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Asymptotic solution of Bowen equation for perturbed
potentials on shift spaces with countable states

Haruyoshi Tanaka

Abstract. In this paper, we study the asymptotic expansions for the zero of the pressure func-
tion s — P(sp(e, ) + £(s, -)) for perturbed potentials ¢(g, ) and &(e, -) defined on the shift
space with countable state space. In our main result, we give a sufficient condition for the solu-
tion s = s(¢) of P(s¢(e,-) + £(e,-)) = 0to have the n-order asymptotic expansion for the small
parameter ¢. In addition, we also obtain the case where the order of the expansion of the solution
s = s(¢g) is less than the order of the expansion of the perturbed potentials. Our results can be
applied to problems concerning asymptotic behaviours of Hausdorff dimensions given by the
Bowen formula: conformal graph directed Markov systems and other concrete examples.
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1. Introduction and Main results

Let E°° be a shift space with countable (finite or infinite) state, and g (e, -) and ¥ (e, -)
be two real-valued functions defined on £°° with ¥ (e, -) > 0 and with a small para-
meter ¢ > 0. We study the asymptotic solution of the pressure function

s > P(sp(e,)) +§(e. 7))
with the perturbed potentials ¢(¢,-) :=log|g(e,-)| and £(e, ) ;= log ¥ (¢, -), where P
is the topological pressure defined in (A.1).
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The main result of this paper is the following: we show that if a shift space E*°
is finitely irreducible, and the real-valued functions g(e, -) and ¥ (e, -) on E* have
asymptotic expansions

gle,) =g+ gie+ -+ gne" + gnle, )" (1.1)
(e, ) =V + Y164+ Yne" + Unle, )" (1.2)

with [|gx (€, )|loc = 0, ¥ > 0 and ||, (e, -)|loo — 0 as & — 0, and suitable conditions
are satisfied, then the solution s = s(e) of the equation

P(slog|g(e.-)| +log¥(e.-)) = po
with a fixed real number pg has an n-order asymptotic behaviour
s(e) =50 + 516+ + 5" + Su(e)e” (1.3)

with §,(¢) — 0 as ¢ — 0 (see Theorem 1.1), where P( f) is the topological pressure
of f defined in (A.1). In particular, each coefficient s; and the small order part 5, (¢)
are explicitly determined (see (3.17), (3.18), and (3.19)).

In application, this result can be applied directly to the asymptotic behaviour of
the dimension obtained by a Bowen type formula (Section 2). We will demonstrate
asymptotic expansions for the Hausdorff dimension of the limit set of the perturbed
conformal graph directed Markov system for some concrete examples. We will also
give an example of perturbed linear countable IFS that the dimension of this limit
set has asymptotic behaviour with the order n — 1 but does not have the order n.
Moreover, the coefficient and the remainder of the solution s(¢) can be numeric-
ally calculated (Section 2.4). Note that though the functions ¥ (e, -) may be equal
to ¥ (e,-) = 1 in our examples of this paper, we shall treat the case of ¥ (g,-) # 1
for the study of a multifractal analysis of a perturbed system in future works. Another
promising direction of future study is to estimate the dimensions of limit sets of non-
conformal graph directed iterated function systems with infinite state ([11, 18], for
example).

Our main result is an infinite state version of our previous result [24, Theorem 2.6].
However, the proof of the finite state version given in [24] cannot be applied directly
to the infinite state version. Indeed, a difficult point between the finite state case and
the infinite state case is that in the infinite state case, even if the potential g (e, -) has
an asymptotic expansion with order n 4+ 1 or more with natural regularity coefficients
and remainder, the order of the asymptotic solution may have only length n or less.
Furthermore, the remainder of s(e) can become any small fractional order even if
gn(e,) =0 and ¥(e,-) = 1 (see Theorem 2.5(2)). This fact suggests that the gen-
eral analytic perturbation theory cannot be applied to the asymptotic behaviour of
the solution s(¢) in the infinite state case. Therefore, we need to introduce additional
conditions for expansions with an order of length n (see (g.3)—(g.5) and (V.3)—(1.4)).
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By the generalization of asymptotic perturbation theory of linear operators in [24] and
by developing the method of asymptotic solution of the pressure function in the finite
state version, the main result is proved.

In order to state our main results precisely, we introduce some notions of a sym-
bolic system below. Let G = (V, E,i(-),t(-)) be a directed multigraph endowed with
countable vertex set V, countable edge set £, and two maps, i (-) and ¢(-) from E to V.
For each e € E, i(e) is called the initial vertex of e, and #(e) is called the terminal
vertex of e. Denote by E°° the one-sided shift space

[e.e]
E® = {a) = wow1 -+ € 1—[ E:t(w,) = i(wy41) for any n > 0}
k=0
endowed with the shift transformation ¢: E®° — E° defined as (cw), = wy+1 for
any n > 0. For 6 € (0, 1), ametric dg on E® is given by dg(w, v) = §n=0:0n7vn},
The incidence matrix A of E* is defined by A = (A(ee’))gxg with A(ee’) = 1
if t(e) = i(e’), and A(ee’) = 0 if t(e) # i(e’). The matrix A is finitely irreducible
if there exists a finite subset F of | Jo—, E" such that for any e, ¢’ € E, ewe’ is a
path on the graph G for some w € F. A function f: E®° — K is called weakly dg-
Lipschitz continuous if the number Sup, ¢ g SUPy, yefel:0v |/ (@) — f(V)|/dg(w, V) is
finite. A function f: E® — K is a weakly Hélder continuous function if it is weakly
dg-Lipschitz continuous for some 6 € (0, 1). Denote by || - | the supremum norm
defined as || £ oo = Supyegoe | £(@)]
To state our main result, we introduce some conditions for potentials. Let n be
a nonnegative integer. We consider conditions (g.1)—(g.5) below for the function
g(e,+): E*° — R with a small parameter ¢ € (0, 1):

(g.1) The function g(e, -): E®° — R has the form (1.1) for some real-valued
weakly Holder continuous functions g, g1, - . ., €n,» &n (€, -) with

lim [|g, (e, ")]loo = O.
e—>0

(g.2) g(w) # 0foreachw € E* and ||g|lco < 1.

(2.3) |g(w) — g)| < cilg(w)|dg(w, v) for w, v € E* with wyg = vy for some
c1>0,60€(0,1).
(g4) Igr(@)| = c2|g(@)|'* and [gx(w) — gk (V)| = c3lg(@)|* dg(w, v) for any

w,v € E% with wy = vy for some constants ¢, c3 > 0 and #; € (0, 1] for
k=12,...,n.

(g.5) |gn(e, w)| < C4(s)|g(a))|’~ for any w € E for some constants 7 € (0, 1] and
c4(e) > 0 with c4(g) — 0.

Moreover, we assume that the function (¢, -): E®® — R satisfies conditions (y/.1)—
(y.4) below:
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(¥.1) The function ¥ (e, -): E®® — R has the form (1.2) for some real-valued
weakly Holder continuous functions ¥, ¥rq, ..., ¥y, ¥y (e, -) with

lim |9, (2, ) oo = 0.
(¥.2) ¥(w) > 0forany w € E°.
(V.3) [Wik(@)| < cs|y(@)] and [V (@) — Y (V)| < c6|¥ (w)|ds(w, v) for any

w,v € E° with wg = vg and for some ¢5,¢c6 > 0fork =1,2,...,n.
V.4 [Yn(e, )| < c7(e)|¥(w)| for any w € E*® for some c7(¢) > 0 with
c7(e) — 0.
Let
p= inf{p > 0: P(plog|g| + logy) < +o0}, (1.4)
where P( f) means the topological pressure of f which is defined by (A.1). Put
r/t ifn =0,
pn) = max(p+n(l—n),p+nl—12)/2,....p+n(l —t,)/n,
p/t,p/ta,....p/ta,p+1—1,p/T) ifn>1.
(1.5)

Now we are in a position to state our main result.

Theorem 1.1. Fix a nonnegative integer n. Assume that the incidence matrix of E*°
is finitely irreducible and the conditions (g.1)—(g.5) and (V.1)—(.4) are satisfied.
Choose any s(0) € (p(n), +00) and any compact neighborhood I C (p(n), +00)
of s(0). Let po = P(s(0) log |g| + log V). Then there exist numbers g9 > 0,
S1s-..,8n € R such that the equation P(slog|g(e,-)| +logv (e,-)) = po has a unique
solution s = s(¢) € I for each 0 < ¢ < gy, and s(&) forms the asymptotic expansion

s(e) = 5(0) + 516 + -+ + 548" + Fu(e)e”, (1.6)
and |5, (e)| = 0 as ¢ — 0. In particular,
":En sS(e 3h .
_V(gv(hio(gér) ) + 0(8) lfl’l > 1’

§(e) = (1.7)

(&, £0.5(0) (1) 5 .
—% +o([|[£o,5¢5)(e. M) |loo) ifn =0,

where h is the Perron eigenfunction of the eigenvalue eP® of the Ruelle operator
of 5(0)log |g| + log ¥, v is the Perron eigenvector of this dual operator with
v(h) = v(E®) =1, and v(e,-) is the Perron eigenvector of the dual of the Ruelle
g(e,*)| +log ¥ (e,-). Moreover, cf,,,s(g) (e,-) is an operator of the
remainder of the expansion of the Ruelle operator (see Lemma 3.6 for details).

operator of s(¢g) log

Note that the coefficients s; and the remainder 5, (¢) are precisely given in (3.17)
and (3.19), respectively. The following result is an immediate consequence of this
theorem.
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Corollary 1.2. Under the same conditions of the above theorem, assume also that
there exists s(0) > p(n) such that P(s(0)log|g| + log ) = 0. Then the equation
P(slog|g(e,-)| + log ¥ (e,-)) = 0 fors € R has a unique solution s = s(¢g) for any
small € > 0, and s(¢g) forms the n-order asymptotic expansion as (1.6).

Next, we give sufficient conditions for a situation when s(e) does not have
(n + 1)-order asymptotic expansion though it is n-order asymptotic behaviour. We
introduce the following conditions:

(g.6) E is infinitely countable.

(g.7) gn(e,) =0(Ge,7=1)and Y (s, ) = 1.

(g.8) There exist ty € [t1, (nt; + 1)/(n + 1)) and cg > 0 such that p(n) <
p+ (1—1)(n+1)and g1 (w) sign(g(w)) = cg|g(w)|™ for any w € E.

(g.9) The numbers ¢, ..., 1, satisfy ty < t; forany k =2,...,n.

Proposition 1.3. Assume that the conditions (g.1)—(g.9) with n>1 are satis-
fied. Choose any s(0)e(p(n), p+n+1)(1—t9)) \ {1,2,...,n} and put pop=
P(s(0)log|g|). Then the unique solution s = s(e) of the equation P(slog|g(e,-)|)=
po has the form s(g) =5(0)+s16++ -+ 5,8" +5, (€)™ with limgg |5, (¢)] /& = +o0.

In Section 2, we will illustrate asymptotic perturbations of Hausdorff dimensions
of limit sets from conformal graph directed Markov systems, e.g., continued fractions
and Kleinian groups of Schottky type. Furthermore, we will demonstrate an example
of linear countable IFS such that the coefficients and the remainder of the solution are
explicitly calculated (Section 2.4). In Section 3, we present the proofs of all of our
results. In the appendices, we shall introduce some facts necessary for the proof of
the main theorem. In Appendix A, we recall the notion of thermodynamic formalism
and the Ruelle operators acting on a suitable function space in the infinite graph. In
particular, a version of the Ruelle—Perron—Frobenius Theorem on these operators is
described (Theorem A.2). We state in Appendix B the general theory of asymptotic
behaviours of the eigenvalue and the corresponding eigenvector of bounded linear
operators. This result is obtained by generalizing the results of [24, Theorem 2.1].
Finally, we shall give an upper bound of an intermediate point of the binomial expan-
sion in Appendix C which plays an important role in giving the proof of our results.

2. Examples

2.1. Conformal graph directed Markov systems

Let G = (V, E,i(:),t(-)) be a directed multigraph for which V is finite and E is
countable. In this section, we consider the asymptotic behaviours of the Hausdorff
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dimensions of the limit sets of perturbed graph directed Markov systems introduced
in [17]. We begin with the definition of this system. Let D be a positive integer,
B € (0,1]and r € (0, 1). We introduce a set (G, (Jy), (Oy), (Te)) satisfying conditions
(i)—(v) below:

(i) Foreachv € V, J, is a compact and connected subset of R satisfying that
the interior int J, of Jy is not empty, and int J, and int J,/ are disjoint for
v’ eV withv # v,

(ii)) Foreachv € V, O, is a bounded, open and connected subset of RP con-
taining Jy.

(iii) Foreache € E, afunction T,: O;e) — T (O4(e)) C Oj(eyisaC 1+8_confor-
mal diffeomorphism with T, (int J;(.)) Cint J;(¢) and Squeo,(e)” T)(x)| <r,
where ||7,(x)| means the operator norm of 7)(x). Moreover, for any
e,e’ € E withe # ¢ and i(e’) = i(e), Te(int J;(e)) N Ter (int Jy(er)) = 9,
namely, the open set condition (OSC) is satisfied.

(iv) (Bounded distortion) There exists a constant cg > 0 such that forany e € E

T2 = ITLDI| < e TG lllx — yIP, where | - |
means a norm of any Euclidean space.

and x,y € Oy,

(v)  (Cone condition) If #E = oo, then there exist y,/ > 0 with y < 7/2 such
that for any v € V, x € J,, there is a u € R? with |u| = 1 so that the set
{y eRP:0<|y—x|<land (y—x,u)>|y —x|cosy} isinint J,, where
(y — x, u) denotes the inner product of y — x and u.
Under conditions (i)—(v), we call the set (G, (Jy), (Oy), (T)) a graph directed Markov
system (GDMS for short). The Hausdorff dimension of the limit set of this system has
been studied by many authors [7, 16, 17,19,20].
The coding map 7: E%° — RP is defined by 7w = (5% Two * ** Twwy (J1(wy)) fOr
w € E®. Put K = w(E®). This set is called the limit set of the GDMS. We define a
function ¢: E% — R by ¢(w) = log||T,, (row)|. Puts = inf{s > 0: P(s¢) < +o0}.
We call the GDMS regular if P(s¢) = 0 for some s > 5. The GDMS is said to be
strongly regular if 0 < P(s¢) < 400 for some s > s (see [17,19] for the terminology).
It is known that the general Bowen’s formula is satisfied:

Theorem 2.1 ([19]). Let (G, (Jy), (Oy), (Te)) be a graph directed Markov system.
Assume that E°° is finitely irreducible. Then dimg K = inf{t € R: P(tp) < 0}.
In addition to the above condition, we also assume that the potential ¢ is regular.
In this case, s = dimyg K if and only if P(s¢) = 0.

