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Iterated function systems based on the degree of
nondensifiability

Gonzalo García and Gaspar Mora

Abstract. In the present paper we introduce the concept of iterated function systems (IFS)
having at least one �-condensing mapping which belongs to the finite set of self-mappings
that define the IFS. It is shown the existence of an invariant for those IFS. Whenever all the
self-mappings are �-condensing we prove that the invariant set is compact. We propose some
applications of those IFS having �-condensing self-mappings to the superposition operator
defined on the Banach space C.Œ0; 1�/.

1. Introduction

Since the publication of the Hutchinson’s work [16], and its subsequent popularization
due to Barnsley [4] in the 90s, many authors have extended, in several directions, the
classical theory of iterated function systems. For concrete references and results, see
[5, 8, 12, 21]. In the following lines, for a better comprehension of the manuscript, we
recall some elementary definitions and results related with iterated function systems.

Let .X; d/ be a complete metric space and, as usual, for a given non-empty set
B � X , NB is the closure of B . We recall that for two non-empty and bounded subsets
A;B of X , the Hausdorff–Pompeiu semi-metric is given by

ı.A;B/ WD inf
°
" > 0 W A �

[
b2B

U.b; "/; B �
[
a2A

U.a; "/
±
;

where U.x; r/ stands for the closed ball centered at x 2 X of radius r > 0. If C is the
class of the non-empty, bounded and closed subsets ofX , then .C ; ı/ is a metric space
[6, Lemma 4], and if K is the class of the non-empty and compact subsets of X , then
.K; ı/ is a complete (in fact, compact) metric space [27, Theorem 9.2].

To set the terminology, we give the following definition (see [6]).

Definition 1.1. Let Q be a class of non-empty subsets of a metric space X ,
¹f1; : : : ; fnº a finite family of self-mappings of X and assume that for each Q 2 Q,
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f1.Q/ [ : : : [ fn.Q/ 2 Q. The mapping F W Q! Q defined by

F .Q/ WD

n[
iD1

fi .Q/ for all Q 2 Q

is called the invariance operator associated to Q. We say that a set H 2 Q is:

(i) F -invariant if it is a fixed point of F , i.e., F .H/ D H .

(ii) F -subinvariant if H � F .H/.

(iii) F -fractal if it is F -invariant and compact.

Note that the invariance operator F is well defined, that is, F .Q/ 2 Q because
we are assuming that f1.Q/ [ � � � [ fn.Q/ 2 Q whenever Q 2 Q. To simplify the
notation, for a metric spaceX , we denote by F D ¹f1; : : : ;fnº the invariance operator
associated with the self-mappings f1; : : : ;fn ofX and, unless it is specified otherwise,
we assume that F is defined on the class of all non-empty subsets of X , i.e., Q is the
class of the non-empty subsets of X , unless it is specified otherwise.

We recall that a mapping f W X ! X , .X; d/ being a metric space, is said to be
r-contractive, for some r 2 Œ0; 1/ (often called the contractiveness ratio of f ), if the
inequality d.f .x/; f .y// � rd.x; y/ holds for all x; y 2 X . From this concept, we
give the following definition (see [4, 27]).

Definition 1.2. Let X be a complete metric space and K be the class of non-empty
and compact subsets ofX . Assume that F WD ¹f1; : : : ; fnº consists of ri -contractions
self-mappings of X for i D 1; : : : ; n. Assuming that F is defined on K , F is called
an iterated function system (IFS).

Note that, in the above definition, we give the classical definition of IFS. However,
there are other more general definitions. For instance, in [5], the concept of IFS is
defined from self-mappings of X . In [21], generalized IFS are defined, where the
(possibly infinite) set of mappings fi are affine contractions.

Next, we state the following well-known result (see, for instance, [4, 16]).

