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Oscillations of BV measures on unbounded nested fractals

Patricia Alonso Ruiz and Fabrice Baudoin

Abstract. Motivated by recent developments in the theory of bounded variation functions on
unbounded nested fractals, this paper studies the exact asymptotics of functionals related to
the total variation measure associated with unions of n-cells. The oscillatory behavior observed
implies the non-uniqueness of BV measures in this setting.

1. Introduction

Functions of bounded variation (BV) and their bounded variation measures are tightly
connected to the geometry of the underlying space. Already in the 1920s, Caccioppoli
characterized the perimeter measure of Euclidean sets as the BV measure associated
with the corresponding indicator functions, cf. [6]. He observed that the perimeter of
any measurable E � Rd coincides with the total variation norm of 1E , i.e.,

kD1Ek.Rd / WD sup
° Z

E

div� dxW� 2 Cc.Rd /; k�k1 � 1
±
D Perimeter.E/: (1)

This observation led to a general definition of sets with finite perimeter as being those
for which the left hand side of (1) is finite. Sets of finite perimeter are thus also referred
to as Caccioppoli sets.

The above characterization provided a natural way to extend the concept of (finite)
perimeter beyond the Euclidean setting that would consist in finding a suitable ana-
logue of div�. An especially successful approach was found in the concept of weak
upper gradients, developed in seminal works by Koskela [14] and Shanmugalin-
gam [22]. This theory has led to many developments in the understanding of the inter-
connection between analytic and geometric properties of a variety of metric measure
spaces admitting enough rectifiable curves. We refer the reader to [10] and references
therein.

Another successful approach to characterize the BV measure (1) in the context
of metric measure spaces, that bypasses the above mentioned rectifiability require-
ments, relies on early work due to Korevaar and Schoen [13]. In this case, kD1Ek.Rd/
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is comparable to

lim inf
r!0C

1
p
r

Z
Rd

Z
B.x;r/

j1E .x/ � 1E .y/j
rd

dy dx: (2)

The latter expression, with the same scaling
p
r , extends to Riemannian manifolds

and more generally to Dirichlet spaces with Gaussian heat kernel estimates; see [1,
2, 19]. When the heat kernel satisfies sub-Gaussian estimates, as the nested fractals
.X; d; �/ considered in the present paper do, general BV functions and their total
variation measures were introduced in [3, Section 4]. These measures are comparable
to

�f .X/ WD lim inf
r!0C

1

r˛1dw

Z
X

Z
B.x;r/

jf .x/ � f .y/j

rdh
d�.y/ d�.x/; (3)

where f 2 L1.X; �/, dh is the Hausdorff dimension and dw is the so-called walk
dimension of the space. ˛1 is a suitable critical exponent that guarantees a finite
non-trivial lim inf in (3) for sufficiently many functions. In the case of Gaussian heat
kernel estimates, this exponent is known to be ˛1 D 1=2, cf. [2, Section 4.2], while
for unbounded nested fractals ˛1 D dh=dw ; see Section 2.4 and [3, Section 4] for
details. Intuitively and loosely speaking, the parameter dh � ˛1dw can be interpreted
as a minimal dimension of the measure theoretical boundary of open sets; see [3, Sec-
tion 2.4]. One advantage of (3) is that it allows to perform rather explicit computations
in specific examples, a feature that will be key in proving the non-uniqueness of BV
measures in Section 4.3 when f D 1E and E � X is expressible as a finite union of
cells. To that end, the BV measure (3) will be expressed in terms of the functional

eMf .r/ WD
1

rdh

Z
X

Z
B.x;r/

jf .x/ � f .y/j d�.y/ d�.x/: (4)

A third approach to characterize the perimeter measure in the context of nested
fractals and other Dirichlet spaces with sub-Gaussian heat kernel estimates makes use
of the intrinsic diffusion process associated with the underlying space. Defining the
functional

Mf .t/ WD

Z
X

Z
X

jf .x/ � f .y/jpt .x; y/ d�.x/ d�.y/ (5)

for any f 2 L1.X; �/, it was proved in [3, Theorem 4.2] that BV functions are char-
acterized as those integrable for which supr>0 r

�˛1dw eMf .r/ is finite, and for these it
holds that

lim sup
t!0C

1

tdh=dw
Mf .t/ > lim sup

r!0C

1

rdh
eMf .r/ > lim inf

r!0C

1

rdh
eMf .r/

> lim inf
t!0C

1

tdh=dw
Mf .t/: (6)
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The first and third inequalities above follow from [3, Lemma 4.13], and the second
from [3, Theorem 4.9]. The heat semigroup based characterization of BV functions
combines ideas going back to de Giorgi [7] and Ledoux [17], which had been used to
prove the analogue result in the Riemannian manifold setting with ˛1 D 1=2; see [20].
In fact, the exact characterization of the BV measures, or total variation of func-
tions, on a Riemannian manifold M through the heat semigroup has only been proved
recently in [1]. Namely, for any BV function f , both lim sup and lim inf in (6) coin-
cide and moreover

kDf k.M/ D lim
t!0C

p
�

2
p
t
Mf .t/: (7)

The present paper shows that nested fractals behave quite differently. In particular, we
find unbounded nested fractals that present an oscillatory behavior of the BV measure
of certain indicator functions. This fact, recorded in Theorem 1.1, is therefore a refine-
ment of the estimates (6) when f is the indicator function of a finite union of cells
like those illustrated in Figure 1. Such functions were proved to be BV in [3, The-
orem 5.1]. For such a union of n-cells U D

SN
iD1K

.i/, one defines its boundary @U
to be the set of all vertex points that intersect its complement.

