions

Consider a graph G with singleton vertex set V D ¹vº and with infinite edge set
E � ¹k 2 ZW k � 2º. Put Jv D Œ0; 1� and Ov D .��; 1C �/ for a fixed small number
� > 0. Fix a 2 R with a ¤ 0. We define a perturbed map of continued fractions

Te."; x/ D
1

e C x C a"

for e 2 E, " > 0 and x 2 R. Consider a GDMS .G; Jv; Ov; .Te."; �/// such that
this unperturbed GDMS is strongly regular. Note that such a system exists ([16]) by
choosing edge set E. The function Te."; x/ has the expansion

Te."; x/ D
1

e C x
�

a

.e C x/2
"C � � � C .�1/n

an

.e C x/nC1
"n C QTn."; x/"

n (2.3)

with

Te;k.x/ D .�a/
k.e C x/�k�1 and QTn."; x/ D

".�1/nC1anC1

.e C x/nC1.e C x C a"/
:

It is not hard to check that the conditions (G.1)n and (G.2)n are fulfilled from p D 0,
t .l; k/D Qt D 1, and therefore p.n/ D 0. Thus, we have the n-order asymptotic expan-
sion of the Hausdorff dimension of the limit set of the GDMS by Theorem 2.2.
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2.3. Complex continued fractions

In this section, we consider the complex versions of continued fractions. Let V D ¹vº
be a singleton vertex set,E �E� WD

®
mCn

p
�1W .m;n/2Z�Z;m� 1

¯
a nonempty

countable edge set,Xv D B.1=2; 1=2/ the closed ball in C with center 1=2 and radius
1=2, and Ov D B.1=2; 3=4/ the open ball in C with center 1=2 and radius 3=4. For
e 2 E, we define a function TeWOv ! Ov by Te.z/ D 1=.e C z/. Then the system
.G D .V; E/; .Jv/; .Ov/; .Te// is a conformal GDMS excluding T 01.0/ D 1. Note
that Te ı Te0 becomes a contraction mapping uniformly in ee0 2 E2. Such systems
associated to complex continued fractions with arbitrary alphabet were investigated
in [3–5].

Now we give a perturbed map Te."; z/. Assume the following conditions:

(F.1) The edge set E is a nonempty subset of E� and the GDMS

.G; .Jv/; .Ov/; .Te//

is strongly regular.

(F.2) A perturbed function Te."; z/ is defined by

Te."; z/ D
1

e C z C a.e/"

with a fixed number a.e/ 2 C with supe ja.e/j < C1. Moreover, assume
also that the set .G; .Jv/; .Ov/; .Te."; �/// is a GDMS for each " > 0.

Notice that if E D E�, then .G; .Jv/; .Ov/; .Te// becomes strongly regular [4, 15].
Figure 1 shows a subsystem and its perturbed system.

0 0:2 0:4 0:6 0:8 1
�0:5

�0:4

�0:3

�0:2

�0:1

0

0:1

0:2

0:3

0:4

0:5

0 0:2 0:4 0:6 0:8 1
�0:5

�0:4

�0:3

�0:2

�0:1

0

0:1

0:2

0:3

0:4

0:5

Figure 1. Approximation limit sets of a certain subsystem of a complex continued fraction (left)
and of its perturbed system (right) with a.e/ � 0:1C 0:2

p
�1 and " D 1
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We have the following:

Theorem 2.4. Assume that conditions (F.1) and (F.2) are satisfied. Then the Haus-
dorff dimension of the limit set of the GDMS .G; .Jv/; .Ov/; .Te."; �/// has an n-order
asymptotic expansion as "! 0.

2.4. Linear countable IFS (1)

In this section, we will give the coefficient and the estimate of the remainder for
a concrete GDMS. Let a > 1 and E D ¹1; 2; : : : º. We take an infinite graph
G D .¹vº; E; i.�/; t.�// with i.e/ D t .e/ D v for e 2 E, Jv D Œ0; 1� and Ov D

.��; 1C �/ for a small � > 0. For e 2 E and " � 0, we define a function Te."; �/ by

Te."; x/ D
� 1
5e
C

1

ae
"
�
x C b.e/: (2.4)

Here we choose b.e/ so that the set .G; .Jv/; .Ov/; Te."; �// satisfies the open
set condition for any small " > 0. Note that when we define a function f" fromS
e2E Te."; Jt.e// to Œ0; 1� by f".x/ D Te."; x/�1 if x 2 Te."; Jt.e//, this is a piece-

wise linear expanding (hyperbolic) interval map. Moreover, the limit set K."/ of the
GDMS becomes the (non-compact) repeller of f". It is not hard to check that the con-
dition (G.2)n (i), (iii) are valid with Te.x/ D x=5e C b.e/, Te;1.x/ D x=ae , Te;k � 0
(k � 2) and QTe;n."; �/� 0. To see (G.2)n (ii), (iv), we remark that jT 01;e.x/j=jT

0
e.x/j

t D

.5t=a/e is bounded uniformly in e if and only if t � log a= log 5. Therefore, we put
t .1; 1/ D min.log a= log 5; 1/, and otherwise t .l; k/ D 1 for any .l; k/ ¤ .1; 1/ when
n� 1. Let '.!/D log.1=5!0/. Moreover, s D inf¹s � 0WP.s'/ <C1º is equal to 0.
Thus, p.n/D n

�
1�min.loga= log 5; 1/

�
for any n � 0. We see that P.s.0/'/D 0 if

and only if
P
e2E .1=5

e/s.0/ D 1 if and only if s.0/ D dimH K D log 2= log 5 by the
Bowen’s formula. Then we obtain the following:

Theorem 2.5. Take the function Te."; �/ defined by (2.4).

(1) If a � 5, then the Hausdorff dimension s."/ D dimH K."/ of the limit set
of this GDMS has the n-order asymptotic expansion s."/ D log 2= log 5 C
s1"C � � � C sn"

n C Qsn."/"
n with Qsn."/! 0 for any n � 0. Each coefficient sk

(k D 1; 2; : : : ; n) is defined as

sk D
1

2 log 5

X
0�v�k

0�q�k�vW
.v;q/¤.0;1/

min.v;q/X
jD0

sq;k�v
av;j;s.0/

.q � j /Š
.� log 5/q�j

1X
eD1

eq�j
�
5v

2av

�e
;

(2.5)

where constants sq;k�v and av;j;s.0/ are defined by (3.24) and (3.16), respect-
ively.
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(2) If 1 < a < 5, then take the largest integer k � 0 satisfying a � 5=21=.kC1/.
In this case, s."/ has the form

s."/ D

8<: s.0/C s1"C � � � C sk"k C Os."/"
log2

log.5=a/ if a < 5=21=.kC1/;

s.0/C s1"C � � � C sk"
k C Os."/"kC1 log " if a D 5=21=.kC1/

with jOs."/j � 1 as " ! 0, where s1; : : : ; sk are given by (2.5) and where
b."/ � c."/ means d�1c."/ � b."/ � dc."/ for any small " > 0 for some
constant d � 1. Note that k < log 2= log.5=a/ � k C 1 is satisfied.

In particular, the numbers s1 and s2 are given by

s1 D
log 2
.log 5/2

5

4a � 10

s2 D
25 log 2
.log 5/3

�
1

2.2a � 5/2
�

a log 2
.2a � 5/.4a2 � 5/2

C
log.2=5/
8a2 � 100

�
:

2.5. Linear countable IFS (2)

Using the same notation for G, V , E, Jv , Ov as in Theorem 2.5, we define a concrete
function Te."; �/ by

Te."; x/ D

�
1

5e
C
1

4e
"C

1

3e
"2
�
x C b.e/;

where b.e/ is suitably chosen so that the OSC is satisfied. By virtue of Theorem 1.1,
we see the following:

Proposition 2.6. Under the above function, the Hausdorff dimension of the limit set
K."/ of

�
G; .Jv/; .Ov/; .Te."; �//

�
has at least 2-order asymptotic expansion for ".

2.6. Kleinian groups of Schottky type

We consider perturbations of Kleinian groups of Schottky type given in [17, Example
5.1.5]. Fix integers D � 1 and d � 1. Let V D ¹1; 2; : : : ; dº be a vertex set, and for
v 2 V , Jv D B.a.v/; r.v//, the mutually disjoint closed balls. Consider the inversion
map fv with respect to Jv , namely,

fv.x/ D r.v/
2 x � a.v/

jx � a.v/j2
C a.v/

for x 2 RD [ ¹1º, where we set fv.a.v// D1 and fv.1/ D a.v/. Then the group
H WD

˝
¹fvºv2V

˛
generated by ¹fvWv 2 V º is called a Kleinian group of Schottky type.
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Recall that the limit set L.H/ of the Kleinian group H is defined by

L.H/ D
®

lim
n!1

�n.z/W �n 2 H mutually disjoint
¯

for any fixed z 2RD . It is known that lettingE0DV 2 n ¹.v;v/W i 2V º,OvDB.Jv;�/
for any small fixed number �, and Te WD fi.e/jOt.e/ WOt.e/! Oi.e/ for e 2 E0, the set
.G D .V; E0/; ¹Jvº; ¹Ovº; ¹Teº/ is a finite conformal GDMS, except that Te need
not be uniform contractions. Nevertheless, the limit set K of this system is well-
defined since there exists an n � 1 such that any finite path w 2 En0 of G, Tw WD
Tw1 ı Tw2 ı � � � ı Twn is uniformly contracting. If no confusion can arise, we also call
.G; ¹Jvº; ¹Ovº; ¹Teº/ a GDMS. Consider a subgroup � of H . Define the set

�0 D
®
� 2 �W has an irreducible form in �

¯
;

where � has an irreducible form in � if � ¤ �1 ı �2 for any two non-identity maps
�1; �2 2 � . We define a subset E of paths with finite length by

E D

²
w 2

1[
nD1

En0 Wfi.w1/ ı � � � ı fi.wm/ 2 �0

³
: (2.6)

Then G D .V; E; i; t/ is a directed multigraph with finite vertex set and countable
edge set, and .G; .Jv/; .Ov/; .Tw// is a GDMS. In particular, this system satisfies an
open set condition [17]. It is known from [17, Theorem 5.1.7] that the limit set K
of the GDMS .G; .Jv/; .Ov/; .Tw// has the equation K D L.�/. Moreover, if �0 is
finite, then K D L.�/.

Now we formulate an asymptotic perturbation of a subgroup of a Kleinian group
of Schottky type. We introduce the following conditions:

(K.1) H D
˝
¹fvºv2V

˛
is the Kleinian group of Schottky type with finite disjoint

closed balls Jv D B.a.v/; r.v//. Assume also that a subgroup � � H sat-
isfies that the corresponding GDMS .G; .Jv/; .Ov/; .Tw// with the edge
set (2.6) has finitely irreducible incidence matrix and is strongly regular.

(K.2) There exists a decomposition V D V0 [ V1 with V0 ¤ ; and V0 \ V1 D ;
such that the set

®
f D fv1 ı � � � ı fvm 2 �Wvi 2 V0 for some 1 � i � m

¯
is

finite. Assume also that if v 2 V0, then r."; v/ > 0 and a."; v/ 2 RD satisfy

r."; v/ D r.v/C r1.v/"C � � � C rn.v/"
n
C o."n/ (2.7)

a."; v/ D a.v/C a1.v/"C � � � C an.v/"
n
C o."n/ (2.8)

as "! 0 for some rk.v/ 2 R and ak.v/ 2 RD , and if v 2 V1, then we set
r."; v/ D r.v/ and a."; v/ D a.v/ for all ".
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In other words, condition (K.2) says that the elements of � that change by " are of
a finite number. Let fv."; �/ be the inversion map with respect to the disjoint closed
ball Jv."/ D B.a."; v/; r."; v// for any small " > 0. Put the Kleinian group of Schot-
tky type H."/ D

˝
¹fv."; �/ºv2V

˛
. For the subgroup � � H in (K.1), we consider the

corresponding subgroup �."/ � H."/, namely,
�."/ D ¹fv1."; �/ ı � � � ı fvm."; �/Wfv1 ı � � � ı fvm 2 �º:

Similarly, the corresponding GDMS .G; .Jv/; .Ov/; .Tw."; �/// is obtained, where
Tw."; �/ WD Tw1."; �/ ı � � � ı Twn."; �/ for w 2 E and we let Te."; �/ WD fi.e/."; �/jOt.e/
for e 2 E0. We show in Figure 2 the picture of a concrete perturbed Schottky group
under � D H .

Figure 2. Approximation limit sets of a certain unperturbed Schottky group (left) and of its
perturbed group (right)

Then we have the following:

Theorem 2.7. Assume that the conditions (K.1) and (K.2) are satisfied. Then the
Hausdorff dimension of the limit set K."/ of the GDMS .G; .Jv."//; .Ov/; .Tw."; �///
of the subgroup �."/ has an n-order asymptotic expansion.

Remark 2.8. Even if a."; v/ and r."; v/ in the condition (K.2) have the expan-
sions (2.7) and (2.8) for all v 2 V , respectively, the assertion of Theorem 2.7 is still
satisfied. The proof of this assertion is not trivial, but can be proved by showing the
conditions (G.2)n (ii), (iii) with t .l; k/ D Qt D 1 � s for any fixed s 2 .0; 1�. In this
case, the condition (G.2)n (iv) is also fulfilled by taking s 2 .0;1� so that dimH K=D>

max.p C ns; p=s/.

3. Proofs

In this section, the theorems and propositions in Section 1 and Section 2 are all proved.
Recall the notation given in Section 2. For later convenience we introduce some func-
tion spaces. Let K be a numerical space or a complex space. Denote by Cb.E1;K/
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the set of all K-valued continuous functions f on E1 with kf k1 < C1, by
F� .E

1;K/ the set of all K-valued weakly d� -Lipschitz continuous functions onE1,
and by F�;b.E1;K/ the set of all f 2F� .E1;K/with kf k� WDkf k1CŒf �� <C1,
where we put Œf �� WD supe2E sup!;�2Œe�W!¤� jf .!/ � f .�/j=d� .!; �/. If K is equal
to C, then we may drop the notation ‘K’ from these function spaces.