Now we formulate an asymptotic perturbation of graph directed Markov systems.
Fix integers n > 0, D > 1 and a number 8 € (0, 1]. Consider conditions (G.1),, and
(G.2),, below:
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(G.1),, The code space E is finitely irreducible. The set (G, (Jy), (Oy), (Te)) is
a strongly regular GDMS on R? and the limit set K has positive dimen-
sion. Moreover, the function 7, is of class C'*"+8(0,,)) foreach e € E.

(G.2), The set {(G, (Jy), (0y), (Te(e,-))): € > 0} is a GDMS with a small para-
meter ¢ > 0 satisfying (i)—(iv) below:

(i) For each e € E, the function T, (e, -) has the n-order asymptotic
expansion

Te(e,)) =T, + Tene+---+ Te,ngn + 7:e,n(f‘?, ‘)8n on Jt(e)

for some functions 7, ; € C1*"*+8(0,,),RP) (k =1,2,...,n)
and T, 4 (g, -) € C1PE(0,(,), RP) (B(e) > 0) satisfying
sup sup |7~"e,n (e,x)| = 0.
ecE xe-’t((g)
(i) There exist constants t(/,k) € (0,1] { =0,1,...,n, k=1, ...,
n—1+1) such that the function x > 7.5 (x) /[ TL(x)[¢R) is

A
bounded, B-Holder continuous and its Holder constant is bounded

uniformly ine € E.
(i) c10(e) 1= SUp,er SUPxey,y, (I Ten(e D/IT,(X)P) — 0 as
& — 0 for some 7o € (0, 1].
(iv) dimg K/D > p(n), where p(n) is taken from (1.5) with
D

|1 .
Iy = mm{B Zt(l,,,jp + 1):

p=1
i:=ii+--+ipandj:=j+---+ Jjp
satisfyi =k and j = 0 or

0§i<kand1§j§k—i} 2.1
(. . d D-1 i D—1
= tn. T, — t(1,1),..., — t(n,1
minin o, 5+ 250D, B |
2.2)

p:=s/D.

Note that if the edge set E is finite, then the conditions (ii) and (iv) are always satisfied
because ||7,(x)]| is uniformly bounded away from zero, and p(n) becomes zero by
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taking 7(/, k) = 1. Moreover, co(¢) in (iii) can be taken as

J =~
sup sup HET“”"(&X)H

e€E x€J ()

when F is finite. Let K(¢) be the limit set of the perturbed GDMS
(G. (1), (0y), (Te (e, ).

Then we obtain the following result:

Theorem 2.2. Assume that the conditions (G.1),, and (G.2), are satisfied with a fixed
integer n > 0. Then the perturbed GDMS (G, (Jy), (Oy), (Te (¢, -))) is strongly regular
for any small € > 0, and there exist sy, ..., S, € R such that the Hausdorff dimension
dimg K(¢e) of the limit set K(e) of the perturbed system has the form dimg K(g) =
dimg K + s16 4+ -+ + s,8" + 0(e") as ¢ — 0.

Remark 2.3. Roy and Urbanski [19] considered continuous perturbation of infin-
itely conformal iterated function systems given as a special GDMS. They also studied
analytic perturbation of GDMS with D > 3 in [20]. We investigated an asymptotic
perturbation of GDMS with finite graph in [25]. Theorem 2.2 is an infinite graph
version of this previous result in [25].

2.2. Real continued fractions

Consider a graph G with singleton vertex set V = {v} and with infinite edge set
EctkeZ:k>2})PutJ, =]0,1] and O, = (—n, 1 4 n) for a fixed small number
n > 0. Fix a € R with a # 0. We define a perturbed map of continued fractions

1
e+x+ae
for e € E, ¢ > 0 and x € R. Consider a GDMS (G, J,, Oy, (T¢(s,-))) such that
this unperturbed GDMS is strongly regular. Note that such a system exists ([16]) by

T€(87 X) =

choosing edge set E. The function T, (g, x) has the expansion

n

m&'n + Tn(ﬁ',X)Sn (23)

T.(g,x) = g4+ (="

a
e+x (e+x)?
with

e(—1)rt1gn+l
(e +x)"tl(e + x + as)’
It is not hard to check that the conditions (G.1), and (G.2),, are fulfilled from p= 0,

t(l,k) =1 =1, and therefore p(n) = 0. Thus, we have the n-order asymptotic expan-
sion of the Hausdorff dimension of the limit set of the GDMS by Theorem 2.2.

Tex(x) = (_a)k(e + x)_k_l and 7in(‘c;v x) =
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2.3. Complex continued fractions

In this section, we consider the complex versions of continued fractions. Let V' = {v}
be a singleton vertex set, E C Ey := {m +nv—1:(m,n)€ZxZL,m=> l} anonempty
countable edge set, X, = B(1/2, 1/2) the closed ball in C with center 1/2 and radius
1/2, and O, = B(1/2,3/4) the open ball in C with center 1/2 and radius 3/4. For
e € E, we define a function T,: O, — O, by T.(z) = 1/(e + z). Then the system
(G = (V, E), (Jy), (Oy), (Te)) is a conformal GDMS excluding 77(0) = 1. Note
that T, o T,y becomes a contraction mapping uniformly in ee’ € E2. Such systems
associated to complex continued fractions with arbitrary alphabet were investigated
in [3-5].
Now we give a perturbed map T, (¢, z). Assume the following conditions:

(F.1) The edge set E is a nonempty subset of E, and the GDMS
(G, (1), (0v). (Te))

is strongly regular.
(F.2) A perturbed function T (e, z) is defined by
To(e,z) = b
e+ z+a(e)e

with a fixed number a(e) € C with sup, |a(e)| < 4+oc. Moreover, assume
also that the set (G, (Jy), (Oy), (Te(s,+))) is a GDMS for each ¢ > 0.

Notice that if E = E,, then (G, (Jy), (Oy), (T,)) becomes strongly regular [4, 15].
Figure 1 shows a subsystem and its perturbed system.

0.5 4 0.5 1
0.4 - 0.4 -
0.3 1 0.3 1
0.2 1 0.2 1

0.1 4

.

—0.1 1

0.1

—0.21 % —0.2

—0.3- ~0.3

—0.4 —0.4

-0.5 ‘ : . : ‘ ~0.5 : . . : .
0 02 04 06 08 1 0 02 04 06 08 1

Figure 1. Approximation limit sets of a certain subsystem of a complex continued fraction (left)
and of its perturbed system (right) with a(e) = 0.1 + 0.2+/—1 and e = 1
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We have the following:

Theorem 2.4. Assume that conditions (F.1) and (F.2) are satisfied. Then the Haus-
dorff dimension of the limit set of the GDMS (G, (Jy), (0y), (T, (s,+))) has an n-order
asymptotic expansion as € — 0.

2.4. Linear countable IFS (1)

In this section, we will give the coefficient and the estimate of the remainder for
a concrete GDMS. Let ¢ > 1 and £ = {1,2,...}. We take an infinite graph
G =({v},E,i(-),t(:)) with i(e) =t(e) =v for e € E, J, =[0,1] and O, =
(—n, 1+ n) for asmall n > 0. For e € E and ¢ > 0, we define a function T, (¢, -) by

T.(e,x) = (517 + aiee)x + b(e). 2.4)

Here we choose b(e) so that the set (G, (Jy), (Oy), Te(s, -)) satisfies the open
set condition for any small & > 0. Note that when we define a function f, from
Ueeg Te(e, Jie)) t0 [0, 1] by fo(x) = Te(e, x)7 1 if x € Te(e, Jy(e)), this is a piece-
wise linear expanding (hyperbolic) interval map. Moreover, the limit set K(g) of the
GDMS becomes the (non-compact) repeller of f. It is not hard to check that the con-
dition (G.2),, (i), (iii) are valid with T,(x) = x/5¢ + b(e), Te,1(x) = x/a®, T, =0
(k >2)and Te,n (e,-) =0.Tosee (G.2), (ii), (iv), we remark that |7} , /T (x)|" =
(5" /a)¢ is bounded uniformly in e if and only if < loga/ log 5. Therefore, we put
t(1,1) = min(loga/log5, 1), and otherwise ([, k) = 1 for any (/, k) # (1, 1) when
n > 1.Let p(w) = log(1/50). Moreover, s = inf{s > 0: P(s¢) < +o00} is equal to 0.
Thus, p(n) = n(l —min(loga/log5, 1)) for any n > 0. We see that P(s(0)¢) = 0 if
and only if ZeeE(l/Se)s(O) = 1 if and only if s(0) = dimgyg K = log2/log5 by the
Bowen’s formula. Then we obtain the following:

Theorem 2.5. Take the function T, (e, -) defined by (2.4).

(1) If a = 5, then the Hausdorff dimension s(¢) = dimg K(g) of the limit set
of this GDMS has the n-order asymptotic expansion s(¢) = log2/log5 +
S18 4+ -+ 5,6" + 5, (e)e"™ with 5,(e) — 0 for any n > 0. Each coefficient s,
(k =1,2,...,n)is defined as

1 min(v,q) dy.is(0 i 00 i 5v \€
Y% sy S ()
O<v<k j=0 4=7) e=1

0<g<k—v:
(v,9)#(0,1)

Sk = 2log5
(2.5)

where constants Sq x—y and a,_;j s(o) are defined by (3.24) and (3.16), respect-
ively.
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(2) If 1 < a < 5, then take the largest integer k > 0 satisfying a < 5/21/&+1),
In this case, s(g) has the form

log2
S(0) + s16 + -+ + sgek + S(e)emr@  ifq < 5/21/K+D),

s(e) =
5(0) + 518+ -+ + sp ek + 5(e)ekt loge  ifa = 5/21/%+D

with |§(e)| < 1 as ¢ — 0, where sy, ..., are given by (2.5) and where
b(g) < c(&) means d~'c(e) < b(e) < dc(g) for any small € > 0 for some
constant d > 1. Note that k <log?2/log(5/a) < k + 1 is satisfied.

In particular, the numbers s; and s, are given by

_ log2 5
1 = log5)2 4a — 10

_ 25log2 1 alog?2 log(2/5)
2= (log 5)3 (2(2a —52 (2a—5)(4a2—5)2 ' 8a2— 100)'

2.5. Linear countable IFS (2)

Using the same notation for G, V, E, J,,, O, as in Theorem 2.5, we define a concrete
function T, (e, -) by

1 1 1
To(s, x) = (5—e +eet 3—882))6 + b(e),
where b(e) is suitably chosen so that the OSC is satisfied. By virtue of Theorem 1.1,
we see the following:

Proposition 2.6. Under the above function, the Hausdorff dimension of the limit set
K(¢e) of (G, (Jy), (0y), (T, (e, -))) has at least 2-order asymptotic expansion for e.

2.6. Kleinian groups of Schottky type

We consider perturbations of Kleinian groups of Schottky type given in [17, Example
5.1.5]. Fix integers D > land d > 1. Let V = {1,2,...,d} be a vertex set, and for
veV,Jy, =B(a(v),r(v)), the mutually disjoint closed balls. Consider the inversion
map f, with respect to J,, namely,

x —a(v)
Ix —a()?

fo(x) = r(v)? + a(v)

for x € RP U {oo}, where we set f;(a(v)) = oo and f;,(c0) = a(v). Then the group
H = ({ fv}vev) generated by { f,: v € V'} is called a Kleinian group of Schottky type.
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Recall that the limit set L(H) of the Kleinian group H is defined by
L(H) = {lim &,(z):§, € H mutually disjoint}
n—oo

for any fixed z € R? . It is known that letting Eg = V2 \ {(v,v):i € V}, Oy = B(Jy, 1)
for any small fixed number 7, and Te := fi(e)|0,(,: Ot(e) = Oi(e) for e € Ej, the set
(G = (V, Ep), {Jv}, {0y}, {T.}) is a finite conformal GDMS, except that T, need
not be uniform contractions. Nevertheless, the limit set K of this system is well-
defined since there exists an n > 1 such that any finite path w € Ef} of G, Ty, :=
Ty, o Ty, o -+ 0o Ty, is uniformly contracting. If no confusion can arise, we also call
(G,{Jy},{0y},{T.}) a GDMS. Consider a subgroup I of H. Define the set

To = {§ € I':has an irreducible form in T},

where £ has an irreducible form in I' if £ # & o & for any two non-identity maps
£1,&, € T'. We define a subset E of paths with finite length by

o0
E= {w e | EB: fiwy o0 ficuwm € I‘O}. (2.6)
n=1

Then G = (V, E, i,t) is a directed multigraph with finite vertex set and countable
edge set, and (G, (Jy), (Oy), (Ty)) is a GDMS. In particular, this system satisfies an
open set condition [17]. It is known from [17, Theorem 5.1.7] that the limit set K
of the GDMS (G, (Jy), (Oy), (Ty)) has the equation K = L(T"). Moreover, if Ty is
finite, then K = L(I").

Now we formulate an asymptotic perturbation of a subgroup of a Kleinian group
of Schottky type. We introduce the following conditions:

(K.1) H = ({ fu}vev) is the Kleinian group of Schottky type with finite disjoint
closed balls J, = B(a(v), r(v)). Assume also that a subgroup I' C H sat-
isfies that the corresponding GDMS (G, (Jy), (Oy), (Ty)) with the edge
set (2.6) has finitely irreducible incidence matrix and is strongly regular.

(K.2) There exists a decomposition V = Vo U Vy with Vg # @and Vo N V) = @
such that the set {f = fo, 00 fo, €iv; eVpforsomel <i < m} is
finite. Assume also that if v € Vj, then r(g,v) > 0 and a(e, v) € RP satisfy

r(e,v) =r() +ri(e+---+r,(v)e" + o(s") 2.7
ale,v) =a) +a;(v)e + -+ a,(v)e" + o(e") 2.8)

as ¢ — 0 for some 7 (v) € R and ag(v) € RP, and if v € V;, then we set
r(e,v) = r(v) and a(e, v) = a(v) for all .
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In other words, condition (K.2) says that the elements of I" that change by ¢ are of
a finite number. Let f, (¢, -) be the inversion map with respect to the disjoint closed
ball J,(g) = B(a(e,v), r(e, v)) for any small ¢ > 0. Put the Kleinian group of Schot-
tky type H(e) = ({fv (e, -)}vev>. For the subgroup I' C H in (K.1), we consider the
corresponding subgroup I'(¢) C H(¢), namely,
L(e) ={fv,(e.) 00 fy,(e,2): foy0---0 fy, €T}

Similarly, the corresponding GDMS (G, (Jy), (Oy), (Ty (e, -))) is obtained, where
Tw(e,) :=Tw,(s,)) 0= 0 Ty, (e,-) forw € E and we let Te (e, ) := fi(e)(&, )0,
for e € Ey. We show in Figure 2 the picture of a concrete perturbed Schottky group
under I' = H.

