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h-Laplacians on singular sets

Claire David and Gilles Lebeau

Abstract. Until now, the correspondence between the Alexander–Kolmogorov complex, and
the de Rham one, by means of a small scale parameter, has not gone that far as passing to the
limit of the resolvent of the associated Laplacian, when the small parameter tends towards zero.
Along these lines, a result proving a complete Hodge decomposition was missing. We bridge
this gap by means of our own rescaled h-cohomology, h being a very small parameter. Passing
to the limit of the resolvent enables us to consider the extension to singular spaces, in particular,
our h-differential operators also enable us to also make the connection with those of analysis on
fractals, as introduced by Jun Kigami, and taken up by Robert S. Strichartz.
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1. Introduction

How could one define differentiation and integration on general topological sets? This
is the problem that James Waddell Alexander and Andreï Nikolaïevitch Kolmogorov
tried to solve with chains and cochains [4]. The underlying idea was given by Kolmo-
gorov himself [4, 21]:

“The author’s goal is to construct a particular difference calculus which, on
the one hand, leads to differential operators acting on antisymmetric tensors (multi-

2020 Mathematics Subject Classification. Primary 28A80; Secondary 35R02.
Keywords. h-cohomology, Hodge decomposition, Laplacian, resolvent, metropolis algorithm,
singular spaces, analysis on fractals.

https://creativecommons.org/licenses/by/4.0/


C. David and G. Lebeau 62

vectors) by a limit process, and on the other hand is closely related to the concepts of
combinatorial topology.

In particular, it is possible to define new invariants of complexes and closed sets
using this difference calculus, and to prove some generalizations of the known duality
theorems.”

One may see the underlying perspectives, especially, defining and handling differ-
ential on non-smooth objects, by means of simplices and the associated cohomology
groups.

This is only the first step. What happens when those objects are very small, either
since their measure tends towards zero, or when they belong to an everywhere singular
set, of fractal type?

Let us recall, first, the context and the existing works on connected subjects.
It is often taken for granted that de Rham differential forms are limits of suitably
rescaled Alexander–Spanier cochains. One has to be much more precise as soon as
one ventures on this terrain. In the work by Alain Connes and Henri Moscovici [7]
(mainly devoted to a proof of the Novikov conjecture for hyperbolic groups), the
authors review the Alexander–Spanier realization of the cohomology of a smooth
manifold M , as it can be found in the original work by Edwin H. Spanier [40, Chap-
ter 6]. The main topic is the definition of an homomorphism of complexes between the
(quotient) Alexander–Spanier complex associated to the cohomology, NC ?.M/, and
the de Rham one,ƒ?.M/ (recall that given a cochain complexC ?.M/D¹Cp.M/;ıº

and the sub-complex C ?0 .M/ D ¹C
p
0 .M/; ıº � C ?.M/, where Cp0 .M/ denotes the

set of functions from MpC1 to R which vanish on a neighborhood of the p-th diag-
onal of M , NC ?.M/ is simply the complex quotient of NC ?.M/ by C ?0 .M/ – a very
natural way of proceeding, the fact that a function vanishes in a given region neces-
sarily implying the same feature for the differential). To the aforementioned purpose,
the manifold is endowed with a Riemannian metric, while considering an open cov-
ering B which satisfies specific properties. The rescaling is obtained by means of this
covering. However, the isomorphism is not made explicit. The second work one might
think of is the one by Laurent Bartholdi, Thomas Schick, Stephen Smale, and Nathan
Smale, on abstract and classical Hodge–de Rham theory in [2], followed up by the
results from the last two authors in [39], where, given a compact Riemannian mani-
foldM , the authors build cochain maps between the de Rham complex ofM ,ƒ?.M/,
and the Alexander–Spanier one NC ?.M/ at a scale ˛ > 0, for sufficiently small val-
ues of the parameter ˛. The authors go as far as comparing the Hodge Laplacian on
differential forms, and a suitably rescaled one on the space of cochains at scale ˛. It
is shown, in the case of functions, and when ˛ tends towards zero, that the rescaled
Laplacian on cochains converges towards the Hodge operator.

Note that the techniques used in the aforementioned Connes and Moscovici paper
are different than the ones of our work. First, A. Connes and H. Moscovici integrate
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differential forms on simplices. Then, they involve the exponential map, which result
in numerous and heavy computations. As for the work by Smale et al., it is, also, based
on the use of integral operators. Given a metric d , and the scale parameter ˛, they
consider the ˛-neighborhood of the diagonal in the product manifold Xp , denoted
by U˛ , and the associated spaces L2alt.U

p
˛ / and C1.U p˛ / of alternating functions of

respectivelyL2 and C1alt class on U p˛ . They prove, for any integer p, the isomorphism
between the ˛-scale subspace Harmp

˛ .M/ � L2alt.U
p
˛ / of harmonic p-forms on the

manifold, and the cohomology in degree p of the respective complexes

0 �! L2.M/
ı1

�! L2alt.U
2
˛ /

ı2

�! � � �
ıp�1

�! L2alt.U
p
˛ /

ıp

�! L
pC1
alt .U pC1˛ /

ıpC1

�! � � �

and

0 �! C1.M/
ı1

�! C1alt .U
2
˛ /

ı2

�! � � �
ıp�1

�! C1alt .U
p
˛ /

ıp

�! C1alt .U
pC1
˛ /

ıpC1

�! � � �

where ı denotes the classical Alexander–Spanier coboundary operator. They also
show the isomorphism with the de Rham cohomology. As is not the case in the Connes
and Moscovici paper, the isomorphism is given explicitly. However, the result only
concerns the cohomology, i.e., the quotiented kernels of the coboundary operator.
Moreover, in so far as they solely deal with harmonic forms, they do not have the
associated Hodge theory, which can only be obtained by means of a suitable renor-
malization. Things are easier to handle, when only dealing with harmonic forms. In
particular, there is thus no result regarding the limit of the resolvent when the scale
parameter tends towards zero.

As for a general theory of differential operators on fractals, the problem was
tackled by Fabio Cipriani and Jean-Luc Sauvageot in [5]. The authors place them-
selves along the lines of noncommutative geometry à la Connes, where, given a com-
pact topological space K, a continuous function f on K is represented by means of
a bounded operator �.f /, which acts on a Hilbert spaceH . If F denotes a self-adjoint
operator of square 1, acting onH , the (commutator) operator df D i ŒF; �.f /�, where
i2 D �1, stands for a “substitute” for the differential of f . In the case of postcritic-
ally finite (p.c.f) fractals1, the authors build Fredholm modules, in relation with the
self-similar Dirichlet form E associated to the self-similar fractal2. A key result of
the Cipriani and Sauvageot paper is [5, Proposition 3.1], where they exhibit the exist-
ence of an “essentially unique derivation”, denoted by @, defined on the Dirichlet

1For the reader who might not be familiar with those notions, we refer to the book of
Jun Kigami [19, Definition 1.3.13].

2See the seminal works of Arne Beurling and Jacques Deny in [3], along with the afore-
mentioned book [19, Chapter 2].
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algebra C.K/ \ F , taking its values in a real Hilbert moduleH , and which is a differ-
ential square root of the Dirichlet form E. In other words, this means that the algebra
of continuous functions on K acts in a continuous way, and that the classical Leibniz
rule for the derivative of a product is true. Then, by using the Fredholm modules, the
authors are able to associate, to each harmonic structure, a topological invariant of the
considered compact topological space K, the “K-homology class of the Fredholm
module”.

In [18], Marius Ionescu, Luke G. Rogers and Alexander Teplyaev go further, and
give an explicit description of the elements of the aforementioned Hilbert module H .
A very interesting feature of this work is that the authors are able to give “a direct sum
decomposition of this module to piecewise harmonic components that correspond to
the cellular structure of the fractal”. They go as far as giving an analog of the Hodge
decomposition for H .

A completely different approach has been developed by Michel L. Lapidus and
Machiel van Frankenhuijsen in [34–36] (see also [25]), where the authors suggest that
there should exist a fractal cohomology having direct links with the theory of complex
dimensions, introduced by Michel L. Lapidus and his collaborators in [13, 16, 22–34,
36]. Further results have been obtained by Michel L. Lapidus and Tim Cobler in [6],
where they study the properties of the derivative operator D D d

dz
on a particular

family of weighted Bergman space constituted of entire functions on C. See, also, [26]
and, especially, [27].

We hereafter place ourselves in the same kind of perspective. To begin with, we
generalize the algebraic notion of chains (instead of cochains), to what we call fermi-
ons. Then, we redefine the concept of h-differentiation, where h denotes a very small
real parameter. We go so far as connecting the associated h-cohomology to the clas-
sical de Rham one, much more simpler than what can be found in the existing work.
If we rely on analogous tools that happen to be the same as the ones that can be found
in the Smale et al. work (for instance, the diagonal of the product manifold, and the
same explicit isomorphism), our approach takes a completely different turn: in fact,
we are the only ones to pass to the limit of the resolvent, when the scale parameter
tends towards zero.

This very powerful result enables us to consider the special cases of singular
spaces. In fact, the h-differentiation, connected, as one could foresee, to the notion
of boundary, leads to a local operator, equivalent to the classical Riemannian Lapla-
cian, which can act on singular objects. When the parameter h tends towards zero,
one recovers the usual Laplacian.

A natural question that may be asked is whether this Laplacian is the same as the
one of fractal analysis introduced by Jun Kigami [19] and Robert S. Strichartz [42].
This question is all the more interesting, as Laplacians on fractals are defined by
means of local differences – the starting point being graph Laplacians. More pre-
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cisely, one uses Dirichlet forms, built by induction on a sequence of prefractals, i.e.,
a sequence of finite graphs which converge towards the fractal set involved. For a
continuous function on this set, and subject to existence, its Laplacian is obtained as
the renormalized limit of the sequence of graph Laplacians. At first sight, one cannot
be sure that this operator is the same as the usual Riemannian one – one understands
that it is an operator of the same nature, but further? Another concern comes from
the fact that changing the measure also changes the Laplacian! The problem is even
less obvious as such an operator is not of order two: existing works on the Sierpiński
gasket [41], or on the Weierstrass curve [10], show that the order is greater than two.

Our differential is completely different from the one of Cipriani and Sauvageot,
hence, also from the differential of Ionescu, Rogers and Teplyaev. It relies on the
use of paths across the consecutive prefractal graphs. The detailed study of these
differentials is the object of our following work [12].

