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3D Koch-type crystals

Giovanni Ferrer and Alejandro Vélez-Santiago

Abstract. We consider the construction of a family ¹KN º of 3-dimensional Koch-type sur-
faces, with a corresponding family of 3-dimensional Koch-type “snowflake analogues” ¹CN º,
whereN > 1 are integers withN ¥ 0 .mod 3/. We first establish that the Koch surfacesKN are
sN -sets with respect to the sN -dimensional Hausdorff measure, for sN D log.N 2C 2/= log.N /
the Hausdorff dimension of each Koch-type surfaceKN . Using self-similarity, one deduces that
the same result holds for each Koch-type crystal CN . We then develop lower and upper approx-
imation monotonic sequences converging to the sN -dimensional Hausdorff measure on each
Koch-type surface KN , and consequently, one obtains upper and lower bounds for the Haus-
dorff measure for each set CN . As an application, we consider the realization of Robin boundary
value problems over the Koch-type crystals CN , for N > 2.

1. Introduction

The aim of this paper is to give rise to 3-dimensional Koch-type fractal sets which
exhibit some analogies in some sense to both the Koch curve and the Koch snowflake.
These 3-dimensional fractal sets will be called KochN -surfaces and KochN -crystals,
respectively (see Section 3 for illustrations and precise definitions of these sets).
Although the geometry of these sets and the corresponding pre-fractal sets may have
been considered and visualized, in our knowledge, there is no concrete mathemati-
cal construction and analysis of Koch-type surfaces and Koch-type crystals, up to the
present time. Using geometric and self-similarity tools, we deduce the generation of
a family of compact invariant self-similar sets, which correspond precisely to Koch
N -surfaces KN (for N 2 N with N ¥ 0 .mod 3/). From here, using standard meth-
ods as in [8,11,19], we compute the Hausdorff dimension sN of each KochN -surface
KN , and obtain that ¹KN º form a family of sN -set with respect to the sN -dimensional
Hausdorff measure. The self-similar properties of each KN lead to the construction
of a family of Koch N -crystals ¹CN º, whose boundaries (in the case N > 2) are also
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sN -sets with respect to the same values sN and same measures. In particular, when
N > 2 with N ¥ 0 .mod 3/, the crystals ¹CN º can be regarded as a family of open
connected domains with Koch-type fractal boundaries. This plays an important role
in certain applications, which we will consider at the end of the paper.

We then generalize tools developed by Jia [12, 13] (for 2-dimensional fractals) to
establish the main results of the paper, which consist on approximating the sN -di-
mensional Hausdorff measure of each Koch N -surface KN by means of increasingly
precise upper and lower bounds. To be more precise, we will establish the existence
of a decreasing sequence ¹an.N /º of positive numbers, and an increasing sequence
¹a0n.N /º of positive numbers, such that

a0n.N / � HsN .KN / � an.N /; for each n 2 N; and

lim sup
n!1

a0n.N / D HsN .KN / D lim inf
n!1

an.N /:
(1.1)

Some applications to boundary value problems over the family ¹CN º of Koch N -
crystals will be addressed.

Fractals play a role in many areas in Mathematics, with multiple applications to
other fields. Concerning Koch-type fractal sets, there is a vast amount of research
done over the classical Koch snowflake domain (see image below).

Figure 1. The Koch snowflake domain

In particular, the fact that the interior of the Koch snowflake domain is an open
connected set, and the boundary is a self-similar d -set (for d D log.4/= log.3/), has
allowed the well-posedness and regularity results for boundary value problems over
such region. One can refer to the works in [15–17, 22] (among many others). The
interior of the Koch snowflake is an example of a finitely connected ."; ı/-domain
(e.g., Definition 6), which in views of [14] is equivalent to say that the interior of the
domain satisfies the p-extension property in the sense of [14, page 1] (also called a
Jones domain). It is important to point out that the exact value of the d -Hausdorff
measure for the classical Koch snowflake (refer to Figure 1) is unknown, up to the
present time. Approximation sequences fulfilling a statement as in (1.1) were devel-
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oped by Jia [13], and this work motivates the generalization to the 3D case, which is
the heart of the present paper.