Figure 2. Approximation limit sets of a certain unperturbed Schottky group (left) and of its
perturbed group (right)

Then we have the following:

Theorem 2.7. Assume that the conditions (K.1) and (K.2) are satisfied. Then the
Hausdorff dimension of the limit set K (&) of the GDMS (G, (Jy(¢)), (Oy), (Tyw(e,-)))
of the subgroup T (&) has an n-order asymptotic expansion.

Remark 2.8. Even if a(e, v) and r(e, v) in the condition (K.2) have the expan-
sions (2.7) and (2.8) for all v € V, respectively, the assertion of Theorem 2.7 is still
satisfied. The proof of this assertion is not trivial, but can be proved by showing the
conditions (G.2),, (ii), (iii) with (I, k) =7 = 1 — s for any fixed s € (0, 1]. In this
case, the condition (G.2),, (iv) is also fulfilled by taking s € (0, 1] so thatdimg K/D >
max(p + ns, p/s).

3. Proofs

In this section, the theorems and propositions in Section | and Section 2 are all proved.
Recall the notation given in Section 2. For later convenience we introduce some func-
tion spaces. Let K be a numerical space or a complex space. Denote by Cp (E*°, K)
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the set of all K-valued continuous functions f on E* with || f]eo < 400, by
Fy(E*,K) the set of all K-valued weakly dg-Lipschitz continuous functions on £,
and by Fg 5 (E*°,K) the setof all f € Fo(E*,K) with || f|lg:= 1| f llec +[f]6 <+00,

where we put [ f]g 1= SUPecE SUPy,vele]:w#v | f(w) — f(V)|/dg(w,v). If K is equal
to C, then we may drop the notation ‘K’ from these function spaces.

3.1. Proof of Theorem 1.1

To show our main result, we need to prove some auxiliary propositions. We begin
with the following short proposition:

Proposition 3.1. Let (U, d) be a bounded metric space and (E, || - ||) a Banach
algebra. Assume that functions fi,h; (0 <k < n) from U to E satisfy || fr (x)| <

() |he ()| for any x € U and || fie (x) — fr W) < cra(k) | A (x)||d (x, y) for any
x,y € U for some constants c11(k), c12(k) > 0. Then

[]A®-T] /0
k=0 k=0

< e [ InGolder. y)
i=0

with c13 = Y r—o([TiZ6 i1 G)er() ([ Tfzip1 (1) + ci2(j) diam U)).
Proof. By the assumption, we note

I =< /e + 11 fe () = feO = (er1(k) + crz(k) diam U) || (x) .

Thus, we have

[TA@-T] A
k=0 k=0

< Z(f[ 1A )1~ I 1701 )
k

i=1 k=0 k=i+1
<ei[]IIhslld(x, y). u
s=1

For later convenience, for p € R with p > O and k,/ € Z with 0 < k < n and
0 <[ < k, we define a function Glpk: E*® — R by

p ; ; .
li((tz,))‘l Z j]!.l.gjk!gl (@)1 - gr(w)* itk > 1,
» jl_;:--s_{;k.zgil
Gry(@) = i i = 3.1)

lg(w)|? ifk =0.

This function will be used in the expansion of |g(e, -)|? (see (3.4)). To estimate this
function, we will assert the following lemma:
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Lemma 3.2. Assume that G = (V, E,i(:),t(-)) is a directed multigraph. Assume that
g: E®° — R satisfies (2.2) and (g.3). Then for any integer | >0, g € R, and w,v € E*®
with wg = vo, we have ||g(@)|7/g(w)! — |g(v)|7/g (V)| < clalg(@) |97 dg (@, v) by
putting c14 = c14(¢,1) = (c1(1 + 1) + 671 (A + ¢,0)".

Proof. Letw,v € E* with wy = vp. The condition (g.3) yields |g(w)™! — g(v)7!| <
|g(w)™|c1dg(w, v). On the other hand, by virtue of condition (g.3) again, we have

(1 +ad)g@) < gW)] = (1 +c18)g(@)].
Therefore, the Mean Value Theorem and condition (g.3) imply

lg@)I? = g@)I7| = |alg@)] + (1 = )g@)I|"[Ig@)] - [s@)]]
|lg(@)] - 1gW)I|
min(|g(@)]. [ (v)])
- {max<|g(w)|,|g<v)|)4c1de(w,v) ifg =0,

min(|g(@)]. [gW))7erdp(@,v)  ifg <0
< (L+c16)ei|g(@)?dg(@. v)

< elg@)] + (1 =) gW)]|*

for some « € [0, 1]. Choose any e € E. Proposition 3.1 regarding U = [e],

fo=ho=1gl% i=-=fi=hi=-=h =g " cul) =1, cip(0) :=
(1 4+ ¢10)le; and ¢12(1) = -+ = ¢12(]) := ¢, implies that the assertion holds for
the constant ¢4 = Zf:o c12(i) ﬂ§=i+1(1 + c¢12(j)6). Hence, the proof is com-
plete. ]

Lemma 3.3. Assume that the incidence matrix of E® is finitely irreducible and the
conditions (g.1)—(g.5) with fixed nonnegative integer n are satisfied. Then for any
p>pn),0<k<nand0 <l <k, the function Glljk is a weakly Holder continuous
function. In particular,

GP ()] < c15]g(@)|P~n P Fie
_k k
|G (@) = G ()] < crelg (@)~ PD ¥ nLdy(w, v) (32)

for any w,v € E® with wg = vy for some constants ¢15 = ci5(k, 1) and c1¢ =
C]G(k,l) > 0.

Proof. In the case k = 0, the inequality (3.2) is fulfilled from Lemma 3.2.
In the case k>1,letw,v € E*® with vy = vg. By the condition (g.4), we have
lgi (@)’ ] < cf|g(w)|’f and |g;(v)’| < (c2 + ¢30)/ |g(w)|”". Then it follows from
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Proposition 3.1 that for any positive integer j,
18 (@) — g (V)] < j(e2 + ¢30) " es|g(@)| " dg (o, V).

Thus, we obtain
|g|p_l|g{' ...gllc'k| < Czjl ++ ik |g|p—l+j1t1+'"+jktk

p k . D k X
LICOLS y PP LG o Y

< ci7lg(@)|P7IH NIkl dg (o, v)
gl =% gw)!

i=1
from Proposition 3.1 again and Lemma 3.2, where
ci7 = ern(p.) = cu(p.D(ea + e30)" +1(ca + e30)' ™!

using j1 + j2 + -+ jk = 1. When we put py = p + (n/k)(1 — ), then px < p(n),
and therefore, 7y > 1 — (k/n)(p(n) — p) are satisfied. We also note that

k ..
. . .1 k k
p—l+ jiti + -+ jetk = p—1 + Z(ﬁ-;’(p(n)—g)) =p==p)+-p
i=1
is satisfied using j; + -+ + jr =/ and j; + 2j» + --- + kjr = k. Hence, the lemma
is complete by putting ;5 = (Ilc:ll)cé and cjg = (’l‘:ll)cn. n

Remark 3.4. When we take p,n > 0 sothat p > p(n)+n, we see p — %p(n)—i—%g >
(1— %)p + %E + ’;‘77 > p + n. Namely, the series Y,/ o)=i(wo) Gf:k(e ‘o) fe-w)
converges for each bounded function f.

Lemma 3.5. Assume that the incidence matrix of E® is finitely irreducible and con-
ditions (g.1)—(g.5) and (y.1)—(.4) with fixed nonnegative integer n are satisfied.
Then for any p > p(n), there exist weakly Holder continuous functions go.p, g1,p
v &n,p» &n.p(e,-) and positive constants c¢13 = ci3(k), c19 = ci9(k), and & such
that for0 < ¢ < &

1g(e.)1” = go,p + &1.p8 + -+ + &n,pe" + &n,p(e,)E" (3.3)
k
. p
with g p(w) = Z( l )G,{’k(w) (3.4)
=0
satisfying that for any k = 0,1,...,n and for any € E*®
_k k

|8k,p(@)] < c1slg(@)|P~n PO Fu, (3.5)

_k k .
18k.0(@) = 8rp (V)] < Cr9lg(@)|PT1 P TNLdg (w0, v) withwo = vo.  (3.6)

where (‘}’ ) is the binomial coefficient. Moreover, for any nonempty compact subset I of
the interval (p(n), +00), there exist constants 1] > 0 and c59(g) > 0 with cyp(e) — 0

such that

sup . (. )] < ex(e) g (@)]2*7 (3.7)
pe
Sfor any small ¢ > 0 and for any w € E®.
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Proof. Lemma 3.3 guarantees (3.5) and (3.6) by putting ¢1g = Z?:o |(‘;’) |c15(k, 1) and
cl9 = Zf:o |(‘lp)|c|6(k, [). It remains to show that (3.7) holds. Fix w € E°. For the
sake of convenience, we omit ‘w’ from the notation, i.e., we write g = g(w), gr =
(@), 8n(6) = Gn(e. @), gkp = Zh,p(©), and Fnp(€) = Fn.p(e, ). Put x(e) =
> e gre® and g(e) = g + x(g) + Zn(e)e™. We also assume that c4(e) satisfies
ca(e) < 1 /2 by making & small enough if necessary. We take € (0, min I — p(n)).
Then forany p € I, weseemax/ > p >min/l > p(n) +n > p + n > p. First we
check the following claim: B B

Claim 1. Assertion (3.7) holds for n = 0.

Indeed, for each ¢ > 0, we will consider two cases: |g| < c4(¢) and |g| > c4(¢).

Case |g| < c4(g). We have

g7 —1gl?| < (ca1 = Dlg|” + ca1|go(e)|?
< (c21 = Dea(&)? 27 g 27 + careq(e)? g7
. |g| = ca(e) and (2.5))
< ((e21 = Dea(@)P 27 4 exrca(e)”) 2+
Cop>pm)+n=p/i+n)
< (car—1 + a1)ca(e)™™ N g|2HN = ¢y ()min 2| g 2T
with ¢2; = max(1,2771), where the first inequality holds by the basic facts of inequal-
ities (e.g. [ 14, Corollary 8.1.4.]).

Case |g| > c4(e). In this case, we see |go(e)| < C4(zs)|g|’~ < 04(8)’~|g| <|gl/2.
Moreover, from sign(g)(g + go(e)) = |g| + sign(g)go(e) > |g|/2 > 0, we have
sign(g) = sign(g(e)), and therefore, the equation |g + go(¢)| = |g| + sign(g)go(e)
follows. By using the Mean Value Theorem for the function a — (|g| + a)?, we get
the following estimate:

1g(e)” —1gI”| = p(Ig] + asign(g)go(£))?~" | sign(g)go ()]
< {p(l/zv—wgv—wgo(sn ifp <1,
[ pG/2)P HglP go(e)| ifp =1
< max(1, max 1(3/2)™ ' ea(e)'1gl” (- 10(e)] < cale)Ig])
< max(1, max 1(3/2)"* ey () g |77,

Thus (3.7) is valid.

Claim 2. Ifn > 1 and |g|P 272 < &", then assertion (3.7) holds.
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In this case, we have [g| < 2" with ¢25 = 1/(max I — p —1/2). To estimate
the function g, ,(¢) = (—|g|? — Y j—, gk.pe* + |g(e)|?) /", we first consider the
function |g|?. We obtain

1817 = 1g1"*1g1P7"* < exs(e)|g 246" 3.8)
by putting c23(¢) = 2"/ Next, we will calculate g, in the expression of g, ,(e).

& k k k
gk, p| < CIS(k)|g| WPERPTI (- (3.5)and [g| 7P < |g|n P T

k
AR TE (g < |gl /2

< cnsthIes@lglz e (3.9)
with c24(g) = £°2"/2. Finally, we consider the inequality
g7 < cas(Ig1” + |x(e)|” + [gn(e)[7€")

with ¢25 = max(1, 3™ 1=1) Let py = p + (n/k)(1 —tx). It follows from

k
p>pn)+n=pe+n and tk=1—(;)(pk—g)

that
n
[x(&)|7 < ca6cy Z |g|'kP ek

pHign gn iftkp>n (- p>p/tx +1n),
o |18l p p>p/tk+n
< c26C3 Z |g|tk”_%(”_ﬂ_”/z)(”_kp)s” ifkp <n

k=1 ( |g|%(p—£—n/2)(n—kp) < En—kp)
o | lglBTET e ifkp > n,
< cxc? Z |g|p—f(p p—m—(p—p—H(-52) n ifkp <n,

k= (. te>1—=(k/n)(p—p—n)

|g|2 kN gn ifkp > n,

-t 3
26¢9 {|g|p+ +2"8

ifkp <n
< 627(8)|g|£+628n8 ,
where ¢2¢ =max{l,nmzlx 1_1}, Co7 (8):02605118"628622 and cpg =min(ty,. . .,t,1/2)/2.
Similarly, put p = p + 1 —7. We get
)P IJ-HU~ n ifnp >n e p > ZT+ ,
2 (6)| 7" < ca(e)?|g|2 p=n (-p>p/t+n)
lg |tp—f(p p=1/2)(n—np) on ifnp <n
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|g|2tn/2HP(p=P=n/Den ifpp <n (T=1—p+ p)

< max(c4(8)mi“1,c23(8))|g|£+ﬂmin(t~,1/4)8n'

_ {c4(e)f’|g|f’+"fe" ifnp > n,

= €2 : .

with cp9(g) = ¢p5 max{cz3 (€), c27(g), ca(e)™n ! } and c39 = min{l /4, cas, f}. Con-
sequently, inequalities (3.8), (3.9) and (3.10) imply |gx, ()| < c31(8)|g|2T*" with
c31(8) = ca3(e) + Y gy c1s(k)caa(e) + cao(e). Hence, the assertion is valid.

Put ¢32(¢) = ncae® + cu(e) and ¢33 = (9/2)/(min I — p —n/2) > 0.