Theorem 1.3. With the notation of Definition 1.2, assume that F WD ¹f1; : : : ; fnº is
an IFS. Then there exists a unique F -fractal A�. Moreover, given K0 2 K , the sets
defined by Km WD F .Km�1/ for m � 1 satisfy

ı.Km;A
�/ �

rm

1 � r
ı.K1; K0/ with r WD max¹r1; : : : ; rnº:

The above result relies on the celebrated Banach Contraction Principle. Indeed, for
a given IFS F WD ¹f1; : : : ; fnº, the operator F is really an r-contractive self-mapping
of the complete metric space .K; ı/, with r WD max¹ri W i D 1; : : : ; nº (each ri being
the contractiveness ratio of fi ). Therefore the existence of a fixed point of F (as well
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as the iterative procedure to approximate it) follows from the Banach Contraction
Principle.

It is important to stress that, by using the so-called measures of noncompactness
(see, for instance, [1, 3]), some interesting approaches to the IFS theory have been
developed in [6, 19, 20]. Before describing these results, it is convenient to state two
important and well-known fixed point theorems based on the measure of noncompact-
ness. First, we recall two widely studied measures of noncompactness, which will be
used in later examples, namely those called of Hausdorff and Kuratowski (see, for
instance, [1, 3]), denoted by � and �, respectively, and defined as

�.B/ WD inf
®
" > 0 W B can be covered by finitely many balls of radius at most "

¯
;

and

�.B/ WD inf
®
" > 0 W B can be covered by finitely many sets of diameter at most "

¯
;

for each non-empty and bounded subset B of a metric space .X; d/.
Following [3, Definition II.5.1], we give the following definition.

Definition 1.4. Let X be a metric space and f W X ! X a mapping such that f .B/
is bounded for each non-empty and bounded subset B of X , and let � be a measure
of noncompactness. We say that:

(i) f is .�; r/-contractive, for some r 2 Œ0; 1/, if �.f .B// � r�.B/ for all non-
empty and bounded sets B � X .

(ii) f is �-condensing if �.f .B// < �.B/ for all non-empty and bounded sets
B � X with �.B/ > 0.

The first, and one of the most remarkable fixed point results based in the measure
of noncompactness, is the following (see [1, 3]).

Theorem 1.5 (Darbo fixed point theorem). Let C be a non-empty, bounded, con-
vex and closed subset of a Banach space E. Assume that f W C ! C is a .�; r/-
contractive mapping, for some measure of noncompactness � and r 2 Œ0; 1/. Then
f has a fixed point.

The above result has been extended in many senses and directions (see, for in-
stance, [17, 25] and references therein). The first of them is due to Sadovskiı̆ [26].

Theorem 1.6 (Sadovskiı̆ fixed point theorem). Let C be a non-empty, bounded, con-
vex and closed subset of a Banach spaceE. Assume that f W C ! C is �-condensing,
for some measure of noncompactness �. Then f has a fixed point.

Remark 1.7. Apparently, the concept of �-condensing mapping is only a slight gen-
eralization of the .�; r/-contractive one. However, as it was proved in [3, Chapter II],
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Theorem 1.6 is a very deep generalization of Theorem 1.5. This is due to the fact that
the class of .�; r/-contractive mappings is residual (in the category sense) in the class
of �-condensing mappings.

As it has been pointed out above, there are some results that connect the IFS with
the measures of noncompactness. Here, we focus in the following result proved in
[6, Theorem 2].

Theorem 1.8. Let C be a non-empty, bounded, convex and closed subset of a Banach
space E. Assume that F WD ¹f1; : : : ; fnº consists of �-condensing self-mappings
of C , � being the Hausdorff measure of noncompactness. Then there exists an F -
fractal.

In the present paper, we prove a result similar to Theorem 1.8 by using the so-
called degree of nondensifiability, exposed in detail in Section 2. As it will be shown
in Example 2.4, the degree of nondensifiability is not a measure of noncompactness
(here the definition of measure of noncompactness is that of [3]). The proof of the
main result, see Theorem 3.4, adopts the ideas of Sadovskiı̆ [26] and Bessenyei and
Pénzes [6].