The main results obtained in this paper can be found in the following places:

(i) In Definition 5.7, where, for the small parameter h > 0, we define the h-
Laplacian, �h, acting on the space of p-forms, for p 2 N.

(ii) In Theorem 5.8, where we pass to the limit of the resolvent of the h-Laplacian,
.z � j�hj/

�1, when the scale parameter h tends towards zero. This results
requires the introduction of a modified scalar product on the space of p-forms
(see Proposition 5.5), a compulsory step in order to otain the full rescaled
Hodge decomposition, and not only the part associated to harmonic forms as
in [39].

(iii) In Section 6, where we make the connection between the h-Laplacian and
random walks, namely, Markov chain Monte Carlo methods (MCMC), espe-
cially, the Metropolis algorithm. We also extend the definition of the h-
Laplacian to continuous functions; see Definition 6.1.

(iv) In Section 7, where we explore the connection between the h-Laplacian, and
the now classical Laplacian of fractal analysis [19]. Thanks to the result of
the aforementioned Theorem 5.8, we can consider functions which are either
not smooth, or are defined on spaces with singularities, namely, the fractal
case; see, especially, Property 7.4. Note that in light of the results of Sec-
tion 6, namely, the connection with MCMC methods, which are perfectly
suited when a huge number of data is involved, appears as very interesting
in the case of fractal based structures, especially, when they are approxim-
ated by means of prefractal graphs, where iterations quickly yield very large
numbers of points.
Henceforth, in the light of h-cohomology, the link is obvious: the h-Laplacian
can be either obtained by means of de Rham differentiation, but also by
means of local differences. So, modulo a multiplicative constant, the value



C. David and G. Lebeau 66

of which will also be discussed and questioned, this is the same operator as
the Laplacian on fractals.
In doing so, one falls back on the results exposed by R. S. Strichartz et al.
in [1], where the authors build k-forms and de Rham differential operators d
and ı on prefractals, k-forms being considered as k-ones on graphs, a nat-
ural approach in the light that “a k-form is an object that can be integrated
over k-dimensional subjects”. Passing to the limit – which calls for ad hoc
renormalization – shows that their Laplacian on 0-forms – functions – is the
same as the one of J. Kigami.

The circle is thus complete, one is on a closed path. Strichartz et al. made the
connection with Hodge–de Rham theory, the missing one with the Alexander–Kolmo-
gorov complex reinforces the legitimacy of differential operators on fractals. And last
but not least, one also falls on random walks, which occur through the normalization
process required to obtain the limit of the h-Laplacian.

2. Geometric context

Notation 1. In the sequel, we will denote by A a ring of characteristic different
from 2, and by X a general space.

Definition 2.1 (p-fermion). By analogy with particle physics, given a positive inte-
ger p, we will call p-fermion on X , with values in A, any antisymmetric map f
fromXpC1 toA, i.e., such that, for any transposition � , and any .x0; : : : ; xp/ inXpC1,

f .x0; : : : ; xp/ D �f .x�.0/; : : : ; x�.p//:

A 0-fermion on X is simply a map f from X to A.

Remark 2.1. p-fermions are simply the generalization of p-chains.

Definition 2.2 (A-module of p-fermions on X ). Given a positive integer p, we will
denote by F p.X;A/ the A-module of p-fermions on X with values in A, which
makes it an abelian group with respect to the addition, with an external law from
A � F p.X;A/ to F p.X;A/ where:

8.a; b/ 2 A2; 8.f; g/ 2 .F p.X;A//2;

´
a.f C g/ D af C ag;

.aC b/f D af C bf:

Notation 2 (Constant cp). In the sequel, given a positive integer p, we denote by
cp 2 A a constant, the value of which will be defined when necessary.
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Definition 2.3 (p-differential ıp). Given a positive integer p, we define the p-diffe-
rential ıp from F p.X;A/ to F pC1.X;A/, for any f in F p.X;A/, as follows:

8.x0; : : : ; xpC1/ 2 X
pC2;

ıp.f /.x0; : : : ; xpC1/ D cp

� pX
qD0

.�1/qf
�
: : : ; xq�1; xqC1; : : :

��
:

As for the 0-differential ı0, from F 0.X;A/ to F 1.X;A/, it is defined, for any f
in F 0.X;A/, as follows:

8.x0; x1/ 2 X
2; ı0.f /.x0; x1/ D c0.f .x1/ � f .x0//:

Remark 2.2. The kernel of the 0-differential ı0 is the subset

F 0constant.X;A/ � F
0.X;A/

of constant 0-fermions on X . For the sake of simplicity, we will from now on identify
this kernel with A:

ker ı0 � A:

Property 2.1. For all p 2 N,

ıpC1 ı ıp D 0:

Proof. (i) For p D 0, given f in F 0.X;A/, and .x0; x1/ 2 X2, we have that

ı0.f /.x0; x1/ D c0.f .x0/ � f .x1//;

which yields, for any .x0; x1; x2/ 2 X3,

ı1.ı0.f //.x0; x1; x2/

D c1
®
ı0.f /.x0; x1/ � ı

0.f /.x0; x2/C ı
0.f /.x1; x2/

¯
D c0c1

®
f .x0/ � f .x1/ � f .x0/C f .x2/C f .x1/ � f .x2/

¯
D 0:

(ii) For p > 0, given f in F p.X;A/, and .x0; : : : ; xpC2/ 2 XpC3:

ıpC1.ıp.f //.x0; : : : ; xpC2/

D cpC1

²pC1X
qD0

.�1/qıp.f /
�
: : : ; xq�1; xqC1; : : :

�³

D cpcpC1

pC1X
qD0

.�1/q
² pX
q0D0

.�1/q
0

f
�
: : : ; xq�1; xqC1; : : : ; xq0�1; xq0C1; : : :

�³
:
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To understand how things are going in this double sum: this amounts, in the
.p C 3/-uple .x0; : : : ; xpC2/, in suppressing two terms xq , and xq0 . So, the following
configurations occur:

� Either q < q0, in which case, one first takes out xq0 , which occupies the place
number q0. One then takes out xq , which still occupies its original place number q.
The resulting term is thus:

.�1/q.�1/q
0

f
�
: : : ; xq�1; xqC1; : : : ; xq0�1; xq0C1; : : :

�
which can be illustrated as:

– Step 0

: : : xq�1 ��xq xq�1 : : : xq0�1 ��
x0q xq0�1 : : :

" "

place number q place number q0

– Step 1
place number q0 � 1

#

: : : xq�1 ��xq xq�1 : : : xq0�1 xq0C1 : : :

" "

place number q place number q0

� Either q > q0, in which case, one first takes out xq0 , which occupies the place num-
ber q0. One then takes out xq , which this time occupies the place number q � 1,
due to the shift induced by suppressing xq0 .
The resulting term is thus exactly the opposite of the previous one:

.�1/q�1.�1/q
0

f .: : : ; xq�1; xqC1; : : : ; xq0�1; xq0C1; : : :/

which can be illustrated as:

– Step 0

: : : xq0�1 x0q xq0C1 : : : xq�1 ��xq xq�1 : : :

" "

place number q0 place number q
– Step 1

place number q � 2
#

: : : xq0�1 xq0C1 : : : xq�1 xq xqC1 : : :

" "

place number q0 � 1 place number q � 1

All quantities of the above double sum are thus simplified two by two.
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Remark 2.3. The above definition can be understood in the following sense: p-fer-
mions act on a collection .x0; : : : ; xp/ of points in XpC1, which are the vertices
of n-simplices. Those simplices are themselves n-faces of .nC 1/-simplices, the ver-
tices .x0; : : : ; xpC1/ of which are then in XpC2. Thus, the p-differential stands out
as a map acting on the co-boundary of the elements of XpC1.

It could seem strange that the p-differential takes values in F pC1.X;A/: in clas-
sical analysis, one loses information in the differentiation process. In our case, it is
just a generalization, in order to enable one to handle all (oriented) paths between
given extremities, bearing in mind that differentiation is deeply linked to the rate of
increase. The definition makes all the more sense that one can introduce a metric, and
consider very close points, as we will do further.

Definition 2.4 (p-cycle, closed p-fermion). A p-fermion f will be called a p-cycle,
or a closed p-fermion, if

ıpf D 0:

Definition 2.5 (Exact p-fermion). A p-fermion f will be called exact if there exists
a .p � 1/-fermion g such that

f D ıpg:

Definition 2.6 (p-homology group). Given a positive integer p, the quotient group
ker ıp=Im ıpC1 will be called a p-homology group of X over A. It thus corresponds
to the equivalence classes of closed p-fermions, modulo exact p-fermions.

Definition 2.7 (p-cohomology group). Given a positive integer p, the quotient group
ker ıp=Im ıp�1 will be called p-cohomology group of X over A.

Since Im ı�1 D ¹0º, the zero cohomology quotient group ker ı0=Im ı�1 is simply
ker ı0.

