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Fourier decay behavior of homogeneous self-similar measures
on the complex plane

Carolina A. Mosquera and Andrea Olivo

Abstract. We prove that the Fourier transform of self-similar measures on the complex plane
has fast decay outside of a very sparse set of frequencies, with quantitative estimates, extending
the results obtained in the real line, first by R. Kaufman, and later, with quantitative bounds,
by the first author and P. Shmerkin. We also derive several applications concerning correlation
dimension and Frostman exponent of complex Bernoulli convolutions. Furthermore, we present
a generalization for a particular case on Rd ; with d � 3:

1. Introduction

Given � a finite Borel measure on the complex plane, its Fourier transform is defined
as b�.�/ WD ˆ

C
e2�iRe.z�/ d�.z/:

The behaviour of b�.�/ when j�j ! 1 is a fundamental characteristic of the meas-
ure �. Measures for which jb�.�/j ! 0 when j�j !1 are called Rachjman measures.
By the Riemann–Lebesgue lemma, every absolutely continuous measure is Rachj-
man, but many singular measures are too. Among the (possibly) singular measures,
an important group are the homogeneous self-similar measures (see Section 2), which
are the measures that we consider in this paper. In particular, we focus on self-similar
measures supported in the complex plane.

We say thatb�.�/ has polynomial decay if there exist �;C� > 0 such that jb�.�/j �
C� j�j

��=2: Furthermore, the Fourier dimension of � is defined as

dimF .�/ WD 2 sup
®
� � 0 W jb�.�/j � C� j�j�� for some C� > 0 and all � ¤ 0

¯
;

and then one can say that b� has polynomial decay if and only if dimF .�/ > 0. For
many purposes, the simple convergence ofb� to zero is not enough, and some quantit-
ative decay is needed. For example, if dimF .�/ > 0, then �-almost every number is
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normal to any base, see [1, 10], and if dimF .�/ > 0 and � satisfies a Frotsman-type
condition �.B.x; r// � C rs , then � satisfies a restriction theorem analogous to the
Stein–Tomas theorem for the sphere, see [7, 8].

Regardless of its significance, the Fourier dimension of a measure is particularly
difficult to calculate or even give some estimative and, in some cases, there is no decay
at all forb�: Furthermore, in some cases, there are not decay at all forb�. For example,
consider the complex Bernoulli convolutions ��, being the distribution of the ran-
dom series

PC1
nD1˙�

n; where the signs are chosen independently with probabilities
¹1=2; 1=2º and � 2 D, the open unit disk. Also, �� can be defined as the self-similar
measure associated to the iterated function system (IFS) ¹�z � 1; �z C 1º: For these
particular measures, Solomyak and Xu [16] proved that if � is a complex Pisot num-
ber and 1 < j� j <

p
2; then jb��.�/j¹ 0 as j�j ! 1 when � D 1

�
. This implies that

dimF .��/ D 0 and, in particular, �� is singular for � D 1=� . Recall that a non-real
algebraic integer � , with j� j > 1, is called a complex Pisot number if all its Galois
conjugates, except � , are less than one in modulus. On the other hand, Shmerkin and
Solomyak [14] proved that the Fourier transform of complex Bernoulli convolutions
have power decay for all parameter �, outside of an exceptional set of parameters of
zero Hausdorff dimension.

Nevertheless, if a measure � has zero Fourier dimension, it may happen thatb� has
fast decay outside of a very sparse set of frequencies. In fact, for self-similar measures
on the real line, Kaufman [5] and Tsujii [17] proved that for any " > 0, there exists
ı > 0 such that the set ®

� 2 Œ�T; T � W jb�.�/j � T �ı¯
can be covered by T " intervals of side length 1. Kaufman treated the homogeneous
case using a version of the well-known Erdős–Kahane argument whereas the proof of
Tsujii for the non-homogeneous case is based on large deviation estimates. Recently,
the first author and Shmerkin [9] made the dependence of ı on " quantitative in the
homogeneous case.

Furthermore, if dimF .�/ D 0, Kaufman [5] established, for the case of Bernoulli
convolutions in the real line with parameter � 2 .0; 1=2/, that if F W R ! R is a
diffeomorphism of class C 2 with F 00 > 0, then dimF .F�/ > 0, where here and below
F� denotes the push-forward measure, that is, F�.A/D�.F �1.A// for all Borel sets
A�R . Later, in [9], the authors extended this result to any non-atomic homogeneous
self-similar measure in the real line.