3.1. Proof of Theorem 1.1

To show our main result, we need to prove some auxiliary propositions. We begin
with the following short proposition:

Proposition 3.1. Let .U; d/ be a bounded metric space and .E; k � k/ a Banach
algebra. Assume that functions fk; hk .0 � k � n/ from U to E satisfy kfk.x/k �
c11.k/khk.x/k for any x 2 U and kfk.x/� fk.y/k � c12.k/khk.x/kd.x; y/ for any
x; y 2 U for some constants c11.k/; c12.k/ > 0. Then nY

kD0

fk.x/ �

nY
kD0

fk.y/

 � c13

nY
iD0

khi .x/kd.x; y/

with c13 D
Pn
iD0.

Qi�1
jD0 c11.j //c12.i/.

Qn
jDiC1.c11.j /C c12.j / diamU//.

Proof. By the assumption, we note

kfk.y/k � kfk.x/k C kfk.x/ � fk.y/k � .c11.k/C c12.k/ diamU/khk.x/k:

Thus, we have nY
kD0

fk.x/�

nY
kD0

fk.y/

 � nX
iD1

� i�1Y
kD0

kfk.x/k

�
kfi .x/�fi .y/k

� nY
kDiC1

kfk.y/k

�
� c13

nY
sD1

khs.x/kd.x; y/:

For later convenience, for p 2 R with p > 0 and k; l 2 Z with 0 � k � n and
0 � l � k, we define a function Gp

l;k
WE1 ! R by

G
p

l;k
.!/ D

8̂̂̂<̂
ˆ̂:
jg.!/jp

g.!/l

P
j1;:::;jk�0W
j1C���CjkDl

j1C2j2C���CkjkDk

lŠ
j1Š���jk Š

g1.!/
j1 � � �gk.!/

jk if k � 1;

jg.!/jp if k D 0:

(3.1)

This function will be used in the expansion of jg."; �/jp (see (3.4)). To estimate this
function, we will assert the following lemma:
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Lemma 3.2. Assume that G D .V;E; i.�/; t.�// is a directed multigraph. Assume that
gWE1!R satisfies (g.2) and (g.3). Then for any integer l � 0, q 2R, and!;� 2E1

with !0 D �0, we have
ˇ̌
jg.!/jq=g.!/l � jg.�/jq=g.�/l

ˇ̌
� c14jg.!/j

q�ld� .!;�/ by
putting c14 D c14.q; l/ D .c1.1C c1�/

jqj C ��1l/.1C c1�/
l .

Proof. Let !;� 2E1 with !0D �0. The condition (g.3) yields jg.!/�1 � g.�/�1j �
jg.!/�1jc1d� .!; �/. On the other hand, by virtue of condition (g.3) again, we have

.1C c1�/
�1
jg.!/j � jg.�/j � .1C c1�/jg.!/j:

Therefore, the Mean Value Theorem and condition (g.3) implyˇ̌
jg.!/jq � jg.�/jq

ˇ̌
D
ˇ̌
˛jg.!/j C .1 � ˛/jg.�/j

ˇ̌q�1ˇ̌
jg.!/j � jg.�/j

ˇ̌
�
ˇ̌
˛jg.!/j C .1 � ˛/jg.�/j

ˇ̌q ˇ̌
jg.!/j � jg.�/j

ˇ̌
min.jg.!/j; jg.�/j/

�

´
max.jg.!/j; jg.�/j/qc1d� .!; �/ if q � 0;

min.jg.!/j; jg.�/j/qc1d� .!; �/ if q < 0

� .1C c1�/
jqjc1jg.!/j

qd� .!; �/

for some ˛ 2 Œ0; 1�. Choose any e 2 E. Proposition 3.1 regarding U D Œe�,
f0 D h0 WD jgj

q , f1 D � � � D fl D h1 D � � � D hl WD g�1, c11.�/ WD 1, c12.0/ WD

.1 C c1�/
jqjc1 and c12.1/ D � � � D c12.l/ WD c1 implies that the assertion holds for

the constant c14 D
Pl
iD0 c12.i/

Ql
jDiC1.1 C c12.j /�/. Hence, the proof is com-

plete.

Lemma 3.3. Assume that the incidence matrix of E1 is finitely irreducible and the
conditions (g.1)–(g.5) with fixed nonnegative integer n are satisfied. Then for any
p > p.n/, 0 � k � n and 0 � l � k, the function Gp

l;k
is a weakly Hölder continuous

function. In particular,

jG
p

l;k
.!/j � c15jg.!/j

p�knp.n/C
k
np

jG
p

l;k
.!/ �G

p

l;k
.�/j � c16jg.!/j

p�knp.n/C
k
npd� .!; �/ (3.2)

for any !; � 2 E1 with !0 D �0 for some constants c15 D c15.k; l/ and c16 D
c16.k; l/ > 0.

Proof. In the case k D 0, the inequality (3.2) is fulfilled from Lemma 3.2.
In the case k � 1, let !; � 2 E1 with !0 D �0. By the condition (g.4), we have

jgi .!/
j j � c

j
2 jg.!/j

jti and jgi .�/j j � .c2 C c3�/
j jg.!/jjti . Then it follows from
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Proposition 3.1 that for any positive integer j ,

jgi .!/
j
� gi .�/

j
j � j.c2 C c3�/

j�1c3jg.!/j
jtid� .!; �/:

Thus, we obtain

jgjp�l jg
j1
1 � � �g

jk
k
j � c

j1C���Cjk
2 jgjp�lCj1t1C���Cjk tkˇ̌̌̌

jg.!/jp

g.!/l

kY
iD1

.gi .!//
ji�
jg.�/jp

g.�/l

kY
iD1

.gi .�//
ji

ˇ̌̌̌
� c17jg.!/j

p�lCj1t1C���Cjk tkd� .!; �/

from Proposition 3.1 again and Lemma 3.2, where

c17 D c17.p; l/ WD c14.p; l/.c2 C c3�/
l
C l.c2 C c3�/

l�1

using j1C j2C � � � C jk D l . When we put pk D pC .n=k/.1� tk/, then pk � p.n/,
and therefore, tk � 1 � .k=n/.p.n/ � p/ are satisfied. We also note that

p�l C j1t1 C � � � C jktk � p�l C

kX
iD1

�
ji�

iji

n
.p.n/�p/

�
D p�

k

n
p.n/C

k

n
p

is satisfied using j1 C � � � C jk D l and j1 C 2j2 C � � � C kjk D k. Hence, the lemma
is complete by putting c15 D

�
k�1
l�1

�
cl2 and c16 D

�
k�1
l�1

�
c17.

Remark 3.4. When we take p;� > 0 so that p >p.n/C�, we see p � k
n
p.n/C k

n
p �

.1� k
n
/p C k

n
p C k

n
� � p C �. Namely, the series

P
eWt.e/Di.!0/

G
p

l;k
.e � !/f .e � !/

converges for each bounded function f .

Lemma 3.5. Assume that the incidence matrix of E1 is finitely irreducible and con-
ditions (g.1)–(g.5) and ( .1)–( .4) with fixed nonnegative integer n are satisfied.
Then for any p > p.n/, there exist weakly Hölder continuous functions g0;p , g1;p ,
: : :, gn;p , Qgn;p."; �/ and positive constants c18 D c18.k/; c19 D c19.k/, and "0 such
that for 0 < " < "0

jg."; �/jp D g0;p C g1;p"C � � � C gn;p"
n
C Qgn;p."; �/"

n (3.3)

with gk;p.!/ D

kX
lD0

�
p

l

�
G
p

l;k
.!/ (3.4)

satisfying that for any k D 0; 1; : : : ; n and for any ! 2 E1

jgk;p.!/j � c18jg.!/j
p�knp.n/C

k
np; (3.5)

jgk;p.!/ � gk;p.�/j � c19jg.!/j
p�knp.n/C

k
npd� .!; �/ with !0 D �0; (3.6)

where
�
p
l

�
is the binomial coefficient. Moreover, for any nonempty compact subset I of

the interval .p.n/;C1/, there exist constants Q� > 0 and c20."/ > 0 with c20."/! 0

such that
sup
p2I

j Qgn;p."; !/j � c20."/jg.!/j
pCQ� (3.7)

for any small " > 0 and for any ! 2 E1.
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Proof. Lemma 3.3 guarantees (3.5) and (3.6) by putting c18D
Pk
lD0 j

�
p
l

�
jc15.k; l/ and

c19 D
Pk
lD0 j

�
p
l

�
jc16.k; l/. It remains to show that (3.7) holds. Fix ! 2 E1. For the

sake of convenience, we omit ‘!’ from the notation, i.e., we write g D g.!/, gk D
gk.!/, Qgn."/ D Qgn."; !/, gk;p D gk;p.!/, and Qgn;p."/ D Qgn;p."; !/. Put x."/ DPn
kD1 gk"

k and g."/ D g C x."/ C Qgn."/"
n. We also assume that c4."/ satisfies

c4."/
Qt < 1=2 by making " small enough if necessary. We take � 2 .0;min I � p.n//.

Then for any p 2 I , we see max I � p � min I > p.n/C � � p C � > p. First we
check the following claim:

Claim 1. Assertion (3.7) holds for n D 0.

Indeed, for each " > 0, we will consider two cases: jgj � c4."/ and jgj > c4."/.

Case jgj � c4."/. We haveˇ̌
jg."/jp � jgjp

ˇ̌
� .c21 � 1/jgj

p
C c21j Qg0."/j

p

� .c21 � 1/c4."/
p�p��

jgjpC� C c21c4."/
p
jgjp

Qt

(∵ jgj � c4."/ and (g.5))

�
�
.c21 � 1/c4."/

p�p��
C c21c4."/

p
�
jgjpC

Qt�

.∵ p > p.n/C � � p=Qt C �/

� .c21�1C c21/c4."/
min I�p��

jgjpC
Qt�
D c4."/

min I�p��
jgjpC

Qt�

with c21Dmax.1;2p�1/, where the first inequality holds by the basic facts of inequal-
ities (e.g. [14, Corollary 8.1.4.]).

Case jgj > c4."/. In this case, we see j Qg0."/j � c4."/jgj
Qt � c4."/

Qt jgj � jgj=2.
Moreover, from sign.g/.g C Qg0."// D jgj C sign.g/ Qg0."/ � jgj=2 > 0, we have
sign.g/ D sign.g."//, and therefore, the equation jg C Qg0."/j D jgj C sign.g/ Qg0."/
follows. By using the Mean Value Theorem for the function a 7! .jgj C a/p , we get
the following estimate:ˇ̌
jg."/jp � jgjp

ˇ̌
D p.jgj C ˛ sign.g/ Qg0."//p�1j sign.g/ Qg0."/j

�

´
p.1=2/p�1jgjp�1j Qg0."/j if p < 1;

p.3=2/p�1jgjp�1j Qg0."/j if p � 1

� max.1;max I.3=2/max I�1/c4."/
Qt
jgjp .∵ j Qg0."/j � c4."/

Qt
jgj/

� max.1;max I.3=2/max I�1/c4."/
Qt
jgjpC�:

Thus (3.7) is valid.

Claim 2. If n � 1 and jgjp�p��=2 � "n, then assertion (3.7) holds.
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In this case, we have jgj � "c22n with c22 D 1=.max I � p � �=2/. To estimate
the function Qgn;p."/ D .�jgjp �

Pn
kD1 gk;p"

k C jg."/jp/="n, we first consider the
function jgjp . We obtain

jgjp D jgj�=4jgjp��=4 � c23."/jgj
pC�=4"n (3.8)

by putting c23."/D "c22n�=4. Next, we will calculate gk;p in the expression of Qgn;p."/.

jgk;pj � c18.k/jgj
n�k
n pCknpC

k
n� .∵ (3.5) and jgj

k
np � jgj

k
np.n/C

k
n�/

� c18.k/jgj
n�k
n

�
2CpC

k
n�"n�k .∵ jgjp � jgjpC�=2"n/

� c18.k/c24."/jgj
pC �2 "n�k (3.9)

with c24."/ D "c22�=2. Finally, we consider the inequality

jg."/jp � c25.jgj
p
C jx."/jp C j Qgn."/j

p"np/

with c25 D max.1; 3max I�1/. Let pk D p C .n=k/.1 � tk/. It follows from

p > p.n/C � � pk C � and tk D 1 �
�k
n

�
.pk � p/

that

jx."/jp � c26c
p
2

nX
kD1

jgjtkp"kp

� c26c
p
2

nX
kD1

8̂̂<̂
:̂
jgjpCtk�"n if kp � n .∵ p > p=tk C �/;

jgjtkp�
1
n .p�p��=2/.n�kp/"n if kp < n

.∵ jgj
1
n .p�p��=2/.n�kp/ � "n�kp/

� c26c
p
2

nX
kD1

8̂̂<̂
:̂
jgjpCtk�"n if kp � n;

jgjp�
kp
n .p�p��/�.p�p�

�
2 /.1�

kp
n /"n if kp < n;

.∵ tk > 1 � .k=n/.p � p � �//

D c26c
p
2

nX
kD1

´
jgjpCtk�"n if kp � n;

jgjpC
�
2C

�
2
kp
n "n if kp < n

� c27."/jgj
pCc28�"n;

where c26Dmax
®
1;nmax I�1

¯
, c27."/Dc26c

p
2 n"

nc28c22 and c28Dmin.t1;: : : ;tn;1=2/=2.
Similarly, put Qp D p C 1 � Qt . We get

j Qgn."/j
p"np �

´
c4."/

pjgjpC�
Qt"n if np � n .∵ p > p=Qt C �/;

jgj
Qtp� 1n .p�p��=2/.n�np/"n if np < n
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D

´
c4."/

pjgjpC�
Qt"n if np � n;

jgjpC�=2Cp.p� Qp��=2/"n if np < n .∵ Qt D 1 � Qp C p/

� max.c4."/
min I ; c23."//jgj

pC�min.Qt ;1=4/"n:

Thus, jg."/jp is estimated by

jg."/jp � c29."/jgj
pCc30�"n (3.10)

with c29."/ D c25 max
®
c23."/; c27."/; c4."/

min I
¯

and c30 D min
®
1=4; c28; Qt

¯
. Con-

sequently, inequalities (3.8), (3.9) and (3.10) imply j Qgn;p."/j � c31."/jgj
pCc30� with

c31."/ D c23."/C
Pn
kD1 c18.k/c24."/C c29."/. Hence, the assertion is valid.

Put c32."/ D nc2"
c33 C c4."/ and c33 D .�=2/=.min I � p � �=2/ > 0.

Claim 3. If n� 1, jgjp�p��=2 > "n and c32."/ < 1=2 are satisfied, then the inequality

jx."/j C j Qgn."/"
n
j � c32."/jgj

holds. In this case, we have sign.g."// D sign.g C x."// D sign.g/.