Definition 2.8 (Complex of fermions). The complex .F �.X;A/; ı�/ is

F 0
ı0

�! � � �
ıp�1

�! F p
ıp

�! F pC1
ıpC1

�! � � �

where, for any natural integer p,

ıpC1 ı ıp D 0:

Notation 3. We set

F �.X;A/ D

1M
pD0

F p.X;A/:

The associated cohomology, i.e., the set constituted of ker ı0 and of the p-cohomo-
logy groups ker ıpC1=Im ıp , p 2 N, will be denoted by

H �
�
F �.X;A/; ı�

�
:
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Property 2.2 (Acyclic complex of fermions). The complex F �.X;A/ is acyclic: its
cohomology is constant, i.e.,

8p 2 N; ker ıpC1=Im ıp D ¹0º;

which amounts to
8p 2 N; ker ıpC1 D Im ıp:

We set
H 0.F �.X;A/; ı�/ D ker ı0;

i.e.,
H 0.F �.X;A/; ı�/ D A:

This implies, for the associated general cohomology, that

H �.F �.X;A/; ı�/ D H 0.F �.X;A/; ı�/ D A:

Remark 2.4. Since, for any p 2 N?,

ıp ı ıp�1 D 0 and Im ıp�1 � ker ıp;

this simply amounts to
ker ıp D Im ıp�1:

When p > 1, the p-cohomology group of X over A reduces to the trivial quotient
group

ker ıp=Im ıp�1 D ¹0º:

Thus, for p > 1, the p-cohomology groups ker ıp=Im ıp�1 do not play any part in
the complex F �.X;A/. Hence:

H �.F �.X;A/; ı�/ D H 0.F �.X;A/; ı�/ D A:

Proof. (i) For p D 0, Im ı0 is the set of 1-fermions f 1 such that there exists a 0-
fermion f 0 such that:

8.x; y/ 2 X2; f 1.x; y/ D c1
®
f 0.x/ � f 0.y/

¯
:

Recalling now that the 1-differential ı, from F 1.X;A/ to F 2.X;A/, is defined,
for any f 1 in F 1.X;A/, by

8.x; y; z/ 2 X3; ı.f 1/.x; y; z/ D c2
®
f 1.y; z/ � f 1.x; z/C f 1.x; y/

¯
;

its kernel is thus the set of 1-fermions f 1 such that

8.x; y; z/ 2 X3; f 1.x; y/ D f 1.x; z/ � f 1.y; z/;
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which can also be written as

8.x; y/ 2 X2; 8z 2 X; f 1.x; y/ D f 1.x; z/ � f 1.y; z/:

One can see that, given a pair .x; y/ in X2, f 1.x; y/ does not depend on the third
variable. Given z in X , let us set

zf .x/ D f 1.x; z/ and zf .y/ D f 1.y; z/

Then, zf is a 1-fermion, and

f 1.x; y/ D zf .x/ � zf .y/:

Thus, we have that
ker ı � Im ı0;

which yields
ker ı D Im ı0:

(ii) For a given integer p > 1, let us prove that

ker ıpC1 D Im ıp:

Hence, Im ıp is the set of .p C 1/-fermions f pC1 such that there exists a p-
fermion f p such that

8.x0; : : : ; xpC1/ 2 X
pC2;

f pC1.x0; : : : ; xpC1/ D cpC1

� pX
qD0

.�1/qf p
�
: : : ; xq�1; xqC1; : : :

��
:

Recalling that the .p C 1/-differential ıpC1, from F pC1.X;A/ to F pC2.X;A/,
is defined, for any f in F pC3.X;A/, by

8.x0; : : : ; xpC2/ 2 X
pC3;

ıpC1.f /.x0; : : : ; xpC2/ D cp

�pC1X
qD0

.�1/qf
�
: : : ; xq�1; xqC1; : : :

��
;

its kernel is thus the set of .p C 2/-fermions f pC2 such that

8.x0; : : : ; xpC2/ 2 X
pC3;

pC1X
qD0

.�1/qf pC2
�
: : : ; xq�1; xqC1; : : :

�
D 0;
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which can also be written as

8.x0; : : : ; xpC1/ 2 X
pC2;

.�1/pC2f pC2.x0; : : : ; xpC1/ D �

pX
qD0

.�1/qf pC2.: : : ; xq�1; xqC1; : : :/:

One can see that given a .p C 2/-uple .x0; : : : ; xpC1/ in XpC2, the image
f pC2.x0; : : : ; xpC1/ does not depend on the variable xpC2. It can thus be written
in the following form

f pC2.x0; : : : ; xpC1/ D .�1/
pC3

pX
qD0

.�1/qf pC2.: : : ; xq�1; xqC1; : : :/

D zcpC1

pX
qD0

.�1/q zf pC1.: : : ; xq�1; xqC1; : : :/;

where zf pC1 denotes a .p C 1/-fermion.
Thus, we thave that

ker ıpC1 � Im ıp;

which yields
ker ıpC1 D Im ıp:

3. De Rham cohomology

For the benefit of the reader who may not be familiar with mathematical notions
devoted to the de Rham cohomology, we shall first recall several definitions.

3.1. A few reminders

Notation 4. In the sequel, X denotes a smooth manifold, of dimension n 2 N?. We
will hereafter use the classical ^ notation for exterior derivatives.

Definition 3.1. Given a natural integer p, we will denote by �p.X/ the space of p-
forms on X .

Notation 5 (Partial derivative). Given a strictly positive integer p, a smooth p-form f

on X , and k in ¹0; : : : ; pº, the partial derivative @kf is defined, for any

.x0; : : : ; xp/ D
�
.x0;i0/16i06n; : : : ; .xp;ip /16ip6n

�
2 XpC1;
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by

@kf .x0; : : : ; xp/ D

nX
ikD1

@f

@xk;ik

�
.x0;i0/16i06n; : : : ; .xp;ip /16ip6n

�
dxk;ik :

Definition 3.2 (De Rham differential). Given a p-form ! 2 �p.X/ such that, for
any x D .x1; : : : ; xn/ 2 X ,

!.x/ D
X

16i1<���<ip6n

fi1;:::; ip .x/ dx
i1 ^ � � � ^ dxip ;

and where, for any .i1; : : : ; ip/ 2 ¹1; : : : ; nºp , the fi1;:::;ip denote smooth functions
on X , the de Rham differential d! is defined by

d!.x/ D

nX
kD1

X
16i1<���<ip6n

@fi1;:::; ip

@xk
.x/ dxk ^ dxi1 ^ � � � ^ dxip :

Definition 3.3 (Diagonal). Given a natural integer p, the diagonal ofXpC1 is defined
as the set

�X D
®
x D .x; : : : ; x/

¯
� XpC1:

Definition 3.4 (De Rham complex on X ). The de Rham complex on X is the cochain
complex of differential forms

0
d
�! �0.X/

d
�! �1.X/

d
�! �2.X/

d
�! � � �

that we will denote by ��;d .

Property 3.1. We have
d2 D 0:

3.2. Natural correspondence between fermions and differential forms

Definition 3.5 (p-linear forms on the tangent space TX ). Given a strictly positive
integer p, a smooth p-fermion f onX , and x 2X , we define ap-linear form rp.f /.x/

on TxX as follows:

8.u1; : : : ; up/ 2 .TxX/
p;

rp.f /.x/.u1; : : : ; up/ D @1 � � � @pf .x; : : : ; x/
�
u1; : : : ; up

�
:

In the case where p D 0, we simply set

r0.f /.x/ D f .x; : : : ; x/:
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Proposition 3.2. Given a strictly positive integer p, a smooth p-fermion f on X ,
and x in X , we have that

rp.f / 2 �
p.X/ and .p C 1/@0 � � � @pf j�X

D drp.f /;

i.e., for .u0; u1; : : : ; up/ 2 .TxX/pC1;

.p C 1/@0 � � � @pf .x; : : : ; x/.u0; u1; : : : ; up/ D d.rp.f //.x/.u0; u1; : : : ; up/:

Proof. As introduced in Notation 5, for any

.x0; : : : ; xp/ D
�
.x0;i0/16i06n; : : : ; .xp;ip /16ip6n

�
2 XpC1;

we have that

@0 � � � @pf .x0; : : : ; xp/

D

nX
i0D1

� � �

nX
ipD1

@pC1f

@x0;i0 � � � @xp;ip

�
.x0;i0/16i06n; : : : ; .xp;ip /16ip6n

�
dx0;i0 ^ � � � ^ dxp;ip ;

which yields, on the diagonal,

@0 � � � @pf .x; : : : ; x/

D

nX
i0D1

� � �

nX
ipD1

@pC1f

@xi0 � � � @xip
..xi /16i6n; : : : ; .xi /16i6n/dx

i0 ^ � � � ^ dxip :

As previously, for any

.x0; : : : ; xp/ D
�
.x0;i0/16i06n; : : : ; .xp;ip /16ip6n

�
2 XpC1;

we have that

@1 � � � @pf .x0; : : : ; xp/

D

nX
i1D1

� � �

nX
ipD1

@pf

@x1;i1 � � � @xp;ip

�
.x0;i0/16i06n; : : : ; .xp;ip /16ip6n

�
dx1;i1 ^ � � � ^ dxp;ip :

Thus,

d
�
@1 � � � @pf .x0; : : : ; xp/

�
D

pX
kD0

nX
ikD1

nX
i1D1

� � �

nX
ipD1

@pC1f

@xk;ik@x1;i1 � � � @xp;ip
..x0;i0/16i06n; : : : ; .xp;ip /16ip6n/

dxk;ik ^ dx1;i1 ^ � � � ^ dxp;ip ;
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which yields, on the diagonal,

dŒ@1 : : : @pf .x; : : : ; x/�

D

pX
kD0

nX
ikD1

nX
i1D1

� � �

nX
ipD1

@pC1f

@xik@xi1 � � � @xip
..xi0/16i06n; : : : ; .xip /16ip6n/

dxik ^ dxi1 ^ � � � ^ dxip :

One may note that, given an integer k in ¹0; : : : ; pº, the exterior product

dxik ^ dxi1 ^ � � � ^ dxip

vanishes for ik D i1; : : : ; ip . Thus, the nonzero terms depend on the values of i1; : : : ; ip
and not on k, which enables us to write

dŒ@1 � � � @pf .x; : : : ; x/�

D

pX
kD0

nX
i0D1

nX
i1D1

� � �

nX
ipD1

@pC1f

@xi0@xi1 � � � @xip
..xi0/16i06n; : : : ; .xip /16ip6n/

dxi0 ^ dxi1 ^ � � � ^ dxip

D .p C 1/

nX
i0D1

nX
i1D1

� � �

nX
ipD1

@pC1f

@xi0@xi1 � � � @xip
..xi0/16i06n; : : : ; .xip /16ip6n/

dxi0 ^ dxi1 ^ � � � ^ dxip

D .p C 1/@0 � � � @pf .x; : : : ; x/:

Corollary 3.3 (Correspondence between fermions and differential forms). By choos-
ing cp D p C 1, we thus obtain that

drp D rpC1ı
p:

Proof. We have

F p F pC1

�p �pC1:

ıp

rp rpC1

d

Let us consider a p-fermion f , which operates on a .x0; : : : ; xp/ of XpC1. Indif-
ferently, one may handle the variables as .x0; : : : ; xp/, or as .x1; : : : ; xpC1/, thus,
writing .@0; : : : ; @p/ or .@1; : : : ; @pC1/ is equivalent.