The goal of this paper is to extend the results mentioned above for homogen-
eous self-similar measures on the real line to the complex plane. More precisely, we
prove that the Fourier transform of homogeneous self-similar measures on the com-
plex plane have fast decay outside of a very sparse set of frequencies, extending the
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results obtained in [9] in dimension one, making the dependence of ı on " explicit (see
Propositions 2.2 and 2.5). Although the approach is similar to the one used in [5, 9],
and is based on the Erdős–Kahane argument, there are some new features, mainly
because we have to deal with two different cases: when the parameter � 2 D, the con-
traction ratio of the iterated function system (see Section 2), has non-zero real part
or not. As an application, we obtain a generalization of the Kaufman’s result about
the power Fourier decay of non-linear smooth images of homogeneous self-similar
measures. More precisely, if F is an analytic function with F 00 ¤ 0 in a neighbor-
hood of the supp�, then bF� has polynomial decay, with quantitative estimates (see
Theorem 3.1).

Given � a Borel measure, since convolution (of a measure, of a function, etc.)
with � is a smoothing operation, a natural problem is quantifying the additional degree
of smoothness ensured by convolving with �: In [12], it was proven that uniformly
perfect measures on the real line (which include the Ahlfors-regular measures as a
proper subset) have the property that convolving with them results in a strict increase
of the Lq dimension. A particular case of this was proved before in [9], when � is a
homogeneous self-similar measure on the real line and q D 2; but with quantitative
estimates. Moreover, non-quantitative results could be deduced before from [13]. In
the present work, we prove that convolving with a homogeneous self-similar meas-
ure on the complex plane increases the correlation dimension (see Section 4.1 for the
definitions) by a quantitative amount (see Theorem 4.1) and that the Frostman expo-
nent of complex Bernoulli convolutions tends to 2 as the modulus of the contraction
ratio tends to 1 (see Theorem 4.2).

Besides the real line and the complex plane, the decay properties of the Four-
ier transform of self-similar (or self-affine) measures were also considered in higher
dimensions; see, for example, [6, 11, 15]. Recently, Solomyak in [15] proved that
for almost all d -tuplas .�1; : : : ; �d /, with j� j > 1, the Fourier transform of any self-
affine measure associated to a homogeneous iterated function system of the form
¹Ax C wj º

m
jD1 in Rd , where A�1 is a diagonal matrix with entries .�1; : : : ; �d /,

has power decay at infty. To conclude, we generalized some of our results to higher
dimensions in the particular case when A is a contractive similitude diagonalizable
over R, that is, A D �O , where O is an orthogonal matrix diagonalizable over R and
� 2 .0; 1/ (see Proposition 5.2).

2. Fourier decay outside of a sparse set of frequencies

Given p D .p1; : : : ; pm/ a probability vector, i.e., a vector in Rm with pi > 0 for all
i D 1; : : : ;m and p1C : : :CpmD 1,wD .w1; : : : ;wm/ a vector in Cm, and �2D, let
�
p

�;w
be the self-similar measure corresponding to the IFS ¹fiºmiD1, with probability
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vector p and where fi D �zCwi . That is, �p
�;w

is the only Borel probability measure
satisfying the relation

�
p

�;w
D

mX
iD1

pifi�
p

�;w
:

On the other hand, �p
�;w

can also be defined as the distribution of the random sum

C1X
nD1

�nXn;

where Xn are random variables i.i.d. with P.Xn D wi / D pi :
Throughout the paper, given z 2 C, we denote by Re.z/ and Im.z/ its real and

imaginary part, respectively.
By the definition of �p

�;w
as a self-similar measure, we can express its Fourier

transform as follows:

b�p
�;w
.�/ D

ˆ
C
e2�iRe.z��/d�

p

�;w
.z/

D

1Y
nD0

mX
jD1

pj exp.2�iRe.�nwj �// D
1Y
nD0

ˆ.�n�/;

where ˆ.u/ WD
Pm
jD1 pj exp.2�iRe.wju//.

Observe that since replacing wi by .wi �w1/=.w2 �w1/ has the effect of apply-
ing a linear map to the measures in question, we may always assume without loss of
generality that w1 D 0 and w2 D 1.

Lemma 2.1. The following holds for all z 2C and c 2 .0; 1/: If kRe.z/k> c=2, then
jˆ.z/j < 1 � �.c; p/; where

�.c; p/ D p1 C p2 �

q
p21 C 2p1p2 cos.�c/C p22 ;

and kxk denotes the distance of a real number x to the closest integer.