Claim3. Ifn > 1, |g|P"27"2 > &" and c3,(¢) < 1/2 are satisfied, then the inequality
[x(e)] + 18n(e)e”| = c32(e)lg]
holds. In this case, we have sign(g(e)) = sign(g + x(&)) = sign(g).

Indeed, note that the number ¢33 = 1 — (max [ — p —n)/(max I — p —n/2) is
less than 1. We obtain

n
x(&)] + [2n(e)e"| < D calgl™e* + cale)|gl'e".
k=1

‘We have the estimates

g Lek—en < |g|—§(pk—g)+§(p—g—n/Z)—C%(max I-p—n/2)

Lk(p—p—n/2)-n/2) _

= |g|” (k(p—p—n)+n(k—1)/2) <1

1
K
and |g|"~1e" < |g|?P~P~"/2 < 1, where pi and p are given in Claim 2.
Finally, we prove the last assertion. Choose any & > 0 so that c3;(g) < 1/2. We
have
sign(g)g(e) = [g| 4 sign(g)x(e) + sign(g)gn(e)
> gl = (x (@] + [gn(e)]) = |g]/2 > 0.

This means that sign(g) = sign(g(¢)). Similarly,

g _ ] __ lgl
g+x() gl +sign(g)x(e) ~ [gl + |x(e)]

Hence, we get sign(g) = sign(g + x(g)).

2
> —>0.
3
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Claim 4. Ifn > 1, |g|P"27"2 > ¢" and c3,(¢) < 1/2 are satisfied, then

n n
- p
|g + ) grek + gule)e"| = ‘g +> gkek) +Y(e)
k=1 k=1

and |Y ()| < c34(e)|g|?~ 1 e" with c34(g) — 0 are valid.

Note the form |g + x (&) + gn(e)e"| = |g + x(&)| + sign(g)g,(e)e" from the
above claim for any small ¢ > 0 so that c3;(¢) < 1/2. By virtue of the Mean Value
Theorem, we have Y(g) = p(|g + x(g)| + a sign(g)g.()e™)? ! sign(g)gn, (e)e" for
some « € [0, 1]. Thus, it follows from the above claim again that

P {p<|g| — (&) = 12 (@ NP gn(e)e" it p <1,
pgl+ 1x@)] + [2n(©)e" NP gn(e)le” if p> 1
< 2Pl plg|P ey(e) gl e < c3a(e) g2t
with c34(g) = max(2, 2"/ ~1)(max I )c4(e).

Claim 5. If n > 1, |g|P"27"/2 > &" and c3,(s) < 1/2 are satisfied, then 18n,p(e)] <

c35(2)|g |2 holds for some constant c3s(g) > 0 with c35(¢) — 0.

Now we apply the Taylor expansion to the function F:e > |g 4+ x(¢)|? =
(Ig| + sign(g)x(e))?:

F(”)(ae) F(”)(O) n
n! o )8

~ FO0
g+ x@ = Fle) = FO) + Y~ +
k=1

for some « € [0, 1]. By virtue of the Faa di Bruno formula [6], we obtain the equa-
tion F®(0)/k! = gz, p- We will show that the remainder |F ™) (ae) — FM(0)] is
bounded by c34(¢)|g|2"" with some constant c3¢(g) — 0. Since the function F is the
composition of the two functions G: y — y? and H:e — |g| + sign(g)x(g), we have

FW(ae)  F™(0)

n! n!
" @) Ai @) ()i
_ p o Ty HO@o M HOO)
_;Z(j) (o H iy 1O H LG )
where the second summation is taken over all nonnegative integers Ay, ..., A, so that

Sty Ak =jand Y p_, kA = n.Put A(e) = H(xe)?~/ and B;(e) = HD (ae)t
(1 <i < n). We begin with the estimate A(g) — A(0):
|4(e) = A(0)] = |(Ig| + sign(g)x(@e)”™/ — [g|7/|
< 21 lg [P ep(e) | p — i

< cy(e)|gl?™!
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with ¢37(¢) = 21 +max(max[—=1][minI=n]) ;. (o) max (| max I — 1|, | min I — n|), where
the second inequality uses Claim 3 and the basic inequality [(1 + b)? — 1|
< 2'*IPl|pp| whenever b, p € R with |b| < 1/2. Moreover, it follows from
e < |g|%(p_£_”/2) that for ¢ > 0,

n—i .
. (I +i)!
HO@o)] = |} = giiele!
=0

n—i .

(I +i) _I4i VL (g

5022 :T|g|1 T (pii—p)+5;(p—p—n/2)
=0 ’

< c3(i)|g|' T P2

by putting c35(i) = 2 Z;:f,(l + i)!/1! and by using the fact p;y; = p +
47 (1 —114i) < p(n) < p — 1. Therefore,

|(A(e) — A(0)) B1(0) - - B»(0)]
< exp(e)ess(D -+ exg(n)t |g| P/ TAT - Anm
= ca7(e)ess(D™ -+ cag ()™ |g|2F7 (3.11)
by choosing Ay, ..., A,. On the other hand, we note the inequality

A2 ++nAn
== "2 (p—p—n)

gl < |g|;7'(p—g—n/2)—% < |g|,’14(p—£—n)
by using the number ¢3¢ = (17/2)/(min I — p —n/2). We get the estimate
n—i
. . )
HO@e) - a0 = 3 L
=1

i)
g1+l (cze)!

il

I1=1
< exsi)|g[1 TR PTET e,

Thus,
| Bi(e) — B (0)]

= |HD(ae)— HD(0)||HD (ae) ' + HD (ae)* 2 HD (0) 4 - -+ HD (0)47|

< cyg(i)M g [i— P e
Moreover,

|A(2)] = |1 + sign(g)x ()|

- {(Igl +|x(@e))P~F if p—j >0,

(g| = |x(@e))?~7 ifp—j <0

< calgl?™
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with c49 = max{(3/2)™>* /=1 (1/2)min/="} Consequently, we obtain

|A(¢)B1(¢) - -~ Bi—1(¢)(Bi(e) — Bi(0)) Bi1+1(0) - - Bu (0)]|

. A1 +2A044nA _
< cqpesg(DM - e3g(n)tn g |g|Pd T At tAn= n =

p—p—n)
= ca(e)|g|2F" (3.12)

by putting c41(g) = caoczs(1)*! -+ c33(n)*7 €. By Claim 4 and inequalities (3.11)
and (3.12) the function g, ,(¢) = Z(e) + (F™ (ae) — F™(0))/n! fulfills the asser-
tion of the claim.

Claim 6. When n > 1, the main assertion (3.7) holds by putting &1 > 0 so that
cn(e) < 1/2fore < e;.

Indeed, by virtue of Claim 2 and Claim 5, this assertion is given with cy(g) =
c31(¢) + c35(¢). Hence, the proof is complete. ]

Denote by £(X) the set of all bounded linear operators acting on a normed linear
space X.

Lemma 3.6. Assume that the incidence matrix of E®° is finitely irreducible and the
conditions (g.1)—(g.5) and (Y .1)-(.4) with a fixed nonnegative integer n are sat-
isfied. Then for any nonempty compact subset I C (p(n), 00), there exist operators
Lip....Lnp € L(Fpp(E®)) and cfff,,,p(‘s, ) € L(Cp(E®)) (p € I) such that

Lploglg (e Hogw(e.) = Lploglghiogy +L1pe+ -+ Ln pe" +En p(e. )", (3.13)
sup ”‘:En,p(& Moo =0 (3.14)
pel

and SUPper £k, pllo < oo, where L p f(w) = ZeeE:t(e):i(wO) Sk.ple- ) f(e- o)
k
and Ck,p = Zi=0 gi,ka—i-

Proof. By virtue of the expansions (3.3) and (1.2), we get the expansion (3.13) and
convergence (3.14). It remains to check sup,¢; [ £k, p
First, we show sup,c; [| £k, plloo < 00. Let 7 > 0 be given so that p(n) + 1 < min /.
From (3.5) and condition (1/.3) in addition to Remark 3.4, we get

lg <ocofork =1,2,...,n.

1.5 f oo < €221 Lyt py g e iogy ool o
< C42||$(£+n)log|g|+logw1”oo”f”oo

forany p e by putting c42=(n+1)ciscs. Furthermore, [|£(p-+7) tog g |+log v 1 loo <00
by P((p + n)log|g| + log ¥) < +oo (see Proposition A.1). Therefore, we have
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| £k, plloc < oo uniformly in p € I. Next, we check the boundedness of [£x,, f]g for
| € Fgp(E®). It follows from (3.5) and (3.6) that for w, v € E* with wg = vg

|$k,pf(w) - ol“jk,pf(v)|
< Y (ltrple- o) = Gple- V)| f(e- o) + [Ekple - V)| fle-w) — fle-v)])
(e o)
_k k
<cn Y. lgle- )PPy (e )| f oodse 0,0 v)
eck:
t(e)=i(wo)
_k k
ten Y lgle-v)lPTRPOTERy (e v)[fladge - w.e - v)
eckE:
t(e)=i(wo)
<6(ca3 + C42)||x(£+n)1og|g|+log1/f1||oo||f||0d9(w» v)
with c43 = (n 4+ 1)(c13¢6 + c19(1 + ¢g)). Thus,
[ik,pf]e = 9(C43 + C42)||;6(£+77)10g|g|+10g1//1||OO||f||9

uniformly in p € /. Hence, we obtain the boundedness of sup,c; || £k, lo- n

Lemma 3.7. Let G = (V, E,i(:),t(-)) be a directed multigraph. Let ¢ € Fg(E*°,R)
satisfy (2.2) and (g.3). Then for any number 1 > 0 and integer k > 1, the dg-Lipschitz
norm of the function w + |g(w)|"(log |g(w))¥ is bounded by a constant c4s =

C44(’77 k)

Proof. From the upper bound of x — —x log x is ¢!, the norm |||g|" (log 12D% oo
is bounded by k¥ /(e¥1¥). On the other hand, let @ = 1/k. We have for v, v € E®
with wg = vy
|1g(@)|*log |g ()] — |g(v)|* log g (V)]

< |g(@)|*| log|g(@)|~log g ()| +Tog(g (V) |g (v)|* | e e @ Feteele @y

< ca5dg(w, V)
with c45 = (¢1 + (e)"'e*1?qc;). Thus, we obtain

[lg1"Gog1g1)* ], = keas(e/tem) ™",

Hence, the assertion is fulfilled. [

The function (p, &) = £Lp10gg(s,-)+10g ¥ (e, has also an asymptotic expansion in
the sense of the following lemma:
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Lemma 3.8. Assume that the incidence matrix of E is finitely irreducible and con-
ditions (g.1)—(g.5) and (V.1)-(V.4) with a fixed nonnegative integer n are satisfied.
Choose any nonempty compact subset I C (p(n),+00). Then for any s, p € I, there
exist operators Zy g5 € L(Fgp(E*)) (0 <v,q <n)and 2n,s,p € L(Cp(E™>)) such
that the Ruelle operator ?;f prllog lg(e, )| + log ¥ (e, ) is expanded as
Lp1oglg (e, +Hogvr(e,) = Z Z Zy,q,s€(p =)+ (p— )" 1 Z s p + L (e, )",
v=0¢g=0

. (3.15)

and sup; per 11 Zn,s,plloo < +00, where Zo 0.5 equals L1og|g|+10g - Here Zy g5 f =

Lo(hy,gsf)and 2,, spf = Zﬁ:o io(ﬁv s.p )EY for [ € Cp(E®) are given as
v k min(l,q)

vqs:—zz Z (q ’JS)'( g|g|)q ]lel//v k

kOlO]O

p= Z Z Zal,j,srs,p,n—jﬂGf,kwv—k

k=01=0,=0
1— i—1 .
R e T

where £o f means ZeeE:t(e):z(wo) f(e-w), and a j s are numbers defined in (3.16)
below.

Proof. First we show the expansion (3.15). We take n € (0,min / — p(n)) and px =
p + (n/k)(1 — ). By Theorem 3.6, we have the expansion of &£ 10g [g (e,)| +1og ¥ (&.")
as Y v _o Lvpe’ + cf,,,p(s, -)&", where &£, , and fn,p are defined in Lemma 3.6.
Therefore, we will expand the operator £, ,. We remark that the expansion of the
map p > |g|? is as follows:

2
(log|g|)? ; A
g7 =Pl =) = =gl (p =) + (P =) gl T .
q=0 ’
for any i > 0. In addition to the notation Glpk in (3.1), gk,p in 3.4), Lk, p, and &g p
in (3.6), we obtain

ot = 35 2o ()G,”kf)

k=01=0

_ZZZ:CO(WU kaljs(2(10g|g|) le(p S)q+J

k=01=0,=0

+ 1/—\‘s,p,n—j+lG}¥,k(p - s)n+1)f)

= Z Zv,q,sf(p _s)q + io(hAv,s,pf)(p - S)n-H’
q=0
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where we use the expansion ( ) Z] —oa1,js(p— s)7 by putting

> ll]_[(s—zq) ifl>1and0<j <!
0<iy,..,ij—;<I-1: =1
arjs = fi<e<ii—j (3.16)
/1! ifl>1and j =1
0 ifl < j.

Thus, the equation (3.15) is valid.

Next, we will prove Z, 4 s € £(Fp,5(E)). In the expression of /1, 4,5, We rewrite
(log |g|)q—j Gikwv—k = ((log |g|)q_j|g|n/2)|g|_n/2GikWU—k- Then the function
(log|g|)?~7|g|"/? is in Fg »(E®,R) from Lemma 3.7. By Proposition 3.1 with fo =
(log|gh?7|g|"2, ho =1, fi = |g|™2, hy = |g|™/2, fo= G} . ha =g, f3 =
Vok>h3 =¥, c11(0) = caa(n/2,q — j), ctu(1) = 1, c11(2) = ci5(k, 1), c11(3) = s,
c12(0) = caa(1/2.q = ) cia(1) = 1 (1 +¢10)"/2, ¢12(2) = cr6(k, 1), and ¢12(3) = s,
we get the estimate

|(log|g)? ™ G} vl < caslk. L. j)Igl ">y

|(log [g(@))™7 G} 1 (@) Yy (@) — (log [g(W)N? ™7 G} (V)P (V)]
= C47|g(w)|s+n/2d9 (w,v)
for constants c46 =cae(k, I, j)=caa(n/2,q — j)c15(k,l)cs and c47 =cq7(k, I, j)=c13
with n = 3. Thus, we obtain
1Zv,g.5lloo < casll L (p+n/2)10g g1 +10g w11 |0

[Zv,q,5 1o < (caob | [ lloo + casOLf10) | L (p+n/2) 10811 +10g w1 |00

where we define constants c4g and c49 by
v k min(l,q) v k min(l,q)

048—22 Z ( C46(kl]) 049—22 Z ( C47(k,l,1)

k=0[1=0 j=0 k=0I1=0 j=0
Hence, Z, 45 € £(Fy, b(E°° R)) is guaranteed

It remains to check the boundedness of Z,, s,p- In the expression of hv s,p» WE
have

|fs,p,n—j+1 (a))Gik (@)Yrv—k (w)|
< crs(k, Des|g(@) T PO+ i 2y ()| Ty p a1 ()]

< cis(k. Deslg (@) 25y (@) [ U iind

i | log(lg (@)D"~ *! du

(.- Remark 3.4)

- cisk, )escas(n/2,n — j + 1)
- (n—j+ 1!
As a result, we get |l;v,s,p(a))| < eso¥(w)|g(w) |22 for some constant c¢sq > 0.
Thus, 2n,s,p is bounded by csol|L(p+n/2)10glgl+10gw 1l < 400 uniformly in
s,pel. [

1//(60)|g(a))|£+"/2 (.- Lemma 3.7).
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We will describe a remark concerning the coefficient of the solution s(&) before
the proof of Theorem 1.1.