Then, we trivially have that

@1 : : : @p@pC1f D @0@1 � � � @pf:
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Due to our previous result, we also have that

.drp/.f /.x; : : : ; x/ D .p C 1/@0 � � � @pf .x; : : : ; x/:

At the same time, for any .x0; : : : ; xpC1/ 2 XpC2, we have that

.rpC1ı
p/.f /.x0; : : : ; xpC1/

D @1 � � � @p@pC1ı
p.f /.x0; : : : ; xpC1/

D @1 � � � @p@pC1cp

² pX
qD0

.�1/qf .: : : ; xq�1; xqC1; : : :/

³
D cp

nX
i1D1

� � �

nX
ipC1D1

@pC1

@x1;i1 � � � @xpC1;ipC1

� pX
qD0

.�1/qf .: : : ; xq�1; xqC1; : : :/

�
dx1;i1 ^ � � � ^ dxpC1;ipC1

D cp

pX
qD0

.�1/q
nX

i1D1

� � �

nX
ipC1D1

@pC1

@x1;i1 � � � @xpC1;ipC1

�
f .: : : ; xq�1; xqC1; : : :/

�
dx1;i1 ^ � � � ^ dxpC1;ipC1 :

One may note that, given an integer q in ¹1; : : : ; pº, the derivative

nX
i1D1

� � �

nX
ipC1D1

@pC1

@x1;i1 � � � @xpC1;ipC1

Œf .: : : ; xq�1; xqC1; : : :/�

takes the value zero, since there is no xq!
Thus,

.rpC1ı
p/.f /.x0; : : : ; xpC1/

D cp.�1/
0

nX
i1D1

� � �

nX
ipC1D1

@pC1

@x1;i1 � � � @xpC1;ipC1

�
f .x1; : : : ; xpC1/

�
dx1;i1 ^ � � � ^ dxpC1;ipC1 ;

which yields, on the diagonal,

.rpC1ı
p/.f /.x; : : : ; x/

D cp

nX
i1D1

� � �

nX
ipC1D1

@pC1f

@xi1 � � � @xipC1

.x; : : : ; x/ dxi1 ^ � � � ^ dxipC1 ;
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which, by means of a change of indices, can also be written as

.rpC1ı
p/.f /.x; : : : ; x/

D cp

nX
i0D1

� � �

nX
ipC1D1

@pC1f

@xi0 � � � @xip
.x; : : : ; x/dxi0 ^ � � � ^ dxip ;

i.e.,
.rpC1ı

p/.f /.x; : : : ; x/ D cp@0 � � � @pf:

Remark 3.1. This result is all the more important, since it enables us to make a con-
nection between the Alexander–Kolmogorov cohomology, based upon differences,
and the de Rham one, which is the usual one.

Notation 6 (Complex of smooth fermions on X ). We will denote by

.F �.X/; ı�/ D

1M
pD0

F p.X/

the acyclic complex of smooth fermions on X , and by ı� the associated differential
(which means that, in practice, one deals with a ıp , for a given value of the integer p).

4. .h; p/-fermions

Notation 7. In the sequel, we will denote by .X; dist/ a metric space.

Definition 4.1 (.h; p/-fermions on X ). Given a strictly positive real number h, and
a natural integer p, we will denote by F p

h
.X;A/ the set of p-fermions on X , with

values in A, defined on

X
pC1

h
D
®
.x0; : : : ; xp/ 2 X

pC1;8.i; j / 2 ¹0; : : : ; pº2 W dist.xi ; xj / < h
¯

and by

.F �h.X/; ı
�/ D

1M
pD0

F
p

h
.X/;

the associated complex.

Definition 4.2 (h-cohomology). We will call H �
h
.X; dist; A/ the h-cohomology of

.X; dist/ at scale h, with values in A.

Definition 4.3 (Radius of injectivity). Given a Riemannian manifold .M; g/, the
injectivity radius on M is defined as

�.M; g/ D inj.M; g/ D inf
x2M

inj
x2M

.M; g/;
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where, for any x 2M ,

inj
x2M

.M; g/ D sup
®
r > 0 W expx is a diffeomorphism on the ball B.x; r/ � TxM

¯
:

5. h-Hodge theory

5.1. Geometric context

Notation 8. In the sequel, we denote by:

(i) X a Riemannian manifold, of dimension dX , equipped with the natural Rie-
mannian distance dist; we denote by � the associated measure on Borel sets.
We obviously have that

8x 2 X; 8" > 0; �.B.x; "// > 0:

(ii) h > 0 a real parameter.

(iii) �pC1 the product measure on XpC1.

Definition 5.1 (Measure on XpC1
h

). We define a measure �pC1
h

on XpC1
h

as follows:

�
pC1

h
D Cp.�; h/�

pC1;

where the normalization factorD Cp.�; h/ stands as a parameter.

Definition 5.2. We set

L2F
p

h
D L2.X

pC1

h
; �pC1/:

Theorem 5.1. Given a compact analytic Riemannian manifold .X; g/, there exists a
finite number of real numbers

0 D h0 < h1 < � � � < hmax D diamX

such that the fibration
H �h .L

2; X; g/ 7! h

is constant on each interval �hi ; hiC1Œ.
Moreover,

(i) For h > diamX ,
H �h .L

2; X; g/ D C:

(ii) For h < h1,
H �h .L

2; X; g/ ' H �:
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Property 5.2. The p-differential ıp is a bounded operator from L2F
p

h
to L2F pC1

h
,

the norm of which obviously depends on h.

Proof. This immediately comes from the fact that the space X is compact, while ıp

is a difference operator acting on continuous functions on X .

Notation 9 (Normalized differential). From now on, given a strictly positive real
number h, we will denote by ıh the normalized differential

ıh D h
�1ı:

Remark 5.1. As explained above, the differential ı is bounded independently of h.
The interesting point is that in the normalized one ıh, the h�1 coefficient allows us to
let h to tend towards zero, which enables one to recover the usual de Rham differential
and infinitesimal calculus.

Definition 5.3 (Reminder: Hodge star operator on a finite-dimensional oriented Euc-
lidean space). Let E be a finite-dimensional oriented Euclidean space, endowed with
a nondegenerate symmetric bilinear form ^. We set

dimE D n 2 N?:

Given a natural integer p 6 n,
Vp

E and
Vn�p

E respectively denote the sub-
spaces of p and n � p vectors. One trivially has

dim
^p

E D dim
^n�p

E D

 
n

p

!
:

(The choice of a basis amounts to choosing p vectors among the n elements of any
basis of E.)

The Hodge star operator ? is simply the natural isomorphism between
Vp

E andVn�p
E. For any orthonormal basis ¹e1; : : : ; enº, we have that

?.e1 ^ � � � ^ ep/ D epC1 ^ � � � ^ en:

Property 5.3. Given a natural integer p 6 n, and a p-vector � 2
Vp

E:

? ? � D .�1/k.n�p/�:

Remark 5.2. We thus have that

ƒp ƒn�p

ƒp�1 ƒn�pC1:

?

d

?
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Now, in the case of our smooth manifold X , the involved space E is simply the
tangent space TxX at some point x 2 X , as is given in Definition 5.4 just below.

Definition 5.4 (Hodge star operator on the de Rham complex). The above defini-
tion 5.3 of the Hodge star operator naturally extends to the de Rham complex��;d on
the smooth manifold X , as the natural isomorphism between �p and �n�p through

?.@1 � � � @p/ D @pC1 � � � @n:

Definition 5.5 (d? operator on the de Rham complex). Given a strictly positive integer
p 6 n, we define the codifferential d? by

d? W �p �! �p�1

via
d? D .�1/n.p�1/C1?d?:

Thus, we have the following diagram:

�p �n�p

�p�1 �n�pC1:

?

d? d

?

Definition 5.6 (Hodge Laplacian). The Hodge Laplacian on ��.X/ is given by

� D .d C d?/2 D dd? C d?d:

Notation 10 (Space of harmonic forms). For any positive integer p, we will denote
by H j�p the space of harmonic forms on �p , i.e., the forms f such that

�f D 0:

Theorem 5.4 (Hodge decomposition). Given a compact analytic Riemannian mani-
fold X , then, for any strictly positive integer p, we have that

�p�1 �p �pC1;
d d

and

�pC1 �p �p�1:
d? d?

To facilitate understanding, the following diagram might be helpful:

�p�1 �p

�p �pC1:

d

d
dd?

d?

d?
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Also, we have the following orthogonal, direct sum decompositions,´
ker dj�p D Im dj�p�1 ˚H j�p ;

ker d?
j�p D Im d?

j�pC1 ˚H j�p ;

and ´
�p.X/ D Im dj�p�1 ˚H j�p ˚ .ker dj�p /?;

�p.X/ D Im d?
j�pC1 ˚H j�p ˚ .ker d?

j�p /
?;

which naturally yields

� D

0B@ dd? 0 0

0 0 0

0 0 d?d

1CA :
Moreover, dj�p induces an isomorphism jp from .ker dj�p /? onto Im dj�p :

.dj�p /ˇ̌
.kerdj�p /?

D jp:

At the same time, d?
j�p induces an isomorphism j ?p from Im dj�p � �pC1 onto

Im d?
j�pC1:

.d?
j�p /

ˇ̌
Imdj�p

D j ?p

In the same way, d?
j�p induces an isomorphism j ?p�1 from Im dj�p�1 onto Im d?

j�p :

.d?
j�p /

ˇ̌
Imdj�p

D j ?p�1

while dj�p induces an isomorphism jp�1 from .ker dj�p�1/? D Im d?
j�p � �

p�1

onto Im dj�p�1:
.dj�p /ˇ̌

Imd?
j�p

D jp�1:

This yields the Hodge decomposition

� D

0B@ jp�1j
?
p�1 0 0

0 0 0

0 0 j ?p jp

1CA :
5.2. Main result: Limit of the resolvent of the h-Laplacian

Proposition 5.5 (Modified scalar product on �p.X/, p 2 N). In the sequel, given
a natural integer p, we modify the usual scalar product .�; �/ on �p.X/ (see Nota-
tion 8 for X ) by means of a multiplicative strictly positive constant p̨ , setting, for
any pair .u; v/ of smooth p-fermions on X :

A.u; v/p D p̨.u; v/p:
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Since
d? W �pC1 �! �p;

we can naturally introduce the operator

zd? D
p̨C1

p̨

d?:

(The multiplicative constant p̨C1 comes from the modified scalar product on the set
�pC1.X/, while the division by p̨ stands as a normalization constant.)

We then set

�0 D .d C zd
?/2 D

M
p2N

0BBB@
p̨

p̨�1

jpj
?
p 0 0

0 0 0

0 0
p̨C1

p̨

j ?p jp

1CCCA :
This compulsory step is required in order to obtain a full rescaled Hodge decom-

position, when one passes to the limit of the resolvent when the scale parameter h
tends to zero; see Theorem 5.8 below.