Figure 1. Unions of cells in the Vicsek set (left) and in the Sierpiński gasket (right).

Theorem 1.1. Let .X; d;�/ be unbounded nested fractals as described in Section 2,
with length scaling factor L, Hausdorff dimension dh and walk dimension dw . There
exist positive and bounded periodic functions ˆ and ‰ with period L�dw and L�1,
respectively, such that for any finite union of cells U � X ,

lim
t!0C

ˆ.� ln t /
1

tdh=dw
M1U .t/ D lim

r!0C
‰.ln r/

1

rdh
eM1U .r/ D j@U j: (8)

Here, j@U j equals the number of points in the boundary of U . In the case of the
unbounded Vicsek set or Sierpiński gasket, the function ‰ is non-constant.

While this oscillatory behavior was expected in view of the on-diagonal oscil-
lations of the heat kernel at small scales in these settings (see, e.g., [9, 11]), the
non-uniqueness of the BV measure is less straightforward to obtain. In fact, we can
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presently prove the function ‰ in (8) to be non-constant (see Section 4.3), thus set-
tling a question raised in [3, Remark 4.23]. However, the methods currently available
fail to show that property for the function ˆ, which is also still open in the case of
other heat-kernel related functionals [9]. Besides, the nature of the functional Mf .t/

seems to make the techniques that successfully led Kajino to prove on-diagonal oscil-
lations in [11] not applicable in this case. The question remains the subject of future
investigations.

Conjecture 1.2. The periodic function ˆ in (8) is non-constant.

Proving Conjecture 1.2 would illustrate further the stark contrast between the L1

theory and the L2 theory on fractals since for any function f in the domain of the
Dirichlet form E associated with the heat kernel pt .x; y/, one has the following exact
limit

lim
t!0C

1

2t

Z
X

Z
X

jf .x/ � f .y/j2pt .x; y/ d�.x/ d�.y/ D E.f; f /:

The paper is organized as follows: Section 2 describes the unbounded nested fractals
considered as underlying spaces. Section 3 deals with the part of the proof of The-
orem 1.1 concerning the heat kernel functional M1U , while Section 4 provides the
proof corresponding to the Korevaar–Schoen functional eM1U . This last section also
contains specific examples and proves the fact that ‰ is non-constant, which, in par-
ticular, implies the non-uniqueness of the BV measures.

2. Notations and set up

2.1. Compact nested fractals

To set the framework and notation throughout the paper, this section briefly recalls
the construction of planar simple nested fractals as introduced by Lindstrøm in [18];
see also [15]. For L > 1, an L-similitude is a map  W Rd ! Rd such that

 .x/ D L�1A.x/C b;

where A is a unitary linear map and b 2 Rd . The factor L�1 is called the contraction
ratio of  . Given a collection of L-similitudes ¹ iºMiD1 in Rd , there exists a unique
non-empty compact set K � Rd such that

K D

M[
iD1

 i .K/ DW ‰.K/:
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Each map  i has a unique fixed point qi and we denote by V WD ¹qiºMiD1 the set of all
fixed points. A fixed point x 2 V is called an essential fixed point if there exist y 2 V
and i ¤ j such that  i .x/ D  j .y/; we denote by V .0/ the set of all essential fixed
points. For any n 2 N, we further write V .n/ WD ‰n.V .0// and

V .1/ WD
[
n2N

V .n/:

Finally, we define the word spacesWn WD ¹1; 2; : : : ;M ºn, for each n� 1, andW1 WD
¹1; 2; : : : ;M ºN . Each finite word w D .i1; : : : ; in/ 2 Wn addresses the map  w WD
 i1 ı � � � ı  in and the set Aw WD  w.A/ for any A � K. Deviating from the original
terminology in [18] to the currently more established one,Kw will be called an n-cell
with set of vertices V .0/w .

Definition 2.1. Let .K;  1; : : : ;  M / be as described above. The set K is called a
nested fractal if the following conditions are satisfied:

(1) jV .0/j � 2;

(2) Connectivity. For any i;j 2W1, there exists a sequence of 1-cells V .0/i0
; : : : ;V

.0/
ik

such that i0 D i , ik D j and V .0/ir�1
\ V

.0/
ir
¤ 0, for 1 � r � k;

(3) Symmetry. For any x; y 2 V .0/, the reflection in the hyperplane given by
Hxy D ¹z 2 Rd W jx � zj D jy � zjº maps n-cells to n-cells;

(4) Nesting. For any w; v 2 Wn and w ¤ v, Kw \Kv D V
.0/
w \ V

.0/
v ;

(5) Open set condition. There exists a non-empty bounded open set U such that
 i .U /, 1 � i �M , are disjoint and ‰.U / � U .

In addition, we will require that any two n-cells intersect at most at one point, i.e.,

jV .0/v \ V .0/w j 2 ¹0; 1º

for any v;w 2Wn and n 2 N. This property may possibly follow from the conditions
imposed for nested fractals and it is still an open question whether that is actually the
case; see [4, Remark 5.25].

The parameters L andM are called the length scaling factor and the mass scaling
factor ofK, respectively. In particular, with respect to the Euclidean distance d.x;y/,

d. w.x/;  w.y// D L
�nd.x; y/;

for any x; y 2 K and w 2 Wn, whereas the normalized Hausdorff measure � on K
satisfies

�.Kw/ D �. w.K// DM
�n for all w 2 Wn:
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The Hausdorff dimension of K is thus given by

dh D
logM
logL

:

The two main examples in the present paper are the Vicsek set and the Sierpiński
gasket illustrated in Figure 2.

Figure 2. The Vicsek set (left) and the Sierpiński gasket (right).