Indeed, note that the number c33 D 1 � .max I � p � �/=.max I � p � �=2/ is
less than 1. We obtain

jx."/j C j Qgn."/"
n
j �

nX
kD1

c2jgj
tk"k C c4."/jgj

Qt"n:

We have the estimates

jgjtk�1"k�c33 � jgj�
k
n .pk�p/C

k
n .p�p��=2/�

c33
n .max I�p��=2/

D jgj
1
n .k.p�p��=2/��=2/ D jgj

1
n .k.p�p��/C�.k�1/=2/ � 1

and jgjQt�1"n � jgjp� Qp��=2 � 1, where pk and Qp are given in Claim 2.
Finally, we prove the last assertion. Choose any " > 0 so that c32."/ < 1=2. We

have

sign.g/g."/ D jgj C sign.g/x."/C sign.g/ Qgn."/

� jgj � .jx."/j C j Qgn."/j/ � jgj=2 > 0:

This means that sign.g/ D sign.g."//. Similarly,

g

g C x."/
D

jgj

jgj C sign.g/x."/
�

jgj

jgj C jx."/j
�
2

3
> 0:

Hence, we get sign.g/ D sign.g C x."//.
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Claim 4. If n � 1, jgjp�p��=2 > "n and c32."/ < 1=2 are satisfied, thenˇ̌̌
g C

nX
kD1

gk"
k
C Qgn."/"

n
ˇ̌̌p
D

ˇ̌̌
g C

nX
kD1

gk"
k
ˇ̌̌p
C Y."/

and jY."/j � c34."/jgj
p�1CQt"n with c34."/! 0 are valid.

Note the form jg C x."/ C Qgn."/"nj D jg C x."/j C sign.g/ Qgn."/"n from the
above claim for any small " > 0 so that c32."/ < 1=2. By virtue of the Mean Value
Theorem, we have Y."/ D p.jgC x."/j C ˛ sign.g/ Qgn."/"n/p�1 sign.g/ Qgn."/"n for
some ˛ 2 Œ0; 1�. Thus, it follows from the above claim again that

jY."/j �

´
p.jgj � jx."/j � j Qgn."/"

nj/p�1j Qgn."/j"
n if p < 1;

p.jgj C jx."/j C j Qgn."/"
nj/p�1j Qgn."/j"

n if p � 1

� 2j1�pjpjgjp�1c4."/jgj
Qt"n � c34."/jgj

pC�

with c34."/ D max.2; 2max I�1/.max I /c4."/.

Claim 5. If n � 1, jgjp�p��=2 > "n and c32."/ < 1=2 are satisfied, then j Qgn;p."/j �
c35."/jgj

pCQt� holds for some constant c35."/ > 0 with c35."/! 0.

Now we apply the Taylor expansion to the function F W " 7! jg C x."/jp D

.jgj C sign.g/x."//p:

jg C x."/jp D F."/ D F.0/C

nX
kD1

F .k/.0/

kŠ
"k C

�F .n/.˛"/
nŠ

�
F .n/.0/

nŠ

�
"n

for some ˛ 2 Œ0; 1�. By virtue of the Faà di Bruno formula [6], we obtain the equa-
tion F .k/.0/=kŠ D gk;p . We will show that the remainder jF .n/.˛"/ � F .n/.0/j is
bounded by c36."/jgj

pC� with some constant c36."/! 0. Since the function F is the
composition of the two functionsGWy 7! yp andH W " 7! jgj C sign.g/x."/, we have

F .n/.˛"/

nŠ
�
F .n/.0/

nŠ

D

nX
jD1

X�
p

j

�
j Š

�
H.˛"/p�j

nY
iD1

H .i/.˛"/�i

�i Š.i Š/�i
�H.0/p�j

nY
iD1

H .i/.0/�i

�i Š.i Š/�i

�
;

where the second summation is taken over all nonnegative integers �1; : : : ; �n so thatPn
kD1 �k D j and

Pn
kD1 k�k D n. Put A."/ D H.˛"/p�j and Bi ."/ D H .i/.˛"/�i

(1 � i � n). We begin with the estimate A."/ � A.0/:

jA."/ � A.0/j D j.jgj C sign.g/x.˛"//p�j � jgjp�j j

� 21Cjp�j jjgjp�j c32."/jp � j j

� c37."/jgj
p�j
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with c37."/ D 21Cmax.jmax I�1j;jmin I�nj/c32."/max.jmax I � 1j; jmin I � nj/, where
the second inequality uses Claim 3 and the basic inequality j.1 C b/p � 1j

� 21Cjpjjbpj whenever b, p 2 R with jbj < 1=2. Moreover, it follows from
"l < jgj

l
n .p�p��=2/ that for " � 0,

jH .i/.˛"/j D

ˇ̌̌̌n�iX
lD0

.l C i/Š

i Š
glCi˛

l"l
ˇ̌̌̌

� c2

n�iX
lD0

.l C i/Š

lŠ
jgj1�

lCi
n .plCi�p/C

l
n .p�p��=2/

� c38.i/jgj
1� in .p�p��/

by putting c38.i/ D c2
Pn�i
lD0.l C i/Š= lŠ and by using the fact plCi D p C

n
lCi
.1 � tlCi / � p.n/ < p � �. Therefore,

j.A."/ � A.0//B1.0/ � � �Bn.0/j

� c37."/c38.1/
�1 � � � c38.n/

�n jgjp�jC�1C���C�n�
�1C2�2C���Cn�n

n .p�p��/

D c37."/c38.1/
�1 � � � c38.n/

�n jgjpC� (3.11)

by choosing �1; : : : ; �n. On the other hand, we note the inequality

"l�c39 � jgj
i
n .p�p��=2/�

�
2n � jgj

i
n .p�p��/

by using the number c39 D .�=2/=.min I � p � �=2/. We get the estimate

jH .i/.˛"/ �H .i/.0/j �

n�iX
lD1

.l C i/Š

i Š
jglCi j.˛"/

l

� c2

n�iX
lD1

.l C i/Š

i Š
jgjtlCi jgj

i
n .p�p��/"c39

� c38.i/jgj
1� in .p�p��/"c39 :

Thus,

jBi ."/ � Bi .0/j

D jH .i/.˛"/�H .i/.0/jjH .i/.˛"/�i�1CH .i/.˛"/�i�2H .i/.0/C� � �CH .i/.0/�i�1j

� c38.i/
�i jgj�i�

i�i
n .p�p��/"c39 :

Moreover,

jA."/j D j.jgj C sign.g/x.˛"//p�j j

�

´
.jgj C jx.˛"/j/p�j if p � j � 0;

.jgj � jx.˛"/j/p�j if p � j < 0

� c40jgj
p�j
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with c40 D max¹.3=2/max I�1; .1=2/min I�nº. Consequently, we obtain

jA."/B1."/ � � �Bi�1."/.Bi ."/ � Bi .0//BiC1.0/ � � �Bn.0/j

� c40c38.1/
�1 � � � c38.n/

�n"c39 jgjp�jC�1C���C�n�
�1C2�2C���Cn�n

n .p�p��/

D c41."/jgj
pC� (3.12)

by putting c41."/ D c40c38.1/
�1 � � � c38.n/

�n"c39 . By Claim 4 and inequalities (3.11)
and (3.12) the function Qgn;p."/ D Z."/C .F .n/.˛"/� F .n/.0//=nŠ fulfills the asser-
tion of the claim.

Claim 6. When n � 1, the main assertion (3.7) holds by putting "1 > 0 so that
c32."/ < 1=2 for " < "1.

Indeed, by virtue of Claim 2 and Claim 5, this assertion is given with c20."/ D

c31."/C c35."/. Hence, the proof is complete.

Denote by L.X/ the set of all bounded linear operators acting on a normed linear
space X.

Lemma 3.6. Assume that the incidence matrix of E1 is finitely irreducible and the
conditions (g.1)–(g.5) and ( .1)–( .4) with a fixed nonnegative integer n are sat-
isfied. Then for any nonempty compact subset I � .p.n/;1/, there exist operators
L1;p; : : : ;Ln;p 2 L.F�;b.E

1// and QLn;p."; �/ 2 L.Cb.E
1// .p 2 I / such that

Lp log jg.";�/jClog .";�/ D Lp log jgjClog CL1;p"C� � �CLn;p"
n
C QLn;p."; �/"

n; (3.13)

sup
p2I

k QLn;p."; �/k1 ! 0 (3.14)

and supp2I kLk;pk� <1, where Lk;pf .!/ D
P
e2E Wt.e/Di.!0/

�k;p.e � !/f .e � !/

and �k;p D
Pk
iD0 gi;p k�i .

Proof. By virtue of the expansions (3.3) and (1.2), we get the expansion (3.13) and
convergence (3.14). It remains to check supp2I kLk;pk� < 1 for k D 1; 2; : : : ; n.
First, we show supp2I kLk;pk1 <1. Let � > 0 be given so that p.n/C � < min I .
From (3.5) and condition ( .3) in addition to Remark 3.4, we get

kLk;pf k1 � c42kL.p�knp.n/C
k
np/ log jgjClog 1k1kf k1

� c42kL.pC�/ log jgjClog 1k1kf k1

for any p2I by putting c42D.nC1/c18c5. Furthermore, kL.pC�/ log jgjClog 1k1<1

by P..p C �/ log jgj C log  / < C1 (see Proposition A.1). Therefore, we have
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kLk;pk1 <1 uniformly in p 2 I . Next, we check the boundedness of ŒLk;pf �� for
f 2 F�;b.E

1/. It follows from (3.5) and (3.6) that for !; � 2 E1 with !0 D �0

jLk;pf .!/ �Lk;pf .�/j

�

X
e2E W

t.e/Di.!0/

�
j�k;p.e � !/ � �k;p.e � �/jjf .e � !/j C j�k;p.e � �/jjf .e � !/ � f .e � �/j

�
� c43

X
e2E W

t.e/Di.!0/

jg.e � !/jp�
k
np.n/C

k
np .e � !/kf k1d� .e � !; e � �/

C c42

X
e2E W

t.e/Di.!0/

jg.e � �/jp�
k
np.n/C

k
np .e � �/Œf ��d� .e � !; e � �/

� �.c43 C c42/kL.pC�/ log jgjClog 1k1kf k�d� .!; �/

with c43 D .nC 1/.c18c6 C c19.1C c6//. Thus,

ŒLk;pf �� � �.c43 C c42/kL.pC�/ log jgjClog 1k1kf k�

uniformly in p 2 I . Hence, we obtain the boundedness of supp2I kLk;pk� .

Lemma 3.7. Let G D .V;E; i.�/; t.�// be a directed multigraph. Let ' 2 F� .E1;R/
satisfy (g.2) and (g.3). Then for any number � > 0 and integer k � 1, the d� -Lipschitz
norm of the function ! 7! jg.!/j�.log jg.!/j/k is bounded by a constant c44 D
c44.�; k/.

Proof. From the upper bound of x 7! �x log x is e�1, the norm kjgj�.log jgj/kk1
is bounded by kk=.ek�k/. On the other hand, let ˛ D �=k. We have for !; � 2 E1

with !0 D �0ˇ̌
jg.!/j˛ log jg.!/j � jg.�/j˛ log jg.�/j

ˇ̌
�
ˇ̌
g.!/j˛

ˇ̌
log jg.!/j�log jg.�/j

ˇ̌
Cj log.jg.�/j/jg.�/j˛je˛ log jg.!/j�̨ log jg.�/j

�1j

� c45d� .!; �/

with c45 D .c1 C .˛e/
�1e˛c1�˛c1/. Thus, we obtain�
jgj�.log jgj/k

�
�
� kc45

�
k=.e�/

�k�1
:

Hence, the assertion is fulfilled.

The function .p; "/ 7! Lp logg.";�/Clog .";�/ has also an asymptotic expansion in
the sense of the following lemma:
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Lemma 3.8. Assume that the incidence matrix of E1 is finitely irreducible and con-
ditions (g.1)–(g.5) and ( .1)–( .4) with a fixed nonnegative integer n are satisfied.
Choose any nonempty compact subset I � .p.n/;C1/. Then for any s; p 2 I , there
exist operators Zv;q;s 2L.F�;b.E

1// (0� v; q � n) and yZn;s;p 2L.Cb.E
1// such

that the Ruelle operator of p log jg."; �/j C log ."; �/ is expanded as

Lp log jg.";�/jClog .";�/D

nX
vD0

nX
qD0

Zv;q;s"
v.p � s/q C .p � s/nC1 yZn;s;p C QLn;p."; �/"

n;

(3.15)
and sups;p2I k yZn;s;pk1 <C1, where Z0;0;s equals Ls log jgjClog . Here Zv;q;sf WD

L0.hv;q;sf / and yZn;s;pf WD
Pn
vD0 L0. Ohv;s;pf /"

v for f 2 Cb.E1/ are given as

hv;q;s WD

vX
kD0

kX
lD0

min.l;q/X
jD0

al;j;s

.q � j /Š
.log jgj/q�jGsl;k v�k

Ohv;s;p WD

vX
kD0

kX
lD0

lX
jD0

al;j;s y�s;p;n�jC1G
s
l;k v�k

y�s;p;i .!/ WD

Z 1

0

.1 � u/i�1

.i � 1/Š
jg.!/ju.p�s/.log jg.!/j/i du;

where L0f means
P
e2E Wt.e/Di.!0/

f .e � !/, and al;j;s are numbers defined in (3.16)
below.

Proof. First we show the expansion (3.15). We take � 2 .0;min I � p.n// and pk D
p C .n=k/.1 � tk/. By Theorem 3.6, we have the expansion of Lp log jg.";�/jClog .";�/

as
Pn
vD0 Lv;p"

v C QLn;p."; �/"
n, where Lv;p and QLn;p are defined in Lemma 3.6.