Remark 3.9. Assume that the incidence matrix of E*° is finitely irreducible and con-
ditions (g.1)—(g.5) and (v/.1)—(1.4) with a fixed nonnegative integer n are satisfied. If
we put foreach0 <k <n

k—1 k1
-1
I i (Ls)1o N hl i (Ni—ih
e v(hlog|g|)(2v( ) log|g|+og y| (1 10g [g]))s— +;)v( e ))

(3.17)

fole) = — LB Los@E: ) (3.18)

v(e, Zo,s5(0), s(e)h)

Sn(e) = Zvn u (e, Nuh) + an i(©)vi(Zo,1,50)h) (3.19)

e Lusio e ) + "5 e oo + vie B (e 1)),

v(h log lg]) (

then s(g) can be expanded as form (1.3). Here v, vg, v(e, -) and v,_, (e, -) appear
in the asymptotic expansions v(e, f) = v(f) + > p—; Ve ()X + Dpe, f)em
(0 <m < n—1) of the Perron eigenvector v(g, -) of Ly()i0g|g(e,)|+logy givEn by
Corollary B.2. We define operators N,,, ﬁnﬂ (g,-) € £(Cp(E®)) by

Ne= > SquvZogso @=1...n), (3.20)

0<v=<u,
0<g<u—v:

(v,9)#(0,1)

ﬁn+l(8v f) = Z Eq,n—v(g)zv,q,s(o)f + Zn,s(o),s(s)f(

0<v,

&

s(e) — s(O))"+1

q=<n:
(v,9)#(0,1)
3.21)

where s,; and Eq,(s) are the coefficient and the remainder of the expansion
(s(e) — s(0))k = —0 54, el + Sq.j (€)e’, respectively (see (3.24) for detail).

Proof of Theorem 1.1. Put ®(e, s, ) = s log|g(e, )| + log ¥ (e, ) and ®(s, ) =
slog|g| + log ¥ for convenience. For s € I and ¢ > 0, let (As(e), hs(e, -), vs(s, *))
be the triplet of the operator £¢ . s,) and (Ag, hg, vy) the triplet of L4y, given by
Theorem A.2. We may write (e, -) := Vg(g) (€, ), V 1= V(o) and h := hy ().

Claim 1. The solution s = s(¢) of the equation P(slog|g(e,-)| + log¥(e,-)) = po
exists in I for any small ¢ > 0, and converges to s(0) as ¢ — 0.
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Indeed, it follows from (3.15) withn = 0, ag,0,s = 1, Gj o = [g|* and Yo = ¥ that

Losyh = Lo + (s = $0)Zos).sh + Los(e. h),
1
Zosorah = ol [ 151" dutoggly).
0

By using the equations :Eg(w,_)vs(e, ) = Ag(e)vs(e, ) and Lo(s(0),)1 = As0)h, we
obtain

vs(e, h)(As(e) — A’S(O)) = vs(e, 20,s(0),sh)(s —5(0)) + vs(e, cSEO,S (e,h)). (3.22)

Let us now choose any small n > 0 so that s(0) + n, s(0) —n € I. For any
s € [s(0) — n, s(0) + n], we have the estimate
vs(e, Lo(Igl ¥ (—loglgDhs))  if s = s5(0),
vs(e. Lo(Igl* @y (~log|gDhs) if s < 5(0)
hy .
- - log ”g”oovs (8’ i¢(max1,~)hmaxlﬁ) if s > S(O),
- log ”g”oo)ts(O)Vs(e’ hs(O)) if s < S(O)
(s <max[)

—¢s1log||glloo > 0 (3.23)

—vs (e, 2O,s(O),sl’ls(O)) > {

A%

with ¢s1 = min(Amax 7 infey Amax 1(@)/ || Amax 1 loos As(0)) infe hgoy(@). Now fix
s € [s(0) — n,s(0) + n] with s # s(0). For any small ¢ > 0 with
c

[ £0.5 (&, hs(0) oo 51
, _ o, |

equation (3.22) yields

/\s (8) - A’S(O)

vs(e, L0.56) (& M5 (0)))
vs(&, hs(o)) P s(&: Lo,5(e) (&, 15(0)

s —s5(0)

= Vs(g, ZO,S(O),S(S)hs(O)) +

A

Cs1
7 IOg “g”oo <0.

In addition to vg(e, hgy) > 0, this implies that Ag(e) < Ag) if s > s(0) and
As(e) > Agqo) if s < s(0) for any small & > 0. Since log As(e) = P(P(e, s,-)) and
log Ag0) = P(P(s(0),-)) = po are satisfied, we obtain

P(CD(S,S(O) +n, )) < Ppo < P(@(E,S(O) -n ))

for a fix number 5 > 0 with s(0) + 71, s(0) — 1 € I and for any small & > 0. It follows
from this inequality and the strictly monotone decreasing of the map s — P (P(g, s, "))
that there exists a unique s(g) € [s(0) — 7, 5(0) + 7] so that P(P(e, s(e),-)) = po.
By arbitrarily choosing n > 0, s(g) converges to s(0) as ¢ — 0. In particular, 5o (¢) =
s(e) — 5(0) estimates as (3.18) from (3.22).
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Claim 2. s(¢) = 5(0) + O(¢e) as ¢ — 0 in the case n > 1.

Indeed, since the form fg,s(g)(e, ) = Lise)E + fl,s(s)(e, -)e is satisfied
from (3.13), (3.18) implies

5(8) =50) _ —v(e Li5) + L1 (E.)
& V(€. Z0,5(0),5() 1)

By virtue of Theorem B.1 by regarding (Xo, || - |lo) = (Co(E®®), || - loo) and
(X111 1) = (Fop(E®). ]| l9). £(6.) = La(e,s(e).) and £ = La(s(o).- the meas-
ure v(g, -) converges to v weakly. In fact, conditions (L.1) and (L.2) are satisfied by
Theorem A.2, condition (L.3) is yielded by ||v(e,-)|| = 1 and 0 < infh < suph < oo,
and condition (L.4) is fulfilled from £e(cs(s),) = Ld(s(0),) in Cp(E°). Moreover,
the operator &£ 4(¢) is bounded by Lemma 3.6 for any small & > 0. In addition to (3.23)

and (3.14), it follows from the boundedness of & 4(s) and convergence of v (e, -) that
(s(e) — s(0))/e is bounded.

Claim 3. The asymptotic expansion (1.6) of s(¢g) is satisfied in the case n > 1.

Let n > 1. We show that if s(¢) has the form (n — 1)-order asymptotic expansion
s(e) =50+ 516+ + 518"+ 0(e" 1) with 5o = 5(0), then so is for n. To check
the n-order asymptotic behaviour of s(¢), we need the expansion of (s(e) — 5(0))¥ for
k= 0:

S1.0+S1164. . A1 € +5p (8)e™ 1 ifk =1,
(s(e)—s(0))F = 1,0 +51,1 1,n-1 n—1(€) ] '
SkotSk 16+ A Sk 5k € + 5k n(e)e" ifk >2
with
0 ifk>1land0<i <k-—1,
S; ifk=1and1<i <n-—1,
Sk,i = s'li'~--s£1_1 . .
- Z FriaT ifk>2andk <i <n
]13--'s]i—120:
J1ttiji1=k
J1+2j24-+ (1) i =i

(3.24)

with §g ,(¢) — 0 as ¢ — 0. Note that 5, ; = s; holds for 1 <i < n — 1. Thus, the
expansion (3.15) implies

Lo@senf =D Y (5() = 5(0)7Zy q.500) "

v=0¢g=0
+ (5(8) = 50" Z, 50y 560 f + Lnsey (e, e
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= (s() =s(0)Zo1sf + Y (5(c) =5(0)?Zy g500) 5"
0<v,g<n:

(v,q)#(0,1)
+ (S(S) - S(O))n+lzn,s(0),s(a)f + in,s(e) (87 f)sn
= La(500),) S + Zo,1,5(0).f (s(¢) —5(0))

n
+ Y NS+ Nugr (e )T+ Ly (e e (3.25)
u=1
for f € Cp(E®) using (3.20) and (3.21). By the definition of J\Afn+1 (e, ), this operator
is bounded uniformly in any small ¢ > 0. Since s(¢) has (n — 1)-order asymptotic
behaviour, we see by (3.25) that £ s(),) has at least (n — 1)-order asymptotic
expansion in £(Cp(E°)). Thus, it follows from Corollary B.2 that v(e, -) has the
form v(e,) = v + Y p—| vkek 4 Dp_1(e, )" and |Dp—1 (e, £)| — O foreach f €
Fg 5 (E®°). We obtain
0 =v(e, (e —e?)h) = v(e, (La(e,s).) — Las0),))h)
= (s(e) =s(0)v(e. Zo,1,501)

n
+ ) v(e Muh)e + v(e, Nug1(e. )™ + v(e, Loy (6. h))e".
u=1
Consequently, we get the form §,_1(¢) = s, + §,(¢)e by putting (3.17) withk = n
and (3.19) and 5§, (¢) vanishes. Thus, this claim is satisfied.

Claim 4. The estimate (1.7) of the remainder 5,(¢) is valid.

First assume n = 0. Recall the form (3.18) of §¢(¢). Since s(e) converges to
5(0), Ls(e)10g g (e, +log vr(s,) converges 10 Loy log|g|+iogy N Cp(EX,C) as & — 0
by Lemma 3.8. Therefore, the measure v(g, -) converges to v weakly from Corol-
lary B.2. Moreover, it follows from the Mean Value Theorem that r 5(0),5(e),1(8, @) =
fol |g(w)[*6@=3O) Jog |g(w)| du converges to log |g(w)| uniformly in w € E.
Thus, v (e, Zojs(g)’s(s)h) — v(hlog|g|). The assertion is valid in the case n = 0.

Next, assume n > 1. Since s(¢) has an n-order asymptotic expansion, so
does Ly(e)log|g (e,)|+Hogy(e,) 1N L(Cp(E)) from the expansion (3.25). Thus,
Corollary B.2 says that v(e, ) has an n-order asymptotic expansion. In the expres-
sion (3.19) of §,(¢), we obtain the form §,_1(¢) = (s, + 5»(€))e and V,—1 (e, ) =
(vn(f) + Vn (e, f))e. Hence, the proof is complete. [

3.2. Proof of Proposition 1.3

Proof. Choose any compact neighborhood I of s¢ so that
I C(pn),p+ (n+ 1)1 —1))\Z.
Put x (e, w) = |g(e, w)| — |g(w)|. We begin with the estimate of x (g, ).
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Claim 1. There exists csy > 0 such that for any w € E?®, cs|g(w)|¢ < x(s, w) for
any small ¢ > 0.

Indeed, let s, = sign(g(w)). It follows from (g.9) that for any 2 < k < n,
lgk(@)] < c2|g(@)|'* < ca|g(w)|™. Then we have

n

sign(g(@))g(e, ) — |g(@)] _ Z sign(g(w))gx (@) g1
elg(w)| lg(w)|"

k=1
n
k—1 _ €8
> cg — Z € > > >0
k=2

for any small ¢ > 0. This implies that the signature of sign(g(w))g (e, ®) is plus for
any small ¢ > 0, and therefore, the signature of g(e, w) equals the signature of g(w).
This also yields x (¢, w) = sign(g(w))g (e, w) — |g(w)| > 0, and thus, the assertion is
valid by putting cs, = cg/2.

Claim 2. ”‘:C(minl—n(l—tl))loglgll”OO < oo and ||x(max1—(n+1)(1—t0))1og\g\1||oo = 0.

Since min [ —(1—1t1)n is greater than p, P((min 7 —(1 —t1)n)log|g|) is finite and
80 18 || & (min 7—(1-1)n) 1og |¢| 1 [loo- On the other hand, from max I —(1—zo)(n+1) is less
than p, P((max I —(1—#1)n)log|g]) is infinite and it yields

”tf(max I—(1—t1)n)log|g| 1 ”oo = Q.

Therefore, this claim is valid.

Welet E(e) = {e € E:inf,ee) |g(w)| > 2028}. Then we see that E () is an includ-
ing finite set and lim,_,¢ E(¢) = E. We will use the fact that for any e € E(g), w € [e]
and0 < e < 1/2

n
x(e.0)| <2 Y |g(@)|* e < 208 < [g(w)]. (3.26)
k=1

Claim 3. There exists b € E such that
inf Z |g(€ . w)|max1—(n+1)(l—t0) = 00
welb] 7
ecE(e):t(e)=i(b)
ase — Q.
Choose any large number M > 0. Since an incidence matrix is finitely irreducible,
there exists a finite subset {by,...,by} of E such that forany e € E, t(e) = i (by) for
some k. Namely, when we put £, = {e € E:t(e) =i(by)} foreachk =1,2,..., N,

then £ = U,jcvzl E}, is satisfied. From || &€ (max 7—(1—19)(n+1)) log |g| L loo = 400, there
isw € E 50 that & (max 1—(1—10)(n+1)) log |g| 1 () > M . Moreover, there exists g9 > 0
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such that for any 0 < & < £0, Y e g (e).cwe oo |8(€ - @)™ =70+ > b1 We
notice that for any w* € [br] (k = 1,2,...,N)

Z |g(e .w)lmaxl—(l—to)(n'i‘l)
ecE (g):t(e)=i(wo)

N

< Z Z |g(€ . w)lmaxl—(l—to)(n-l-l)
k=1ecENE):t(e)=i(wo)
N

=5 DD DI P12 RS (s

k=1ecENE):t(e)=i(by)

by Lemma 3.2. Thus,
N

MY it Y [glery)"ITUTOEIN ¢y 0),
veE[bi] )
k=1 ecE(e):t(e)=i(bg)

Since M is an arbitrary large number, the right hand side tends to 400 as ¢ — 0.
Hence, the assertion of the claim is valid for some b € {by }]]2/:1.