Example 2.2 (Sierpiński gasket). Let q1 D 0; q2 D 1 and q3 D e
i�
3 be three points in

R2 DC regarded as the vertices of an equilateral triangle of side length one. Further,
define i .z/ WD 1

2
.z � qi /C qi for i D 1;2;3. The Sierpiński gasketKSG is the unique

non-empty compact set such that

KSG D

3[
iD1

 i .KSG/:

Its associated standard measure � is a normalized Hausdorff measure that satisfies

�. i1 ı � � � ı  in.KSG// D 3
�n

for i1; : : : ; in 2 ¹1; 2; 3º. Thus, KSG is a nested fractal with scaling factor LSG D 2,
and mass scaling factor MSG D 3. In particular, dh D

log3
log2 and dw D

log5
log2 .

Example 2.3 (Vicsek set). Let q1 D .0; 0/, q2 D .0; 1/, q3 D .1; 0/ and q4 D .1; 1/
be the corners of a unit square and let q5 D .1=2; 1=2/. For each 1 � i � 5 define the
map  i .z/ WD 1

3
.z � qi /C qi . The Vicsek set KVS is the unique non-empty compact

set such that

KVS D

5[
iD1

 i .KVS/:

Its associated standard measure � is a normalized Hausdorff measure that satisfies

�. i1 ı � � � ı  in.KVS// D 5
�n

for each i1; : : : ; in 2 ¹1; 2; 3; 4; 5º. Thus, the Vicsek set KVS is a nested fractal with
scaling factor LVS D 3 and mass scaling factor MVS D 5. In particular, dh D

log5
log3

and dw D
log15
log3 .
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2.2. Unbounded nested fractals

An unbounded nested fractal arises as a blow-up of a compact nested fractal. We refer
to [5, 12, 15] and also [23] for different constructions. Without loss of generality, we
will assume from now on that  1 D L�1x and consider the unbounded nested fractal
Kh1i defined as

Kh1i WD

1[
nD1

Khni;

where Khni D LnK. Its associated set of essential fixed points is defined analog-
ously as V h1i0 D

S1
nD0Vn, where VnDLnV .0/, and V h1in DLnV .n/. The associated

standard Hausdorff measure, denoted by �h1i, satisfies �h1i.Khni/ D M n and it is
dh-Ahlfors regular, i.e.,

crdh � �h1i.B.x; r// � Crdh (9)

for any x 2 Kh1i and r � 0.

2.3. Brownian motion and heat kernels

Brownian motion .Xt /t�0 on a simple planar nested fractal K and its associated
unbounded fractal Kh1i was rigororusly constructed in [16, 18]; see also [8, 15].
This Brownian motion is a Hunt diffusion process whose associated heat semigroup
¹PK

h1i

t ºt�0 admits a jointly continuous heat kernel with respect to the dh-dimen-
sional Hausdorff measure �h1i. We denote this kernel by pK

h1i

t .x; y/. It satisfies the
scaling property

pK
h1i

t .x; y/ DMpK
h1i

Ldw t
.Lx;Ly/ (10)

for any x; y 2 Kh1i and t > 0, as well as the sub-Gaussian estimates

c1t
�dh=dw exp

�
�c2

�d.x; y/dw
t

� 1
dJ�1

�
� pK

h1i

t .x; y/ � c3t
�dh=dw exp

�
�c4

�d.x; y/dw
t

� 1
dJ�1

�
(11)

for every .x; y/ 2 Kh1i � Kh1i and t > 0, cf. [15, Theorems 5.2 and 5.5]. The
parameter dJ > 0 is the dimension of the Brownian motion Xt in the shortest path
metric, while the parameter dw is the dimension of Xt in the Euclidean metric. The
latter is usually called the walk dimension of Kh1i.

The estimates (11) were obtained under a particular assumption [15, Assump-
tion 2.2] on the underlying metric that is satisfied in the case of planar simple nested
fractals, cf. [12, Appendix]. Although in general dJ ¤ dw , we will assume throughout
of the paper that dJ D dw since that is the case in the examples that are presented. The
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main results are likely true after possibly minor changes without the assumption dJ D
dW , however the paper focuses on building the most immediate counterexamples,
leaving a generalization for possible future work.

The estimates (11) also provide the following bound on the exit time of balls
proved in [9, Lemma 2.3] which will be used in Lemma 3.2. Here and in the sequel,
we define �U c WD inf¹t > 0 W Xt … U º for any U � Kh1i.

Lemma 2.4. For any closed set U � Kh1i, there exist c1; c2 > 0 such that

Px.�U c < t/ � c1e
�c2

�
d.x;Uc/dw

t

� 1
dw�1

(12)

for any x 2 U and t > 0.

In addition, Section 3 will deal with the process killed outside of a compact set
F � Kh1i, whose associated Dirichlet heat kernel we denote by pFt .x; y/. For any
A � F and x 2 F , this kernel satisfies

Px.Xt 2 A; t � �F c / D

Z
A

pFt .x; y/d�
h1i.y/; (13)

and the scaling invariance property

p
 w.F /
t . w.x/;  w.y// DM

npF
Lndw t

.x; y/ (14)

for any x; y 2 F , and w 2 Wn, n � 1, cf. [9, Theorem 3.2 (ii)].

2.4. Korevaar–Schoen–Sobolev and BV spaces on fractals

The BV measures investigated in the present paper were introduced in [3] to study
the case p D 1 of the heat semigroup based Besov spaces Bp;˛.Kh1i/ defined below.
These spaces also admit a Korevaar–Schoen–Sobolev characterization, cf. Theo-
rem 2.7, which will be key to prove in Section 4.3 the non-trivial oscillations of the
BV measures on the Vicsek set and the Sierpiński gasket.