To conclude our exposition, in Section 4 we apply our results to prove, under
suitable conditions, the existence of an F -invariant set for certain IFS on the Banach
space of the continuous functions defined on Œ0; 1�. Furthermore, the existence of an
F -fractal follows whenever the IFS is defined by integral operators.

2. The degree of nondensifiability: �-condensing mappings

We start this section by recalling the following concepts introduced in [22].

Definition 2.1. Let B be a non-empty and bounded subset of a metric space .X; d/
and ˛ � 0. A mapping 
 W Œ0; 1�! X is said to be an ˛-dense curve in B if

(i) 
.Œ0; 1�/ � B .

(ii) For each x 2 B , there is y 2 
.Œ0; 1�/ such that d.x; y/ � ˛.

If for each ˛ > 0, there is an ˛-dense curve in B , then B is said to be densifiable.

From the above definition, it is clear that ˛-dense curves are a generalization
of the so-called space-filling curves, see [27]. Let us note that for a non-empty and
bounded subset B of a metric spaceX , there is always an ˛-dense curve in B for each
˛ � Diam.B/, the diameter of B . Indeed, given x0 2 B , the mapping 
.t/ WD x0

for all t 2 Œ0; 1� is trivially an ˛-dense curve. For a detailed exposition of the above
concepts, see [9, 15, 22–24] and references therein.

Now, we can define the following (see [13, 23]).
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Definition 2.2. For a given non-empty and bounded subset B of a metric spaceX , its
degree of nondensifiability is defined as

�.B/ WD inf
®
˛ � 0 W �B;˛ ¤ ;

¯
;

where �B;˛ denotes the class of the ˛-dense curves in B .

Note that the degree of nondensifiability � is well defined. Indeed, we have that
�.B/2 Œ0;Diam.B/� for each non-empty and bounded subsetB of the metric spaceX.
Some basic properties of the degree of nondensifiability are stated in the following
result (see [13]).

Proposition 2.3. LetX be a metric space. The degree of nondensifiability � satisfies:

(M-1) Regularity on arc-connected sets. �.B/ D 0 if, and only if, B is precom-
pact, for each non-empty, arc-connected and bounded subset B of X .

(M-2) Invariance under closure. �.B/D �. NB/ for each non-empty and bounded
subset B of X .

(M-3) Semi-additivity on arc-connected sets. If B1; : : : ; Bn are non-empty, arc-
connected and bounded subset of X such that B1 \ : : : \ Bn ¤ ;, then

�.B1 [ � � � [ Bn/ � max¹�.B1/; : : : ; �.Bn/º:

(B-1) Semi-homogeneity. �.cB/D jcj�.B/, for each c 2R and each non-empty
and bounded subset B of E.

(B-2) Invariance under translations. �.x0 C B/ D �.B/, for each x0 2 E and
each non-empty and bounded subset B of E.

(B-3) �.Conv.B// � �.B/ for each non-empty and bounded subset B of E,
where Conv.B/ stands for the convex hull of B .

(B-4) �.Conv.B1 [ � � � [ Bn// � max¹�.Conv.B1//; : : : ; �.Conv.Bn//º, for
each non-empty and bounded subsets B1; : : : ; Bn of E.

As we have pointed out in Section 1, the degree of nondensifiability � is not a
measure of noncompactness, at least in the sense given in [3]. This fact is evidenced
in the following example.

Example 2.4. Let L1 be the Banach space of the Lebesgue integrable functions
f W Œ0; 1�! R endowed with its usual norm. Consider the set

C WD
°
f 2 L1 W

Z 1

0

f .x/dx D 1; f � 0 almost everywhere
±
:

In [13], it was proved that �.C / D 2 and �.UL1/ D 1, where UL1 denoted the
closed unit ball of L1. By recalling that a measure of noncompactness � satisfies the
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inequality �.A/ � �.B/ for all non-empty and bounded subsets A; B of L1 with
A� B , and noticing that C � UL1 , it follows that, in general, this monotony property
does not hold for the degree of nondensifiability �.