Claim 4. There exist a sign § € {+1, —1} and a constant cs53 > 0 such that
S&€, s(e, h) (@) = —cs3 uniformly ins € I and w € E*, and

inf inf 5, ¢(c. h)(w)/e = +oc.
sel welb]

Let w € E°. From the Taylor expansion of the function F: x +— (|g(w)| + x)*,

we obtain the form
n

26 )] = Z(j )|g(w)|s—’x(s,w>’

1=0
+ (n i 1)(lg(w)l +ax(e, ) " x(e, 0)" !

= go,s + 8156+ -+ gn,sgn + gn,s(g, ’)8n
with

n

Gnse) = Z(j ) 14(@)* sign(g (@)
=0
nl I

ng (@)1 -+ gu(w)/mel ™
Teee !

J1+2j2++njn=j

n+1
* ( ) )(|g(w)| + ax(e, )" (M) .
n+1 ;

= I1(s,w) + I2(e,w)
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for some o = a(s, e, w) € [0,1]. By t; <ty < t; for k > 2 and by the estimate
g1 g1/t -+ [gnl/m < Al < max(ca. 1)" (g[S~ 7"0", we get the inequality

11 (s, )| < esalg (@)~ 7" (3.27)
for any w € E° for some constant ¢54 > 0. To estimate I, (¢, -), we note that since
S

n+1
) fora s € I. For the same reason

the integers 1,2, ...,n are not in [, the signature of (
on the choice of s € . Then we put § = sign((

) for s € I does not depend

nj—l)

as above, infsey |(n_sH)| =: 55 is positive. Notice also that for e € E(¢)
(Ig(e-w)| + ax(e, e ) !
- {|g(e'w)|s—"—1 ifs—n—120,
" (gle- o) +x(ee- @) ifs—n—1<0
. {|g(e~w>|s—"—1 ifs—n—120,
T2 gle ) ifs—n—1<0

> 2—|s—n—1||g(e . w)|s—n—1

by (3.26). Thus, we obtain that forany s € / and w € E*°,
Shy(e.c -
s 2(8 e Cl)) _ ( N ) (|g(e-a))|+Otx(8,€'60))s_n_l(
n+1

- {csﬁlg(e - ) |[max I =(A=0)(r+ 1) if o) € [e] for some e € E(g),

0 otherwise

x(s,e-w))"+1

&

&

(3.28)
with ¢s56 = c5527 S'Pser |S_”_1|cg’2+1 > 0. Consequently, (3.27) and (3.28) imply that
forany w € E*®

SLns(e, h)(w) _ Z

. ($1i(e,e - w) +§Iz(8,e~w))h(e-a))é

ecE:t(e)=i(wg)
—cs3 + esolinfy h(v)) Y |gle - )P~ D=0 if ) € [p],

ecE(e):
t(e)=i(wo)

—C53 otherwise

z

by putting ¢s53 = ¢354 || &L (min 7—(1—1,)n) 1og|g| 1 lloo [|2]lco- Thus, the assertion is valid.
Claim S. The assertion of this corollary is valid.

Recall the form §,(¢) (n > 1) of (1.7) in Theorem 1.1. Then we have

55, () 1 §Lm.500) (&, h))
— el o1
Py log|g|)”(8 : +00)
. _ —C53 (e, [b]) infser inf i $&Ln s(e. h) (@) Lo
—v(hloglg|) —v(hlog|gl) €

— +00



Asymptotic solution of Bowen equation 305

as ¢ — 0 by using the above claim in addition to the fact v(g, [b]) — v([b]) > 0.
Hence, the assertion |5, (¢)|/e — 400 is guarantied. [

3.3. Proof of Theorem 2.2

For the sake of convenience, we write the composite map T, (¢,-)Tw, (€,°) - -+ Ty, (€,)
as Twow, oy, (€ ). Similarly, Ty e, e, means Ty, Ty, - -+ Ty, . Assume that condition
(G.1), is satisfied. We take open and relative compact subsets (U, ) of R? and num-
bers 7 € (0, 1) and r9 > 0 such that U, = Uerv B(x,r0), J, C U, C U, C O, for
any v € V, and sup,c g SUpxey,,,, |7,(x)|| < r,where B(x,ro) is the open ball with
center x and radius ro. We begin with the following fact:

Lemma 3.10. For any n > 1, if conditions (G.1), and (G.2), are satisfied, then so
are conditions (G.1),_1 and (G.2),,_;.

Proof. Assume that conditions (G.1), and (G.2),, are satisfied. It suffices to prove that
conditions (iii) and (iv) in (G.2),,—; are fulfilled for n > 2. Since Te,n_l (e, -) has the
form Te e + Te,n (e, x)e, convergence

9
—Ten_1(e,x

wp sup AxTen1(60)]

e€E x€J(e) ”Te/(x)”ll

is yielded by putting 7; = min(¢(n, 1), fy). Therefore, (iii) is valid for (G.2),_;.
To check (iv) in (G.1),,—1, we note the forms

n—1 n—1
p(n—l)=max{£—T(1—tl),...,£—m(l—tn_l),

g/tl,...,g/tn_l,g—}—I—E,E/E}
~ . ~ fl D -1 fl
= th—1,0, — t(1,1),...,—
5 mln{nl 1D+ 5 (1, 1) D+

By the definition of # in (2.1), the inequality #,—1 > t, holds. By the same reasoning,
we have t(n,1),...,1(1,1) > t, and therefore § > 7, where 7 is defined in (2.2).
Thus, we see p(n — 1) < p(n). Hence, dimyg K/D > p(n) implies dimg K/D >

p(n —1). [ ]

D —1

t(n — 1,1)}.

Lemma 3.11. [f condition (G.1), (ii) holds, then there exists a constant cs7 > 0 such
that for any e € E, x € Ji(e), ¥ € Opey with |x —y| <719, 0 <[ <n,and 0 <k <
1+n-1

|78 @) = TR 0] < esp| 20|

x =yl TR0 < eso| TL) |
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Proof. We have

' 7.} (x) 7,5 ()
1T R [Ty (o) |05
T (x) T8 (y) 5 () 7® ()
@R )[R | T o) IR [T o)|Paw)

iy [ITLCI ) 140
171G Ty ()00

< csglx — )’|'6 + csoll T, (»)]

< (csg + cso(1 + cw{f))lx —y|?

for some csg, c59 > 0 by using condition (G.2), (ii) and condition (v) in GDMS.
Therefore, the former assertion is fulfilled. The latter assertion follows from the above
inequality. ]

Let (¢, -) be the coding map of K(¢) for & > 0.

Lemma 3.12. Assume that conditions(G.1), and (G.2), are satisfied. Choose
any ry € (r,1). Then there exist functions mwy, w2, ..., 7y € Fp p(E®, ]RD) and
7(e,-) € Co(E®,RP) such that m(e,") = w + mie + -+ + mp&" + Tn(e,)e" and
|7n (g, ) oo := SUPyegoo |Tn(e, )| — 0ase — 0.

Proof. This assertion mostly follows from the proof of [25, Lemma 3.1]. When we

use this proof, we need the boundedness of |Te(i,2 (¥)| uniformly ine € E and y € Uy

for each k and i. This fact is satisfied by condition (G.2), (ii) in particular. Therefore,
the proof of [25, Lemma 3.1] implies

(@) =D T, (T6F @) (R (w0 ),
k=0

o0
(e, w) = Z T oo (o w) (R (e, to*w)),
k=0

where R; and R, (e, ) are defined inductively

7® (row)(m;, (ow), ..., (Cw))
, ’l 1] ’ s I
R](a)) = Two,j(mm)) + Z Z 0 A
0<I<j—1, ip,.nip=l:
I<k<j—l:i1+-+ig=j—I
(7,k)#(0,1)
) kn Ta()lg)l(x)(nil (0w), ..., T (0w))
Riew)= >, 2. ) 0 ¢
0<l<n-—1, i=n—I+11=<iy,...,ix <n—1:
1<k<n-—I: i1+t =i

(B)#(0,1)
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k (")()
b Y Y 0, A (2.00), 56 = o xe) — !
(1)§I]€<§y’;l_ll:z 1 i—1 i-th k—i
(lk)#(O 1)

+ZL(n R ) T Tl 1(6)),

where z(g) = 22;1 nr(ow)ek, x () = n(e, ow), x = mow, and

L(n—1,Ty,1,x(e), x)

L — it (n—1) (n l)
o m(Twol (x +1(x(e)—x) =T, ;" (x))dt.

The facts g € Fy, 5(E®,RP) and || 7, (e, )|l oo — O follow from [25] again. n

We give the asymptotic expansion of the function w > det %Two (e, (e, ow)).
Let us put
u(k,i) = min{t(iy, j1 + 1)+ -+ 1(ip, jp + 1)
0<iy,...,ip<k,iji+---+ip=k
0<ji.....jp <i.ji+-+jp =i}
foreach k = 1,...,n. Then we see the equation

e = %min({u(k,O)}U{u(l,i):l =0,....k—1i=1....k=1}).

Lemma 3.13. Assume that conditions (G.1),, and (G.2), are satisfied. Then the
Sfunctions g (e, w) := det a%Two (e, (e, 0w)) and g(w) := det T,, (wrow) satisfy con-
ditions (g.1)—(g.5).

Proof. For each e € E, x € Oy,), 0 <k <n, and ¢ > 0, we write Te(s, x) =

(ZE,l(S’ X), EREN ZE,D(Ev X)), TE,k(x) = (te,k,l(x)7 R ZE,k,D(x)) and ’fe,n(& X) =
(fem1(8,X), ..., Ten.p(e X)), where T, o = T,. Note the form
0te 1 (e, ot ,
det—T (e,x) = ngn( ) e.1 (&, %) e.n (2 X)
9y (1) 9xy(D)
for x = (x1, X2, ..., xp) € Ji(e), where n is taken over all permutations on

{1,2,..., D} and sgn(n) denotes the sign of 1. We also recall the form
0
det aTe(e, x) = detT,(x) + ke,1(x)e + -+ + ke n (X)€" + Ke n(e, x)e",

where we let

8el
ker@) =Y senn) Y H Ueip.p(X)
n

ox
0<iy,....ip<k:p=1 n(p)
i\ +tip=k
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861
Ize,n(g,x) ngn(n) Z Z l_[ Z pap(x) l —n

0x
i=n+10<iy,. ,lD<np 1 n(p)
i1+ -HD i

T & 0e1.q(X) 1\ Ve (6%) (2 Olep(e.x)
+ngn(n)Z{(HZ 0% (q) ) 9% () (H 0%y (p) )}

g=11=0 p=j+1
(3.29)

foreache € E, x € Oy(e), k=1,2,...,nand & > 0 (see [25, Lemma 3.2]). Note that
Ke k 1s of class C"k+B and has the form

861 Up)
Gw= T Tean X 1‘[(’ =)

ox
J1se+,JD 202 0<iy,...,ip<n:p=1 n(p)
Jit+ip=i i1 +-+ip=k

foreachi =0,1,...,n —k and x € Oy(). For 1 < j < D, we let z(0) € RP as
z(0); = l'and z(0);, = O for jo # j. By using Lemma 3.11, we have

ot i (p)
(%) ol
97F telq(J’)
Z(l)’-%EEERD: )lsioz-i;;SD axzo - Xi, (z(0), z(D), ..., 2(p))

[(z(0),z(1),....z(p)) =<1
+1 +1 j
1L P < ITEFV G| < est I To ) EPHD

f e,l,q
and
Ote,ig\ @ 8tel,q (»)
H( 0x; ) () - ( 0x; o )H
Pt X
. {a—"()( 20), ... 2(p))
2(1),nzp€RP: | 1<) i, <D Xig =+ Xi

1(z(0),...,z(p))I=1

0Xio *** Xi,

P teia0) . z(p))}‘

< 12250 () = 12TV ()]

e,l,q e,l,q
1 1 -
< ITEV ) = TV )] = maxdes, esnd | T /@74 ]x =y
for x € Jy() and y € Uy (ey With [x — y| < 1o, and for 0 < p < n — k. Therefore

@) alelpal’ Up)
Ools YOy Y H(\(ax()) )|

J1ses D201 N 0<ij,...,ip<n:p=1
J1+-+jp=i 11+"'+1D=k
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= Z Z Z (CS7)D ||Te/(x)||’(i"j‘+1)+“'+t(iD,jD+1)

.jl""’jD, 20: 7 0<ip,..ip <k:
Jit-+jp=i i1+-+ip=k

= 6’60||Te/(x)||u(k’i)
for some constant cgg. Moreover, we have
19 () = kO ) < carll TL)[ED ) — )P

by using Proposition 3.1 foreach e € E, x € Jy(), y € Us(e) With |[x — y| < 1o and
i =0,1,...,n —k for some constant cg; > 0. On the other hand, the form (3.29)
implies

[Re,n (e, )| < DY+ )P Qe T, (x) [ MM1=i=Ln GO 4 DID(2e57)P erole)

D
« Z ”T/(x)”(j—l)min{t(l,1),...,t(n,1)}+t~+(D—j)min{t(l,l),...,t(n,l),f}
e

j=1
= 6‘3.3(8)||Te/(3€)||1z

with @ = min{u(n + 1,0),...,u(Dn,0),7 + (D — D)min{t(1,1),...,7(n,1),7}}

forany e € E, x € J;(¢) and a small £ > 0 by putting

ce2(¢) = D!'max((n + 1)P C578 DQ2es7)Pero(e))

with ¢33(e) — 0. Consequently, by the asymptotic expansion of the composite func-
tions (see [25, Proposition 2.3]), we obtain g(s, ®) = g(w) + Y F_, gk (@)e* +
&n(e, w)e™ with

j=1j-l k9 () (i, (ow). . ... 73, (0w))

8j (@) = Kay,j(TO®) + Z Z Z oo k!