Definition 2.5 (Heat semigroup Besov classes). For any p � 1 and ˛ > 0, define the
heat semigroup Besov seminorm

kf kp;˛ WD sup
t>0

t�˛
�Z

Kh1i

Z
Kh1i

pK
h1i

t .x;y/jf .x/� f .y/jpd�h1i.x/d�h1i.y/
�1=p

and the heat semigroup based Besov class

Bp;˛.Kh1i/ WD
®
f 2 Lp.Kh1i; �h1i/ W kf kp;˛ <1

¯
:

It was proved in [21, Proposition 4.14] that .Bp;˛.Kh1i/; k � kp;˛ C k � kLp.K;�//
is a complete Banach space.
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Definition 2.6 (BV class). For any r > 0 and f 2 L1.Kh1i; �h1i/, let

eMf .r/ WD
1

rdh

Z
Kh1i

Z
B.x;r/\Kh1i

jf .x/ � f .y/j d�h1i.y/ d�h1i.x/:

The BV class is defined as

BV.Kh1i/ WD
°
f 2 L1.Kh1i; �h1i/ W lim sup

r!0C

1

rdh
eMf .r/ <1

±
:

In the framework of unbounded nested fractals, the space BV.Kh1i/ is known to
contain linear combinations of indicator functions of n-cells (see [3, Theorem 5.1]),
and is therefore dense in L1.Kh1i; �h1i/. The main motivation for the present work
is the close relation between the BV class BV.Kh1i/ and the Besov classes defined
above. Introducing the functional

Mf .t/ WD

Z
Kh1i

Z
Kh1i

jf .x/ � f .y/jpK
h1i

t .x; y/ d�h1i.x/ d�h1i.y/; (15)

for f 2 L1.Kh1i; �h1i/, an immediate consequence of [3, Theorem 4.24] is the
following characterization of BV.

Theorem 2.7 (Heat semigroup characterization of BV functions). For an unbounded
nested fractal Kh1i with Hausdorff dimension dh and walk dimension dw ,

BV.Kh1i/ D B1; dh=dw .Kh1i/

with equivalent norms. More precisely, there exist constants c1; c2 > 0 such that for
every f 2 BV.Kh1i/,

c1 sup
t>0

t�dh=dwMf .t/ � sup
r>0

1

rdh
eMf .r/ � c2 lim inf

t!0C
t�dh=dwMf .t/:

2.5. A renewal lemma

One of the main ingredients in the proof of Theorem 3.1 and Theorem 4.1 is the
following renewal lemma adapted from [9, Lemma 3.5]. Here and throughout the
paper, given any two functions f; gW .0;C1/! R, we will write

f .t/ ' g.t/

if there exist constants c1; c2 > 0 such that for every t 2 .0; 1�,

jf .t/ � g.t/j � c1e
�c2t

� 1
dw�1

: (16)
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Lemma 2.8 (Renewal lemma [9]). Let ˛; ˇ > 0 with ˛ � 1, ˇ < 1 and suppose
f W .0;C1/! .0;C1/ is a continuous bounded function such that

f .t/ ' f̨ .ˇt/:

Then, there exists a periodic function � with period ˇ such that, as t ! 0C,

f .t/ D t�
ln˛
lnˇ �.� ln t /C o

�
t�

ln˛
lnˇ
�
:

Proof. Let g.t/ D etf .e�t /, where  D � ln˛
lnˇ so that

f .t/ D tg.� ln t /:

For t 2 .0; 1�, by definition of the relation' in (16), we have

jtg.� ln t / � ˛ˇ tg.� ln t � lnˇ/j � c1e�c2t
� 1
dw�1

;

and therefore

jtg.� ln t / � ˛ˇ tg.� ln t � lnˇ/j � c1e�c2t
� 1
dw�1

;

which implies

jg.� ln t / � g.� ln t � lnˇ/j � c1t�e�c2t
� 1
dw�1

:

Thus, for t � 1,
jg.� ln t / � g.� ln t � lnˇ/j � c2t� ;

and hence
jg.t/ � g.t � lnˇ/j � c1e�c2jt j

for some constants c1; c2 > 0 and t 2 R. Setting

�.t/ WD

C1X
kD�1

�
g.t � k lnˇ/ � g.t � .k C 1/ lnˇ/

�
;

the lemma follows.

3. Heat semigroup functional

The aim of this section is to prove the first part of the main result, Theorem 1.1, which
involves the heat semigroup functional Mf .t/ from (15).
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Theorem 3.1. Let Kh1i be an unbounded nested fractal as in Section 2 with Haus-
dorff dimension dh and walk dimension dW . There exists a bounded periodic function
ˆ W .0;C1/! Œa; b� with period L�dw and 0 < a � b such that, for any finite union
of n-cells U � Kh1i,

lim
t!0C

ˆ.� ln t /
1

tdh=dw
M1U .t/ D j@U j; (17)

where j@U j denotes the number of points in the boundary of U .

The proof of Theorem 3.1 follows a strategy developed by Hambly in [9] and is
divided into several lemmas presented in the next subsection.