In the case of 3-dimensional domains, the equivalence provided by [14] for finitely
connected Jordan curves in R2 is no longer valid. Furthermore, there is little literature
concerning domains in R3 with fractal boundaries that may exhibit sufficient geomet-
ric properties, allowing the interior to be an ."; ı/-domain, and the boundary to be a
d -set. However, such domains in Rn that can be constructed via natural polyhedral
approximations are indeed of interest, and have been considered in [7, § 6]. Thus,
motivated from the structure and construction of the Koch snowflake domain, we
have assembled a family of 3-dimensional connected domains whose fractal bound-
aries can be viewed as the limit of a sequence of pre-fractal sets (which are Lipschitz)
having similar structure as the Koch curve. It follows that many of the properties of
the snowflake domain are inherited by the Koch-type surfaces and crystals, which
opens the door for multiple extensions and applications. In particular, one can define
partial differential equations over the interior of the KochN -crystals, and obtain solv-
ability and regularity results. These latter applications will be discussed in more detail
in Section 7.

The paper is organized in the following way. Section 2 provides an overview of
the basic concepts, definitions and results concerning self-similar sets and the geom-
etry of domains. In Section 3, we give a precise definitions and constructions for the
Koch N -surfaces KN , and the existence of a family ¹CN º of Koch crystals. Geo-
metrical motivations and justifications are also provided. At the end, we show that
each KochN -surface is an sN -set with respect to the sN -dimensional Hausdorff mea-
sure, for sN D log.N 2 C 2/= log.N /. In Section 4, we provide all the machinery
needed to provide concrete definitions for the sequences ¹anº and ¹a0nº mentioned in
the previous paragraphs, and we state the main results of the paper, which consists in
the fulfillment of (1.1). Some more general useful results are also established in this
section, whose validity extend to more general classes of fractal self-similar sets. Sec-
tion 5 is purely devoted to the proof of the main result of the paper for the particular
case N D 2, while Section 6 takes care of the proof of the main result (1.1) when
N > 2. Finally, Section 7 presents an example of a linear partial differential equation
with Robin boundary conditions over the Koch N -crystals, for N > 2. We show that
the structure of these crystals, which can be viewed as domains with fractal bound-
aries, allows the Robin problem to be well posed, solvable, and with fine regularity
results.
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2. Preliminaries

In this section, we collect some basic definitions and results that will play a role in the
subsequent sections.

Definition 1. We denote the Hausdorff distance of A;B � Rn by

dH .A;B/´ max
²

sup
a2A

inf
b2B
ka � bk; sup

b2B

inf
a2A
ka � bk

³
;

where k � k denotes the euclidean norm on Rn. Furthermore, we will denote the diam-
eter of C � Rn by

jC j ´ sup
c1;c22A

kc1 � c2k:

Definition 2. A mapping S WRn! Rn is called a similitude if there exists 0 < r < 1,
such that

jS.x/ � S.y/j D r jx � yj, for x; y 2 Rn:

Similitudes are exactly those maps S which can be written as

S.x/ D rg.x/C z, for x 2 Rn;

for some g 2 O.n/, z 2 Rn and 0 < r < 1. We say that r is the contraction ratio of S .

Definition 3. Let S D ¹S1; : : : ; SM º (M � 2) be a finite sequence of similitudes with
contraction ratios ¹r1; : : : ; rM º (0 < ri < 1).

(a) We say that a non-empty compact set K is invariant under S , if

K D

M\
iD1

SiK:

(b) If in addition,

Hs.Si .K/ \ Sj .k// D 0, for i ¤ j; for s D dimH.K/;

then we call the invariant set K self-similar.

(c) The similarity dimension of K is defined as the unique s � 0, such that

MX
iD1

rsi D 1:

In views of [8], it is known that for any such S , there exists a unique invariant
compact set.
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Definition 4. We say that a family of similitudes S D ¹S1; : : : ; SM º (M � 2) satisfies
the open set condition if there exists a non-empty open set V such that

M[
iD1

Si .V / � V; and Si .V / \ Sj .V / D ; whenever i ¤ j:

Definition 5. Let K � Rn be a compact set, s 2 Œ0; n�, and � a positive measure
supported K. We say that K is an s-set with respect to the measure �, if there exist
constants a; b;R > 0, such that

ars � �.K \ B.x; r// � brs; for all x 2 K; 0 < r � R:

In this case, we call � an s-Ahlfors measure on K.

The following result is important.

Theorem 1 (See [11, 19]). If the family S D ¹S1; : : : ; SM º with contraction ratios
r1; : : : ; rM satisfies the open set condition, then the invariant compact set K under
S is self-similar, with 0 < Hs.K/ <1, for s D dimHK. Furthermore, s equals the
similarity dimension of K, and K is an s-set with respect to Hs .