Proof. By definition of ˆ, we have

jˆ.z/j � jp1 C p2e
2�iRe.z/

j C .1 � p1 � p2/

D jp1 C p2 cos.2�Re.z//C p2i sin.2�Re.z//j C .1 � p1 � p2/

D

q
p21 C p

2
2 C 2p1p2 cos.2�Re.z//C .1 � p1 � p2/:

Now, using that kRe.z/k > c=2; we obtain that cos.2�Re.z// < cos.�c/ and then
jˆ.z/j � 1 � �.c; p/.
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The next proposition is the main result of this section. We prove that outside of
a very sparse set of frequencies, the Fourier transform of �p

�;w
has fast decay, with

quantitative bounds. First, we consider the case when the complex parameter � 2 D

is outside of the real line.

Proposition 2.2. Given �2D nR and a probability vector pD .p1; : : : ;pm/, there is
a constantC DC�>0 such that for each "> 0 small enough (depending continuously
on �), the following holds for all T large enough: The set of frequencies j�j � T such
that jb�p

�;w
.�/j � T �" can be covered by C�T ı squares of side-length 1, where

ı D
log
�˙
1C 3

j�j2

��
z"C h.z"/

log
�
1
j�j

� ; z" D
log.j�j/

log
�
1 � �

�
j�j2

j�j2C3
; p
�� "; (2.1)

and h.z"/ D �z" log.z"/ � .1 � z"/ log.1 � z"/ is the entropy function.

Proof. Choosing N 2 N such that j�j�.N�1/ � T � j�j�N we may assume that T D
j�j�N . We can write � D t��N , where t 2 C and jt j < 1. We have that

jb�p
�;w
.�/j �

1Y
jD1

jˆ.�j �/j D

1Y
jD1

jˆ.�j t��N /j

�

NY
jD1

jˆ.�j�N t /j D

N�1Y
jD0

jˆ.��j t /j:

As in Lemma 2.1, we denote by kxk, the distance of x to the closest integer. Given
" > 0, we let z" be as in the statement. Let

S.N;z"/ WD
®
t 2 C; jt j < 1 W kRe.��j t /k < � for at least .1� z"/N integers j 2 ŒN �

¯
;

where we denote ŒN � D ¹0; 1; : : : ; N � 1º, and � D �.�/ D j�j2

2.j�j2C3/
:

Note that if t … S.N; z"/, by Lemma 2.1, we have

jb�p
�;w
.�/j � .1 � �.2�; p//z"N D j�jN" < T �";

and it follows that®
� 2 C; j�j � T W jb�p

�;w
.�/j � T �"

¯
� S.N; z"/:

Hence, in order to prove that ¹� 2 C; j�j � T W jb�p
�;w
.�/j � T �"º can be covered by

a small number of squares of side-length 1, we will estimate the amount and size of
squares needed to cover S.N; z"/.

For each t 2C; jt j< 1; we define integers rj .t/ and "j .t/ 2 Œ�1=2; 1=2/ such that

Re.��j t / D rj .t/C "j .t/: (2.2)
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Then t 2 S.N;z"/ precisely when j"j .t/j< � at least .1� z"/N times among the indices
j 2 ŒN �. We will simply write rj and "j when no confusion arises.

LetN1 D d.1� z"/N e. For each t 2 S.N;z"/, there is a subset I � ŒN � with at least
N1 elements such that j"j j < � for all j 2 I . We shall estimate the size of S.N; z"/ by
considering each index set I separately, and for this, we define

S.I; z"/ WD
®
t 2 C; jt j < 1 W kRe.��j t /k < � for all j 2 I

¯
:

If j D 0, Re.t/ D r0 C "0, so for jt j < 1, there are at most 3 choices for r0 and at
most 6 choices for r1.

Next, we denote � D aC ib, a; b 2 R, b ¤ 0, and given j 2 ŒN �,

��j t D cj C idj ; (2.3)

where cj and dj depend on j and t .
By (2.2), we have

Re.��.jC1/t / D rjC1 C "jC1 (2.4)

and, on the other hand

cjC1 WD Re.��.jC1/t / D Re.��1/Re.��j t / � Im.��1/Im.��j t /

D
a

j�j2
.rj C "j /C

b

j�j2
dj ; (2.5)

where in the last equality we use that ��1 D a�bi
j�j2

. Using again (2.2) and a simple
calculation, we obtain

rj�1 C "j�1 D acj � bdj ;

and therefore

dj D
acj � rj�1 � "j�1

b
D
1

b

�
a.rj C "j / � rj�1 � "j�1

�
; (2.6)

where in the last equality we use that cj D rj C "j .
Now, combining (2.4), (2.5) and (2.6),