3.1. Preliminary lemmas

To show Theorem 3.1, we introduce the auxiliary functional

MA;B.t/ WD

Z
A

Z
B

pK
h1i

t .x; y/ d�h1i.y/ d�h1i.x/ (18)

for any two compact A;B � Kh1i and t > 0. As a consequence of Lemma 4.5, the
asymptotic behavior of the functional MA;B.t/ will mainly depend on the behavior of
the heat kernel near A [ B . In the sequel, the r-neighborhood of any A � Kh1i will
be denoted by

Ar WD
®
x 2 Kh1i W d.x;A/ � r

¯
:

Lemma 3.2. For any compact sets A;B � Kh1i and r > 0,

MA;B.t/ '

Z
A

Z
B

p
.A[B/r
t .x; y/ d�h1i.y/ d�h1i.x/:

Proof. By definition of Dirichlet kernel, cf. (13),Z
A

Z
B

p
.A[B/r
t .x;y/d�h1i.y/d�h1i.x/D

Z
A

Px.Xt 2B;t � �..A[B/r /c /d�
h1i.x/:

Moreover,

Px.Xt 2 B/ D Px.Xt 2 B; t � �..A[B/r /c /C Px.Xt 2 B; t > �..A[B/r /c /I

hence

jPx.Xt 2 B/ � Px.Xt 2 B; t � �..A[B/r /c /j � Px.t > �..A[B/r /c /

� c1e
�c2

�
d.x;..A[B/r /

c/dw

t

� 1
dw�1

;



P. Alonso Ruiz and F. Baudoin 384

where the last inequality follows from Lemma 2.4. Since d.x; ..A [ B/r/c/ � r for
any x 2 A, we obtain

Px.t > �..A[B/r /c / � c1e
�c2

�
rdw

t

� 1
dw�1

;

which yieldsˇ̌̌ Z
A

Z
B

pK
h1i

t .x; y/ d�h1i.y/ d�h1i.x/ �

Z
A

Z
B

p
.A[B/r
t .x; y/ d�h1i.y/ d�h1i.x/

ˇ̌̌
� c1�

h1i.A/e�c2
�
rdw

t

� 1
dw�1

:

The next step consists in proving a scaling and a localization property of the func-
tional MA;B.t/ that will allow us to compare its behavior across different levels. In
particular, when the sets A;B are well separated, the associated functional MA;B.t/

becomes asymptotically negligible.

Lemma 3.3 (Scaling lemma). For any w 2 Wn, n � 1, and compact sets A; B �
Kh1i,

MA;B.t/ 'M
nM w.A/; w.B/.L

�ndw t /: (19)

Proof. From Lemma 3.2 and the scaling property of the heat kernel (14),

M w.A/; w.B/.t/

'

Z
 w.A/

Z
 w.B/

p
. w.A/[ w.B//r
t .x; y/ d�h1i.y/ d�h1i.x/

'M�2n
Z
A

Z
B

p
. w.A/[ w.B//r
t . w.x/;  w.y// d�

h1i.y/ d�h1i.x/

'M�2n
Z
A

Z
B

p
 w..A[B/L�nr /
t . w.x/;  w.y// d�

h1i.y/ d�h1i.x/

'M�n
Z
A

Z
B

p
.A[B/L�nr
Lndw t

.x; y/ d�h1i.y/ d�h1i.x/

'M�n
Z
A

Z
B

pK
h1i

Lndw t
.x; y/ d�h1i.y/ d�h1i.x/

'M�nMA;B.L
ndw t /:

Lemma 3.4 (Localization lemma). Let A; B � Kh1i be compact and let zA � A,
zB � B be such that d. zA; B n zB/ > 0, d.A n zA; B n zB/ > 0 and d.A n zA; zB/ > 0.

Then,
MA;B.t/ 'M zA; zB.t/:

In particular, if d.A;B/ > 0,
MA;B.t/ ' 0:
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Proof. Decomposing A � B accordingly,

MA;B.t/ D

Z
A

Z
B

pK
h1i

t .x; y/ d�h1i.y/ d�h1i.x/

D

Z
zA

Z
zB

pK
h1i

t .x; y/ d�h1i.y/ d�h1i.x/

C

Z
zA

Z
Bn zB

pK
h1i

t .x; y/ d�h1i.y/ d�h1i.x/

C

Z
An zA

Z
Bn zB

pK
h1i

t .x; y/ d�h1i.y/ d�h1i.x/

C

Z
An zA

Z
zB

pK
h1i

t .x; y/ d�h1i.y/ d�h1i.x/:

The result now follows by observing that the upper heat kernel estimate (11) implies

pK
h1i

t .x; y/ � c1t
�dh=dw exp

�
�c2

�d.U1; U2/dw
t

� 1
dw�1

�
for any sets U1; U2 � Kh1i and x 2 U1 and y 2 U2.

Remark 3.5. The results presented in this section actually hold in a much larger class
of fractals than that of unbounded nested ones, including infinitely ramified fractals.
Proceeding further will however require to restrict ourselves to the framework of
unbounded nested fractals.

3.2. Proof of Theorem 3.1

We will now combine the results in the previous sections to prove Theorem 3.1. When
doing so, it becomes necessary to stay in the framework of nested fractals as defined
in Definition 2.1. In particular, the assumption

jKw \Kvj 2 ¹0; 1º (20)

for any n-cells Kw ; Kv and n � 1 will play an important role.

Lemma 3.6. Letw;v 2Wn,w¤ v. There exists a periodic function �v;w W .0;C1/!
R with period L�dw such that

MKw ;Kv .t/ D jKw \Kvj t
dh
dw �v;w.� ln t /C o

�
t
dh
dw

�
(21)

as t ! 0C.

Proof. Assume first Kw \ Kv D ¹qº. Consider the similitude  with fixed point q
and contraction factor L�1. The localization property in Lemma 3.4 implies

MKw ;Kv .t/ 'M‰.Kw/;‰.Kv/.t/:
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Moreover, due to the scaling in property in Lemma 3.3, we also have

M‰.Kw/;‰.Kv/.t/ 'MMKw ;Kv .L
�dw t /:

Therefore,
MKw ;Kv .t/ 'MMKw ;Kv .L

�dw t /

and the renewal Lemma 2.8 yields (21). If Kw \ Kv D ;, then d.Kv; Kw/ > 0, so
MKw ;Kv .t/ ' 0 and the result follows as well.