We conclude this section with the following geometric definition of a domain,
introduced by Jones [14].

Definition 6. An open set � � Rn is called an ."; ı/-domain, if there exists ı 2
.0;C1� and there exists " 2 .0; 1�, such that for each x;y 2� with jx � yj � ı, there
exists a continuous rectifiable curve 
 W Œ0; t �! �, such that 
.0/ D x and 
.t/ D y,
with the following properties:

(i) l.¹
º/ � 1
"
jx � yj.

(ii) dist.z; @�/ � "jx�zjjy�zj
jx�yj

for all z on 
 .

Also, an .";1/-domain is called a uniform domain.

3. Koch surfaces and the Koch crystals

In this section we construct the family of fractal domains central to this paper and
provide several main properties. But first, we recall the construction of the classical
2-dimensional Koch curve and modify it slightly to obtain an infinite family of related
Koch N -curves (N > 1 odd).
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3.1. Motivation

Let L be the compact segment in the x-axis of R2, centered at the origin with end-
points .�1=2; 0/ and .1=2; 0/. For N > 1, consider the following partitions of L

LN ´

²h
�
1

2
;�
1

2
C
1

N

i
� ¹0º

h
�
1

2
C
1

N
;�
1

2
C
2

N

i
; : : : ;

h1
2
�
1

N
;
1

2

i
� ¹0º

³
D

²h
�1

2
C
i � 1

N
;
�1

2
C

i

N

i
� ¹0º

³N
iD1

;

consisting of N compact intervals of length 1=N (see Figure 2).

Figure 2. The point .0; 0/ together with L2; : : : ; L8, respectively

Note that there does not exist a middle interval in L2N (for N � 1), that is, a
unique interval containing the origin. With this in mind, we may use these LN to
define the following family of fractals.

Definition 7. Let N > 1 such that N ¥ 0 .mod 2/. We define the Koch N -curve to
be the compact self-similar invariant set under N C 1 mappings of ratio 1=N . Out of
these mappings, N � 1 of them send L to the interval Œ�1=2C .i � 1/=N ;�1=2C
i=N � � ¹0º in LN for i D 1; : : : ; .N � 1/=2; .N C 1/=2; : : : ; N . Notice we do not
include a mapping which sends L to the middle interval Œ�1=.2N /; 1=.2N /� � ¹0º
in LN . We do however include two additional mappings which send L to the two
compact intervals with endpoints .�1=.2N /; 0/, .0;

p
3=.2N //, and .1=.2N /; 0/,

.0;
p
3=.2N //, respectively. Notice these two intervals together with the middle inter-

val Œ�1=.2N /; 1=.2N /� � ¹0º form the edges of an equilateral triangle of side-length
1=N with vertices .�1=.2N /; 0/, .0;

p
3=.2N //, .1=.2N /; 0/.

Example 1. The Koch 3-curve is the well-studied classical Koch curve, consisting of
four self-similar copies of scale 1=3. In Figure 3 (left), we present the images of L
under the four mappings which generate the Koch 3-curve in red, blue, purple, and
yellow. In Figure 3 (right), we present the images of the left figure under the same
four mappings in red, blue, purple, and yellow. Iterating this process we obtain a
figure with four self-similar copies.

We contrast the classical Koch 3-curve with the following Koch 5-curve and 7-
curve by presenting their first prefractals in Figure 4.

With this family of fractal curves, we may construct an associated family of fractal
domains.
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Figure 3. Koch 3-curve prefractals: first, second, and fourth iterations

Figure 4. Koch 5-curve and 7-curve prefractals, first iteration (left and right, respectively)

Definition 8. Let N > 1 be such that N ¥ 0 .mod 2/. We define the Koch N -snow-
flake as the closed set enclosed by three congruent KochN -curves, each pair of which
intersect at precisely one point (see Figure 5).

Figure 5. Koch 3-snowflake, 5-snowflake, and 7-snowflake prefractals (4th iteration)

In what follows, we provide and study higher-dimensional analogues of these con-
structions by replacing compact intervals (1-simplices) with triangles (2-simplices),
and triangles with tetrahedrons (3-simplices).
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3.2. Construction

Let T be the compact region in the xy plane of R3 enclosed by the equilateral triangle
of side length 1 which is centered at the origin with vertices

p1 D

p
3

6

�
cos.0/; sin.0/; 0

�
p2 D

p
3

6

�
cos.2�=3/; sin

�2�
3

�
; 0

�
p3 D

p
3

6

�
cos
�4�
3

�
; sin

�4�
3

�
; 0

�
:

Then for N > 1, we consider the following triangulations TN of T consisting of N 2

equilateral triangles of scale 1=N (see Figure 6).