In view of Definition 1.4 (see also [14]), we give the following definition.

Definition 2.5. Let X be a metric space and f W X ! X a continuous mapping such
that f .B/ is bounded for each non-empty and bounded subset B of X , and let � be
the degree of nondensifiability. We say that:

(i) f is .�; r/-contractive if �.f .B// � r�.B/ for some r 2 Œ0; 1/, for all non-
empty, arc-connected and bounded subsets B of X .

(ii) f is �-condensing if �.f .B// < �.B/ for all non-empty, arc-connected and
bounded subsets B of X with �.B/ > 0.

Note from the definition above that the class of .�; r/-contractive mappings is
contained in that of the �-condensing mappings.

Proposition 2.6. Let X be a metric space, � the degree of nondensifiability and let
f W X ! X be an r-contractive mapping, for some r 2 Œ0; 1/. Then f is .�; r/-
contractive.

Proof. Let B be a non-empty, arc-connected and bounded subset of X . Consider
�.B/, by Definition 2.2 for any ˛ � �.B/ there exists 
 W Œ0; 1� ! X an ˛-dense
curve in B . Then f ı 
 is r˛-dense in f .B/ (see also [15, Proposition 3.1]). There-
fore �.f .B// � r˛. Since the above inequality is true for all ˛ � �.B/, it implies
�.f .B// � r�.B/.

From the above result, we deduce that the class of r-contractive mappings is con-
tained in the class of .�; r/-contractive mappings. In the next example, we show that
such inclusion is strict.

Example 2.7. Let .`2; k � k/ be the Banach space of the real summable square
sequences endowed with its usual norm kxk WD .

P
n�1 jxnj

2/1=2 for each x WD

.x1; x2; : : : ; xn; : : :/ 2 `2, and let U`2
be its closed unit ball. Given 0 < ˇ < 1=2,

we define f W U`2
! U`2

as

f .x/ WD
�p
1 � kxk; ˇx1; ˇx2; : : : ; ˇxn; : : :

�
for all x 2 U`2

:

Then if kxk D 1, we have kf .x/ � f .�/k D
p
1C ˇ2 > 1 D kx � �k, � being the

null vector of `2. Therefore f is not r-contractive for any 0 � r < 1.
However, in [15, Proposition 3.1] it was proved that �.f .B// � 2ˇ�.B/ for each

arc-connected B � U`2
, where � is the degree of nondensifiability. Consequently, f

is .�; 2ˇ/-contractive.
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In Theorem 1.8, the Sadovskiı̆ fixed point theorem plays a crucial role. In the
next result, we introduce a Sadovskiı̆-type fixed point theorem based on the degree of
nondensifiability.

Theorem 2.8. Let C be a non-empty, convex, closed and bounded subset of a Banach
space X , and let � be the degree of nondensifiability. Then each �-condensing map-
ping � W C ! C has a fixed point.

Proof. See the proof of [14, Theorem 3.1] or, in a more general context, the proof of
Theorem 3.4 in Section 3.

An immediate consequence of the above result is the following (see also [10,
Theorem 3.2] and [14, Theorem 3.1]).

Corollary 2.9. Let C a non-empty, bounded, closed and arc-connected subset of a
Banach space E and let f W C ! C be a mapping. Assume that there is a monotone
increasing function W Œ0;C1/! Œ0;C1/with .s/ < s for all s > 0 and .0/D 0,
such that

�.f .B// �  .�.B//

for all non-empty, closed and arc-connected B � C , where � denotes the degree of
nondensifiability. Then f has a fixed point.

We present two examples where the Darbo and Sadovskiı̆ fixed point theorems
cannot be applied. However, the degree of nondensifiability fixed point theory ensures
the existence of a fixed point.