Finally we show that the periodic function is independent of the n-cells con-
sidered.

Lemma 3.7. There exists a periodic function � W .0;1/! R with period L�dw such
that for any pair of intersecting n-cells Kw ; Kv ,

lim
s!C1

Œ�w;v.s/ � �.s/� D 0:

Proof. Indeed, one has first

MKw ;Kv .t/ '

Z
Kw

Z
Kv

p
Kw[Kv
t .x; y/ d�h1i.y/ d�h1i.x/:

By scaling invariance and symmetry,Z
Kw

Z
Kv

p
Kw[Kv
t .x; y/ d�h1i.y/ d�h1i.x/

'

Z
K1

Z
K2

p
K1[K2
t .x; y/ d�h1i.y/ d�h1i.x/;

where K1; K2 are two 1-cells that intersect at one point. Thus, MKw ;Kv .t/ '

MK1;K2.t/ and Lemma 3.6 implies the assertion with � WD �1;2.

Proof of Theorem 3.1. Recall that Kh1i satisfies (20), e.g., it is an unbounded nested
fractal like those based on the Sierpiński gasket or the Vicsek set. Let U D

S
i2I Kwi

be a finite (connected) union of n-cells. Then,

Z
Kh1i

Z
Kh1i

j1U .x/ � 1U .y/jp
Kh1i

t .x; y/ d�h1i.x/d�h1i.y/

D 2

Z
U

Z
U c
pK
h1i

t .x; y/ d�h1i.x/d�h1i.y/

D 2
X
i2I

Z
Kwi

Z
U c
pK
h1i

t .x; y/ d�h1i.x/d�h1i.y/

' 2
X
i2I

Z
Kwi

Z
K�wi

pK
h1i

t .x; y/ d�h1i.x/d�h1i.y/;
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where
K�wi WD

®
Kw ; w 2 Wn W Kw � Kh1i n U ; d.Kw ; Kwi / D 0

¯
denotes the set of n-cells in Kh1inU that intersect Kw at one point. Figure 3 shows
an example in the Sierpiński gasket.

Kw

Figure 3. The set U is drawn in red. The two blue cells correspond to K�w .

Noting that
P
i jK

�
wi
j D j@U j, by virtue of Lemmas 3.6 and 3.7, there exists a

periodic function � D 2�1;2 such that

M1U .t/ D j@U jt
dh
dw �.� ln t /C o

�
t
dh
dw

�
:

Finally, since 1U 2 BV.Kh1i/, it follows from Theorem 2.7 that

lim inf
t!0

t�
dh
dw M1U .t/ > 0

and
lim sup
t!0

t�
dh
dw M1U .t/ < C1I

hence � is bounded from below and above and the conclusion follows.

4. Korevaar–Schoen functional

The aim of this section is to show the part of the main result, Theorem 1.1, concerning
the Korevaar–Schoen-type functional

eMf .r/ WD
1

rdh

Z
Kh1i

Z
B.x;r/

jf .x/ � f .y/j d�h1i.y/ d�h1i.x/;

for f 2 BV.X/. The functional eMf .r/may be regarded as the metric-measure theor-
etic version of Mf ; note that the factor r�dh is necessary to obtain the correct scaling
property.
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Theorem 4.1. Let Kh1i be an unbounded nested fractal. There exists a bounded
periodic function ‰ W .0;1/! Œc; d � with period L�1 and 0 < c � d such that, for
any finite union of n-cells U � Kh1i,

lim inf
r!0C

1

rdh
‰.� ln r/eM1U .r/ D j@U j; (22)

where j@U j is the number of points in the boundary of U .

Remark 4.2. We stress that the function‰ is independent of the setU ; see Lemma 4.6.

To show Theorem 4.1, we will make use of the auxiliary functional

eMA;B.r/ WD
1

rdH

Z
A

Z
B\B.x;r/

d�.y/d�.x/D
1

rdH

Z
A

�h1i.B \B.x;r//d�h1i.x/;

(23)
where A;B � Kh1i and r > 0.

4.1. Scaling and localization

We start by obtaining the analogue of the scaling Lemma 3.3; note that the walk
dimension dw is not visible yet.

Lemma 4.3. For any w 2 Wn, n � 1, and compact sets A;B � Kh1i,eMA;B.r/ DM
neM w.A/; w.B/.L

�nr/: (24)

The same holds when  w is replaced by an invariant rotation of itself .

Proof. With the change of variables x D  w.z/ and since M D LdH , we have

M w.A/; w.B/.r/ D
1

rdH

Z
 .A/

Z
 w.B/\B.x;r/

d�h1i.y/ d�h1i.x/

D
1

rdH

Z
A

Z
 w.B/\B. w.z/;r/

M�nd�h1i.y/ d�h1i.z/

D
1

rdH
M�n

Z
A

Z
 w.B\B.z;Lnr//

d�h1i.y/ d�h1i.z/

D
1

rdH
M�2n

Z
A

Z
B\B.z;Lnr/

d�h1i.y/ d�h1i.z/

DM�n
�L�n
r

�dH Z
A

Z
B\B.z;Lnr/

d�h1i.y/ d�h1i.z/

DM�neMA;B.rL
n/:

We now move on to proving the analogue of the localization Lemma 3.4.
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Lemma 4.4 (Localization lemma). LetA;B �Kh1i be compact and suppose zA�A,
zB � B are such that d. zA;B n zB/ > r0, d.A n zA;B n zB/ > r0 and d.A n zA; zB/ > r0

for some r0 > 0. Then, eMA;B.r/ D eM zA; zB.r/

holds for any 0 < r � r0. In particular, if A;B satisfy d.A;B/ > r0 > 0, theneMA;B.r/ D 0 (25)

for any 0 < r � r0.