Figure 6. The point .0; 0; 0/ together with T2; : : : ; T8, respectively

Note that there does not exist a middle triangle in T3N (forN � 1), that is, a unique
triangle containing the origin. With this in mind, we may use these TN to define the
following family of fractals analogous to the construction of the Koch curve.

Definition 9. LetN > 1 be such thatN ¥ 0 .mod 3/. We define the KochN -surface
KN to be the compact self-similar invariant set under the mappings FND¹Fi;N º

N2C2
iD1

of ratio 1=N that send T to each equilateral triangle except for the middle one in
TN , together with three additional mappings which send T to the three equilateral
triangles that form a regular tetrahedron with the removed middle triangle. By regular
tetrahedron, we mean the boundary of a 3-dimensional simplex which is also a regular
polytope.

Throughout this work, we reserve N to play the role of determining both the
scaling ratio and the number of mappings which generate the fractal KN .

Example 2. The Koch 2-surface K2 is the compact self-similar invariant set under
the family of mappings F2 D ¹Fi;2º

6
iD1 given by

F1;2.x; y; z/ D

�
x C

p
3
3

2
;
y

2
;
z

2

�
;
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F2;2.x; y; z/ D

�
x C

p
3
3

cos
�
2�
3

�
2

;
y C

p
3
3

sin
�
2�
3

�
2

;
z

2

�
;

F3;2.x; y; z/ D

�
x C

p
3
3

cos
�
4�
3

�
2

;
y C

p
3
3

sin
�
4�
3

�
2

;
z

2

�
;

F4;2.x; y; z/ D

�
�
x

6
C

p
2

3
z C

p
3

18
;�
y

2
;

p
2

3
x C

z

6
C

p
6

18

�
;

F5;2.x; y; z/

D

�
x

12
C

p
3

4
y �

p
2

6
z �

p
3

36
;�

p
3

12
x C

y

4
C

p
6

6
z C

1

12
;

p
2

3
x C

z

6
C

p
6

18

�
;

F6;2.x; y; z/

D

�
x

12
�

p
3

4
y �

p
2

6
z �

p
3

36
;

p
3

12
x C

y

4
�

p
6

6
z �

1

12
;

p
2

3
x C

z

6
C

p
6

18

�
:

In Figure 7 (left), we present the images of T under the six mappings which
generate the Koch 3-curve in red, blue, purple, yellow, green, and orange (the last
of which is not visible). In Figure 7 (right), we present the images of the left figure
under the same six mappings in red, blue, purple, yellow, green, and orange. Iterating
this process we obtain Figure 8, resulting in six self-similar copies in red, blue, purple,
yellow, green, and orange.

Figure 7. Koch 2-surface prefractals, first and second iterations

Figure 8. The Koch 2-surfaceK2. From above,K2 is indistinguishable from a tetrahedron, and
its fractal features can only be viewed from below.

We will adopt the custom of writing Fj .�; �; �/´ Fj;2.�; �; �/ (j 2 ¹1; : : : ; 6º) since
it is a particularly difficult case, requiring closer examination.
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Note that for 1 � j � 3, Fj contracts T by a factor of 1=2 and leaves pj fixed.
Thus, the maps ¹Fj º3iD1 generate Sierpiński gaskets as seen in Figure 9.

Figure 9. Applying F1; F2; F3 and then F2 to the triangle T

We contrast the Koch 2-surface with the following Koch 4-surface and 5-surface
by presenting their first prefractals in Figure 10.

Figure 10. Koch 4-surface and 5-surface prefractals, first iteration (left and right, respectively).
We compare K4 and K5 with K2 by coloring the six 1-cells around the “peak” of their first
iterations in a similar fashion the coloring used in the first prefractal for K2.

We are now ready to define the fractals of main interest for this paper.

Definition 10. LetN > 1 be such thatN ¥ 0 .mod 3/. We define the KochN -crystal
CN as the closed set enclosed by four congruent KochN -surfaces, each pair of which
intersect at precisely one edge. We then denote the boundary of CN by @CN .