Example 2.10. Let C.Œ0; 1�/ be the Banach space of the continuous functions defined
on Œ0; 1�, endowed with its usual supremum norm. Consider the mapping

f W C.Œ0; 1�/! C.Œ0; 1�/

given by, for x.t/ 2 C.Œ0; 1�/,

f .x.t// WD

´
1
2
x.2t/C 1

2
x.0/; 0 � t � 1

2
;

1
2
x.2t � 1/C 1

2
x.1/; 1

2
< t � 1;

and define the closed and convex set

C WD
®
x.t/ 2 C.Œ0; 1�/ W 0 D x.0/ � x.t/ � x.1/ D 1; t 2 Œ0; 1�

¯
:

Then �.C /D �.f .C //D 1
2

(see [3, Example X.2]) and therefore the contractiveness
condition of the Darbo fixed point theorem does not hold in this case. However, in
view of Proposition 2.6 (see also [11, Example 3.4]), we have �.f .B// � �.B/=2, �
being the degree of nondensifiability, for each non-empty, arc-connected and bounded
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B � C . Therefore f is .�; 1
2
/-contractive. Consequently, by applying Corollary 2.9,

f has a fixed point.

Example 2.11. Let `2 be as in Example 2.7 and consider

f .x/ WD
X
n�1

max
°
0; 1 �

kx � enk

1 � ˇ

±
�n for all x 2 U`2

;

where .en/n�1 is the standard basis of `2, ˇ is a real number with 2�1=2 < ˇ < 1 and
.�n/n�1 is a dense sequence in ˇU`2

, U`2
being the closed unit ball of `2. As shown

in [7, Remark 3.10], f .U`2
/ � ˇU`2

and

�.B/ D
p
2 < 2ˇ D �.f .B//;

where B D ¹en W n � 1º. Therefore f is not �-condensing.
Given any

p
2=2ˇ < "< 1, define f".x/ WD "f .x/ for all x 2U`2

. Then f".U`2
/�

"ˇU`2
and f" is not �-condensing.

Now, we claim that f" is �-condensing, � being the degree of nondensifiability.
Indeed, let B be a non-empty, closed, arc-connected and not precompact subset of
U`2

. By the invariance under translations of � (see Proposition 2.3), there is no loss
of generality if we assume 0 2 B . As f".0/ D 0, the constant mapping 
.t/ D 0 for
all t 2 Œ0; 1� satisfies the condition 
.Œ0; 1�/ � f".B/ and therefore it is an "ˇ-dense
curve in f".B/ as f".B/ � "ˇU`2

. Then, we have

�.f".B// � "ˇ: (2.1)

Again, from [7, Remark 3.10], �.B/ � ˇ and then, noticing (2.1) and the proper-
ties of � (see [13]), we get

�.f".B// � "ˇ < ˇ � �.B/ � �.B/;

and this proves that f" is a �-condensing mapping. Consequently, by applying The-
orem 2.8, f has a fixed point.

3. The main result

As we have pointed out in Section 2, a key result to prove Theorem 1.8 is the Sad-
ovskiı̆ fixed point theorem. However, there is another crucial result in the proof of
Theorem 1.8, namely the following lemma (see [6, Lemma 1]).

Lemma 3.1. Assume that F WD ¹f1; : : : ; fnº consists of self-mappings of a metric
space X and H1 � X is a F -subinvariant set. Then, by putting

HmC1 WD F .Hm/ and H WD
[
m�1

Hm;
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we have that H is an F -invariant set.

Remark 3.2. The sequence of sets .Hm/m�1 in the above lemma is often known as
the Kantorovich iteration, and the set H is its limit (see [6] and references therein).
These sets were used by Kantorovitch [18] in 1939 to obtain order-theoretic fixed
point results.

We will need also the following lemma (see [6, Lemma 3]).

Lemma 3.3. If F is a finite family of continuous self-mappings of a metric space and
H is a relatively compact F -invariant set, then H is F -invariant.

Now, we can state and prove our main result.

Theorem 3.4. Let C be a non-empty, closed and convex subset of a Banach space E,
let � be the degree of nondensifiability and let F WD ¹f1; : : : ; fnº be a family of
self-mappings of C .

(1) If F contains a �-condensing mapping, then there is a non-empty F -inva-
riant set.