"jC1 D cjC1 � rjC1

D
a

j�j2
.rj C "j /C

b

j�j2

�1
b

�
a.rj C "j / � rj�1 � "j�1

��
� rjC1

D
2a

j�j2
.rj C "j / �

rj�1 C "j�1

j�j2
� rjC1;

or, equivalently,

2arj � rj�1

j�j2
� rjC1 D "jC1 C

"j�1

j�j2
�
2a"j

j�j2
:
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Taking absolute value in the previous equality and using that j"j j � 1=2 for all j and
jaj � 1, we getˇ̌̌

rjC1 �
2arj � rj�1

j�j2

ˇ̌̌
�
1

2

�
1C

1

j�j2
C
2jaj

j�j2

�
�
1

2

�
1C

3

j�j2

�
:

Therefore, given rj�1; rj , we can have at most d1
2
.1C 3

j�j2
/e choices of rjC1.

If j � 1; j; j C 1 2 I , then j"j�1j; j"j j; j"jC1j < �, so that

j"jC1j C
j"j�1j

j�j2
C
2jajj"j j

j�j2
< 1=2

and at most one value of rjC1 is possible. Also note thatˇ̌®
j 2 ŒN � W j � 1; j; j C 1 2 I

¯ˇ̌
� N � 3jN nN1j � 2 � .1 � 3z"/N � 2:

Thus, the total number of sequences r1; : : : ; rN is at most

MN WD 3 � 6
�l
1C

3

j�j2

m�3z"NC2
:

Invoking (2.2) and (2.3), we have

cN D Re.��N t / D rN C "N ; (2.7)

with jcN � rN j � 1=2.
On the other hand,

rN�1 C "N�1 D Re.��.N�1/t / D Re.���Nt / D acN � bdN ;

and then, using (2.8), (2.7) and that j"j j � 1=2 for all j , we obtainˇ̌̌
dN �

arN

b
�
rN�1

b

ˇ̌̌
�
jaj C 1

2jbj
: (2.8)

From (2.7) and (2.8), we conclude that, for each pair .rN�1; rN /, the complex
number ��N t D cN C idN belongs to a rectangle of dimensions jajC1

2jbj
� 1. Then, t is

contained in a rectangle of dimensions jajC1
2jbj
j�jN � j�jN , and we obtain that S.I; z"/

can be covered by MN rectangles of the mentioned size.
By Stirling’s formula, we can estimate

�
N
N1

�
and we see that the number of index

sets I is at most eh.z"/N for large enough N . Therefore, S.N; z"/ can be covered by

MN e
h.z"/N

rectangles of dimensions jajC1
2jbj
j�jN � j�jN . Finally, rescaling, we have that®

� 2 C; j�j � T W jb�p
�;w
.�/j � T �"

¯
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can be covered by the above number of rectangles of dimensions jajC1
2jbj
� 1. Moreover,

since each rectangle can be covered by a finite number of squares of side-length 1, we
conclude the proof.

Remark 2.3. Clearly, if Im.�/ D 0, the above proof fails, but the exclusion of � 2 R

may appear artificial. When m D 2, the case � 2 R reduces back to the family of real
Bernoulli convolutions, treated in [9]. However, it is interesting to consider the case
when m � 3 and the vectors wi are not collinear. More precisely, consider an IFS of
the form ¹�z C wiºmiD1, � 2 .0; 1/ and m � 3. In these cases, after an affine change
of coordinates, that does not affect the results we want to obtain, we can assume
without loss of generality that w1 D 0;w2 D 1 and w3 D i . For example, here we can
include the self-similar measure supported on the Sierpiński gasket associated to the
IFS ¹1

2
z Cwiº

3
iD1, where wi are the vertices of an equilateral triangle centered at the

origin.
To deal with this case, first we need to prove a similar estimation as in Lemma 2.1

but considering the distance of a complex number to the lattice Z2 instead of the
distance of its real part to Z:

Lemma 2.4. The following holds for all z 2 C, and c 2 .0; 1/: If d.z;Z2/ > c
2

then
jˆ.z/j < 1 � �.c; p/, where �.c; p/ is a positive constant and d.z;Z2/ denotes the
distance of z to the closest point on the lattice Z2.