Therefore, we will expand the operator Lv;p . We remark that the expansion of the
map p 7! jgjp is as follows:

jgjp D ep log jgj
D

iX
qD0

.log jgj/q

qŠ
jgjs.p � s/q C .p � s/iC1jgjs y�s;p;iC1:

for any i � 0. In addition to the notation Gp
l;k

in (3.1), gk;p in (3.4), Lk;p , and �k;p
in (3.6), we obtain

Lv;pf D

vX
kD0

kX
lD0

L0. v�k

�
p

l

�
G
p

l;k
f /

D

vX
kD0

kX
lD0

lX
jD0

L0

 
 v�kal;j;s

� n�jX
qD0

.log jgj/q

qŠ
Gsl;k.p � s/

qCj

C y�s;p;n�jC1G
s
l;k.p � s/

nC1

�
f

!
D

nX
qD0

Zv;q;sf .p � s/
q
CL0. Ohv;s;pf /.p � s/

nC1;
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where we use the expansion
�
p
l

�
D
Pl
jD0 al;j;s.p � s/

j by putting

al;j;s D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

P
0�i1;:::;il�j�l�1W

i1<���<il�j

1
lŠ

l�jQ
qD1

.s � iq/ if l � 1 and 0 � j < l

1=lŠ if l � 1 and j D l

0 if l < j:

(3.16)

Thus, the equation (3.15) is valid.
Next, we will prove Zv;q;s 2L.F�;b.E

1//. In the expression of hv;q;s , we rewrite
.log jgj/q�jGs

l;k
 v�k D ..log jgj/q�j jgj�=2/jgj��=2Gs

l;k
 v�k . Then the function

.log jgj/q�j jgj�=2 is in F�;b.E1;R/ from Lemma 3.7. By Proposition 3.1 with f0 D

.log jgj/q�j jgj�=2, h0D 1, f1D jgj��=2, h1D jgj��=2, f2DGsl;k , h2D jgjsC� , f3D
 v�k , h3 D  , c11.0/D c44.�=2; q � j /, c11.1/D 1, c11.2/D c15.k; l/, c11.3/D c5,
c12.0/D c44.�=2;q� j /, c12.1/D c1.1C c1�/

�=2, c12.2/D c16.k; l/, and c12.3/D c6,
we get the estimate

j.log jgj/q�jGsl;k v�kj � c46.k; l; j /jgj
sC�=2 

j.log jg.!/j/q�jGsl;k.!/ v�k.!/ � .log jg.�/j/q�jGsl;k.�/ v�k.�/j

� c47jg.!/j
sC�=2d� .!; �/

for constants c46Dc46.k; l; j /Dc44.�=2;q � j /c15.k; l/c5 and c47Dc47.k; l; j /Dc13

with n D 3. Thus, we obtain
kZv;q;sk1 � c48kL.pC�=2/ log jgjClog j j1k1

ŒZv;q;sf �� � .c49�kf k1 C c48�Œf �� /kL.pC�=2/ log jgjClog j j1k1;

where we define constants c48 and c49 by

c48 D

vX
kD0

kX
lD0

min.l;q/X
jD0

al;j;s

.q � j /Š
c46.k; l; j /; c49 D

vX
kD0

kX
lD0

min.l;q/X
jD0

al;j;s

.q � j /Š
c47.k; l; j /:

Hence, Zv;q;s 2 L.F�;b.E
1;R// is guaranteed.

It remains to check the boundedness of yZn;s;p . In the expression of Ohv;s;p , we
have
jy�s;p;n�jC1.!/G

s
l;k.!/ v�k.!/j

� c15.k; l/c5jg.!/j
s�knp.n/C

k
np .!/jy�s;p;n�jC1.!/j

� c15.k; l/c5jg.!/j
pC� .!/

Z 1

0

.1 � u/n�j

.n � j /Š
j log.jg.!/j/jn�jC1 du

.∵ Remark 3.4/

�
c15.k; l/c5c44.�=2; n � j C 1/

.n � j C 1/Š
 .!/jg.!/jpC�=2 .∵ Lemma 3.7/:

As a result, we get j Ohv;s;p.!/j � c50 .!/jg.!/j
pC�=2 for some constant c50>0.

Thus, yZn;s;p is bounded by c50kL.pC�=2/ log jgjClog 1k1 < C1 uniformly in
s; p2I .
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We will describe a remark concerning the coefficient of the solution s."/ before
the proof of Theorem 1.1.

Remark 3.9. Assume that the incidence matrix ofE1 is finitely irreducible and con-
ditions (g.1)–(g.5) and ( .1)–( .4) with a fixed nonnegative integer n are satisfied. If
we put for each 0 � k � n

sk D
�1

�.h log jgj/

� k�1X
iD1

�i .Ls.0/ log jgjClog j.h log jgj//sk�i C
k�1X
iD0

�i .Nk�ih/

�
;

(3.17)

Qs0."/ D �
�."; QL0;s."/."; h//

�."; yZ0;s.0/;s."/h/
(3.18)

Qsn."/ D
�1

�.h log jgj/

� nX
uD1

Q�n�u.";Nuh/C

n�1X
iD1

Qsn�i ."/�i .Z0;1;s.0/h/ (3.19)

C �."; QLn;s."/."; h//C
s."/ � s.0/

"
Q�n�1.";Z0;1;s.0/h/C �."; yNnC1."; h//"

�
;

then s."/ can be expanded as form (1.3). Here �; �k , �."; �/ and Q�n�u."; �/ appear
in the asymptotic expansions �."; f / D �.f / C

Pm
kD1 �k.f /"

k C Q�m."; f /"
m

(0 � m � n � 1) of the Perron eigenvector �."; �/ of Ls."/ log jg.";�/jClog given by
Corollary B.2. We define operators Nu; yNnC1."; �/ 2 L.Cb.E

1// by

Nu D

X
0�v�u;
0�q�u�vW
.v;q/¤.0;1/

sq;u�vZv;q;s.0/ .u D 1; : : : ; n/; (3.20)

yNnC1."; f / D
X
0�v;
q�nW

.v;q/¤.0;1/

Qsq;n�v."/Zv;q;s.0/f C yZn;s.0/;s."/f

�
s."/ � s.0/

"

�nC1
;

(3.21)

where sq;i and Qsq;i ."/ are the coefficient and the remainder of the expansion
.s."/ � s.0//k D

Pj
iD0 sq;i"

i C Qsq;j ."/"
j , respectively (see (3.24) for detail).

Proof of Theorem 1.1. Put ˆ."; s; �/ D s log jg."; �/j C log  ."; �/ and ˆ.s; �/ D

s log jgj C log for convenience. For s 2 I and " > 0, let .�s."/; hs."; �/; �s."; �//
be the triplet of the operator Lˆ.";s;�/ and .�s; hs; �s/ the triplet of Lˆ.s;�/ given by
Theorem A.2. We may write �."; �/ WD �s."/."; �/, � WD �s.0/ and h WD hs.0/.

Claim 1. The solution s D s."/ of the equation P.s log jg."; �/j C log ."; �// D p0
exists in I for any small " > 0, and converges to s.0/ as "! 0.
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Indeed, it follows from (3.15) with nD 0, a0;0;s D 1,Gs0;0D jgj
s and 0D that

Lˆ.";s;�/h D Lˆ.s.0/;�/hC .s � s.0// yZ0;s.0/;shC QL0;s."; h/;

yZ0;s.0/;sh D L0.

Z 1

0

jgju.s�s.0//Cs.0/ du log jgj h/:

By using the equations L�
ˆ.";s;�/

�s."; �/ D �s."/�s."; �/ and Lˆ.s.0/;�/h D �s.0/h, we
obtain

�s."; h/.�s."/ � �s.0// D �s."; yZ0;s.0/;sh/.s � s.0//C �s."; QL0;s."; h//: (3.22)

Let us now choose any small � > 0 so that s.0/ C �; s.0/ � � 2 I . For any
s 2 Œs.0/ � �; s.0/C ��, we have the estimate

��s."; yZ0;s.0/;shs.0// �

´
�s.";L0.jgj

s .� log jgj/hs.0/// if s � s.0/;

�s.";L0.jgj
s.0/ .� log jgj/hs.0/// if s < s.0/

�

´
� log kgk1�s

�
";Lˆ.max I;�/hmax I

hs.0/
hmaxI

�
if s � s.0/;

� log kgk1�s.0/�s."; hs.0// if s < s.0/

.∵ s � max I /

� �c51 log kgk1 > 0 (3.23)

with c51 D min.�max I inf! hmax I .!/=khmax Ik1; �s.0// inf! hs.0/.!/. Now fix
s 2 Œs.0/ � �; s.0/C �� with s ¤ s.0/. For any small " > 0 with

k QL0;s."; hs.0//k1

js � s.0/j
� �

c51

2
log
�
kgk1

�
;

equation (3.22) yields

�s."; hs.0//
�s."/ � �s.0/

s � s.0/
D �s."; yZ0;s.0/;s."/hs.0//C

�s."; QL0;s."/."; hs.0///

s � s.0/

�
c51

2
log kgk1 < 0:

In addition to �s."; hs.0// > 0, this implies that �s."/ < �s.0/ if s > s.0/ and
�s."/ > �s.0/ if s < s.0/ for any small " > 0. Since log �s."/ D P.ˆ."; s; �// and
log�s.0/ D P.ˆ.s.0/; �// D p0 are satisfied, we obtain

P.ˆ."; s.0/C �; �// < p0 < P.ˆ."; s.0/ � �; �//

for a fix number � > 0 with s.0/C �, s.0/� � 2 I and for any small " > 0. It follows
from this inequality and the strictly monotone decreasing of the map s 7!P.ˆ."; s; �//

that there exists a unique s."/ 2 Œs.0/ � �; s.0/ C �� so that P.ˆ."; s."/; �// D p0.
By arbitrarily choosing � > 0, s."/ converges to s.0/ as "! 0. In particular, Qs0."/ D
s."/ � s.0/ estimates as (3.18) from (3.22).
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Claim 2. s."/ D s.0/CO."/ as "! 0 in the case n � 1.

Indeed, since the form QL0;s."/."; �/ D L1;s."/" C QL1;s."/."; �/" is satisfied
from (3.13), (3.18) implies

s."/ � s.0/

"
D
��.";L1;s."/ C

QL1;s."/."; �//

�."; yZ0;s.0/;s."/h/
:

By virtue of Theorem B.1 by regarding .X0; k � k0/ D .Cb.E
1/; k � k1/ and

.X1;k � k1/D .F�;b.E
1/;k � k� /, L."; �/DLˆ.";s."/;�/ and LDLˆ.s.0/;�/, the meas-

ure �."; �/ converges to � weakly. In fact, conditions (L.1) and (L.2) are satisfied by
Theorem A.2, condition (L.3) is yielded by k�."; �/k D 1 and 0 < inf h � sup h <1,
and condition (L.4) is fulfilled from Lˆ.";s."/;�/ ! Lˆ.s.0/;�/ in Cb.E1/. Moreover,
the operator L1;s."/ is bounded by Lemma 3.6 for any small "> 0. In addition to (3.23)
and (3.14), it follows from the boundedness of L1;s."/ and convergence of �."; �/ that
.s."/ � s.0//=" is bounded.

Claim 3. The asymptotic expansion (1.6) of s."/ is satisfied in the case n � 1.

Let n � 1. We show that if s."/ has the form .n � 1/-order asymptotic expansion
s."/D s0C s1"C � � � C sn�1"

n�1C o."n�1/with s0D s.0/, then so is for n. To check
the n-order asymptotic behaviour of s."/, we need the expansion of .s."/� s.0//k for
k � 0:

.s."/�s.0//k D

´
s1;0Cs1;1"C: : :Cs1;n�1"

n�1CQsn�1."/"
n�1 if k D 1;

sk;0Csk;1"C: : :Csk;n�1"
n�1Csk;n"

nCQsk;n."/"
n if k � 2

with

sk;i D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

0 if k � 1 and 0 � i � k�1;

si if k D 1 and 1 � i � n�1;P
j1;:::;ji�1�0W
j1C���Cji�1Dk

j1C2j2C���C.i�1/ji�1Di

s
j1
1
���s
ji�1
i�1

j1Š���ji�1Š
if k � 2 and k � i � n

(3.24)

with Qsk;n."/! 0 as "! 0. Note that s1;i D si holds for 1 � i � n � 1. Thus, the
expansion (3.15) implies

Lˆ.";s."/;�/f D

nX
vD0

nX
qD0

.s."/ � s.0//qZv;q;s.0/f "
v

C .s."/ � s.0//nC1 yZn;s.0/;s."/f C QLn;s."/."; f /"
n
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D .s."/ � s.0//Z0;1;s.0/f C
X

0�v;q�nW
.v;q/¤.0;1/

.s."/ � s.0//qZv;q;s.0/f "
v

C .s."/ � s.0//nC1 yZn;s.0/;s."/f C QLn;s."/."; f /"
n

D Lˆ.s.0/;�/f CZ0;1;s.0/f .s."/ � s.0//

C

nX
uD1

Nuf "
u
C yNnC1."; f /"

nC1
C QLn;s."/."; f /"

n (3.25)

for f 2Cb.E1/ using (3.20) and (3.21). By the definition of yNnC1."; �/, this operator
is bounded uniformly in any small " > 0. Since s."/ has .n � 1/-order asymptotic
behaviour, we see by (3.25) that Lˆ.";s."/;�/ has at least .n � 1/-order asymptotic
expansion in L.Cb.E

1//. Thus, it follows from Corollary B.2 that �."; �/ has the
form �."; �/ D � C

Pn�1
kD1 �k"

k C Q�n�1."; �/"
n�1 and j Q�n�1."; f /j ! 0 for each f 2

F�;b.E
1/. We obtain

0 D �."; .ep0 � ep0/h/ D �."; .Lˆ.";s."/;�/ �Lˆ.s.0/;�//h/

D .s."/ � s.0//�.";Z0;1;s.0/h/

C

nX
uD1

�.";Nuh/"
u
C �."; yNnC1."; h//"

nC1
C �."; QLn;s."/."; h//"

n:

Consequently, we get the form Qsn�1."/ D sn"C Qsn."/" by putting (3.17) with k D n
and (3.19) and Qsn."/ vanishes. Thus, this claim is satisfied.

Claim 4. The estimate (1.7) of the remainder Qsn."/ is valid.

First assume n D 0. Recall the form (3.18) of Qs0."/. Since s."/ converges to
s.0/, Ls."/ log jg.";�/jClog .";�/ converges to Ls.0/ log jgjClog in Cb.E1;C/ as "! 0

by Lemma 3.8. Therefore, the measure �."; �/ converges to � weakly from Corol-
lary B.2. Moreover, it follows from the Mean Value Theorem that y�s.0/;s."/;1."; !/ DR 1
0
jg.!/ju.s."/�s.0// log jg.!/j du converges to log jg.!/j uniformly in ! 2 E1.