(2) If F consists of �-condensing mappings, then there exists an F -fractal.

Proof. Let us prove (1). Assuming that f1 is �-condensing, in view of Theorem 2.8,
f1 has a fixed point x� 2 C . By definingH1 WD ¹x�º andHmC1 WD F .Hm/ for each
m � 1, by Lemma 3.1, the set A� WD [m�1Hm is F -invariant.

To prove (2), assume that each fi , for i D 1; : : : ; n, is a �-condensing mapping.
For a given x0 2 C , we define

� WD
®
B � C W B D Conv.B/; x0 2 B;F .B/ � B

¯
:

Note that � is non-empty because C 2 �. Define the sets

H WD
\
B2�

B and G WD Conv.F .H / [ ¹x0º/:

Since x0 2 H , H ¤ ;. We claim that H D G .
For any D 2 H , we have

F .H / D

n[
iD1

fi

� \
B2�

B
�
�

n[
iD1

fi .D/ D F .D/ � D;

and from the arbitrariness of D, we infer that F .H / � H . As x0 2 H , F .H / � H

and H is closed and convex, we have G � H . From this inclusion, we deduce that

F .G / � F .H / � Conv.F .H / [ ¹x0º/ D G :
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This proves that F .G / 2 � and, in particular, H � G . So H D G as claimed.
On the other hand, assume that H is not precompact. By Proposition 2.3, since

each fi is a �-condensing mapping, we have

�.H / D �.G / � �
�
Conv.F .H / [ ¹x0º/

�
� �

�
Conv.F .H //

�
D �

�
Conv

� n[
iD1

fi .H /
��
� max

®
�.fi .H // W i D 1; : : : ; n

¯
< �.H /;

which is contradictory. Therefore H is precompact.
Now, as f1.H / � F .H / � H , according to Theorem 2.8, we can take some

x�1 2H which is a fixed point of f1. The set ¹x�1 º is F -subinvariant. Then, by apply-
ing Lemma 3.1 taking the metric space X as H (note that, by the definition of H ,
fi .H / �H for each i D 1; : : : ; n), there exists H� in H that is F -invariant. Since a
subset of a precompact set is precompact, so is H�. Noticing that in a Banach space
the relative compactness coincides with the precompactness, H� is relatively com-
pact. Now, by applying Lemma 3.3, NH� is F -invariant, i.e., NH� is an F -fractal.

In the above result, if some fi is not a �-condensing mapping, the F -invariant set
is not necessarily compact, that is, such a set might not be an F -fractal. This fact will
be evidenced in Example 4.2.

Note that, unlike Theorem 1.8, neither Theorem 1.3 nor Theorem 3.4 provide an
iterative procedure to approximate (with a prescribed and arbitrary small error) an
F -invariant set. However, if we know a fixed point of f1, we can obtain, recursively,
the sets Hm of Lemma 3.1.

It is clear that each set Hm of Lemma 3.1 is a set of nm�1 points. But we can
obtain easily 1� k < nm�1 points inHm with the scheme given in Algorithm 3.1. The
notation used is the following: given two positive integers m > 1 and 1 � k < nm�1,
yHm;k denotes a subset of Hm with k elements and �m�1 is a set of indices of length
m � 1 obtained from the set ¹1; : : : ; nº. For instance, for n D 2 and m D 3, �m�1
can be any of the sets ¹1; 1º; ¹1; 2º; ¹2; 1º; ¹2; 2º. For �m�1 WD ¹i1; : : : ; im�1º, with
1 � ij � n for each j D 1; : : : ; m � 1, we define f�m�1

WD fi1 ı � � � ı fim�1
.

Remark 3.5. Note that Algorithm 3.1 computes some points of the set Hm from
Lemma 3.1, but it is not a chaos game (see, for instance, [4, 5]) in the strict sense.