Proof. Recalling the definition of ˆ and using that w1 D 0; w2 D 1 and w3 D i , we
have

jˆ.z/j D jp1 C p2 exp.2�iRe.z//C p3 exp.2�iRe.iz//C .1 � p1 � p2 � p3/j

� 1 � c1 max.kRe.z/k; kRe.iz/k/2

D 1 � c1 max.kRe.z/k; k � Im.z/k/2

D 1 � c1 max.kRe.z/k; kIm.z/k/2;

for some constant c1 > 0 depending on p and, as before, kxk denotes the distance of
x to the closest integer. Since

d.z;Z2/ D kRe.z/k2 C kIm.z/k2 � 2max.kRe.z/k; kIm.z/k/2;

and d.z;Z2/ > c=2, we obtain

jˆ.z/j � 1 �
c1

2
d2.z;Z2/ � 1 � �.c; p/:

Next, we present the analogue of Proposition 2.2 for the case � 2 R, with j�j < 1.
The statement is similar, but of course the dependence of ı on " is different. Since the
proof follows directly from the one given in [9] for the real case, we omit it.
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Proposition 2.5. Given � 2 .0; 1/ and a probability vector p D .p1; : : : ; pm/,m� 3,
there is a constant C D C� > 0 such that for each " > 0 small enough (depending
continuously on �) the following holds for all T large enough: The set of frequencies
j�j � T such that jb�p

�;w
.�/j � T �" can be covered by C�T ı squares of side-length 1,

where

ı D
4z" log

�˙
2C 1

�

��
C h.z"/

log
�
1
�

� ; z" D
" log.�/

log
�
1 � �

�
�

2.�C1/
; p
�� ;

and h.z"/ D �z" log.z"/ � .1 � z"/ log.1 � z"/ is the entropy function.

3. A Kaufman-type theorem in two dimensions

As an application of the results obtained in the previous section, we present a version
of Kaufman’s theorem in the complex plane.

Theorem 3.1. Let � be an homogeneous self-similar measure on C which is not a
single atom and let F WC!C be an analytic function with F 00¤ 0 in a neighborhood
of supp�. Then there exist � D �.�/ > 0 and C D C.F;�/ > 0 such that

jbF�.�/j � C j�j�� :

For the proof we need the following well-known result (see, for example, [3]).

Proposition 3.2. Let � be a self-similar measure on C which is not a single atom.
Then there exist positive constants C and s, depending on �, such that �.B.x; r// �
Crs , for all x; r > 0:

Proof of Theorem 3.1. Fix � such that j�j � 1 and choose N 2 N such that 1 <
j�jN j�j2=3 � j�j�1.

Let us decompose � in the following way:

� D �N � �N

where �N D
¨N
nD1.

Pm
jD1 pj ı�nwj / and �N is a rotated and scaled down copy of �

by a factor �N .
For the next calculation, we will write e.z/ D e2�iRe.z/ for simplicity.

bF�.�/ D
ˆ

C
e2�iRe.F .v/ N�/ d�.v/

D

ˆ
C

ˆ
C
e.F.z C w/ N�/ d�N .z/d�N .w/
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D

ˆ
C

ˆ
C
e..F.z/C F 0.z/w CO.jwj2// N�/ d�N .z/ d�N .w/

D

ˆ
C

ˆ
C
e.F.z/� C F 0.z/w�/e.O.j�jjwj2// d�N .z/d�N .w/

D

ˆ
C

ˆ
C
e.F.z/ N� C F 0.z/w N�/.1CO.j�jjwj2// d�N .z/ d�N .w/

D

ˆ
C
e.F.z/ N�/

�ˆ
C
e.F 0.z/w N�/ d�N .w/

�
d�N .z/

C

ˆ
C

ˆ
C
e.F 0.z/w N� C F.z/ N�/O.j�jjwj2/ d�N .z/ d�N .w/

D

ˆ
C
e.F.z/ N�/

�ˆ
C
e.F 0.z/w N�/ d�N .w/

�
d�N .z/CO.j�jj�j

2N /;

where in the third equality we replace F by its linear approximation (where, as usual,
O.X/ denotes a quantity bounded by CX in modulus) and in the the fifth equality we
use that je.ı/ � 1j D O.ı/.

Then, by the assumptions made at the beginning of the proof on � and N; we have
j�jN � j�j�2=3 and j�jj�j2N � j�j�1=3. Here, x � y means that C�1x � y � Cx.
Then,

jbF�.�/j �
ˇ̌̌ˆ

C
e.F.z/ N�/

�ˆ
C
e.F 0.z/w N�/ d�N .w/

�
d�N .z/

ˇ̌̌
CO.j�j�1=3/

�

ˆ
C
jb�N .F 0.z/ N�/j d�N .z/CO.j�j�1=3/

D

ˆ
C
jb�.�NF 0.z/ N�/j d�N .z/CO.j�j�1=3/:

Consider T D M j�jN j�j, where M WD supz2supp� jF
0.z/j and fix " > 0 to be

determined later. Then, by Proposition 2.2, there is C D C� > 0 such that the set of
frequencies j�j � T for which jb�.�/j � T �" can be covered by CT ı squares with
side-length 1. Let I1; : : : ; ICT ı be these squares. Observe that if � …

SCT ı

jD1 Ij , then
jb�.�/j � T �".