I1=0k=1 i1,..,ixg>1:

i 4Fig=j—I
n—1 n—I (k)
ZZ Z K o, (x) (7, (ow), . i (0w)) i—n+
~n(8’ ) Z I)C JT, O'CI(C)‘ , TT, ow . l

[=0k=1i=n—1+4+11=<iy,...,ix <n:

i1 +etig =i
n n-l k el
+ g,; ;Kwo () (€), ..., 2(8), tn (e, 00), x(€) — x, ..., x(e) — x)ﬁ
i—1 i-th k—i

(1 t)n—l—l

> _ n—
+; o (n—=I— 1)|(c(:z)_?(x(8)+t(x x(g))— K(n_l)(x))dt (@)

+ Kwo,n (x(e)) — Kwg,n (x) + Ewo,n (e, x(¢)),
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where z(¢) = Y j_; Tk (cw)ek, x(¢) = n(e, 0w) and x = wow. Then we see
j—1j—I ” (k)

1o @) 7 oo - 1773 lloo
GO = gy (o) + 33 Y e o .

1=0k=1 i1,...,ix>1:
i1 +etig=j—1

< c60(||T40 (row) 40O

j—1j—I
77, lloo <+ |70 Ml oo
+>2. D T o)
k!
1=0 k=1

015eesip >10
i1+-+ig=j—I
|min({u(j,O)}U{u(l,k):l=0,...,j—1,k=1,...,j—l})

=< ce3[| Ty (mo )|
= ca | T, (row)|| P

with constant cg3 > 0, where #; is defined by (2.1). Moreover, for w, v € E* with
wo = Vo,
1gj (@) — & (V)] < |Kug,j (TOW) = Ky, j (TOV)|

i—1 j—I
J J 1

LD D) DD B

1=0k=1 i1,...,ix>1:
i1++tig=j—I

k
o {180, (r0w) 2, (ro) o oot

k
k
+ 3 kP, (row) |ooll|mi, (0w) — mi, (V) [ ||mu||oo}
q=1 1<u<k:
k#q

= caalg (@) dg(w, V).
by putting 1 € (r#, 9) for some constant cgs > 0. On the other hand, it follows

from the definition of the remainder g, (e, ) addition to condition (v) in GDMS’s
definition that

1gn (e, )]
n n-l
(7= 177 ll0)*
<c6022( #w e, )||OOZ||z<s>||' M (e) — x [
=0 k=1 i=1
x | T}, (ow) [ “¢P
n—1 n—I
n—1I w(e,)—m (I,n—1)
+c602(n_ T o) = oo Ty, (row) [0

+cot (e, ) = P [ Ty (o) OO + e33(e) I TL (x ()] *

< co5(9) | T, (mo@) M MP = c5(e)|g ()]
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for any @ € E* for some number cg5(g) with lim,_,¢ ces(¢) = 0, where the last

inequality uses the fact || T/ (x (e))|# < c33(e)(1 + col|7 (&, ) — 7 || 0o) ¥ || T, (Tow) 1%
Hence, the proof is complete. |

3.4. Proof of Theorem 2.4

Proof. We notice T, (e, Xy) = T.(B(1/2 4+ a(e)e, 1/2)). The function T, (e, z) has
the expansion Ty (g,2) = To(z) + Yy Tes(2)eF + Ty (e, z)e" with

Tox(z) = (—a(e))*(e +z) !
and
To(e.z) = e(=1)" la(e)" ' /((e + 2)" (e + z + a(e)e))

as in (2.3). In addition to the fact |e 4+ z| > 3/4 foralle € E and z € O,, it is not hard
to check that condition (G.2),, is satisfied with #(/,k) = = 1 for all /, k. Hence, we
obtain the assertion. [

3.5. Proof of Theorem 2.5

Proof. (1) When a > 5, the number p(n) becomes zero. Therefore dimg K > p(n) is
satisfied whenever n > 0. Thus, Theorem 2.2 implies s(¢) has asymptotic expansion
with any order n > 0. The coefficients of s(g) are calculated as follows. Recall the
form (3.17) of s;.. We see h = 1 and v([e]) = 1/2¢ for e € E. We obtain

Nuh = E Sq,u—v2v,q,5(0)
0<v<u
0<g<u-—v:

(v,9)#(0,1)
min(v,q)

= > Z Squ—v ’”“;’,( 177/ (log 5)7~ fZeq ’(fa)

0<v<u
0<g<u—uv:

(v,9)#(0,1)

We notice that this is a constant function. Note the equations v (% log|g|) =—2log5
and Zg 1 s0)h(w) = —21log 5. By using v(e, 1) = 1, we obtain v;(N,_;jh) =
Vi (Zo,1,50)h) = 0for 1 <i <k — 1. Thus, we get the equation

k—1 k—1
—1
= i Z s ]’l —i i N _ih == e/v h .
S(ilog|2)) (lE:lV( 0.1,5(0)1) Sk +;=OU( k )) 5‘)( kh)

This yields the form (2.5) of sy.
(2) Assume 1 < a < 5. Put ag = log5/log(5/a). We show some claims below:
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Claim 1. Foreachn > 0, ife = O(QE,,,S(S) (&, h)) then we have

Sn(e) < ;Cn,s(e)(& h).

Indeed, note that the Ruelle operator of ¢(e, w) = log || %Two (e, (e, 0w))|| has
the form L(e)p(e) f(@) = > oo, (1/5¢ + ¢/a®)*®. Here, f,,,s(g)(s, -) is given as
follows: By applying Taylor theorem to the function x > (1/5¢ 4 x)*®, we get the
expansion

1 e \'® ~ [ s(e) 1\'®@F ¢ \k
() =2(V)&) G
k=0
s(e) 1 e\ Ol ot
+ (n N 1) (5—e + “a_e) (a7) (3.30)

foreach e € E and ¢ > 0 for some @ = a(e,n + 1,¢,a) € [0, 1]. Therefore,

B 1 s(e)—n—1 n 1
Lnse) (& o) = (ns:f)]) > (S_e + aaie) (aie) - i f(e-w).

ecE

This implies that fn s(e) (&, h) is a constant function. We obtain the claim by (1.7) in
Theorem 1.1.

Claim 2. The inequality n < ags(0) < n + 1 is satisfied, where s(0) = log2/log 5.

Indeed, the assumption a < 5/2'/®+1 jmplies

loga<1 1 log 5 <n+1

log5 — n+ 1S(0)’ log(5/a) — s(0)

and, therefore, s(0)ag <n + 1. By a similar argument as the one above, if n > 1, then
5/21/" < g implies s(0)ag > n. Thus, the claim is valid for any n > 0.

Given Re(¢) = (1/5¢ + ae/a®)* @71 (¢/a®)" . Then we have

Ensote. o = ) ) T ko)

Now we will prove that 3",z Re (&) < £905¢). Note that

1 € - loge
@ e —
log(a/5)

where the notation [ ] means round up to the nearest integer. Recall the notation
M(n + 1, s(¢)) in Proposition C.1 replacing n :=n + 1, a := 1/5%, x := ¢/a® and
s := s(¢e). Since ¢ > M(n + 1,s(¢)) and ¢ — L(n + 1, s(g)) are continuous, there
exists gg > 0 such that M(n + 1,5(¢)) > M(n + 1,5(0))/2 and L(n + 1, s(g)) >

= =:a1(e) < e < [ai1(e)] =: ax(e),
a
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log(M(n+1,5(0))/2)

L(n+1,s(0))/2 forany 0 < ¢ < gg. Putaz = | 1. We decompose

log(a/5)
Y o Re(e) into
az(e)—1 az(e)+az—1 %)
DRe(e)= Y R(&+ Y R+ Y Rele)
e e=1 e=a(g) e=as(e)+a3

= I1(e) + I2(e) + I3(e).

Claim 3. Let 1 < a < 5 andn > 0 be the largest integer satisfying a < 5/21/¢+1,
Then limsup,_, (11 (¢) + I2(e)) /(=" loge) < 400 if a = 5/2Y0*D for some
n >0, and limsup,_,o(11(¢) + I2(g))/ £2050) < 460 otherwise.

Indeed, we have

az(e)+az—1 s(0)—n—1 .
L)+ L)< Y ( 1 ) <aie> " (. s(e) = 5(0))

5€
e=1
8n+1(—;);(()555) + a3) ifa = 5/21/(n+1)’

sn+1 )02(8)+03 sn+1

gntl (2a"+1 ~2antl ifa < 5/21/(n+1)'
1

sn+1
2an+1

To show the assertion, it is sufficient to check that ¢"T1(57+1/(24"1))%2() <
c£2050) for some ¢ > 0. This is implied by the facts a,(g) < a;(e) — 1, (1/2)%1®) =
£2050) “and (5/a) Va1 = ¢=n=1 and by putting ¢ = 24"+ /5"t This yields

the assertion of the claim.

Claim 4. Let 1 <a < 5andn > 0 be the largest integer satisfying a < 5/21/0+D),
Then limsup,_,  I3(g)/e%5©® < 400,

To show this, we will apply (3.30) to the equation (C.1) in Appendix C taking a:=
1/5¢, x:=¢/a® and s :=s(g). We obtain the inequality (a/5)*3 <M((n+1,s(0))/2 <
M(n + 1,5(¢)) and (a/5)%2® /e < 1. Therefore, (a/5)2E13 /e < M(n + 1,5(¢))
is satisfied. Moreover, it follows from Proposition C.1 that

e > as(e) + a3 = é (%)e < M@ + 1,5(¢))

a > L(1,s(e)) ifn =0,
= n—s(e)

a>Ln+1,s(g)) (% (%)e)"H_S(E) ifn>1.
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Note also that L(n + 1,s(¢)) > L(n + 1,5(0))/2 =: L(n + 1) > 0 for 0 < ¢ < &o.
In the case when n = 0, we have

o 1 e @1 ¢
I3(e) < Z (S_e + L(l)a—e) 2¢

e=as(e)+az
1 = £\ 1 s
< a0 Z ((1 + L(l))a—e) ( = < pry and s(¢) > S(O))

e=aj(e)+a3

_a + L(1))*©® ( 1 )a3 £a05(0)
~ LA —=1/a) \as©®

( aaz(a) > aal(s) — Eloga/sa — 8—a0+1)_

Thus, the assertion of the claim holds in the case n = 0.
In the case when n > 1, we obtain

0o n—s(e) s(e)—n—1
1 1 ra\e\nti—-s@® ¢ g\n+tl1
L)< ) = Lt (; (3) ) = (£)
e=az(e)+a3

o0

<L+ 1)@t Y (aie)s@) (% (%)e)—nﬂ(s)

e=as(e)+as

C-s(e)—n—-1<0)

<L+ l)s(O)—n—ISn ( (.- s(e) > s(0) and 55(0) _ 2),

N as(e)+as
1(2)")
1(5\"
1-3(2)
where in the last expression, we remark that (5/a)"”/2 < 1 by the definition of n.

In the last expression, we notice the estimate ((5/a)"/2)%2® < ((5/a)"/2)*1® =
£9050) ¢=n Thyg we obtain the assertion of Claim 4.

Claim 5. Let 1 <a <5 and n>0 be the largest integer satisfying a<5/2Y @+ Then
liminfs_o I1(¢)/(—" T loge) >0 ifa=5/2" @+ and liminf,_.q I1(¢) /e?05® >0
otherwise.

By virtue of Claims 14, s(¢) = 5(0) + ¢(g)e?! and t(¢) = O(1) are satisfied with
aj = aops(0) — n for any small > 0. Then we have that for each n > 0,

az(e)—1 s(e)—n—1
1 e g \nt1
noz Y (zvs) ()

e=1
- 0
a>(e)—1 (5%)5

> (e
5 Gy

\%

>t(a)s"l

%

(. t(e)>0)

™ N

(5)

w|
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e \i(e)sh gn+tl ay(e) —1 ifa = 5/21/0+D,
> (—) RS (5n+1 )al(s)_ sn+1
ad1() on+1 zan+15n+1 20T f 4 < 5/21/(n+1)
2qnFT

(.- az(e) = ay(e)).

Here we notice that as(g) > a;(¢) = log ¢/ log(a/5) and (5”“/(261”))’11(8) =
2050 g=n=1 Note that

e t(e)e1
(_) = exp(t(e)e®! log &) exp(— 1(8)

P
i ® loge)

( / 5°
— exp(0) exp(0) =1

as ¢ — 0. Thus, the assertion of Claim 5 is yielded.
By Claims 3-5 and the fact }_,cg Re(e) = I1(e), we obtain } . Re(e) =<
—&"lloge if a = 5/21/@+D and < £905© otherwise. Thus, so is £, () (&, h).
Hence, the proof follows from Claim 1. [

3.6. Proof of Proposition 2.6

Proof. We take t; and ¢, so that

Ig1(@)] 5\e log4

f1 = sup {t € (0,1]: = sup (—) < —|—oo} = = —,
wEEOO |g( )lt ecE 4 logS

g1 ()] 5T\¢ log 3

tz—sup{te(O 1]: =sup (=) <+4oo; & 1 = .
weEOO |g( )lt ecE ( 3 ) } 10g5

In view of Theorem 1.1, the number p(n) is given by
1—1¢
pn) = max(n(l — 1), y)

by p = 0and i = 0. Therefore,
1 —log4 (1 —log3/log5)) _ n(l —log3/log5)
log5 2 B 2
by 1 —log4/log5 = 0.1386... and (1 —log3/log5)/2 = 0.1586.... By virtue
of Corollary 1.2, when s(0) > p(n), the dimension dimgy K(¢) has an asymptotic

p(n)=n max(

expansion with order n at ¢ = 0. We see

log?2 1-1

g2 _ og3/log5 < log2/log5

log 5 2 (1 —1og3/log5)/2
<— n <2.

5(0) = =2.713...

Hence, dimy K(¢) has at least the 2-order asymptotic expansion at & = 0. ]
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3.7. Proof of Theorem 2.7

Proof. We will check the conditions (G.1), and (G.2),, in Theorem 2.2. Let p(w) =
log | T,,,(row)|| for o = wowy -+ € E and recall the number p defined by (1.4)
with g(w) = (1/D) det|T,, (row)| and ¥ = 1. The condition (G.1), is yielded by
condition (K.1). We will check (G.2), (i). Since any inversion map is of C* and
since (g, v) and a(e, v) have the n-order expansions (2.7) and (2.8), it is not hard to
see that the map T, (e, -) for e € Ej has the n-order asymptotic expansion T, (s, ) =
Te+ Y 5oy Te,kek + Te,n (&,-)e" for some C*°(Oy()) maps T, y and Te,n (e, ) with
convergence spyco, ., | T, (e, x)] — 0and SUPxe0, ) | %fe,n (8,x)]| > 0ase — 0.
Since Ty (e, ) is a composite of a finite number of such functions, we also get an
n-order asymptotic expansion of Ty, (g, -) for each w € E and therefore (G.2), (i) is
fulfilled. By virtue of condition (K.2), the maps Ty, (¢, -) that change by ¢ are of a finite
number. Thus, conditions (G.2),, (ii)—(iv) are valid by putting 7(/, k) = f = 1. Hence,
the assertion is obtained from Theorem 2.2. |

A. Thermodynamic formalism and Ruelle operators

In this section, we will present useful results for the proof of the main theorem.
We will recall the notion of thermodynamic formalism and some facts of Ruelle trans-
fer operators which were mainly introduced by [17].