On the other hand, if C is a non-empty, bounded, convex and closed subset of a
Banach spaceE, � is the degree of nondensifiability and fi WC !C , i D 1; : : : ;n, are
compact mappings, i.e., fi maps bounded sets into precompact ones (see, for instance
[3, Definition I.2.5]), then F D ¹f1; : : : ; fnº is a IFS as in (2) of Theorem 3.4. Indeed,
from (M-1) of Proposition 2.3 each fi is a �-condensing mapping, for i D 1; : : : ; n.
Hence, by Theorem 3.4, there is an F -fractal.
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Algorithm 3.1: Computation of the set yHm;k
Data: The numbers k � 2, m > 1, the mappings f 0i s and a fixed point

x� 2 C of f1.
Result: The set yHm;k � Hm.
/* Initialization */

1 yHm;k  ;; Ind ;, j  1;
/* The loop */

2 for j  1 to k do
3 Randomly select �m�1 such that �m�1 62 Ind;
4 Ind Ind [ ¹�m�1º;
5 yHm;k  yHm;k [ ¹f�m�1

.x�/º;

/* Return the set yHm;k */
6 return yHm;k;

We formalize the above comments in the following consequence of Theorem 3.4,
which is a Schauder–Tychonoff-type fixed point result.

Corollary 3.6. Let � the degree of nondensifiability, let C be a non-empty, closed
and convex subset of a Banach space E and let F WD ¹f1; : : : ; f2º be a family of
self-mappings of C such that each fi is compact for i D 1; : : : ; n. Then there is an
F -fractal.

4. Application: IFS defined from the superposition operator

Through this section,E WD C.Œ0; 1�/ will be the Banach space of the continuous func-
tions defined on Œ0; 1�, as in Example 2.10, endowed with the supremum norm k � k1.
Although usually the examples of IFS are defined on subsets of Rn, there are inter-
esting results for IFS defined in the context of infinite dimensional Banach spaces
(see [12] and references therein). In this section, we study certain IFS defined on non-
empty, closed and convex subsets of E and from the so-called superposition operator
(sometimes called Nemytskij operator).

For a given (not necessarily continuous) f W Œ0; 1� � E ! R, we recall that the
superposition operator F W E ! E associated with f is defined by

F.x/.t/ WD f .t; x.t// for all t 2 Œ0; 1� and x 2 E:

This application F plays a crucial role in certain functional equations, see [2, 28] and
references therein. According to [2], the operator F is continuous if, and only if, f is
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continuous. Also, to simplify the notation, we define

‰ WD
®
 W Œ0;C1/ �! Œ0;C1/ W  is monotone increasing with  .s/ < s

for all s > 0 and  .0/ D 0
¯
;

that is, ‰ is the class of functions satisfying the conditions of Corollary 2.9.
Now, for a given mapping f W Œ0; 1� �E ! R, consider the corresponding super-

position operator F , a non-empty, bounded, convex and closed subset C of E and the
inequality

�.F.B// �  .�.B// (4.1)

for some  2 ‰ and all non-empty and arc-connected subsets B of C .
Let us note that (4.1) is satisfied for a large class of mappings:

(I) If f is compact, then (4.1) is trivially fulfilled.

(II) If there is  2 ‰ such that for each t 2 Œ0; 1�, the inequality

jf .t; r/ � f .t; s/j �  .jr � sj/

is satisfied for all r; s 2R, then it is immediate to prove kF.x/�F.y/k1 �
kx � yk1 for all x;y 2 C . Consequently (see the proof of Proposition 2.6),
the condition (4.1) holds.

Next, let fi W Œ0; 1��E ! R given mappings and Fi the corresponding superpos-
ition operators, for i D 1; : : : ; n. Also, let the conditions:

(C1) There is a non-empty, bounded, convex and closed subset C ofE such that
fi .�;x.�// is continuous for all x 2C andFi .C /�C , for each i D 1; : : : ;n.

(C2) F1 satisfies (4.1).

The main result of this section is the following.