Consider the set

� WD
°
z 2 supp� W �NF 0.z/ N� 2

CT ı[
jD1

Ij

±
:

Thenˆ
C
jb�.�NF 0.z/ N�/j d�N .z/ D ˆ

�

C

ˆ
�c
� �N .�/C T

�"
� �N .�/CO.j�j

�1=3/:

In order to conclude the proof, we need to prove that �N .�/ � j�j�ˇ for some ˇ > 0.
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First, observe that � can be rewritten as°
z 2 supp� W F 0.z/ 2

CT ı[
jD1

Jj

±
;

where Jj are squares of side-length j�j�N j�j�1 � j�jN=2, or which is the same,
� D

SCT ı

jD1 J
0
j , where J 0j D .F 0/�1.Jj / \ supp �. Using that F 00 is non-zero in a

neighborhood of supp�, we have that

jz1 � z2j � L jF
0.z1/ � F

0.z2/j

for all z1; z2 2 J 0j and L is a positive constant depending on F . Then, for each j ,

diamJ 0j � L diamJj . Lj�jN=2: (3.1)

On the other hand, since �N is a rotated and scaled down copy of� by a factor �N ,
if the support of � is contained in a ball BC .0/, for some C D C.�;w1; : : : ;wm/, the
support of �N is contained in a ball Bj�jNC .0/. Then, since � D �N � �N , one has
that for any ball B ,

�N .B/ � �.B C Bj�jNC .0//: (3.2)

Invoking (3.1) and (3.2), for each j there exists a ball Bj with the same diameter
of J 0j such that J 0j � Bj and �N .Bj / � C j�j

Ns
2 .

Therefore

�N .�/ � CT
ı
j�j

Ns
2 � C j�jı=3j�j�s=3 � C j�j

.ı�s/
3 :

Choosing " small enough such that ı < s.�/ we obtain that

jbF�.�/j � C j�j .ı�s/
3 C C j�j�"=3 C C j�j�1=3 � C j�j�min

®
.s�ı/
3 ; "3

¯
:

Remark 3.3. The above theorem allow us to have uniform explicit power decay for
the Fourier transform of F��, the push-forward measure of complex Bernoulli convo-
lutions, even if the measure �� does not have decay at all. For example when �D 1=�
and � is a complex Pisot number such that 1 < j� j<

p
2, it is known that jc��.�/j¹ 0

when j�j ! 1, see [16].

4. Applications

4.1. Improving the L2 dimension under convolution

We begin by recalling the definition of Lq dimensions. Let q 2 .1;C1/, and set
sn.�; q/ WD

P
Q2Dn

�.Q/q , with ¹Dnºn the partition of Rd into dyadic intervals of
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length 2�n. Define

dimq.�/ WD lim inf
n!C1

log.sn.�; q//
.q � 1/ log.2�n/

:

The L2 dimension of a measure is also known as correlation dimension. Note that the
Frostman exponent dim1 can also be defined as

dim1.�/ WD lim inf
n!C1

log max¹�.Q/ W Q 2 Dnº

log.2�n/
:

It is well known that the function q 7! dimq.�/ is continuous and non-increasing on
.1;C1� and that dimq.�/ � dimH.�/ for any q 2 .1;C1�, where dimH is the lower
Hausdorff dimension of a measure, defined as

dimH.�/ WD inf
®
dimH.A/ W �.A/ > 0

¯
:

We refer the reader to [2] for the proofs of these facts and further background on
dimensions of measures.

The proofs of the results in this section are similar to the ones given in [9] for the
real case, but we will include them here for the sake of completeness.

Theorem 4.1. Let � be an homogeneous self-similar measure on the complex plane.
Given any � > 0, there is � D �.�; p; �/ > 0 such that the following holds: Let � be
any Borel probability measure with dim2.�/ � 2 � �. Then

dim2.� � �/ > dim2.�/C �:

More precisely, one can take � D 2", where " D ".�; p; �/ is such that the value of
ı D ı."; �; p/ given in Proposition 2.2 satisfies

� � 2" D ı: (4.1)

Proof. First, note that it is possible to choose " < 1=2 such that � � 2" D ı, using
continuity arguments.