Thus, �."; yZ0;s.0/;s."/h/! �.h log jgj/. The assertion is valid in the case n D 0.
Next, assume n � 1. Since s."/ has an n-order asymptotic expansion, so

does Ls."/ log jg.";�/jClog .";�/ in L.Cb.E
1// from the expansion (3.25). Thus,

Corollary B.2 says that �."; �/ has an n-order asymptotic expansion. In the expres-
sion (3.19) of Qsn."/, we obtain the form Qsn�1."/ D .sn C Qsn."//" and Q�n�1."; f / D
.�n.f /C Q�n."; f //". Hence, the proof is complete.

3.2. Proof of Proposition 1.3

Proof. Choose any compact neighborhood I of s0 so that
I � .p.n/; p C .nC 1/.1 � t0// n Z:

Put x."; !/ D jg."; !/j � jg.!/j. We begin with the estimate of x."; !/.
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Claim 1. There exists c52 > 0 such that for any ! 2 E1, c52jg.!/j
t0" � x."; !/ for

any small " > 0.

Indeed, let s! D sign.g.!//. It follows from (g.9) that for any 2 � k � n,
jgk.!/j � c2jg.!/j

tk � c2jg.!/j
t0 . Then we have

sign.g.!//g."; !/ � jg.!/j
"jg.!/jt0

D

nX
kD1

sign.g.!//gk.!/
jg.!/jt0

"k�1

� c8 �

nX
kD2

c2"
k�1 >

c8

2
> 0

for any small " > 0. This implies that the signature of sign.g.!//g."; !/ is plus for
any small " > 0, and therefore, the signature of g."; !/ equals the signature of g.!/.
This also yields x."; !/ D sign.g.!//g."; !/� jg.!/j > 0, and thus, the assertion is
valid by putting c52 D c8=2.

Claim 2. kL.min I�n.1�t1// log jgj1k1 <1 and kL.max I�.nC1/.1�t0// log jgj1k1 D1.

Since minI�.1�t1/n is greater than p, P..minI�.1�t1/n/ log jgj/ is finite and
so is kL.min I�.1�t1/n/ log jgj1k1. On the other hand, from max I�.1�t0/.nC1/ is less
than p, P..max I�.1�t1/n/ log jgj/ is infinite and it yields

kL.max I�.1�t1/n/ log jgj1k1 D1:

Therefore, this claim is valid.
We letE."/D

®
e 2EW inf!2Œe� jg.!/j � 2c2"

¯
. Then we see thatE."/ is an includ-

ing finite set and lim"!0E."/DE. We will use the fact that for any e 2E."/, ! 2 Œe�
and 0 < " < 1=2

jx."; !/j � c2

nX
kD1

jg.!/jtk"k � 2c2" � jg.!/j: (3.26)

Claim 3. There exists Qb 2 E such that

inf
!2Œ Qb�

X
e2E."/Wt.e/Di. Qb/

jg.e � !/jmax I�.nC1/.1�t0/ !1

as "! 0.

Choose any large numberM > 0. Since an incidence matrix is finitely irreducible,
there exists a finite subset ¹b1; : : : ; bN º of E such that for any e 2 E, t .e/D i.bk/ for
some k. Namely, when we put Ek D ¹e 2 EW t .e/D i.bk/º for each k D 1; 2; : : : ;N ,
then E D

SN
kD1 Ek is satisfied. From kL.max I�.1�t0/.nC1// log jgj1k1 D C1, there

is ! 2 E1 so that L.max I�.1�t0/.nC1// log jgj1.!/ > M . Moreover, there exists "0 > 0
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such that for any 0 < " < "0,
P
e2E."/We�!2E1 jg.e � !/j

max I�.1�t0/.nC1/ > M . We
notice that for any !k 2 Œbk� .k D 1; 2; : : : ; N /X

e2E."/Wt.e/Di.!0/

jg.e � !/jmax I�.1�t0/.nC1/

�

NX
kD1

X
e2Ek\E."/Wt.e/Di.!0/

jg.e � !/jmax I�.1�t0/.nC1/

�

NX
kD1

X
e2Ek\E."/Wt.e/Di.bk/

jg.e � !k/jmax I�.1�t0/.nC1/.1C c14�/

by Lemma 3.2. Thus,

M �

NX
kD1

inf
�2Œbk �

X
e2E."/Wt.e/Di.bk/

jg.e � �/jmax I�.1�t0/.nC1/.1C c14�/:

Since M is an arbitrary large number, the right hand side tends to C1 as " ! 0.
Hence, the assertion of the claim is valid for some Qb 2 ¹bkºNkD1.

Claim 4. There exist a sign Qs 2 ¹C1; �1º and a constant c53 > 0 such that
Qs QLn;s."; h/.!/ � �c53 uniformly in s 2 I and ! 2 E1, and

inf
s2I

inf
!2Œ Qb�

Qs QLn;s."; h/.!/="!C1:

Let ! 2 E1. From the Taylor expansion of the function F W x 7! .jg.!/j C x/s ,
we obtain the form

jg."; !/js D

nX
lD0

�
s

l

�
jg.!/js�lx."; !/l

C

�
s

nC 1

�
.jg.!/j C ˛x."; !//s�n�1x."; !/nC1

D g0;s C g1;s"C � � � C gn;s"
n
C Qgn;s."; �/"

n

with

Qgn;s."; !/ D

nX
lD0

�
s

l

�
jg.!/js�l sign.g.!//l

�

nlX
jDnC1

X
j1;:::;jn�0W
j1C���CjnDl

j1C2j2C���CnjnDj

lŠ

j1Š � � � jnŠ
g1.!/

j1 � � �gn.!/
jn"j�n

C

�
s

nC 1

�
.jg.!/j C ˛x."; !//s�n�1

�
x."; !/

"

�nC1
"

D I1."; !/C I2."; !/
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for some ˛ D ˛.s; "; !/ 2 Œ0; 1�. By t1 � t0 � tk for k � 2 and by the estimate
jgjs�l jg1j

j1 � � � jgnj
jn � cl2jgj

s�lClt1 �max.c2; 1/
njgjs�.1�t1/n, we get the inequality

jI1."; !/j � c54jg.!/j
s�.1�t1/n" (3.27)

for any ! 2 E1 for some constant c54 > 0. To estimate I2."; �/, we note that since
the integers 1; 2; : : : ; n are not in I , the signature of

�
s

nC1

�
for s 2 I does not depend

on the choice of s 2 I . Then we put Qs D sign.
�
s

nC1

�
/ for a s 2 I . For the same reason

as above, infs2I j
�
s

nC1

�
j DW c55 is positive. Notice also that for e 2 E."/

.jg.e � !/j C ˛x."; e � !//s�n�1

�

´
jg.e � !/js�n�1 if s � n � 1 � 0;

.jg.e � !/j C x."; e � !//s�n�1 if s � n � 1 < 0

�

´
jg.e � !/js�n�1 if s � n � 1 � 0;

2s�n�1jg.e � !/js�n�1 if s � n � 1 < 0

� 2�js�n�1jjg.e � !/js�n�1

by (3.26). Thus, we obtain that for any s 2 I and ! 2 E1,
QsI2."; e � !/

"
D

ˇ̌̌̌�
s

nC 1

�ˇ̌̌̌
.jg.e � !/j C ˛x."; e � !//s�n�1

�
x."; e � !/

"

�nC1
�

´
c56jg.e � !/j

max I�.1�t0/.nC1/ if ! 2 Œe� for some e 2 E."/;

0 otherwise

(3.28)

with c56 D c552
� sups2I js�n�1jcnC152 > 0. Consequently, (3.27) and (3.28) imply that

for any ! 2 E1

Qs QLn;s."; h/.!/

"
D

X
e2E Wt.e/Di.!0/

.QsI1."; e � !/C QsI2."; e � !//h.e � !/
1

"

�

8̂̂<̂
:̂
�c53 C c56.inf� h.�//

P
e2E."/W
t.e/Di.!0/

jg.e � !/jmax I�.nC1/.1�t0/ if ! 2 Œ Qb�;

�c53 otherwise

by putting c53 D c54kL.min I�.1�t1/n/ log jgj1k1khk1. Thus, the assertion is valid.

Claim 5. The assertion of this corollary is valid.

Recall the form Qsn."/ (n � 1) of (1.7) in Theorem 1.1. Then we have

Qs Qsn."/

"
D

1

��.h log jgj/
�

�
";
Qs QLn;s."/."; h/

"

�
CO.1/

� �
�c53

��.h log jgj/
C

�."; Œ Qb�/

��.h log jgj/

infs2I inf
!2Œ Qb�

Qs QLn;s."; h/.!/

"
CO.1/

!C1
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as " ! 0 by using the above claim in addition to the fact �."; Œ Qb�/ ! �.Œ Qb�/ > 0.
Hence, the assertion jQsn."/j="!C1 is guarantied.

3.3. Proof of Theorem 2.2

For the sake of convenience, we write the composite map T!0."; �/T!1."; �/ � � �T!n."; �/
as T!0!1���!n."; �/. Similarly, T!0!1���!n means T!0T!1 � � �T!n . Assume that condition
(G.1)n is satisfied. We take open and relative compact subsets .Uv/ of RD and num-
bers r 2 .0; 1/ and r0 > 0 such that Uv D

S
x2Jv

B.x; r0/, Jv � Uv � Uv � Ov for
any v 2 V , and supe2E supx2Ut.e/ kT

0
e.x/k � r , where B.x; r0/ is the open ball with

center x and radius r0. We begin with the following fact:

Lemma 3.10. For any n � 1, if conditions (G.1)n and (G.2)n are satisfied, then so
are conditions (G.1)n�1 and (G.2)n�1.

Proof. Assume that conditions (G.1)n and (G.2)n are satisfied. It suffices to prove that
conditions (iii) and (iv) in (G.2)n�1 are fulfilled for n � 2. Since QTe;n�1."; �/ has the
form Te;n"C QTe;n."; x/", convergence

sup
e2E

sup
x2Jt.e/

 @
@x
QTe;n�1."; x/


kT 0e.x/k

Qt1
! 0

is yielded by putting Qt1 D min.t.n; 1/; Qt0/. Therefore, (iii) is valid for (G.2)n�1.
To check (iv) in (G.1)n�1, we note the forms

p.n � 1/ D max
°
p �

n � 1

1
.1 � t1/; : : : ; p �

n � 1

n � 1
.1 � tn�1/;

p=t1; : : : ; p=tn�1; p C 1 � Qs; p=Qs
±

Qs D min
°
tn�1; Qt1;

Qt1

D
C
D � 1

D
t.1; 1/; : : : ;

Qt1

D
C
D � 1

D
t.n � 1; 1/

±
:

By the definition of tk in (2.1), the inequality tn�1 � tn holds. By the same reasoning,
we have t .n; 1/; : : : ; t .1; 1/ � tn and therefore Qs � Qt , where Qt is defined in (2.2).
Thus, we see p.n � 1/ � p.n/. Hence, dimH K=D > p.n/ implies dimH K=D >

p.n � 1/.

Lemma 3.11. If condition (G.1)n (ii) holds, then there exists a constant c57 > 0 such
that for any e 2 E, x 2 Jt.e/, y 2 Ot.e/ with jx � yj < r0, 0 � l � n, and 0 � k �
1C n � lT .k/

e;l
.x/ � T

.k/

e;l
.y/
 � c57

T 0e.x/t.l;k/jx � yjˇ ; T .k/
e;l
.y/
 � c57

T 0e.x/t.l;k/:
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Proof. We haveˇ̌̌̌
T
.k/

e;l
.x/

kT 0e.x/k
t.l;k/

�
T
.k/

e;l
.y/

kT 0e.x/k
t.l;k/

ˇ̌̌̌
�

ˇ̌̌̌
T
.k/

e;l
.x/

kT 0e.x/k
t.l;k/

�
T
.k/

e;l
.y/

kT 0e.y/k
t.l;k/

ˇ̌̌̌
C

ˇ̌̌̌
T
.k/

e;l
.y/

kT 0e.y/k
t.l;k/

�
T
.k/

e;l
.y/

kT 0e.x/k
t.l;k/

ˇ̌̌̌
� c58jx � yj

ˇ
C c59kT

0
e.y/k

t.l;k/

ˇ̌
kT 0e.x/k

t.l;k/ � kT 0e.y/k
t.l;k/

ˇ̌
kT 0e.x/k

t.l;k/kT 0e.y/k
t.l;k/

� .c58 C c59.1C c9r
ˇ
0 //jx � yj

ˇ

for some c58; c59 > 0 by using condition (G.2)n (ii) and condition (v) in GDMS.
Therefore, the former assertion is fulfilled. The latter assertion follows from the above
inequality.

Let �."; �/ be the coding map of K."/ for " > 0.

Lemma 3.12. Assume that conditions(G.1)n and (G.2)n are satisfied. Choose
any r1 2 .r; 1/. Then there exist functions �1; �2; : : : ; �n 2 Fr1;b.E

1; RD/ and
Q�."; �/ 2 Cb.E

1;RD/ such that �."; �/ D � C �1"C � � � C �n"n C Q�n."; �/"n and
k Q�n."; �/k1 WD sup!2E1 j Q�n."; !/j ! 0 as "! 0.

Proof. This assertion mostly follows from the proof of [25, Lemma 3.1]. When we
use this proof, we need the boundedness of jT .i/

e;k
.y/j uniformly in e 2E and y 2Ut.e/

for each k and i . This fact is satisfied by condition (G.2)n (ii) in particular. Therefore,
the proof of [25, Lemma 3.1] implies

�j .!/ D

1X
kD0

T 0!0���!k�1.��
k!/.Rj .��

k!//;

Q�n."; !/ D

1X
kD0

T 0!0���!k�1.��
k!/. QRn."; ��

k!//;

where Rj and QRn."; �/ are defined inductively

Rj .!/ D T!0;j .��!/C
X

0�l�j�1;
1�k�j�lW
.l;k/¤.0;1/

X
i1;:::;ik�1W

i1C���CikDj�l

T
.k/

!0;l
.��!/.�i1.�!/; : : : ; �ik .�!//

kŠ

QRn."; !/ D
X

0�l�n�1;
1�k�n�lW
.l;k/¤.0;1/

knX
iDn�lC1

X
1�i1;:::;ik�n�1W
i1C���CikDi

T
.k/

!0;l
.x/.�i1.�!/; : : : ; �ik .�!//

kŠ
"i�nCl
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C

X
0�l�n�1;
1�k�n�lW
.l;k/¤.0;1/

kX
iD1

T
.k/

!0;l
.x/

kŠ
.z."/; : : : ; z."/„ ƒ‚ …

i�1

; Q�n�1."; �!/„ ƒ‚ …
i -th

; x."/ � x; : : : ; x."/ � x„ ƒ‚ …
k�i

/"l�1

C

nX
lD0

L.n � l; T!0;l ; x."/; x/

�
x."/ � x

"

�n�l
C QT!0;n."; x."//;

where z."/ D
Pn�1
kD1 �k.�!/"

k , x."/ D �."; �!/, x D ��!, and

L.n � l; T!0;l ; x."/; x/

D

Z 1

0

.1 � t /n�l�1

.n � l � 1/Š
.T

.n�l/

!0;l
.x C t .x."/ � x// � T

.n�l/

!0;l
.x// dt:

The facts �k 2 Fr1;b.E
1;RD/ and k Q�n."; �/k1 ! 0 follow from [25] again.