Definition 5.7 (h-Laplacian). Let us recall that, in the above, given a strictly positive
real number h, we have introduced the normalized differential

ıh D h
�1ı:

The natural correspondence of Corollary 3.3, by means of p and .p C 1/-linear
forms,

8p 2 N; drp D rpC1ı;

naturally induces the existence of the operator ı?,

8p 2 N; d?rp D rpC1ı
?;

and its normalized version
ı?h D h

�1ı?:

We now define the h-Laplacian by

�h D .ıh C ı
?
h/
2:

Notation 11 (Spectrum of a Laplacian operator). Given a Laplacian operator among
the ones previously encountered,�, �0, �h, we denote by Spec.�/ its spectrum:

Spec.�/; Spec.�0/ or Spec.�h/:

Notation 12 (Canonical projections). In the sequel, we will denote by:



h-Laplacians on singular sets 83

(i) …F �
h
;�� the canonical projection from L2F �h onto L2.X;��/.

(ii) …��;F �
h

the canonical injection from L2.X;��/ on L2F �h such that, on
smooth functions,

…F �
h
;�� ı…��;F �

h
D IdL2.X;��/;

and such that …��;F �
h
ı…F �

h
;�� is an orthogonal projection, for the Hilbert

structure of L2F �h – which simply comes from the fact that

…��;F �
h
ı…F �

h
;�� ı…��;F �

h„ ƒ‚ …
IdL2.X;��/

ı…F �
h
;�� D …��;F �

h
ı…F �

h
;�� :

Proposition 5.6. Let us denote by rp;h the restriction to F h of the p-linear form rp

introduced in Definition 3.5. Since F p
h
� F p , we can then use the diagram given in

the proof of Corollary 3.3, which yields:

F
p

h
�p

rp;h

This provides a further understanding of the aforementioned canonical operators:

(i) The first one simply arises as

…F �
h
;�� D rp;h:

(ii) As for the second one, it is uniquely determined by the following condition:

…F �
h
;�� ı…��;F �

h
D IdL2.X;��/;

along with the fact that …��;F �
h
ı…F �

h
;�� is self-adjoint.

It also happens that the restriction rp;h to F p
h
� F p of course does not depend on h.

Property 5.7. Given a strictly positive real number h, j�hj is bounded, self-adjoint,
and non-negative on L2F �h.

Proof. This directly comes from the definition of �h:

�h D .ıh C ı
?
h/
2;

where the differential ıh is bounded, as shown in Property 5.2.

Theorem 5.8 (Limit of the h-Laplacian). Given a compact subsetK � C n Spec.�0/,
there exists a strictly positive constant hK such that, for any h in �0; hK Œ, the resolvent
.z � j�hj/

�1 exists, and

lim
h!0

.z � j�hj/
�1
D lim
h!0

…��;F �
h
.z � j�0j/

�1…F �
h
;�� :
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Remark 5.3. This very strong result enables us to consider the extension to singular
spaces, i.e., when the functions involved are (locally) not smooth, due to the presence
of singularities, as will be done in forthcoming Section 7.

Proof of Theorem 5.8. In the case of smooth functions, a direct computation by means
of a Taylor expansion on the diagonal of the involved matrices, shows that the result
is true.

Now, and what interests us, in the more general case where there exist singularities
(i.e., in the case of a non-smooth function), given a strictly positive real number h, we
obviously have that .z � j�hj/�1 is defined for z 2 C n Spec.�h/.

We thus have to determine the spectrum of the h-Laplacian�h, which can be done
by using the definition, i.e.,

�h D .ıh C ı
?
h/
2:

We can naturally write that

…F �
h
;��.ıh C ı

?
h/
2
D

M
p2N

0BBB@
p̨

p̨�1

jpj
?
p 0 0

0 0 0

0 0
p̨C1

p̨

j ?p jp

1CCCA ;
the resolvent of which exists. One then goes back to the resolvent of the h-Laplacian
by applying the projection …F �

h
;�� .

A delicate point is to ensure the existence of the limit

lim
h!0

…��;F �
h
.z � j�0j/

�1…F �
h
;�� :

This directly comes from Proposition 5.6, since the canonical projections involved
do not depend on h. Thus, the operator

…��;F �
h
.z � j�0j/

�1…F �
h
;�� (5.1)

does not depend on h. In fact, since, on smooth functions,

…F �
h
;�� ı…��;F �

h
D IdL2.X;��/;

we can observe that the operator defined in (5.1) above is (uniformly in h) continuous
on L2.F �h/. Hence, we obtain the sought for result on L2.F �h/.

Property 5.9 (h-normalization constant). Given a natural integer p, the normaliza-
tion constant Cp introduced in Definition 5.1 enables us to connect the measure �pC1

h

on XpC1
h

to the one on XpC1. It is simply given by

Cp D h
�pdX :
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Proof. This just comes from the definition of XpC1
h

. In fact, since

X
pC1

h
D
®
.x0; : : : ; xp/ 2 X

pC1;8.i; j / 2 ¹0; : : : ; pº2 W dist.xi ; xj / < h
¯
;

we can switch from X
pC1

h
to XpC1 by means of a change of variables, of the follow-

ing form

.x0; : : : ; xp/ 2 X
pC1

h
7! .hzx0; : : : ; hzxp/; with .zx0; : : : ; zxp/ 2 XpC1:

The associated Jacobian, which connects �pC1 to �pC1
h

, is thus obviously equal
to h�pdX .

6. h-Laplacian and random walks

Notation 13. In the sequel, we denote by .X; d; �/ a metric measure space such that

8x 2 X; 8h > 0; �.B.x; h// > 0:

Notation 14 (Continuous functions onX ). We denote byC1.X;C/ the set of smooth
(or infinitely differentiable) functions on X , which take values in C.

The subset of continuous functions on X , which take values in RC �RC, will be
denoted by C 0.X;RC �RC/.

Definition 6.1 (h-Laplacian). Given a strictly positive real number h, we define the h-
Laplacian as the operator

j�hj D ı
?
hıh

which acts on continuous functions f on X as follows:

8x 2 X; j�hj.f /.x/ D
2c20
h2

Z
B.x;h/

¹f .y/ � f .x/ºC0.x; y; h/ d�X .y/;

where C0 denotes a function defined onX2��0;C1Œ, and where c20 denotes a strictly
positive constant.

Remark 6.1. (i) The 1
h2 term comes from the definition of ıh D 1

h
ı.

(ii) In Proposition 2.2, we showed that the complex .F �.X;C/; ı�/ is acyclic, and

H 0.F �.X;C/; ı�/ D C:

Thus, in the Laplacian decomposition given in Proposition 5.5, the sole term that
plays a part now is the one that corresponds to p D 0, from which one gets the term
involving C0.
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Remark 6.2. Following a comment in our introduction, we may note that the h-
Laplacian depends on the choice of the measure �X . Somewhere this is not surprising
– at the very beginning, which means, the cohomology, there were sums. Now, as
we will see it in the sequel, the role played by the normalization factor C0 will, in
a certain sense, counterbalance this choice. So, finally, we perfectly fall back on our
feet, with an operator that is just defined up to multiplicative constants.

Definition 6.2 (h-Markov operator). Given a strictly positive real number h, we intro-
duce the operator Mh, given by

Id �Mh

h2
D

1

2c20
j�hj:

Property 6.1. Given a strictly positive real number h, we trivially have, for the con-
stant function on X which takes the value 1, that

Mh.1/ D 1:

Given x 2 X , let us denote by Mh.x; �/ d�X .�/ the measure such that, for any
continuous function f on X :

Mh.f /.x/ D

Z
X

f .y/Mh.x; y/ d�X .y/:

For any .y; z/ 2 X2, we have that

Mh.x; y/ d�X .y/

D
®
1X � 1B.x;h/C0.x; y; h/ d�X .y/

¯
ıx C 1B.x;h/C0.x; y; h/ d�X .y/:

Since the Mh operator is Markov if and only if, for any x 2 X ,

0 6
Z
X

Mh.x; y/ d�.y/ D 1;

a necessary condition is thus that, for any x 2 X ,Z
X

1B.x;h/C0.x; z; h/ d�.z/ D

Z
B.x;h/

C0.x; z; h/ d�.z/ 6 1:

Property 6.2 (Metropolis–Hastings algorithm [15,37]). We recall that the Metropolis–
Hastings algorithm is a Markov chain Monte Carlo method (MCMC), which enables
one to generate a collection of sample states from a probability distribution P.x/,
by means of a Markov process, which enables one to asymptotically reach a unique
stationary distribution PM .x/ D P .x/.

The transition probabilities, from a given state x, to another y one, which are
involved in the Markov process, have to satisfy the following necessary conditions:
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(i) Existence of a stationary distribution PM .x/, which requires the so-called
detailed balance condition, in terms of conditional probabilities:

P Œyjx�P Œx� D P Œxjy�P Œy�

which means that the process involved is a reversible one.

(ii) Uniqueness of stationary distribution, which directly comes from the ergodi-
city (aperiodicity and positive recurrence in time) of the Markov process. One
easily sees that the aperiodicity guarantees that the system does not return
to the same state at fixed intervals, while the positive recurrence ensures that
the expected number of steps for returning to the same state is finite.

Remark 6.3. We can note that since

P Œyjx�

P Œy�
D

P Œxjy�

P Œx�
;

the transition is thus separated to, first, the proposal of a transition state, second, its
acceptance/or rejection. The proposal distribution P ropŒyjx� is thus the conditional
probability of proposing a state y, given the original one x. It is naturally connected
to the probability of acceptance of the new state y with regard to x by

P Œyjx� D P ropŒyjx�AŒyjx�:

At the same time, since one deals with a reversible process, we can write that

P Œxjy� D P ropŒxjy�AŒxjy�:

Those two relations yield that

AŒyjx�

AŒxjy�
D

P Œyjx�

P Œxjy�

P ropŒxjy�
P ropŒyjx�

:

One of the probabilities of acceptance has to take the value 1 (either one stays in x,
either one moves to y). States x and y playing symmetric parts, we can concentrate
on the probability of acceptance of y:

AŒyjx� D min
°
1;

P Œyjx�

P Œxjy�

P ropŒxjy�
P ropŒyjx�

±
:

One clearly sees a very useful advantage of such a method: bypassing the determ-
ination of normalization constants.