For any Borel probability measure � on C we have that dim2.�/ D 2 � ˛.�/,
where

˛.�/ D lim sup
T!1

log
´
j�j<T

jb�.�/j2 d�
logT

:

In [4, Lemma 2.5], the authors prove the above result in the real line, but the same
argument can be extended to higher dimensions. So we omit the proof. Then it is
enough to prove that ˛.�/ � � implies ˛.� � �/ < ˛.�/ � � .
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Denote �0 D ˛.�/ � �. For any "0 > 0 and taking T D 2N for some N 2 N, by
definition of ˛, ˆ

j�j�2N
jb�.�/j2 d� � O"0.1/2N.�0C"0/:

Split the frequencies into two groups

EN D
®
� W j�j � 2N ; jb�.�/j � 2�"N ¯ and FN D

®
� W j�j � 2N ; jb�.�/j > 2�"N ¯:

Then, applying Proposition 2.2, we have that FN can be covered by C�2ıN squares
of side-length 1 and, in consequence, it has Lebesgue measure bounded by C�2ıN .

Using all this, we haveˆ
j�j�2N

j1� � �.�/j2 d� D
ˆ
EN[FN

jb�.�/j2jb�.�/j2 d�
�

ˆ
EN

2�2"N jb�.�/j2 d� C ˆ
FN

1 d�

� O"0.1/2
�2"N 2.�0C"0/N C C�2

ıN

� O"0;�.1/2
.�0�2"C"0/N ;

using that �0 � � and the definition of " in the last line. Since this holds for all "0 > 0,
it follows from the definition of ˛ that

˛.� � �/ � �0 � 2";

which gives the claim since � D 2".

4.2. Frostman exponent for complex Bernoulli convolutions

Let � 2 D and p 2 .0; 1/. We denote with �p
�

the biased complex Bernoulli convolu-
tion, i.e., �p

�
is the self-similar measure associated with the IFS ¹�z � 1;�zC 1º with

probability vector .p; 1 � p/. When p D 1=2, we just write �� to denote the usual
Bernoulli convolution.

Theorem 4.2. Given p0 < 1=2, there exists a constant C D C.p0/ such that

dim1.�
p

�
/ � 2 � C.1 � j�j/ log

� 1

1 � j�j

�
for all p0 � p � 1 � p0.

Proof. Fix � 2 D with modulus close to 1. We define N D N.�/ to be the smallest
integer such that j�jN < 1=

p
2. Then,

j�j
p
2
� j�jN <

1
p
2
:
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In particular, assuming j�j > 1=
p
2, we see that j�jN 2 .1=2; 1=

p
2/.

Fix � 2 .0; 1/, and suppose that dim2.�
p

�
/� 2� �. We have the following decom-

position. Let us write S�.x/ D �x for the map that scales by �, and recall that

�
p

�
D �

p

�N
� S��

p

�N
� � � � � S�N�1�

p

�N
: (4.2)

This is a well-known fact that can be seen from expressing �p
�

as an infinite convolu-
tion.

Since the associated IFS satisfies the open set condition,

dim2.�
p

�N
/ D

log.p2 C .1 � p/2/
log.j�jN /

:

In particular, we have that dim2.�
p

�N
/ � 0. Now, using that dim2.�

p

�
/ � 2 � � and

(4.2), we get dim2.�
p

�N
/ � 2� �. By Theorem 4.1, there is � D �.�; p; �/ > 0 such

that
dim2.�

p

�N
� S��

p

�N
/ � �:

Proceeding inductively according to (4.2), after N � 1 steps, we obtain that if
dim2.�

p

�
/ � 2 � �, then

dim2.�
p

�
/ � .N � 1/�:

It follows that if � is such that � D �.�; p; �/ D 1=.N � 1/, then

dim2.�
p

�
/ � 2 � �:

Thus, we just need to estimate such �. By (4.1), we have that � D ı C � , where
ı D ı.�=2/ is given by (2.1). Note that z" D C.j�jN ; p/� , where C > 0 depends
continuously on j�jN and p. In what follows, Cj will denote a positive constant
depending only of p0. Since j�jN 2 .1=2; 1=

p
2/ and p 2 Œp0; 1 � p0�, a calculation

using (2.1) shows that there is a constant C1 such that ı � C1� log.1=�/ provided �
is small enough (which we may assume).