We use the notation defined in Section 1. The incidence matrix A of the graph G
is called finitely primitive if there exist an integer n > 1 and a finite subset F of E"
such that for any e, ¢’ € E, ewe’ is a path on the graph G for some w € F. Note that
A is finitely primitive if and only if (E°°, o) is topologically mixing and A has the
BIP property (see [23]). Then it is stronger than finitely irreducible. Here the matrix
A has the big images and pre-images property (BIP property) if there is a finite subset
{e1,...,en} of E such that for any e € E, there exist 1 <i, j < N such that ¢;e and
ee; are paths on the graph G. A function ¥: E*° — R is acceptable if there exists a
constant cgg > 1 such that for any e € E and w, v € [e], V@)=V W) < oo (see [17]
for the terminology). For a real-valued function ¥ on E°, the topological pressure
P () of ¥ is formally given by

1 n—1
P(y) = lim —log Z exp( sup Z W(akw)). (A.1)
n—oon
weEn:[w]£0 welwlj—o
If ¥ is acceptable, then P (/) exists in [—oco, +00] (see [17]). We mainly consider
the pressure function ¢ > P(ty) € [—00, +00] with sup,cgeo ¥(®) < 0. In this
case, it is a basic fact that the pressure function is strictly monotone decreasing
and convex (being a limit of convex functions), and thus continuous. In particular,
limy—, o0 P(ty) = —o0 holds.
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For a real-valued function ¥ on E*°, the Ruelle operator £ associated to v is

defined by
Lyfl)= Y ¥ fle-w)
ecE:t(e)=i(wg)

if this series converges in C for a complex-valued function f on E* and forw € E°.
Here e - w is the concatenation of ¢ and w, i.e., ¢ - @ = ewow; - - -. It is known that if the
incidence matrix is finitely irreducible and v is in Fy(E°°, R) with finite topological
pressure, then £y becomes a bounded linear operator acting on both the Banach
spaces Fyg ,(E°°) and Cp(E°). We begin with the following proposition.

Proposition A.1 ([17, Proposition 2.1.9]). Let G = (V, E,i(-),t(-)) be a directed
multigraph such that the incidence matrix of E® is finitely irreducible. Take an
acceptable potential function ¥: Fg(E*°) — R. Then P(Y) < oo if and only if

|y oo < 00 if and only if Z := " e g exp(SUp ey ¥ () < .

A Borel probability measure p on E is said to be a Gibbs measure of the poten-
tial ¥ if there exist constants ¢ > 1 and P € R such that forany w € E*® andn > 1

p({v e E®:v; = w;,0 <i <n}) -
exp(—nP + Y h—o ¥ (0*w))

Recall the notation £(X) which is the set of all bounded linear operators acting on a
normed linear space X . The following is a version of Ruelle-Perron—Frobenius Theo-
rem:

<

Theorem A.2 ([1,2,17,21,22]). Let G = (V, E,i(), t(:)) be a directed multi-
graph such that the incidence matrix of E® is finitely irreducible. Assume that
Y e Fg(E®, R) with P(Y) < oco. Then there exists a unique triplet (A, h,v) €
R x F p(E®) x Cp(E®)* such that the following are satisfied:

(1) The number A is positive and a simple maximal eigenvalue of the operator

Ly € L(Fyp(E)) and is equal to exp(P (¥)).

(2) The operator £y € £(Fgp(E®)) has the decomposition £y = AP + R
with PR = RP = O. Here the operator P is a projection onto the one-
dimensional eigenspace of the eigenvalue A. Moreover, this has the form
Pf = [goo fhdv for f € CoL(E™®), where h € Fg,(E®,R) is the cor-
responding eigenfunction of A, and v is the corresponding eigenvector of A of
the dual éﬁ*w with v(h) = 1. Here h is bounded uniformly away from zero and
infinity, and v is a Borel probability measure on E®°. In particular, hv is the
o -invariant Gibbs measure of .

(3) The spectrum of R € L£(Fgp(E)) is contained in {z € C: |z — A| > p} for
some p > 0.
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B. Asymptotic perturbation of eigenvectors of bounded linear
operators

In this section, we study asymptotic behaviour of the eigenvalues and eigenvectors of
perturbed bounded linear operators under an abstract setting.

Put K =R or K = C. Let (Xo, || - |lo) be a normed linear space over K and
(X1, ] - |l1) a Banach space over K such that Xy C X and || f|lo < ||.f|1 for any
f € X1. We write X* as the dual space of X and £* € £(X*) as the dual operator
of £ € £(X).

Let £ € £(Xo) N £(X1) and £L(g, ) € £(Xyp). Take (A, v), (A(e), v(s, ) €
K x X sothat £*v = Av and £(e,-)*v(e,-) = A(e)v(e, ). We assume the following
conditions:

(L.1) There exists & € Xy such that £ = Ah and v(h) = 1.

(L.2) The operator £ has the decomposition £ = AP + R satisfying that (i) P
isin £(Xp) N £(X1) and forms P f = v(f)h, (i) PR = RP = O, and
(iii) A is in the resolvent set of the operator R € £(X1).

(L.3) limsup,_,, [[v(e,-)[lg/v (e, h) < oo, where

Ive.)llg == sup  Ju(e f)I.

feXoll fllo=t
(L.4) There exist operators &£1, ..., £y € £(Xo) N L(X1) and éé,,(s, ) €
£(Xo) such that £(e,") = £ + L1 + -+ + £,&" + Lu(e, -)e" and
£ (e, f)llo = 0ase — 0foreach f € X;.

LetS € £(X1)be S = (R —AI)"1(I — ), where T is the identity operator on X.
Numbers A € K and linear functionals «z: X1 — K (1 < k < n) are defined by

k

Me = ki—j(Ljh), (B.1)
j=1
k

k() =D ki—j (AT —£,)Sf) foreach f € X, (B.2)

j=1
inductively with k9 = v and £¢ = £. We have the following:

Theorem B.1. Assume that the conditions (L.1)—(L.4) are satisfied for a fixed integer
n > 0. Wedefine k(e,-) € Xg by k(e, f) =v(e, f)/v(e h) for f € Xo. Then

(M) Ae)=A+Aie+--+ 18" +0(e") inK;

Q) k& f=v(f)+ri(fle+ -+ rka(f)e" + 0(e") inK foreach f € X;.
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Corollary B.2. In addition to the conditions (L..1)—(LL.4), we assume
liminf|v(e, h)| > 0,
e—>0

and there exists 1x € X1 such that v(e, 1x) = 1 for any ¢ > 0. Then the eigenvector
of A(g) has the expansion

Ve f) = vv<(1];))

for each f € X1, where we put vi.(f) = ZOsi,jsk:i+j=k biki(f), bo = 1/v(lx)
and

+vi(Ne+ -+ ()" + o) inK

: (=D ; i
Z v(lx)l+1 > )t k(L)Y

=1 1505l 200 1 J
ipteetij=I
i1+2ix++ji;=j

forl <j <n.

Proof. Put f = lx in Theorem B.1(2). Then we have v(e, h)™! = v(lx) +
Yo kel x)ek + o(e™) and v(1x) # 0. The assertion follows from the asymptotic
expansion of v(g, h) and the form v(e, ) = k (e, f)v(e, h). [

Remark B.3. (1) The results are generalizations of the results of [24] which gave the
asymptotic behaviour of the maximal eigenvalue of the Ruelle operators with finite
state and the corresponding eigenprojection.

(2) When the remainder £, (s, -) satisfies || £, (z, -)||1 — 0, the above results are
implied by the general asymptotic perturbation theory [12]. If &£, (e, -) is a Ruelle
operator with finite state and fulfills || £, (¢,-) o = O with || - [lo := || - [loo, then similar
assertions follow from [24]. Keller and Liverani in [13] considered convergence of
eigenvalue and eigenprojection in an abstract setting under a uniform Lasota—Yorke
type inequality such as ||£(g, f)*|l1 < ca”|| fll1 + cM"| f]lo for any ¢ > 0 and
f € X for some constant ¢ > 0,0 < M < sup,., [|£(e,-)|lo and 0 < &« < M. Under
such an inequality, Gouézel and Liverani in [8, Section 8] studied the asymptotic
perturbation of bounded linear operators. We emphasize that our assertion does not
need a uniform Lasota—Yorke type inequality.

Proof of Theorem B.1. We start with the equation (£ — AZ)S = I P on X1. By
the definition of the operator J#, this is a projection, i.e., P2 =P, The equation
follows from (I — P)( R —AI) =R —-AT + AP =L — 1.

We first prove assertions (1) and (2) in the case when n = 0. Consider the equation

(A) = A)v(e, h) = v(e, (L(s,) — L)h) (B.3)
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by using £(g, )*v(e, -) = A(e)v(e, -) and L£h = Ah. This yields the inequality
[A(e) — A| < |lk(e,)|IgllLo(e, h)|lo — O with conditions (L..3) and (L.4). Therefore,
we have A(g) — A. On the other hand, we obtain that for each f € X
ke (e, (I = P) )l = k(e (£ —AI)S f)]
= |c(e, (£ — L(e.-) + (A(e) =) I)S f)
< k(e ) oL e, ) = £)S fllo + [A(e) = AL[IS fllo) — O
as ¢ — 0. This and the fact (e, h) = 1 imply « (g, f) — v(f) for f € X;.

Assume n > 1. To show the assertions (1), (2), we assume that the assertions
(1), (2), (B.1) and (B.2) are valid for each n’ = 0,1, ...,n — 1. We will check the

case n’ = n.By (B.1), foreachn’ = 1,2,...,n — 1, and equation (B.3), we have the
following:
AEe) —A—Ajg—-— A"}
8”
AE) = A —Aig—-o-— Ayt
_ K(S, (8) 1€ n—1¢ h)
sn
Lle.)— & — Y2l g6l ke Lih)e =3y ki (Ljh)el
= (e, el h) + Z el
=1

=«

gn—l

n— -1 —1-1 /
. £e,)— £ =721 L6t M+ ”Z k(e &h) — Y120 ki (L1h)e)
gn
=1

n—1

= 0(Lnh) + YKt (L1h) = )k (£1h) =2 A
=1

=1
Thus, (1) and (B.1) are valid for n. Finally, we check (2) and (B.2). We obtain
_ n—1 / TP n—1 !

Ko f) =iz k(e _ K(E’ f) e

en en &

=1

_ K(g, £ 269+ 00 —x)zsf) _"i S (e — 208 )
=1

€ gnt

$f)

£(e.) —£— Y72 L€
:_K(S’ (&) nZl_1 1€

&

-l 1
s f) (e, A= Ko bt

p (8’ it - 2pe f) -3 Zim il = 208 1)
=1

en gn—l1
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Sf
LK) v - I e (e

Sn—l

A . n—1 I
EEES =t 6.5

AMe) = A =021 !
+ p

(MI-£)SS)
I=1

n—1
= —v(La8 f) + Aav(S 1) + ) knt (T — 21)S f)
=1

= ZKn—l((AlI - oc@l)sf) = kn(f).

=1

Hence, (2) and (B.2) are fulfilled for n. ]

C. Estimate of an intermediate point of the binomial expansion

The Taylor expansion implies that for any n > 1, a > 0 and s € (0, 1], the map
x > (a + x)* has the form

n—1
(@a+x)f=d + Z(;)as_kxk + (Z)(a + xa) " x" (C.1)
k=1

for some constant « = «(n, a, s, x) € [0, 1], where (,i) is the binomial coefficient

s(s —1)...(s —k + 1)/k!. In this section, we will estimate the lower bound of the
intermediate point o which plays an important role in giving the asymptotic expansion
of exp(t¢(e,-)) (see the Proof of Theorem 2.5). Note that the estimate of o was studied
by [9, 10].

Proposition C.1. Assume that the map x — (a + x)° has the expansion (C.1). Then
there exist two positive continuous functions (0,1) > s — L(n,s), (0,1) > s —
M(n,s) € (0, 1) such that for any a,x > 0 with0 < a/x < M(n,s)

) ifn=1thena(n,a,s,x) > L(n,s);

Q) if n > 2, thena(n,a,s,x) > (a/x)" 7 L(n,s).
Proof. (1) Assume that n = 1. We have (1 + a/x)* — (a/x)* = s(a + a/x)*" 1 If
x,a satisfy a/x < s"/(=92=5/(0=)=1 hep

o= - —
X

1/(1—s)
(#+1)"=(2))
si/=s)  g1/(1=s)

T 5. 0s/(—s)  1/(-s)"

g1/a-9) 1 s1/0=9)
= 2s/=s) ~ 3 25/(=9)
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Thus, we obtain the assertion by putting L(1,s) = /(0927109 and M(1,s) =
Sl/(l—s)z—s/(l—s)—l‘

(2) Assume that n > 2. We will solve the equation (C.1) for «. This equation

() =S ()@ () o

Noting the fact sign (}) = (—1)""', we have

e mr e s S

k=0

a\s—n+1 Ky
-0 e ()
by putting

_pfa\ st a\s "2 00N sa\n—1—k
pisa = 1 () (0 ) e D) ()T

k=0

implies

Thus,

=" (i Gl )"

When a < x, we see
n—2

b(s.a,x)| < (%)_”"_1 2+

k=0

Ky a\n—1-k a\1—s
_ < (=
(k)‘(x) - (x) co7
with cg7 = cg7(s,a,x) = 2% + ZZ;% |(,°;) | Consequently, for any x,a > 0 satisfy-

ing that a/x < M(n,s) := min(L, (1/c67)"/ =, (172"~ | )| /(|(,* )] + 1), we
obtain that |b(s,a, x)| < 1 and

us (%)n’?—\;l %(%)1/@4)'

Hence, the assertion is fulfilled by putting L(n.s) = 3 (| ()| /(| (,%,)| + 1))1/(n_s). ]
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