The algorithm itself is implemented according to the following steps:

(i) At time t D 0, one chooses an initial state x0.
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(ii) At time t > 0, one generates a random candidate y, and compute the accept-
ance probability:

min¹1;
P Œyjx�

P Œxjy�

P ropŒxjy�
P ropŒyjx�

º

and accept, or reject.

Remark 6.4. Why Markov chain Monte Carlo methods (MCMC)? As recalled in the
generalization paper by W. K. Hastings [15], such methods appear as more efficient
than conventional ones once one deals with problems in “a large number of dimen-
sions”. Such a choice thus seems interesting for an upcoming potential application
to fractal based structures, especially, when they are approximated by means of pre-
fractal graphs, where iterations quickly yield very large number of points.

Property 6.3 (h-Metropolis operator). Given a strictly positive number h, a natural
choice for the normalization factor C0 involved in Definition 6.1 of the h-Laplacian
is such that, for any .x; y/ 2 X2,

C0.x; y; h/ D min
° 1

�.B.x; h//
;

1

�.B.y; h//

±
:

One thus recovers the Metropolis operator associated to the Markov kernel .Id �Mh/.
The associated random walk is the following: if the walk is at x, one chooses y

in B.x; h/ for the probability

1B.x;h/
1

�.B.x; h//
d�X .y/:

Then, depending whether �.B.y; h// > �.B.x; h// or not, one moves to y, or stay
in x.

7. Singular spaces: Connections with previous works

In this section, we explore the connections between the extension of the h-Laplacian
to singular spaces (by means of Theorem 5.8), and previous results of analysis on
fractals, as introduced by Jun Kigami, and taken up by Robert S. Strichartz.

We hereafter place ourselves in the Euclidean plane of dimension 2, equipped with
a direct orthonormal frame.

7.1. Framework of the study: Prefractal graph approximation

Notation 15. In the sequel, we will denote by S a singular set, of fractal type. Exam-
ples of such sets are the classical Sierpiński gasket, the Koch curve, the Weierstrass
curve.
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By following the method developed by J. Kigami [20], we approximate S by a
sequence .Sm/m2N of finite graphs, the so-called prefractals. In classical cases, those
graphs can be built through an iterative process, by means of an iterated function
system (i.f.s) T D ¹T 0; : : : ; T N�1º of N maps, N 2 N, such that

S D

N�1[
iD0

T i .S/:

When the maps of the i.f.s. are contractive, this latter property is the so-called
collage theorem [17]. When the maps are not contractive, one can, under specific
conditions, have an equivalent result (see [9]).

The process is more or less complicated, depending on wether the maps of the
i.f.s. are affine (Sierpiński gasket and Koch curve), or not (Weierstrass curve).

Example 7.1. (i) In the case of Sierpiński gasket, the iterated function system is con-
stituted of three affine contractive maps (similarities), all with the same contraction
ratio 1

2
, and fixed points P0, P1, P2 located at the vertices of the initial equilateral

triangle (see [42], and Figure 1 in the sequel):

8j 2 ¹0; 1; 2º; 8x 2 R2; Tj .x/ D
1

2
.x � Pj /C Pj :

(ii) In the case of a non-affine fractal curve, such as the Weierstrass one, the iter-
ated function system is constituted of Nb > 3 nonlinear maps, which, if they cannot
be said to be contractive in the classical sense, bear an equivalent property (see [9]).
The fixed points are located at the vertices of the initial graph.

Definition 7.1 (Prefractal graph approximation). Let us consider a sequence of finite
discrete graphs .Sm/m2N . For any natural integer m, we denote by Vm the set of
vertices of Sm. The initial set of points V0 stands as the boundary of any @Sm,m 2 N.

We suppose that:

(i) The sequence .Vm/m2N is increasing, i.e.,

8m 2 N; Vm � VmC1:

(ii) For any natural integerm, the graph Sm is equipped with an edge relation�
m

:
two vertices x and y of Sm, i.e., two points belonging to Vm, will be said
adjacent (or neighboring points) (see Figure 2) if and only if the line seg-
ment Œx; y� is an edge of Sm. Note that this edge relation depends on m,
which means that points connected in Vm might not stay connected in VmC1.

(iii) The Euclidean distance between adjacent points tends towards zero when m
goes to infinity, and the union

S
m2N Vm is dense in S .
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Figure 1. In the case of the Sierpiński gasket, the graphs S0, S1, S2, with @S0 D V0 D

¹P0; P1; P2º.

Figure 2. In the case of the Sierpiński gasket, adjacent points, junction points, cells.

The sequence .Sm/m2N will then be called a prefractal graph approximation to S
(see Figure 1 for an example, in the case of the Sierpiński gasket).

Notation 16 (Adjacent consecutive vertices of the m-th level prefractal approxima-
tion, m 2 N). For the sake of clarity, given a natural integer m, two adjacent, con-
secutive vertices of them-th level prefractal approximation Sm will be denoted in the
following form

xm;k and xm;kC1; 0 6 k 6 N � 1;

where N is the number of maps of the iterated function system.
The qualifier “consecutive” is to be understood in the sense that such points are

obtained by means of consecutive maps of the iterated function system. We refer
to [8, 42] for further details and examples.

Definition 7.2 (m-radius (or m-height)). Given a natural integer m, we will call m-
radius (or m-height) of Sm the maximal Euclidean distance between two connected
vertices of Sm, which we will denote by

hm D max
.x;y/2V 2

m;x�
m
y

dEucl.x; y/:
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Figure 3. Pm;j and Qm;j polygons/cells, in the case of the Weierstrass curve.

Property 7.1 (Polygonal domain [11]). For any natural integer m, the #Vm consec-
utive vertices of the graph Sm are, also, the vertices of Nm simple polygons Pm;j ,
for 0 6 j 6 Nm � 1, with N sides (see Figure 3). For any integer j such that
0 6 j 6 Nm � 1, one obtains each polygon Pm;j by connecting the point number j
to the point number j C 1 if j D i .mod N/, for 0 6 i 6 N � 2, and the point num-
ber j to the point number j �N C 1 if j D �1 .mod N/.

To go further, and as required in the specific case of a fractal curve (in order to
have a complete polygonal neighborhood of the curve), the #Vm � 1 consecutive ver-
tices of the graph Sm, distinct of P0 and PN�1, are the vertices of Nm � 1 simple
polygons Qm;j , 1 6 j 6 Nm � 2, with maximum N sides. For any integer j such
that 1 6 j 6 Nm � 2, one obtains each polygonQm;j by linking the point number j
to the point number j C 1 if j D i .mod N/, for 1 6 i 6 N � 1, and the point num-
ber j to the point number j �N C 1 if j D 0 .mod N/.

Of course, those latter polygons are not to be taken into account when the con-
sidered singular set is not a fractal curve. If such is the case, we have that®

Qj
m; 1 6 j 6 N

m
� 2

¯
D ;:

Example 7.2. (i) In the case of the Sierpiński gasket, the polygonal domain is consti-
tuted of equilateral triangles, as can be seen in Figure 1.

(ii) In the case of the Weierstrass curve, the polygonal domain is constituted ofN -
gons, as it can be seen in Figure 3.

Definition 7.3 (m-cell). Given a natural integer m, we call m-cell any simple poly-
gon Pm;j , 0 6 j 6 Nm � 1, or, when necessary, Qm;j , 1 6 j 6 Nm � 2.
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Figure 4. .mC 1/-cells and m-cells, in the case of the Weierstrass curve, for N D 3.

Notation 17. For the sake of simplicity, given a natural integer m, the set of cells
of Sm will be denoted by Cm.

Remark 7.1. (i) Except for the intersection points (i.e., junction points), m-
cells are disjoint.

(ii) In spite of the fact that the sequence .Vm/m2N is increasing, Sm is not neces-
sarily contained in SmC1. For instance, one clearly see it is the case for the
Sierpiński gasket, since an .mC 1/-cell is obtained by dividing am-one into
three. In a different configuration, let us say, the Weierstrass curve (see Fig-
ure 4 – we refer to [8] for further details), this is not the case.

Definition 7.4 (Power of a vertex of the prefractal graph �m, m 2 N? with regard to
the polygonal family ¹C jm; 0 6 j 6 #C jm � 1º). Given a strictly positive integer m,
a vertex x of the prefractal graph �m will be said:

(i) of power one with regard to the polygonal family ¹C jm; 0 6 j 6 #C jmº if x
belongs to one and only one m-cell Cm;j , 0 6 j 6 #C jm � 1;

(ii) of power 1
k

, k 2 N?, with regard to the polygonal family ¹C jm; 0 6 j 6
#C jm � 1º if x is a common vertex to k cells Cm;j , 0 6 j 6 #C jm � 1.

Remark 7.2. (i) The above power is required when defining a measure (see [10], in
the case of the Weierstrass curve, or [42], in the case of the Sierpiński gasket). It acts
as a kind of weight.
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Figure 5. An m-path.

(ii) In the case of the Sierpiński gasket, except for boundary points (the fixed
points of the affine maps of the associated i.f.s., P0, P1, P2,), each vertex point at
a given level m 2 N? belongs to exactly two m-cells, and thus has power 1

2
. As

explained in [42], one can get rid of the part played by the boundary points when
computing a measure, since the sum involved goes to zero when the integer m tends
towards infinity.

(iii) In the case of the Weierstrass curve, except again for boundary points, each
vertex point at a given level m 2 N? belongs to at most two m-cells, in which case it
also has power 1

2
.

(iv) The associated power coefficient 1
2

thus plays the part of a multiplicative con-
stant. For the sake of simplicity, we will consider it as contained in the one involved
in the definition of our Laplacians (r�m in Theorem 7.3).

Definition 7.5 (m-path). Given two vertices in
S
m2N Vm, i.e., two vertices xm;k and

xm;kCp , for m 2 N, 0 6 k 6 #Vm and 0 6 p 6 #Vm � k, we call m-path between
xm;k and xm;kCp the ordered set of vertices given by

Pm.xm;k; xm;kCp/ D
®
xm;kCj ; 0 6 k 6 p

¯
:

An example is given in Figure 7.5.

Definition 7.6 (.m; n/-path). (i) Given a natural integer m, and two adjacent ver-
tices xm;k and xm;kC1 �

m
xm;k of Vm, for 0 6 k 6 #Vm � 1, we call .m;m/-path

between xm;k and xm;kC1 the ordered set of vertices

Pm;n.xm;k; xm;kC1/ D
®
xmCn;kCj ; 0 6 j 6 N n�m

¯
;
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Figure 6. An .m; n/-path.

where
xmCn;k D xm;k and xmCn;kCn D xm;kC1:

(We recall that N denotes the number of maps of the iterated function system intro-
duced at the beginning of Section 7.1. N n�m simply means that N n�m new points
have been introduced between xm;k and xm;kC1.)