We give the asymptotic expansion of the function ! 7! det @
@x
T!0."; �."; �!//.

Let us put

u.k; i/ D min
®
t .i1; j1 C 1/C � � � C t .iD; jD C 1/W

0 � i1; : : : ; iD � k; i1 C � � � C iD D k

0 � j1; : : : ; jD � i; j1 C � � � C jD D i
¯

for each k D 1; : : : ; n. Then we see the equation

tk D
1

D
min

�®
u.k; 0/

¯
[
®
u.l; i/W l D 0; : : : ; k � 1; i D 1; : : : ; k � l

¯�
:

Lemma 3.13. Assume that conditions (G.1)n and (G.2)n are satisfied. Then the
functions g."; !/ WD det @

@x
T!0."; �."; �!// and g.!/ WD detT 0!0.��!/ satisfy con-

ditions (g.1)–(g.5).

Proof. For each e 2 E, x 2 Ot.e/, 0 � k � n, and " > 0, we write Te."; x/ D
.te;1."; x/; : : : ; te;D."; x//, Te;k.x/ D .te;k;1.x/; : : : ; te;k;D.x// and QTe;n."; x/ D
.Qte;n;1."; x/; : : : ; Qte;n;D."; x//, where Te;0 D Te . Note the form

det
@

@x
Te."; x/ D

X
�

sgn.�/
@te;1."; x/

@x�.1/
� � �
@te;D."; x/

@x�.D/

for x D .x1; x2; : : : ; xD/ 2 Jt.e/, where � is taken over all permutations on
¹1; 2; : : : ;Dº and sgn.�/ denotes the sign of �. We also recall the form

det
@

@x
Te."; x/ D detT 0e.x/C �e;1.x/"C � � � C �e;n.x/"

n
C Q�e;n."; x/"

n;

where we let

�e;k.x/ D
X
�

sgn.�/
X

0�i1;:::;iD�kW
i1C���CiDDk

DY
pD1

@te;ip ;p.x/

@x�.p/
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Q�e;n."; x/ D
X
�

sgn.�/
DnX

iDnC1

X
0�i1;:::;iD�nW
i1C���CiDDi

DY
pD1

@te;ip ;p.x/

@x�.p/
"i�n

C

X
�

sgn.�/
DX
jD1

²�j�1Y
qD1

nX
lD0

@te;l;q.x/

@x�.q/
"l
�
@Qte;n;j ."; x/

@x�.j /

� DY
pDjC1

@te;p."; x/

@x�.p/

�³
(3.29)

for each e 2 E, x 2 Ot.e/, k D 1; 2; : : : ; n and " > 0 (see [25, Lemma 3.2]). Note that
�e;k is of class C n�kCˇ and has the form

�
.i/

e;k
.x/ D

X
j1;:::;jD�0W
j1C���CjDDi

X
�

sgn.�/
X

0�i1;:::;iD�nW
i1C���CiDDk

DY
pD1

�
@te;ip ;p

@x�.p/

�.jp/
.x/

for each i D 0; 1; : : : ; n � k and x 2 Ot.e/. For 1 � j � D, we let z.0/ 2 RD as
z.0/j D 1 and z.0/j0 D 0 for j0 ¤ j . By using Lemma 3.11, we have�@te;i;q

@xj

�.p/
.y/


D sup
z.1/;:::;zp2RD W

j.z.0/;z.1/;:::;z.p//j�1

ˇ̌̌ X
1�i0���ip�D

@pC1te;i;q.y/

@xi0 � � � xip
.z.0/; z.1/; : : : ; z.p//

ˇ̌̌
� kt

.pC1/
e;i;q .y/k � kT

.pC1/
e;i .y/k � c57kT

0
e.x/k

t.i;pC1/

and �@te;i;q@xj

�.p/
.x/ �

�@te;i;q
@xj

�.p/
.y/


D sup

z.1/;:::;zp2RD W
j.z.0/;:::;z.p//j�1

ˇ̌̌̌
ˇ X
1�i1;:::;ip�D

²
@pC1te;i;q.x/

@xi0 � � � xip
.z.0/; : : : ; z.p//

�
@pC1te;i;q.y/

@xi0 � � � xip
.z.0/; : : : ; z.p//

³ˇ̌̌̌
ˇ

� kt
.pC1/
e;i;q .x/ � t

.pC1/
e;i;q .y/k

� kT
.pC1/
e;i .x/ � T

.pC1/
e;i .y/k � max¹c9; c57ºkT

0
e.x/k

t.i;pC1/
jx � yjˇ

for x 2 Jt.e/ and y 2 Ut.e/ with jx � yj < r0, and for 0 � p � n � k. Therefore

j�
.i/

e;k
.y/j �

X
j1;:::;jD�0W
j1C���CjDDi

X
�

X
0�i1;:::;iD�nW
i1C���CiDDk

DY
pD1

�@te;ip ;p
@x�.p/

�.jp/
.y/
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�

X
j1;:::;jD�0W
j1C���CjDDi

X
�

X
0�i1;:::;iD�kW
i1C���CiDDk

.c57/
D
kT 0e.x/k

t.i1;j1C1/C���Ct.iD ;jDC1/

� c60kT
0
e.x/k

u.k;i/

for some constant c60. Moreover, we have

k�
.i/

e;k
.x/ � �

.i/

e;k
.y/k � c61kT

0
e.x/k

u.k;i/
jx � yjˇ

by using Proposition 3.1 for each e 2 E, x 2 Jt.e/, y 2 Ut.e/ with jx � yj < r0 and
i D 0; 1; : : : ; n � k for some constant c61 > 0. On the other hand, the form (3.29)
implies

kQ�e;n."; x/k � DŠ.nC 1/
DcD57"kT

0
e.x/k

minnC1�i�Dn u.i;0/ CDŠD.2c57/
D�1c10."/

�

DX
jD1

kT 0e.x/k
.j�1/min¹t.1;1/;:::;t.n;1/ºCQtC.D�j /min¹t.1;1/;:::;t.n;1/;Qtº

� c3.3."/kT
0
e.x/k

Qu

with Qu D min
®
u.nC 1; 0/; : : : ; u.Dn; 0/; Qt C .D � 1/min

®
t .1; 1/; : : : ; t .n; 1/; Qt

¯¯
for any e 2 E, x 2 Jt.e/ and a small " > 0 by putting

c62."/ D DŠmax..nC 1/DcD57";D.2c57/
D�1c10."//

with c3.3."/! 0. Consequently, by the asymptotic expansion of the composite func-
tions (see [25, Proposition 2.3]), we obtain g."; !/ D g.!/ C

Pn
kD1 gk.!/"

k C

Qgn."; !/"
n with

gj .!/ D �!0;j .��!/C

j�1X
lD0

j�lX
kD1

X
i1;:::;ik�1W

i1C���CikDj�l

�
.k/

!0;l
.x/.�i1.�!/; : : : ; �ik .�!//

kŠ

Qgn."; !/ D

n�1X
lD0

n�lX
kD1

knX
iDn�lC1

X
1�i1;:::;ik�nW
i1C���CikDi

�
.k/

!0;l
.x/.�i1.�!/; : : : ; �ik .�!//

kŠ
"i�nCl

C

nX
lD0

n�lX
kD1

kX
iD1

�
.k/

!0;l
.x/.z."/; : : : ; z."/„ ƒ‚ …

i�1

; Q�n."; �!/„ ƒ‚ …
i -th

; x."/ � x; : : : ; x."/ � x„ ƒ‚ …
k�i

/
"l

kŠ

C

n�1X
lD0

Z 1

0

.1�t /n�l�1

.n�l�1/Š
.�
.n�l/

!0;l
.x."/C t .x�x."///��

.n�l/

!0;l
.x// dt

�
x."/�x

"

�n�l
C �!0;n.x."// � �!0;n.x/C Q�!0;n."; x."//;
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where z."/ D
Pn
kD1 �k.�!/"

k , x."/ D �."; �!/ and x D ��!. Then we see

jgj .!/j � j�!0;j .��!/j C

j�1X
lD0

j�lX
kD1

X
i1;:::;ik�1W

i1C���CikDj�l

k�
.k/

!0;l
.��!/kk�i1k1 � � � k�ikk1

kŠ

� c60

�
kT 0!0.��!/k

u.j;0/

C

j�1X
lD0

j�lX
kD1

X
i1;:::;ik�1W

i1C���CikDj�l

kT 0!0.��!/k
u.l;k/ k�i1k1 � � � k�ikk1

kŠ

�
� c63kT

0
!0
.��!/kmin.¹u.j;0/º[¹u.l;k/WlD0;:::;j�1;kD1;:::;j�lº/

D c63kT
0
!0
.��!/kDtj

with constant c63 > 0, where tj is defined by (2.1). Moreover, for !; � 2 E1 with
!0 D �0,

jgj .!/ � gj .�/j � j�!0;j .��!/ � �!0;j .���/j

C

j�1X
lD0

j�lX
kD1

X
i1;:::;ik�1W

i1C���CikDj�l

1

kŠ

�

²
k�
.k/

!0;l
.��!/ � �

.k/

!0;l
.���/kk�i1k1 � � � k�ikk1C

C

kX
qD1

k�
.k/

!0;l
.��!/k1kj�iq .�!/ � �iq .��/j

Y
1�u�kW
k¤q

k�iuk1

³
D c64jg.!/j

tj d� .!; �/:

by putting r1 2 .rˇ ; �/ for some constant c64 > 0. On the other hand, it follows
from the definition of the remainder Qgn."; !/ addition to condition (v) in GDMS’s
definition that

j Qgn."; !/j

� c60

nX
lD0

n�lX
kD1

 
"
.
Pn
jD1 k�j k1/

k

kŠ
C k Q�n."; �/k1

kX
iD1

kz."/ki�1kx."/ � xkk�i

!
� kT 0!0.��!/k

u.l;k/

C c60

n�1X
lD0

n � l

.n � l C 1/Š

�."; �/ � �"

n�l
1

k�."; �/ � �k1kT
0
!0
.��!/ku.l;n�l/

C c61k�."; �/ � �k
ˇ
kT 0!0.��!/k

u.n;0/
C c3.3."/kT

0
e.x."//k

Qu

� c65."/kT
0
!0
.��!/kmin¹Dtn; Quº D c65."/jg.!/j

Qt
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for any ! 2 E1 for some number c65."/ with lim"!0 c65."/ D 0, where the last
inequality uses the fact kT 0e.x."//k

Qu � c3.3."/.1C c9k�."; �/��k1/
QukT 0!0.��!/k

Qu.
Hence, the proof is complete.

3.4. Proof of Theorem 2.4

Proof. We notice Te."; Xv/ D Te.B.1=2C a.e/"; 1=2//. The function Te."; z/ has
the expansion Te."; z/ D Te.z/C

Pn
kD1 Te;k.z/"

k C QTn."; z/"
n with

Te;k.z/ D .�a.e//
k.e C z/�k�1

and

QTn."; z/ D ".�1/
nC1a.e/nC1=..e C z/nC1.e C z C a.e/"//

as in (2.3). In addition to the fact jeC zj � 3=4 for all e 2 E and z 2Ov , it is not hard
to check that condition (G.2)n is satisfied with t .l; k/ D Qt D 1 for all l; k. Hence, we
obtain the assertion.

3.5. Proof of Theorem 2.5

Proof. (1) When a � 5, the number p.n/ becomes zero. Therefore dimH K > p.n/ is
satisfied whenever n � 0. Thus, Theorem 2.2 implies s."/ has asymptotic expansion
with any order n � 0. The coefficients of s."/ are calculated as follows. Recall the
form (3.17) of sk . We see h � 1 and �.Œe�/ D 1=2e for e 2 E. We obtain

Nuh D
X
0�v�u

0�q�u�vW
.v;q/¤.0;1/

sq;u�vZv;q;s.0/

D

X
0�v�u

0�q�u�vW
.v;q/¤.0;1/

min.v;q/X
jD0

sq;u�v
av;j;s.0/

.q � j /Š
.�1/q�j .log 5/q�j

1X
eD1

eq�j
�
5v

2av

�e
:

We notice that this is a constant function. Note the equations �.h log jgj/D�2 log 5
and Z0;1;s.0/h.!/ D �2 log 5. By using �."; 1/ � 1, we obtain �i .Nk�ih/ D

�i .Z0;1;s.0/h/ D 0 for 1 � i � k � 1. Thus, we get the equation

sk D
�1

�.h log jgj/

 
k�1X
iD1

�i .Z0;1;s.0/h/sk�i C

k�1X
iD0

�i .Nk�ih/

!
D

1

2 log 5
�.Nkh/:

This yields the form (2.5) of sk .

(2) Assume 1 < a < 5. Put a0 D log 5= log.5=a/. We show some claims below:
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Claim 1. For each n � 0, if " D o. QLn;s."/."; h// then we have

Qsn."/ � QLn;s."/."; h/:

Indeed, note that the Ruelle operator of '."; !/ D log k @
@x
T!0."; �."; �!//k has

the form Ls."/'.";�/f .!/ D
P1
eD1 .1=5

e C "=ae/s."/. Here, QLn;s."/."; �/ is given as
follows: By applying Taylor theorem to the function x 7! .1=5e C x/s."/, we get the
expansion�

1

5e
C

"

ae

�s."/
D

nX
kD0

�
s."/

k

��
1

5e

�s."/�k � "
ae

�k
C

�
s."/

nC 1

��
1

5e
C ˛

"

ae

�s."/�n�1 � "
ae

�nC1
(3.30)

for each e 2 E and " > 0 for some ˛ D ˛.e; nC 1; "; a/ 2 Œ0; 1�. Therefore,

QLn;s."/."; f /.!/ D

�
s."/

nC 1

�X
e2E

�
1

5e
C ˛

"

ae

�s."/�n�1 � "
ae

�nC1 1
"n
f .e � !/:

This implies that QLn;s."/."; h/ is a constant function. We obtain the claim by (1.7) in
Theorem 1.1.