Proposition 4.1. Assume conditions (C1) and (C2) and let F D ¹F1; : : : ; Fnº be a
family of self-mappings of C , the non-empty, bounded, convex and closed subset C
of E given in (C1). Then there exists an F -invariant set.

Proof. Let � be the degree of nondensifiability. By condition (C1), Fi .C / � C for
each iD1; : : : ;n. Also, noticing condition (C2) and Corollary 2.9, F1 is �-condensing,
and the result follows from Theorem 3.4.

At this point, we show an example to illustrate the above result.

Example 4.2. Let C and f1 be as in Example 2.10 and f2.t; x.t// WD tx.t/ for all
x 2 E and t 2 Œ0; 1�. Note that f2 has no fixed point in C , and therefore F2 does not
satisfy the inequality (4.1) for any  2 ‰ (otherwise, by Corollary 2.9, F2 has a fixed
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point, which is not possible). Clearly, f2 is continuous and F2.C / � C , that is to say,
F2 obeys condition (C1).

As we have shown in Example 2.10, F1 satisfies conditions (C1) and (C2) for
 .r/ WD r=2. Then, by Proposition 4.1, there is some A� � C such that

A� D f1.A
�/ [ f2.A

�/:

In Figure 4.2, we show some sets of type yHm;k computed with Algorithm 3.1. Let
us note that the set A� is not compact. Indeed, otherwise given a sequence .xn.t//n�1
�A�, there exists a subsequence, for simplicity noted in the same way, of .xn.t//n�1
such that xn ! x�, for some x� 2 A�, where the convergence means in supremum
norm. Then, by the continuity of f2, we find that f2.t;xn.t//! f2.t;x

�.t//D tx�.t/

for all t 2 Œ0; 1�. This means that f2 has a fixed point, which is not possible.

(a) A set yH4;3 � H4. (b) A set yH8;6 � H8.

Figure 1. Some functions belonging to the set Hm, obtained with Algorithm 3.1, for the
indicated values of m.

On the other hand, if each Fi is compact (in particular, the above condition (C2)
follows trivially) and condition (C1) holds, then there exists some F -invariant set. In
fact, by Corollary 3.6, there exists an F -fractal set, with F D ¹F1; : : : ; Fnº and C as
in Proposition 4.1. In the following lines, we show how we can derive (as consequence
of Proposition 4.1) the existence of an F -fractal for certain IFS defined from integral
operators.

It is a well-known fact (see, for instance, [3, Example I.3]) that, in the Banach
space E, integral operators with sufficiently regular kernels provide one of the most
important examples of compact operators. In particular, given the continuous map-
pings hi W Œ0; 1� �! Œ0; 1� and Ki W Œ0; 1�2 �E �! R for i D 1; : : : ; n, the mappings
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fi W Œ0; 1� �E �! R defined as

fi .t; x.t// WD gi .t/C

Z t

0

Ki .t; s; x.s// ds for all t 2 Œ0; 1�; x 2 E (4.2)

are compact. As above, we denote by Fi the corresponding superposition operator
associated with mappings fi for i D 1; : : : ; n. The continuity of Fi follows from the
continuity of fi , for each i D 1; : : : ; n. Consider the following condition:

(D1) There is R > 0 such that

jf .t; x.t//j � R for all t 2 Œ0; 1� whenever kxk1 � R:

Now, we have the following corollary.

Corollary 4.3. Assume condition (D1) holds for f1; : : : ; fn defined in (4.2) and let
F D ¹F1; : : : ;Fnº be the family of superposition operators associated with f1; : : : ; fn
defined in RUE , UE being the closed unit ball of E and R > 0 the number given by
condition (D1). Then, there exists an F -fractal.

Proof. It is clear that the mappings fi are continuous, and consequently the Fi too,
for each i D 1; : : : ; n. Also, as each fi satisfies condition (D1), Fi .RUE /� RUE for
i D 1; : : : ; n. Then, by Proposition 4.1, there is a F -invariant set. But, as each Fi is
compact (because of fi is compact), such F -invariant set is, according to Lemma 3.3,
an F -fractal.
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