An example is given in Figure 6.
(ii) Given a natural integer m, and two vertices xm;k and xm;kCp of Vm, for

0 6 p 6 #Vm and 0 6 k 6 #Vm � p, we call .m;m/-path between xm;k and xm;kCp
the ordered set of vertices given by

Pm;n.xm;k; xm;kCp/ D

p�1[
jD0

Pm;n.xm;kCj ; xm;kCjC1/:

Remark 7.3. Given two vertices x and y in
S
m2N Vm, i.e., two vertices x and y

in Vm, for a given value of the integer m, there exists an infinity of .m; n/-paths
between x and y. It is clear that the minimal one – the simplest one, is the m-one.

Definition 7.7 (m-edge distance). Given a natural integer m, and two vertices xm;k
and xm;kCp in

S
m2N Vm, for 0 6 k 6 #Vm and 0 6 p 6 #Vm�k , the m-edge dis-

tance between xm;k and xm;kCp is defined as the length of the minimal path connect-
ing xm;k and xm;kCp in Vm, i.e.,

dm; edge.xm;k; xm;kCp/ D

p�1X
kD0

dEucl.xm;kCj ; xm;kCjC1/:

In the case of adjacent vertices xm;k and xm;kC1, we simply have that

dm; edge.xm;k; xm;kC1/ D dEucl.xm;kCj ; xm;kC1/:
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Remark 7.4. (i) This edge distance between two vertices corresponds, in a sense, to
the distance at a given level m of the prefractal graph approximation. Adjacent points
at the same level are close, but become very distant as far as the level increases.

(ii) Defining .m; n/-paths enables one to switch, when necessary, from a level m
to higher n > m. Such a situation happens when handling our forthcoming m-balls.

The next problem that arises now is: how can one define balls in our context?
Of course, Euclidean ones could do the job – namely, the important point is that

given a radius r > 0, and a point x, we still have that

8" 2�0; 1Œ; B.x; "r/ � B.x; r/;

i.e., bigger balls contain smaller ones.
An important thing is that we deal with discrete balls. This specific point has

to be taken to account when defining balls – in so far as we will further consider
random walks moving on a given state m of the sequence of prefractal graphs, which
ends by switching from Vm to VmC1, in a lack of memory process. The change of
state – the m-th to the .mC 1/-th state – comes from the fact that Vm � VmC1 and
that #.VmC1 n Vm/ > #Vm – in a sense, the probability of reaching the new statemC 1
is higher.

What we would like, thus, is that the definition of balls could account for this spe-
cificity. Bearing in mind that when m increases, the edge distance between adjacent
vertices become smaller and smaller, the solution is that balls could have more points
near their origin, i.e., with a distribution of points proportional to their position.

Definition 7.8 (m-ball). Given a natural integer m, a strictly positive number r , and
a vertex x of Vm, the m-ball of center x and radius r is defined by

Bm.x; r/ D
®
y 2 Vm; dm; edge.x; y/ < r

¯
:

The associated closed ball will be denoted NBm.x; r/.

Remark 7.5. The above definition 7.8 enable us to deal with the best suited ball,
depending on the considered structure:

(i) In the case of Sierpiński gasket, we will handle m-balls of radius 1
2m , which

coincide with m-cells.
(ii) In the case of the Weierstrass curve, we will handle m-balls of radius j � hm,

for 1 6 j 6 N � 1 (see Definition 7.2). If the center of the ball is located at a junction
point xm (between m-cells), m-balls of radius .N � 1/ � hm enable us to encompass
the m-cells with the same vertex xm. One can also simply want to take into account
the immediate (adjacent) neighbors of a vertex, in which case m-balls of radius hm
suffice.
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Remark 7.6. Another interesting point that may be noted is that our definition of m-
balls yields, for any vertex x of Vm, inclusion relations of the form

BmC1.x; hmC1/ � BmC1.x; hm/:

Property 7.2. Since the sequence .Vm/m2N is increasing, we of course have, for any
strictly positive number r , any natural integer m, and any vertex x of Vm, that

Bm.x; r/ � BmC1.x; r/:

This can be refined, for r 0 < r , as

Bm.x; r
0/ � BmC1.x; r/:

Definition 7.9 (Regular probability measure on S [42]). A regular probability meas-
ure on S is a measure � that assigns weights �.C jm/ to any m-cell of Sm, m 2 N,
for ¹C jm; 0 6 j 6 #Cm � 1º, in an additive way:

(i) 8m 2 N; 8j 2 ¹0; : : : ; #Cm � 1º; �.C jm/ > 0.

(ii) Given two m-cells C jm and C jC1m , ¹C jm; 0 6 j 6 #Cm � 2º which intersect
only at junction points:

�.C jm [ C
jC1
m / D �.C jm/C �.C

jC1
m /:

(iii) limm!C1.�.C
j
m//06j6#Cm�1 D 0.

(iv) �.S/ D limm!1

P#Cm�1
jD0 �.C jm/ D 1.

Given a continuous function f on S , we set, from now on,Z
S

f d� D lim
m!1

#Cm�1X
jD0

X
x vertex of Cj

m

�.C jm/

#vertices of C jm
f .x/:

Notation 18. From now on, we will denote by � a measure on S .

7.2. hm-Laplacian

Definition 7.10 (hm-Laplacian, m 2 N). Following Definition 5.7, given a natural
integer m, we define the hm-Laplacian as the operator

j�hm
j D ı?hm

ıhm
;

which acts on functions f defined on Vm as follows:

8x 2 Vm; j�hm
j.f /.x/ D

2c20;m

h2m

Z
NBm.x;hm/

¹f .y/ � f .x/ºC0.x; y;m/ d�.y/;
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where
C0.x; y;m/ D min

° 1

�. NBm.x; hm//
;

1

�. NBm.y; hm//

±
;

where � is a regular probability measure on S (see Definition 7.9) and where c20;m
denotes a strictly positive constant.

Remark 7.7. It is clear that, when m!1,

1

�. NBm.x; hm//
� 1 and

1

�. NBm.y; hm//
� 1:

Definition 7.11 (Topological Laplacian of order m 2 N?). For any strictly positive
integerm, and any real-valued function f , defined on the set Vm of the vertices of the
graph Sm, we introduce the topological Laplacian of order m, ��m.f /, by

8x 2 Vm n @Vm; ��mf .x/ D
X

y2Vm;y�
m
x

.f .y/ � f .x//:

Theorem 7.3 (Pointwise formula, Kigami–Strichartz Laplacian [42]). Given a strictly
positive integer m, and a vertex x 2 Vm n V0, we introduce the piecewise harmonic
(with respect to the topological Laplacian��m) spline function  mX 2 S.H 0; Vk/ such
that

 mx .y/ D

´
ıxy ; 8y 2 Vm;

0; 8y … Vm;
where ıxy D

´
1; if x D y;
0; else.

Provided the fractal S is self-similar, we the obtain a Laplacian, defined, for any
continuous function f on S , which belongs to its domain dom�, by

8x … V0; �f .x/ D lim
m!1

r�mZ
S

 mx d�

��mf .X/;

where, for any strictly positive integer m, r�m is a normalization constant.

Property 7.4 (Back to the hm-Laplacian). The definition of the measure on S yields,
for any vertex x 2 Vm n V0:

j�hm
j.f /.x/

D
2c20;m

h2m

Z
NBm.x;hm/

¹f .y/ � f .x/ºmin
° 1

�. NBm.x; hm//
;

1

�. NBm.y; hm//

±
d�.y/

D
2c20;m

h2m

X
y2C

j
m;y�

m
x

�.C jm/¹f .y/ � f .x/º

#vertices of C jm
min

° 1

�. NBm.x; hm//
;

1

�. NBm.y; hm//

±
:
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Up to a positive multiplicative constant that depends on the geographic position
of x, which impacts the number of its neighbors and, thus, the measures of the (closed)
balls NBm.x; hm/ and NBm.y; hm/, we have that

�. NBm.x; hm// D �. NBm.y; hm// D �.C
j
m/;

which yields

j�hm
j.f /.x/ D

2c20;m

h2m#vertices of C jm

X
y2C

j
m;y�

m
x

¹f .y/ � f .x/º

D
2c20;m

h2m#vertices of C jm
��m.f /.x/:

Since lim
m!1

hm D 0, we have that

lim
m!1

j�hm
j.f /.x/ D lim

h!0
j�hj.f /.x/ D j�0j.f /.x/:

Henceforth, under the condition

r�mR
S
 mx d�

D
2c20;m

h2m#vertices of C jm
;

it can also be written as

r�m

�.C
j
m/

#vertices of C j
m

D
2c20;m

h2m#vertices of C jm
;

i.e.,

c20;m D
r�mh2m.#vertices of C jm/

2

2�.C jm/

in order to recover the same Laplacian, i.e., the one of classical analysis.

Remark 7.8. The above condition makes sense, in so far as

�.C jm/ .
1

h2m
:

Then, one just has, up to a positive multiplicative constant, the equality of the normal-
ization constants.

Remark 7.9. Henceforth, Laplacians on singular sets can be equivalently obtained,
either through the now classical analysis tools on fractals introduced by J. Kigami, or
by using our h-Laplacians. There is here an interesting point to note, due to the fact
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that the sequence .Vm/m2N is increasing. It thus happens that the hmC1-Laplacian can
be obtained if one considers the modified MCMC method (with respect to the initial
one, see Property 6.2) where, given a state x 2 Vm � VmC1, the transition probability
towards a new state y 2 Vm � VmC1 depends on wether y�mC1 x, or not (i.e., an
edge relation between x and y can only exist at level m):

P Œyjx� D P
h
y �
mC1

x
ˇ̌̌
x
i
C P

h
y 6�
mC1

x
ˇ̌̌
x
i
:

The acceptance probability is then given by

min
°
1;

#.VmC1 n Vm/
#VmC1

�.Bm.y; hm//

�.Bm.x; hm//
;

#Vm
#VmC1

�.BmC1.y; hm//

�.BmC1.x; hm//

±
:

Since
#.VmC1 n Vm/ > #Vm;

and, more precisely, when m!1,

#.VmC1 n Vm/� #Vm;

when, at the same time, hm ! 0, which means that the random walk will naturally
ends in switching to the .mC 1/-th level of the prefractal graph approximation.