Claim 2. The inequality n < a0s.0/ � nC 1 is satisfied, where s.0/ D log 2= log 5.

Indeed, the assumption a � 5=21=.nC1/ implies

log a
log 5

� 1 �
1

nC 1
s.0/;

log 5
log.5=a/

�
nC 1

s.0/

and, therefore, s.0/a0 � nC 1. By a similar argument as the one above, if n � 1, then
5=21=n < a implies s.0/a0 > n. Thus, the claim is valid for any n � 0.

Given Re."/ D .1=5e C ˛"=ae/s."/�n�1 ."=ae/nC1. Then we have

QLn;s."/."; 1/.!/"
n
D

�
s."/

nC 1

�X
e2E

Re."/:

Now we will prove that
P
e2E Re."/ � "

a0s."/. Note that

1

5e
>

"

ae
” e <

log "
log.a=5/

DW a1."/ ” e < da1."/e DW a2."/;

where the notation d e means round up to the nearest integer. Recall the notation
M.nC 1; s."// in Proposition C.1 replacing n WD nC 1, a WD 1=5e , x WD "=ae and
s WD s."/. Since " 7! M.nC 1; s."// and " 7! L.nC 1; s."// are continuous, there
exists "0 > 0 such that M.n C 1; s."// � M.n C 1; s.0//=2 and L.n C 1; s."// �
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L.nC 1; s.0//=2 for any 0 < " < "0. Put a3 D d
log.M.nC1;s.0//=2/

log.a=5/ e. We decomposeP
e Re."/ intoX

e

Re."/ D

a2."/�1X
eD1

Re."/C

a2."/Ca3�1X
eDa2."/

Re."/C

1X
eDa2."/Ca3

Re."/

D I1."/C I2."/C I3."/:

Claim 3. Let 1 < a < 5 and n � 0 be the largest integer satisfying a � 5=21=.nC1/.
Then lim sup"!0.I1."/ C I2."//=.�"

nC1 log "/ < C1 if a D 5=21=.nC1/ for some
n � 0, and lim sup"!0.I1."/C I2."//="

a0s.0/ < C1 otherwise.

Indeed, we have

I1."/C I2."/ �

a2."/Ca3�1X
eD1

�
1

5e

�s.0/�n�1 � "
ae

�nC1
.∵ s."/ � s.0//

�

8̂<̂
:
"nC1.

� log "
� log.a=5/ C a3/ if a D 5=21=.nC1/;

"nC1

�
5nC1

2anC1

�a2."/Ca3
� 5nC1

2anC1

5nC1

2anC1
�1

if a < 5=21=.nC1/:

To show the assertion, it is sufficient to check that "nC1.5nC1=.2anC1//a2."/ �
c"a0s.0/ for some c > 0. This is implied by the facts a2."/ � a1."/� 1, .1=2/a1."/ D
"a0s.0/, and .5=a/.nC1/a1."/ D "�n�1, and by putting c D 2anC1=5nC1. This yields
the assertion of the claim.

Claim 4. Let 1 < a < 5 and n � 0 be the largest integer satisfying a � 5=21=.nC1/.
Then lim sup"!0 I3."/="

a0s.0/ < C1.

To show this, we will apply (3.30) to the equation (C.1) in Appendix C taking a WD
1=5e , x WD"=ae and s WDs."/. We obtain the inequality .a=5/a3�M.nC1; s.0//=2 �
M.nC 1; s."// and .a=5/a2."/=" � 1. Therefore, .a=5/a2."/Ca3=" �M.nC 1; s."//
is satisfied. Moreover, it follows from Proposition C.1 that

e � a2."/C a3)
1

"

�a
5

�e
�M.nC 1; s."//

)

8<:˛ � L.1; s."// if n D 0;

˛ � L.nC 1; s."//
�
1
"

�
a
5

�e� n�s."/
nC1�s."/

if n � 1:
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Note also that L.nC 1; s."// � L.nC 1; s.0//=2 DW L.nC 1/ > 0 for 0 < " < "0.
In the case when n D 0, we have

I3."/ �

1X
eDa2."/Ca3

�
1

5e
C L.1/

"

ae

�s."/�1
"

ae

�
1

L.1/

1X
eDa2."/Ca3

�
.1C L.1//

"

ae

�s.0/ �
∵
1

5e
�

"

ae
and s."/ > s.0/

�
�
.1C L.1//s.0/

L.1/.1 � 1=a/

�
1

as.0/

�a3
"a0s.0/

.∵ aa2."/ � aa1."/ D "loga=5 a D "�a0C1/.

Thus, the assertion of the claim holds in the case n D 0.
In the case when n � 1, we obtain

I3."/ �

1X
eDa2."/Ca3

0@ 1

5e
C L.nC 1/

�
1

"

�a
5

�e� n�s."/
nC1�s."/ "

ae

1As."/�n�1 � "
ae

�nC1
� L.nC 1/s."/�n�1

1X
eDa2."/Ca3

� "
ae

�s."/ �1
"

�a
5

�e��nCs."/
.∵ s."/ � n � 1 < 0/

� L.nC 1/s.0/�n�1"n

�
1
2

�
5
a

�n�a2."/Ca3
1 � 1

2

�
5
a

�n .∵ s."/ > s.0/ and 5s.0/ D 2/;

where in the last expression, we remark that .5=a/n=2 < 1 by the definition of n.
In the last expression, we notice the estimate ..5=a/n=2/a2."/ � ..5=a/n=2/a1."/ D
"a0s.0/"�n. Thus, we obtain the assertion of Claim 4.

Claim 5. Let 1<a<5 and n�0 be the largest integer satisfying a�5=21=.nC1/. Then
lim inf"!0 I1."/=.�"nC1 log"/>0 if aD5=21=.nC1/, and lim inf"!0 I1."/="a0s.0/>0
otherwise.

By virtue of Claims 1–4, s."/D s.0/C t ."/"a1 and t ."/DO.1/ are satisfied with
a1 WD a0s.0/ � � for any small � > 0. Then we have that for each n � 0,

I1."/ �

a2."/�1X
eD1

�
1

5e
C

"

ae

�s."/�n�1 � "
ae

�nC1
�

a2."/�1X
eD1

�
1
5e

�s.0/�
2
"

�
a
5

�e�nC1 � "ae �t."/"a1 .∵ t ."/ > 0/
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�

� "

aa1."/

�t."/"a1 "nC1
2nC1

8̂<̂
:
a1."/ � 1 if a D 5=21=.nC1/;�
5nC1

2anC1

�a1."/
� 5nC1

2anC1

5nC1

2anC1
�1

if a < 5=21=.nC1/

.∵ a2."/ � a1."//.

Here we notice that a2."/ � a1."/ D log "= log.a=5/ and
�
5nC1=.2an/

�a1."/
D

"a0s.0/"�n�1. Note that� "

aa1."/

�t."/"a1
D exp.t."/"a1 log "/ exp.�t ."/

log a
log.a=5/

"a1 log "/

! exp.0/ exp.0/ D 1

as "! 0. Thus, the assertion of Claim 5 is yielded.
By Claims 3–5 and the fact

P
e2E Re."/ � I1."/, we obtain

P
e2E Re."/ �

�"nC1 log " if a D 5=21=.nC1/, and � "a0s.0/ otherwise. Thus, so is QLn;s."/."; h/.
Hence, the proof follows from Claim 1.

3.6. Proof of Proposition 2.6

Proof. We take t1 and t2 so that

t1 D sup
°
t 2 .0; 1�W sup

!2E1

jg1.!/j

jg.!/jt
D sup
e2E

�5t
4

�e
< C1

±
” t1 D

log 4
log 5

;

t2 D sup
°
t 2 .0; 1�W sup

!2E1

jg1.!/j

jg.!/jt
D sup
e2E

�5t
3

�e
< C1

±
” t2 D

log 3
log 5

:

In view of Theorem 1.1, the number p.n/ is given by

p.n/ D max
�
n.1 � t1/;

n.1 � t2/

2

�
by p D 0 and Qt D 0. Therefore,

p.n/ D nmax
�1 � log 4

log 5
;
.1 � log 3= log 5/

2

�
D
n.1 � log 3= log 5/

2

by 1 � log 4= log 5 D 0:1386 : : : and .1 � log 3= log 5/=2 D 0:1586 : : :. By virtue
of Corollary 1.2, when s.0/ > p.n/, the dimension dimH K."/ has an asymptotic
expansion with order n at " D 0. We see

s.0/ D
log 2
log 5

> n
1 � log 3= log 5

2
” n <

log 2= log 5
.1 � log 3= log 5/=2

D 2:713 : : :

” n � 2:

Hence, dimH K."/ has at least the 2-order asymptotic expansion at " D 0.
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3.7. Proof of Theorem 2.7

Proof. We will check the conditions (G.1)n and (G.2)n in Theorem 2.2. Let '.!/ D
log kT 0!0.��!/k for ! D w0w1 � � � 2 E1 and recall the number p defined by (1.4)
with g.!/ D .1=D/ det jT 0!0.��!/j and  � 1. The condition (G.1)n is yielded by
condition (K.1). We will check (G.2)n (i). Since any inversion map is of C1 and
since r."; v/ and a."; v/ have the n-order expansions (2.7) and (2.8), it is not hard to
see that the map Te."; �/ for e 2 E0 has the n-order asymptotic expansion Te."; �/ D
Te C

Pn
kD1 Te;k"

k C QTe;n."; �/"
n for some C1.Ot.e// maps Te;k and QTe;n."; �/ with

convergence supx2Ot.e/ j
QTe;n.";x/j! 0 and supx2Ot.e/ k

@
@x
QTe;n.";x/k! 0 as "! 0.

Since Tw."; �/ is a composite of a finite number of such functions, we also get an
n-order asymptotic expansion of Tw."; �/ for each w 2 E and therefore (G.2)n (i) is
fulfilled. By virtue of condition (K.2), the maps Tw."; �/ that change by " are of a finite
number. Thus, conditions (G.2)n (ii)–(iv) are valid by putting t .l; k/ D Qt D 1. Hence,
the assertion is obtained from Theorem 2.2.

A. Thermodynamic formalism and Ruelle operators

In this section, we will present useful results for the proof of the main theorem.
We will recall the notion of thermodynamic formalism and some facts of Ruelle trans-
fer operators which were mainly introduced by [17].

We use the notation defined in Section 1. The incidence matrix A of the graph G
is called finitely primitive if there exist an integer n � 1 and a finite subset F of En

such that for any e; e0 2 E, ewe0 is a path on the graph G for some w 2 F . Note that
A is finitely primitive if and only if .E1; �/ is topologically mixing and A has the
BIP property (see [23]). Then it is stronger than finitely irreducible. Here the matrix
A has the big images and pre-images property (BIP property) if there is a finite subset
¹e1; : : : ; eN º of E such that for any e 2 E, there exist 1 � i; j � N such that eie and
eej are paths on the graph G. A function  WE1 ! R is acceptable if there exists a
constant c66 � 1 such that for any e 2 E and !; � 2 Œe�, e .!/� .�/ � c66 (see [17]
for the terminology). For a real-valued function  on E1, the topological pressure
P. / of  is formally given by

P. / D lim
n!1

1

n
log

X
w2EnWŒw�¤;

exp
�

sup
!2Œw�

n�1X
kD0

 .�k!/

�
: (A.1)

If  is acceptable, then P. / exists in Œ�1;C1� (see [17]). We mainly consider
the pressure function t 7! P.t / 2 Œ�1;C1� with sup!2E1  .!/ < 0. In this
case, it is a basic fact that the pressure function is strictly monotone decreasing
and convex (being a limit of convex functions), and thus continuous. In particular,
limt!C1 P.t / D �1 holds.
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For a real-valued function  on E1, the Ruelle operator L associated to  is
defined by

L f .!/ D
X

e2E Wt.e/Di.!0/

e .e�!/f .e � !/

if this series converges in C for a complex-valued function f onE1 and for! 2 E1.
Here e �! is the concatenation of e and !, i.e., e �!D e!0!1 � � �. It is known that if the
incidence matrix is finitely irreducible and  is in F� .E1;R/ with finite topological
pressure, then L becomes a bounded linear operator acting on both the Banach
spaces F�;b.E1/ and Cb.E1/. We begin with the following proposition.

Proposition A.1 ([17, Proposition 2.1.9]). Let G D .V; E; i.�/; t.�// be a directed
multigraph such that the incidence matrix of E1 is finitely irreducible. Take an
acceptable potential function  W F� .E

1/ ! R. Then P. / < 1 if and only if
kL 1k1 <1 if and only if Z WD

P
e2E exp.sup!2Œe�  .!// <1.

A Borel probability measure � on E1 is said to be a Gibbs measure of the poten-
tial  if there exist constants c � 1 and P 2 R such that for any ! 2 E1 and n � 1

c�1 �
�
�
¹� 2 E1W �i D !i ; 0 � i < nº

�
exp.�nP C

Pn�1
kD0  .�

k!//
� c:

Recall the notation L.X/ which is the set of all bounded linear operators acting on a
normed linear space X. The following is a version of Ruelle–Perron–Frobenius Theo-
rem:

Theorem A.2 ([1, 2, 17, 21, 22]). Let G D .V; E; i.�/; t.�// be a directed multi-
graph such that the incidence matrix of E1 is finitely irreducible. Assume that
 2 F� .E

1; R/ with P. / < 1. Then there exists a unique triplet .�; h; �/ 2
R � F�;b.E

1/ � Cb.E
1/� such that the following are satisfied:

(1) The number � is positive and a simple maximal eigenvalue of the operator
L 2 L.F�;b.E

1// and is equal to exp.P. //.

(2) The operator L 2 L.F�;b.E
1// has the decomposition L D �P C R

with P R D RP D O . Here the operator P is a projection onto the one-
dimensional eigenspace of the eigenvalue �. Moreover, this has the form
Pf D

R
E1

f h d� for f 2 Cb.E1/, where h 2 F�;b.E1;R/ is the cor-
responding eigenfunction of �, and � is the corresponding eigenvector of � of
the dual L� with �.h/ D 1. Here h is bounded uniformly away from zero and
infinity, and � is a Borel probability measure on E1. In particular, h� is the
� -invariant Gibbs measure of  .