We deduce that

dim2.�
p

�
/ � 2 � � � 2 � � � C1� log

� 1
�

�
� 2 � C2� log

� 1
�

�
; (4.3)

if � is small enough. On the other hand, since j�j1=� D j�jN�1 < j�j�1=
p
2 < 2=3

(say), we have � � log.1=j�j/= log.3=2/. Finally, using that log.1=j�j/ � 2.1 � j�j/
for 1 � j�j small, we deduce that

� � C4.1 � j�j/:

Together with (4.3), this yields

dim2.�
p

�
/ � 2 � C5.1 � j�j/ log

� 1

1 � j�j

�
:
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Since we have the decomposition

�
p

�
D �

p

�2
� S��

p

�2
;

and scalings do not changeL2 dimension, using Young’s lemma (see [9, Lemma 5.2]),
we can conclude that

dim1.�
p

�
/ � 2 � C5.1 � j�j

2/ log
� 1

1 � j�j2

�
� 2 � C6.1 � j�j/ log

� 1

1 � j�j

�
:

Corollary 4.3. There is an absolute constant C > 0 such that

dim1.��/ � 2 � C.1 � j�j/2 log
� 1

1 � j�j

�
:

Proof. Again, fix � 2 D with j�j close to 1 and let N D N.�/ the smallest integer
such that j�jN < 1=

p
2 and then, j�jN > j�j=

p
2.

Since the associated IFS satisfy the open set condition,

dim2.��N / D
log
�
1
2

�
log j�jN

�
log
�
1
2

�
log
�
j�j
p
2

� D 1 � log
�
1
j�j

�
log
�
2
j�j

� :
Proceeding as in the proof of the Theorem 4.2, we obtain that if dim2.��/� 2� �,

then there exists � D �.�; �/ > 0 such that

dim2.��/ � dim2.��N /C .N � 1/�

� 1 �
log
�
1
j�j

�
log
�
2
j�j

� C .N � 1/�:
Now, if � is such that � D log.1=j�j/

log.2=j�j/
1

.N�1/
; then

dim2.��/ � 2 � �:

Then we want to estimate such �. Proceeding as in the proof of the above theorem,
we get

dim2.��/ � 2 � � � 2 � C1� log
� 1
�

�
:

On the other hand, using that j�j=
p
2< j�jN <1=

p
2 and that log.1=j�j/� 2.1� j�j/

for 1 � j�j small, we obtain 1
.N�1/

� C2.1 � j�j/ and then

� � C3.1 � j�j/
2:

Thus,

dim2.��/ � 2 � C4.1 � j�j/
2 log

� 1

1 � j�j

�
:

Using again Young’s lemma as in the proof of Theorem 4.2 we finish the proof.



C. A. Mosquera and A. Olivo 58

5. A particular extension to higher dimensions

In this section, we present a generalization to the results obtained in Section 2 in
higher dimensions, but for a particular class of self-similar measures.

Given p D .p1; : : : ; pm/ a probability vector, w D .w1; : : : ; wm/ a sequence of
digit vectors in Rd and � 2 .0; 1/, let �p

�;w
be the self-similar measure associated to

the IFS ¹fiºmiD1, with fi D �Ox C wi and where O is an orthogonal matrix diagon-
alizable over R.

Since O is a diagonalizable matrix over R, we can assume without loss of gen-
erality that O is the identity matrix. In fact, if we iterate the IFS (replacing fi by
.fifj /

m
i;jD1), the matrix O is replaced by O2 which has all its eigenvalues equal to 1

and then, there exist some orthonormal basis where it can be written as the iden-
tity matrix. Also, after an affine change of coordinates we can always assume that
w1 D .0; : : : ; 0/ and w2 D .1; : : : ; 1/. By definition of the Fourier transform and the
condition of being a self-similar measure, we can write

b�p
�;w
.�/ D

1Y
nD0

ˆ.�n�/;

where ˆ.y/ D
Pm
jD1 pj exp.2�ihy;wj i/ for all y 2 Rd :

Next, we present a lemma that is analogous to Lemma 2.1, and also the higher
dimensional version of Proposition 2.2.

Lemma 5.1. The following holds for all y 2 Rd , y D .y1; : : : ; yd / and c 2 .0; 1/: If
jjy1 C : : :C yd jj >

c
2

, then ˆ.y/ < 1� �.c; p/, where �.c; p/ is a positive constant
and jj � jj denotes the distance of a real number to the closest integer.

Proposition 5.2. Given � 2 .0; 1/ and a probability vector p D .p1; : : : ; pm/,m� 3,
there is a constant C D C� > 0 such that for each " > 0 small enough (depending
continuously on �) the following holds for all T large enough: The set of frequencies
¹k�k1 � T W jb�p�;w.�/j � T �"º can be covered by C�T ı squares of side-length 1,
where

ı D
log
�˙
1C 1

�

��
z"C h.z"/

log
�
1
�

� ; z" D
log.�/

log
�
1 � �

�
�
�C1

; p
��";

and h.z"/ D �z" log.z"/ � .1 � z"/ log.1 � z"/ is the entropy function.

The proof of Lemma 5.1 is analogous to that of Lemma 2.1, and the proof of
Proposition 5.2 is similar to that of the real case in [9].
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