As seen previously (see Property 7.2), we cannot write a comparison-inclusion
relation between the balls Bm.x; hm/ and BmC1.x; hmC1/ similar to the one that
exists for the corresponding Euclidean balls, i.e.,

BEucl.x; hmC1/ � BEucl.x; hm/:

Yet, the switching is natural, since

Bm.x; hm/ � BmC1.x; hm/ and BmC1.x; hmC1/ � BmC1.x; hm/:

In fact, the random walk is initially in Bm.x; hm/, but already in BmC1.x; hm/. It
then naturally switches to BmC1.x; hmC1/.

Henceforth, the hmC1-Laplacian can be seen as an extension of the hm-one to
VmC1. We can then draw a parallel with the decimation process of Fukushima and
Shima [14, 38], where, given an eigenfunction um on Vm n @Vm, for the eigenvalue
ƒm, one extends um on VmC1 n @VmC1 to a function umC1, which will itself be an
eigenfunction of the .m C 1/-th graph Laplacian �mC1, for the eigenvalue ƒm. In
other words, this can be seen as a sort of “continuity” of the sequence of discrete
Laplacians.
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Definition 7.12 (Modified hm-Laplacian,m 2N). Following Definition 7.10, given a
natural integer m, we define the modified hm-Laplacian as the operator j z�hm

j, which
acts on functions f defined on Vm, via

8x 2 Vm W j z�hm
j.f /.x/ D

2zc20;m

h2m

Z
NBm.x;hm/

¹f .y/ � f .x/º zC0.x; y;m/d�.y/;

where

zC0.x; y;m/

D min
°#.VmC1 n Vm/

#VmC1

1

�.Bm.x; hm//
;

#.VmC1 n Vm/
#VmC1

1

�.Bm.y; hm//
;

#Vm
#VmC1

1

�.BmC1.x; hm//
;

#Vm
#VmC1

1

�.BmC1.y; hm//

±
;

and where zc20;m denotes a strictly positive constant.

As for the correspondence of Property 7.4, it is obtained thanks to the following
property.

Property 7.5 (Recovering the modified hm-Laplacian, m 2 N). The definition of the
measure on S yields, for any vertex x 2 Vm n V0 and for m 2 N, that

j�hm
j.f /.x/ D

2zc20;m

h2m

Z
NBm.x;hm/

¹f .y/ � f .x/º zC0.x; y;m/d�.y/

D
2zc20;m

h2m

X
y2C

j
m;y�

m
x

�.C jm/¹f .y/ � f .x/º

#vertices of C jm
zC0.x; y;m/:

Under the condition

r�m D
2zc20;m

h2m

X
y2C

j
m; y�

m
x

or y2Cj 0

mC1
; y �

mC1
x

� �.C jm/

#vertices of C jm

�2
zC0.x; y;m/;

we then obtain the correspondence between the modified hm-Laplacian, and the
Kigami–Strichartz Laplacian (see [19, 42]).

7.3. Prefractal cohomology

At the beginning of our study (see Definition 2.3), given a natural integer p, we have
introduced the concept of p-differential ıp , from the set of p-fermions F p.X;A/ to
the set of .p C 1/-fermions F pC1.X;A/, by means of differences.
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Figure 7. A prefractal path between two consecutive vertices x and y of Vm: the points a, b, c,
d , and e are consecutive vertices of VmC1.

In the case of prefractals, if differential operators – local ones, are also defined
by means of differences, we have to be more subtle, in so far as it depends on edge
relations. For instance, given m 2 N?, and a real-valued function f , defined on the
set of vertices Vm, the topological Laplacian of order m is defined as follows:

8x 2 Vm n @Vm; ��mf .x/ D
X

y2Vm; y�
m
x

.f .y/ � f .x//:

Thus, local differences between adjacent points–vertices are involved.
Now, since the sequence .Vm/m2N is increasing, a local difference of the form

f .x/ � f .y/ for y �
m
x;

can be more explicitly written as

f .xm;k/ � f .xm;kC1/;

or, thanks to an analog of a Chasles relation along the path Pm;N .x; y/, as

f .x/ � f .y/ D
X

.z;t/2.Pm;N .x;y//2

.f .z/ � f .t//:

It can then be explicited, in the case of the example displayed in Figure 7.

f .x/ � f .y/ D ¹f .x/ � f .a/º C ¹f .a/ � f .b/º C ¹f .b/ � f .c/º

C ¹f .c/ � f .d/º C ¹f .d/ � f .e/º C ¹f .e/ � f .y/º:
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Thus, p-differentials map the set of m-fermions to the set of N � p fermions:

F p FNp:
ıp

It is then legitimate to question the real meaning of the associated cohomology.
As in [1], we consider that p-fermions act on p-dimensional structures. Given

a natural integer m, the set of vertices Vm has #Vm points, and can be considered
as #Vm-dimensional. In fact, the kernel ker ı#Vm corresponds to the fermions that
stay on them-th-level approximation to the prefractal sequence .Sm/m2N . The image
Im ı#Vm�1 consists in the fermions coming from the .m � 1/-th-level approximation
to the prefractal sequence. The cohomology is thus constituted of the quotient groups

ker ı#Vm=Im ı#Vm�1 ; m 2 N?:

In a sense, this amounts to a kind of “hierarchy” in the structure.
At this point, we would like to focus on the fact that, in [1], the authors mainly deal

with low dimensional forms (0-,1-,2-). We find it interesting to handle #Vm-fermions,
acting on the whole set of vertices of Vm, which appears as rather natural, in so far as
the points belong to the same m-th-order prefractal graph.

This is of course a mathematics paper. Yet, the following quote seems very appro-
priate to close this point:

“It is by no means obvious how to realize these intuitions in a precise theory, and
there are perhaps more than one way to do this.” [1]

Example 7.3 (The specific case of the Sierpiński gasket). In the case of the Sierpiński
gasket, given a natural integer m, we have that

hm D
1

2m
:

For the natural probability measure �, which assigns the value 1 to the gasket, the
measure of an m-cell of the prefractal graph Sm is given, for any integer j in
¹0; : : : ; Nm � 1º, by

�.C jm/ D Am D
1

3m
:

For any vertex x 2 Vm, the number of points in the closed ball NBm.x; hm/ depends
on the geographic location of x:

(i) If x belongs to V0: x has exactly two neighbors, at distance hm. The ball
Bm.x; hm/ contains exactly three points, x and its two neighbors.
The measure of the ball is then exactly the measure of an m-cell, i.e.,

�.Bm.x; hm// D Am:
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(ii) If x does not belong to V0: x has exactly four neighbors, at distance hm. The
ball Bm.x; hm/ contains exactly five points, x and its four neighbors, and,
thus, three m-cells. The measure of the ball is then

�.Bm.x; hm// D 3Am:

Meanwhile, for an m-th-order triangular cell of the gasket, with respective ver-
tices x, y, z, we have thatZ

S

¹ mx C  
m
y C  

m
z º d� D Am:

Thus, Z
S

 mx d� D
1

3
Am:

Since (we refer to [42]),

r�m D
�5
3

�m
;

we then obtain that
r�m

Am
D
2c20;m

9h2m
;

i.e.,

c20;m D
9 � 3mr�m

2 � 4m
D
9

2

5m

4m
:

As for the detailed Hodge–de Rham calculus, one may find it, in an explicit way,
in [1].

Now, as for the modified hm-Laplacian, we have that

#Vm D
3mC1 C 3

2
and #VmC1 D

3mC2 C 3

2
:

At the same time, for any integer j 0 in ¹0; : : : ; NmC1 � 1º, we also have that

�.C j
0

m / D AmC1 D
1

3mC1
:

This yields

zc0;m D
3mC2 C 3

3mC1 C 3

3mC1

2 � 4m
r�m > c20;m:

Example 7.4 (The specific case of the Weierstrass curve). This case is slightly dif-
ferent from the one of the preceding gasket, in so far as we deal with a curve. The
existing results [8, 10] enable us to handle a specific two-dimensional measure, in so
far as the curve is approached by means of a polygonal neighborhood.
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We hereafter denote by N D Nb > 3 the number of maps of the involved iterated
function system (see 7.1), and by DW the box-dimension of the curve.

Given a natural integer m, we have that

hm D
N
.DW�2/m

b

.Nb � 1/2�DW
:

An m-cell has Nb vertices, while its measure is given by (we refer to [9, 10])

�m . N .DW�3/m

b
:

For a continuous function f on the curve, belonging to the domain of the Lapla-
cian, its Laplacian is obtained, for any x … V0, through

�f .x/ D lim
m!1

�mf .x/ D lim
m!1

cm

h2m
��mf .X/;

where

cm D h
�2
�

DW �1

2�DW

�
m :

So, in a sense, the definition of the Laplacian already resembles the one of the hm-
Laplacian, which is thus obtained when

cm D
2c20;m

Nb
;

i.e.,

c20;m D
Nb

2
h
�2
�

DW �1

2�DW

�
m :

Now, as for the modified hm-Laplacian, we have that

#Vm D NmC1
b

C 1 �Nm
b and #VmC1 D NmC2

b
C 1 �NmC1

b
:

At the same time, for any integer j 0 in ¹0; : : : ; NmC1 � 1º,

�.C j
0

m / D AmC1 D
1

3mC1
:

This yields

cm D 2zc0;m
X

y2C
j
m; y�

m
x

or y2Cj 0

mC1
; y �

mC1
x

�.C jm/

#vertices of C jm

min
°#.VmC1 n Vm/

#VmC1

1

�.C jm/
;

#Vm
#VmC1

1

�.C
j 0

mC1/

±
:
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If we cannot presently have the exact value, we can nonetheless write

cm �
2zc0;mN

.DW�3/m

b

Nb

min
°NmC2

b
C 1 �NmC1

b
�NmC1

b
� 1CNm

b

NmC2
b

C 1 �NmC1
b

1

N
.DW�3/m

b

;

NmC1
b

C 1 �Nm
b

NmC2
b

C 1 �NmC1
b

1

N
.DW�3/.mC1/

b

±
;

which yields

zc20;m �
NmC2
b

C 1 �NmC1
b

2.NmC1
b

� 2Nm
b
CNm�1

b
/
cm;

and
zc0;m > c0;m:
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