(3) The spectrum of R 2 L.F�;b.E
1// is contained in ¹z 2 CW jz � �j � �º for

some � > 0.
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B. Asymptotic perturbation of eigenvectors of bounded linear
operators

In this section, we study asymptotic behaviour of the eigenvalues and eigenvectors of
perturbed bounded linear operators under an abstract setting.

Put K D R or K D C. Let .X0; k � k0/ be a normed linear space over K and
.X1; k � k1/ a Banach space over K such that X1 � X0 and kf k0 � kf k1 for any
f 2 X1. We write X� as the dual space of X and L� 2 L.X�/ as the dual operator
of L 2 L.X/.

Let L 2 L.X0/ \ L.X1/ and L."; �/ 2 L.X0/. Take .�; �/; .�."/; �."; �// 2
K �X�0 so that L�� D �� and L."; �/��."; �/D �."/�."; �/. We assume the following
conditions:

(L.1) There exists h 2 X1 such that Lh D �h and �.h/ D 1.

(L.2) The operator L has the decomposition L D �P CR satisfying that (i) P

is in L.X0/\L.X1/ and forms Pf D �.f /h, (ii) P R DRP D O , and
(iii) � is in the resolvent set of the operator R 2 L.X1/.

(L.3) lim sup"!0 k�."; �/k
�
0=�."; h/ <1, where

k�."; �/k�0 WD sup
f 2X0Wkf k0�1

j�."; f /j:

(L.4) There exist operators L1; : : : ; Ln 2 L.X0/ \ L.X1/ and QLn."; �/ 2

L.X0/ such that L."; �/ D L C L1" C � � � C Ln"
n C QLn."; �/"

n and
k QLn."; f /k0 ! 0 as "! 0 for each f 2 X1.

Let � 2L.X1/ be � D .R� �	/�1.	 �P /, where 	 is the identity operator on X1.
Numbers �k 2 K and linear functionals �k WX1 ! K (1 � k � n) are defined by

�k D

kX
jD1

�k�j .Ljh/; (B.1)

�k.f / D

kX
jD1

�k�j ..�j	 �Lj /�f / for each f 2 X1 (B.2)

inductively with �0 D � and L0 D L. We have the following:

Theorem B.1. Assume that the conditions (L.1)–(L.4) are satisfied for a fixed integer
n � 0. We define �."; �/ 2 X�0 by �."; f / D �."; f /=�."; h/ for f 2 X0. Then

(1) �."/ D �C �1"C � � � C �n"n C o."n/ in K;

(2) �."; f / D �.f /C �1.f /"C � � � C �n.f /"n C o."n/ in K for each f 2 X1.
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Corollary B.2. In addition to the conditions (L.1)–(L.4), we assume

lim inf
"!0

j�."; h/j > 0;

and there exists 1X 2 X1 such that �."; 1X/ D 1 for any " > 0. Then the eigenvector
of �."/ has the expansion

�."; f / D
�.f /

�.1X/
C �1.f /"C � � � C �n.f /"

n
C o."n/ in K

for each f 2 X1, where we put �k.f / D
P
0�i;j�kWiCjDk bj �i .f /, b0 D 1=�.1X/

and

bj D

jX
lD1

1

�.1X/lC1

X
i1;:::;ij�0W

i1C���CijDl
i1C2i2C���Cj �ijDj

.�1/l lŠ

i1Š � � � ij Š
�1.1X/

i1 � � � �l.1X/
ij

for 1 � j � n.

Proof. Put f D 1X in Theorem B.1(2). Then we have �."; h/�1 D �.1X/ CPn
kD1 �k.1X/"

k C o."n/ and �.1X/ ¤ 0. The assertion follows from the asymptotic
expansion of �."; h/ and the form �."; f / D �."; f /�."; h/.

Remark B.3. (1) The results are generalizations of the results of [24] which gave the
asymptotic behaviour of the maximal eigenvalue of the Ruelle operators with finite
state and the corresponding eigenprojection.

(2) When the remainder QLn."; �/ satisfies k QLn."; �/k1!0, the above results are
implied by the general asymptotic perturbation theory [12]. If Ln."; �/ is a Ruelle
operator with finite state and fulfills k QLn."; �/k0! 0with k � k0 WD k � k1, then similar
assertions follow from [24]. Keller and Liverani in [13] considered convergence of
eigenvalue and eigenprojection in an abstract setting under a uniform Lasota–Yorke
type inequality such as kL."; f /nk1 � c˛nkf k1 C cM nkf k0 for any " > 0 and
f 2X1 for some constant c > 0, 0 <M � sup">0 kL."; �/k0 and 0 < ˛ <M . Under
such an inequality, Gouëzel and Liverani in [8, Section 8] studied the asymptotic
perturbation of bounded linear operators. We emphasize that our assertion does not
need a uniform Lasota–Yorke type inequality.

Proof of Theorem B.1. We start with the equation .L � �	/� D 	 � P on X1. By
the definition of the operator P , this is a projection, i.e., P 2 D P . The equation
follows from .	 �P /.R � �	/ D R � �	 C �P D L � �	.

We first prove assertions (1) and (2) in the case when nD 0. Consider the equation

.�."/ � �/�."; h/ D �."; .L."; �/ �L/h/ (B.3)



H. Tanaka 320

by using L."; �/��."; �/ D �."/�."; �/ and Lh D �h. This yields the inequality
j�."/ � �j � k�."; �/k�0k

QL0."; h/k0 ! 0 with conditions (L.3) and (L.4). Therefore,
we have �."/! �. On the other hand, we obtain that for each f 2 X1

j�."; .	 �P /f /j D j�."; .L � �	/�f /j

D j�."; .L �L."; �/C .�."/ � �/	/�f /j

� k�."; �/k�0.k.L."; �/ �L/�f k0 C j�."/ � �jk�f k0/! 0

as "! 0. This and the fact �."; h/ � 1 imply �."; f /! �.f / for f 2 X1.
Assume n � 1. To show the assertions (1), (2), we assume that the assertions

(1), (2), (B.1) and (B.2) are valid for each n0 D 0; 1; : : : ; n � 1. We will check the
case n0 D n. By (B.1), for each n0 D 1; 2; : : : ; n � 1, and equation (B.3), we have the
following:

�."/ � � � �1" � � � � � �n�1"
n�1

"n

D �
�
";
�."/ � � � �1" � � � � � �n�1"

n�1

"n
h
�

D �.";
L."; �/ �L �

Pn�1
lD1 Ll"

l

"n
h/C

n�1X
lD1

�.";Llh/"
l �

Pl
jD1 �l�j .Ljh/"

j

"n

D �.";
L."; �/ �L �

Pn�1
lD1 Ll"

l

"n
h/C

n�1X
lD1

�.";Llh/ �
Pn�l�1
jD0 �j .Llh/"

j

"n�l

! �.Lnh/C

n�1X
lD1

�n�l.Llh/ D

nX
lD1

�n�l.Llh/ DW �n:

Thus, (1) and (B.1) are valid for n. Finally, we check (2) and (B.2). We obtain

�."; f / �
Pn�1
lD0 �l.f /"

l

"n
D �

�
";

	 �P

"n
f

�
�

n�1X
lD1

�l.f /"
l

"n

D �

�
";

L �L."; �/C .�."/ � �/	

"n
�f

�
�

n�1X
lD1

Pl
iD1 �l�i ..�i	 �Li /�f /

"n�l

D ��

�
";

L."; �/ �L �
Pn�1
lD1 Ll"

l

"n
�f

�
C �.";

�."/ �
Pn�1
lD0 �l"

l

"n
�f /

C �

�
";

Pn�1
lD1.�l	 �Ll/"

l

"n
�f

�
�

n�1X
lD1

Pl
iD1 �l�i ..�i	 �Li /�f /

"n�l
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D ��

�
";

L."; �/ �L �
Pn�1
lD1 Ll"

l

"n
�f

�
C
�."/ � � �

Pn�1
lD1 �l"

l

"n
�."; �f /

C

n�1X
lD1

�."; �/ � �.�/ �
Pn�l�1
jD1 �j .�/"

j

"n�l
..�l	 �Ll/�f /

! ��.Ln�f /C �n�.�f /C

n�1X
lD1

�n�l
�
.�l	 �Ll/�f

�
D

nX
lD1

�n�l
�
.�l	 �Ll/�f

�
DW �n.f /:

Hence, (2) and (B.2) are fulfilled for n.

C. Estimate of an intermediate point of the binomial expansion

The Taylor expansion implies that for any n � 1, a > 0 and s 2 .0; 1�, the map
x 7! .aC x/s has the form

.aC x/s D as C

n�1X
kD1

�
s

k

�
as�kxk C

�
s

n

�
.aC x˛/s�nxn (C.1)

for some constant ˛ D ˛.n; a; s; x/ 2 Œ0; 1�, where
�
s
k

�
is the binomial coefficient

s.s � 1/ : : : .s � k C 1/=kŠ. In this section, we will estimate the lower bound of the
intermediate point ˛ which plays an important role in giving the asymptotic expansion
of exp.t'."; �// (see the Proof of Theorem 2.5). Note that the estimate of ˛ was studied
by [9, 10].

Proposition C.1. Assume that the map x 7! .aC x/s has the expansion (C.1). Then
there exist two positive continuous functions .0; 1/ 3 s 7! L.n; s/, .0; 1/ 3 s 7!
M.n; s/ 2 .0; 1/ such that for any a; x > 0 with 0 < a=x �M.n; s/

(1) if n D 1, then ˛.n; a; s; x/ � L.n; s/;

(2) if n � 2, then ˛.n; a; s; x/ � .a=x/
n�1�s
n�s L.n; s/.

Proof. (1) Assume that n D 1. We have .1C a=x/s � .a=x/s D s.˛ C a=x/s�1. If
x; a satisfy a=x � s1=.1�s/2�s=.1�s/�1, then

˛ D
s1=.1�s/��

a
x
C 1

�s
�
�
a
x

�s�1=.1�s/ � ax � s1=.1�s/

2s=.1�s/
�
1

2

s1=.1�s/

2s=.1�s/

D
s1=.1�s/

2 � 2s=.1�s/
D
s1=.1�s/

21=.1�s/
:



H. Tanaka 322

Thus, we obtain the assertion by putting L.1; s/ D s1=.1�s/2�1=.1�s/ and M.1; s/ D
s1=.1�s/2�s=.1�s/�1.

(2) Assume that n � 2. We will solve the equation (C.1) for ˛. This equation
implies �a

x
C 1

�s
D

n�1X
kD0

�
s

k

��a
x

�s�k
C

�
s

n

��a
x
C ˛

�s�n
:

Noting the fact sign
�
s
n

�
D .�1/n�1, we haveˇ̌̌̌�

s

n

�ˇ̌̌̌ �a
x
C ˛

�s�n
D .�1/n�1

�a
x
C 1

�s
C .�1/n

n�1X
kD0

�
s

k

��a
x

�s�k
D

�a
x

�s�nC1 �
b.s; a; x/C

ˇ̌̌̌�
s

n � 1

�ˇ̌̌̌�
by putting

b.s; a; x/ D .�1/n�1
�a
x

��sCn�1�
1C

a

x

�s
C .�1/n

n�2X
kD0

�
s

k

��a
x

�n�1�k
:

Thus,

˛ D
�a
x

�n�s�1
n�s

²� ˇ̌�
s
n

�ˇ̌ˇ̌�
s
n�1

�ˇ̌
C b.s; a; x/

�1=.n�s/
�

�a
x

� 1
n�s

³
:

When a � x, we see

jb.s; a; x/j �
�a
x

��sCn�1
2s C

n�2X
kD0

ˇ̌̌̌�
s

k

�ˇ̌̌̌ �a
x

�n�1�k
�

�a
x

�1�s
c67

with c67 D c67.s; a; x/ D 2
s C

Pn�2
kD0

ˇ̌�
s
k

�ˇ̌
. Consequently, for any x; a > 0 satisfy-

ing that a=x �M.n; s/ WD min.1; .1=c67/
1=.1�s/; .1=2/n�s

ˇ̌�
s
n

�ˇ̌
=.
ˇ̌�

s
n�1

�ˇ̌
C 1//, we

obtain that jb.s; a; x/j � 1 and

˛ �
�a
x

�n�s�1
n�x 1

2

� ˇ̌�
s
n

�ˇ̌ˇ̌�
s
n�1

�ˇ̌
C 1

�1=.n�s/
:

Hence, the assertion is fulfilled by puttingL.n;s/D 1
2

�ˇ̌�
s
n

�ˇ̌
=.
ˇ̌�

s
n�1

�ˇ̌
C 1/

�1=.n�s/.
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[7] T. Das, D. Simmons, and M. Urbański, Dimension rigidity in conformal structures. Adv.
Math. 308 (2017), 1127–1186 Zbl 1405.37047 MR 3600084

[8] S. Gouëzel and C. Liverani, Banach spaces adapted to Anosov systems. Ergodic Theory
Dynam. Systems 26 (2006), no. 1, 189–217 Zbl 1088.37010 MR 2201945

[9] S. Haber, An elementary inequality. Int. J. Math. Math. Sci. 2 (1979), no. 3, 531–535
Zbl 0416.26011 MR 542966

[10] S. Haber and O. Shisha, On the location of the intermediate point in Taylor’s theorem. In
General inequalities, 2 (Proc. Second Internat. Conf., Oberwolfach, 1978), pp. 143–144,
Birkhäuser, Basel-Boston, Mass., 1980 Zbl 0436.26010 MR 608244

[11] N. Jurga, Dimension spectrum of infinite self-affine iterated function systems. Selecta
Math. (N.S.) 27 (2021), no. 3, Paper No. 49, 23 Zbl 1469.28007 MR 4273646

[12] T. Kato, Perturbation theory for linear operators. Classics in Mathematics, Springer-
Verlag, Berlin, 1995 Zbl 0836.47009 MR 1335452

[13] G. Keller and C. Liverani, Stability of the spectrum for transfer operators. Ann. Sc. Norm.
Super. Pisa, Cl. Sci. (4) 28 (1999), no. 1, 141–152 Zbl 0956.37003 MR 1679080

[14] M. Kuczma, An introduction to the theory of functional equations and inequalities. Prace
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