Proof. Let 0 < r � r0. Splitting the double integral,

eMA;B.r/ D
1

rdH

Z
zA

Z
zB\B.x;r/

d�h1i.y/ d�h1i.x/

C
1

rdH

Z
zA

Z
.Bn zB/\B.x;r/

d�h1i.y/ d�h1i.x/

C
1

rdH

Z
An zA

Z
zB\B.x;r/

d�h1i.y/ d�h1i.x/

C
1

rdH

Z
An zA

Z
.Bn zB/\B.x;r/

d�h1i.y/ d�h1i.x/

and the last three terms vanish because d. zA; B n zB/ > r0 implies that B.x; r/ \
.B n zB/ D ; for any x 2 zA, whereas d.A n zA; zB/ > r0 implies B.x; r/ \ zB D ; for
any x 2 A n zA.

4.2. Finitely ramified nested fractals

This section again concentrates on the case of unbounded nested fractals like the
unbounded Sierpiński gasket, where any two n-cells Kw ; Kv intersect at most at one
point, i.e.,

jKw \Kvj 2 ¹0; 1º: (26)

It is now that the walk dimension appears when we take into account that the critical
exponent is ˛1 D

dh
dw

, cf. [3, Theorem 5.1].

Lemma 4.5. For any n 2 N and v; w 2 Wn, there exists a periodic function �v;w W
.0;1/! R such thateMKv ;Kw .r/ D r

˛1dw�v;w.� ln r/C o.rdH /

as r ! 0C.
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Proof. Assume first Kv \Kw D ¹qº. Let  denote the similitude having q as fixed
point. Choosing 0 < r < L�1, we have that the sets Kv;  .Kv/ and Kw ;  .Kw/
satisfy the conditions of Lemma 4.4 with A D Kv , zA D  .Kv/, B D Kw and zB D
 .Kw/. Together with the scaling Lemma 4.3, this implieseMKv ;Kw .r/ D

eM .Kv/; .Kw/.r/ DM
�1eMKv ;Kw .rL/:

In the case that Kv \ Kw D ;, the cells are separated at least by a factor L�1,
whence (25) implies eMKv ;Kw .r/ D 0. Applying the renewal Lemma 2.8 yields

eMKv ;Kw .r/ D r
�

logM
logL�1 �v;w.� ln r/C o

�
r
�

logM
logL�1

�
D r

logM
logL �v;w.� ln r/C o

�
r

logM
logL

�
D rdh�v;w.� ln r/C o.rdh/ D r

dh
dw

dw�v;w.� ln r/C o.rdh/:

As in the case treated in Section 3, a consequence of the translation and rotation
invariance of the functional eMKv ;Kw .r/ is that the periodic function appearing in
Lemma 4.5 is independent of the pair of cells Kv; Kw .

Lemma 4.6. There exists a periodic function � W .0;1/! R with period L�1 such
that for any n 2N and any pair of intersecting cellsKv;Kw �Kh1i with v;w 2Wn,

lim inf
s!1

Œ�v;w.s/ � �.s/� D 0:

Proof. Let K1; K2 � Kh1i be two 1-cells that intersect at one point. Note that
K2 \ B.x; r/ is empty for any x 2 K1 with 0 < r < L�n and thus translation and
rotation invariance imply

eMKv ;Kw .r/ D
1

rdh

Z
Kv

Z
Kw\B.x;r/

d�.y/ d�.x/

D
1

rdh

Z
K1

Z
K2\B.x;r/

d�.y/ d�.x/ D eMK1;K2.r/

for r > 0 sufficiently small. By virtue of Lemma 4.5, there exist periodic functions
�v;w.s/ and �1;2.s/ such that

lim inf
s!1

�
�v;w.s/ � �1;2.s/

�
D lim inf

r!0C
�v;w.� ln r/ � �1;2.� ln r/

�
D lim inf

r!0C

�
r�dh eMKv ;Kw .r/ � r

�dh eMK1;K2.r/
�
D 0;

which gives the assertion with � WD �1;2.
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Proof of Theorem 4.1. WriteU D
SN
iD1Kwi ,N > 0, whereKwi �K

h1i are n-cells.
As in Theorem 3.1, define, for each i D 1; : : : ; N , the index set

Jwi WD
®
j D 1; : : : ; N WKwj � K

h1i n U ; d.Kwi ; Kwj / D 0
¯

and note that d.Kwi ; Kwj / D 0 is equivalent to d.Kwi ; Kwj / < r for any 0 < r <
diamKwi =2. Thus, for each such r , we obtain

M1U .r/ D
1

rdh

Z
Kh1i

Z
B.x;r/\Kh1i

j1U .x/ � 1U .y/j d�.y/ d�.x/

D
1

rdh

Z
U

Z
B.x;r/\U c

d�.y/ d�.x/

C
1

rdh

Z
U c

Z
B.x;r/\U

d�.y/ d�.x/

D

NX
iD1

1

rdh

Z
Kwi

Z
B.x;r/\U c

d�.y/ d�.x/

C

NX
iD1

1

rdh

Z
U c

Z
B.x;r/\Kwi

d�.y/ d�.x/

D

NX
iD1

X
j2Jwi

1

rdh

Z
Kwi

Z
B.x;r/\Kwj

d�.y/ d�.x/

C

NX
iD1

X
j2Jwi

1

rdh

Z
Kwj

Z
B.x;r/\Kwi

d�.y/ d�.x/

D

NX
iD1

X
j2Jwi

�
MKwi ;Kwj

.r/CMKwj ;Kwi
.r/
�
:

By symmetry, Lemmas 4.5 and 4.6 imply that, as r ! 0C, the latter sum equals

2

NX
iD1

jJwi j
�
r�˛1dw�1;2.� ln r/C o.rdh/

�
D 2j@U j

�
r�˛1dw�1;2.� ln r/C o.rdh/

�
I

hence (22) holds with ‰.z/ D .2�1;2.z//�1.
To justify that the lim inf is non-zero we invoke the definition of variation intro-

duced in [3, Section 4.2] that is given by

Var.f / D lim inf
r!0C

1

r˛1dw
eMf .r/;
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where ˛1 > 0 is the critical exponent. From [3, Theorem 5.1], it follows that ˛1dw D
dh for p.c.f. fractals, which, together with [3, Theorem 4.9], yields

lim inf
r!0C

1

rdh
eM1U .r/ D Var.1U / � Ck1U k1;dh=dw :

Since 1U is a non-constant function, the seminorm above is non-zero and hence (22)
is also non-zero as long as ‰ is non-zero.

4.3. Non-existence of the limit

The geometric nature of the functional eMA;B defined in (23) makes it possible to
prove the non-trivial oscillations of the function‰ in (22). In this section we continue
working with p.c.f. nested fractals and provide explicit details for the case of the
Sierpiński gasket and the Vicsek set.

First, note that the proof of Theorem 4.1 indicates that it suffices to study the
(non)convergence of eMKu;Kv .r/ for any pair of n-cells that meet at a point p 2 V .n/.
Because the latter functional can be written as

eMKu;Kv .r/ D
1

rdH
�˝ �

�
¹.x; y/ 2 Ku �KvW d.x; y/ � rº

�
; (27)

the main idea consists in approximating that quantity for different sequences ¹rmºm�1
with rm ! 0C as m!1. The choice of the sequences in the following lemma is
based in the observation illustrated in Figure 4.

p p

p p

Figure 4. Intersections of n-cells with balls of radius rn (left) and r 0n (right) in the Sierpiński
gasket (above) and the Vicsek set (below).
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On the one hand, if p 2 V .n/ is the vertex of an n-cellKw and rn WD .diamK/L�n,

B.p; r/ \Kw D Kw for all r > rn; (28)

while
B.p; r/ \Kw   Kw for all r < rn: (29)

On the other hand, a ball B.p; r 0/ with radius

r 0 > r 0n WD .diamK/L�n C .diamK/L�n�1

will also cover those .nC 1/-cells in the .n � 1/-cell that contained Kw but did not
belong to Kw itself. That is,

B.p; r/ \Kw D Kw [K
�
w for all r > r 0n; (30)

where
K�w WD

[
zw2WnC1

K zw\K
c
w¤;

K zw ; (31)

and
B.p; r/ \Kw � Kw [K

�
w for all r < r 0n: (32)

Finally, notice that the number of .nC 1/-cells in K�w is independent of the cell and
the level. Using the previous notation, the non-existence of the limit (22) follows from
the next lemma.

Lemma 4.7. Let .Ku; Kv/ denote a pair of n-cells with Ku \Kv D ¹pº and let

R WD #
®
i 2 Wn W i ¤ 1;Ki \K

c
1 ¤ ;

¯
: (33)

For any m > n large enough,

�˝ �
�
¹.x; y/ 2 Ku �KvW d.x; y/ � rmº

�
D

´
2M�m for rm D .diamK/L�m;

2M�m.1CRM�1/ for rm D .diamK/L�m.1C L�1/:
(34)

Proof. Let p 2 Vn n Vn�1 be the vertex where the pair of n-cells .Ku; Kv/ intersect.
By construction (see also Figure 4), for m > n sufficiently large, we have

�
Ku [Kv

�
\B.p;rm/D

´
Kwu [Kwv [ ¹pº for rm D .diamK/L�m;

K�wu [K
�
wv [ ¹pº for rm D .diamK/L�m.1C L�1/;

(35)
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where w 2 Wm�nC1 and Kwu; Kwv denote the .mC 1/-cells that intersect at p, and
K�wu; K

�
wv their corresponding (outer) L�.mC1/-neighborhoods.

On the one hand, the pairs of cells .Kwu; Kwv/ only intersect at one point, hence

�˝ �
�
¹.x; y/ 2 Kwu �KwvW d.x; y/ � L

�m
º
�

D �
�
.Kwu [Kwv/ \ B.p;L

�m/
�

D �.Kwu [Kwv/ D 2�.Kwu/ D 2M
�m:

On the other hand,

�˝ �
�
¹.x; y/ 2 Kwu �KwvW d.x; y/ � L

�m.1C L�1/º
�

D �
�
.K�wu [K

�
wv/ \ B.p;L

�m.1C L�1/
�

D �.K�wu [K
�
wv/ D 2�.K

�
wu/ D 2M

�m.1CRM�1/:

Since M D Ldh , in view of (27) and Lemma 4.7, we can compute explicitly the
two limits and confirm that they are different.

Corollary 4.8. For any pair of n-cells .Ku; Kv/ in a p.c.f. nested fractal,

lim
m!1

eMKu;Kv .rm/ D

´
2 for rm D .diamK/�m;

2.1C 2M�1/ for rm D .diamK/L�m.1C L�1/:
(36)

Consequently, the limit (22) does not exist.

In particular, we have R D 2 in the Sierpiński gasket and R D 1 in the Vicsek set.
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