Example 3. Note that when we glue four Koch 2-surfaces as in Definition 10, we
obtain a fractal whose outermost layer is the surface of a cube. In the spirit of Man-
delbrot, we would like to remark how this figure resembles a geological geode with
its smooth exterior containing a “crystalline” fractal interior. Thus, when considering
the closed set enclosed by these Koch 2-surfaces, we see that the Koch 2-crystal C2 is
a cube with side length

p
2=2. Because of this, C2 will play no role in Section 7, as it

is not an interesting fractal domain. We will, however, study the Koch surface K2 for
its own sake in Sections 3, 4, and especially in Section 5.
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Figure 11. The Koch 2-crystal C2, which is indeed only a cube of side length
p
2=2.

Figure 12. Koch 4-crystal, first and second iterations (top left and right, respectively), Koch
5-crystal, first and second iterations (bottom left and right, respectively)

3.3. Properties

ForN ¥ 0 .mod 3/, letKN be the KochN -surface generated by the iterated function
system FN . One can see that each Fn satisfies the open set condition by considering
the bounded open set enclosed by the tetrahedron with vertices p1; p2; p3; and the
highest point p4 2KN , i.e., �z.p4/Dmax¹z j .x; y; z/ 2KN º. Thus, by Theorem 1,
it follows that sN D dimH.KN / D log.N 2 C 2/= logN , which is the solution of the
equation

N2C2X
kD1

� 1
N

�sN
D .N 2

C 2/
� 1
N

�sN
D 1:
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If N > 2, then @CN is the union of four copies of KN , and thus

dimH.@CN / D dimH.KN / D
log.N 2 C 2/

logN

due to the stability of the Hausdorff dimension. Furthermore, HsN is an sN -Ahlfors
measure on @CN for eachN 2N n ¹1ºwithN ¥ 0 .mod 3/, where sN D dimH.@CN /.
Moreover, it is clearly seen that the interior of the set CN � R3 is a uniform domain.

In the case when N D 2, we see from Figure 11 that, while K2 is a fractal of
Hausdorff dimension s2 D log 6= log 2, the figure C2 is the cube of side-length 1 and
@C2 is just its boundary of dimension 2.

4. Bounds for Hausdorff measure

In this section, we present the machinery needed in order to develop a process to
compute sharp bounds for the Hausdorff measure of the KochN -surfacesKN andN -
crystals CN . The process will lead to an approximation tool to compute the Hausdorff
measure of these fractal sets. Some key general results will be stated and proved. In
the end, we will state the main results of the paper.

We start with the following definition.

Definition 11. Let K be the unique non-empty compact self-similar invariant set
under an iterated function system (IFS) FD ¹Fj º

M
jD1 satisfying the open set condition

(OSC), where Fj has ratio 0 < rj < 1. Let M´ ¹1; 2; : : : ;M º and n � 1. We define
the word space associated to K as �´ MN and �n ´ Mn with the n-truncation
map Œ � �nW�! �n defined for a word ! D !1!2 � � � 2 � by Œ!�n´ !1 � � �!n.

We will not concern ourselves with the trivial case whenM D 1. Notice that there
is a relation between the word space � and the attractor K of an IFS with M maps,
where we identify points in K with infinite words, and regions with finite words.
Namely, for ! 2�n, we defineK.!/´ F!.K/, where F!1!2���!n is given inductively
as F!2���!n ı F!1 . Moreover, for ! 2 �, we define the point K.!/ as the unique point
in
T
n2N K

Œ!�n . We will denote the natural probability measure onK as �, where for
! D !1 � � �!n 2 �n we have that �.K.!// D rs!1 � � � r

s
!n

. Since F satisfies the OSC,
we also have that �.K.!// D

PM
jD0 �.K

.!j // D
PM
jD0 r

s
j �.K

.!//.

Definition 12. Let Kn ´ ¹K.!/ j ! 2 �nº be the set of n-cells of K, where we
reserve the notation �.n/i for elements of Kn, which we call n-cells. We also define
K0´ K.

We now present [12, Proposition 1.1].
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Proposition 1. For n � 1, 1 � k �M n, and s D dimHK, let

bk ´ min
¹�
.n/

i
ºk
iD1
�Kn

´ ˇ̌Sk
iD1�

.n/
i

ˇ̌s
�
�Sk

iD1�
.n/
i

�µ;
where the minimum is taken for all possible sets of k elements of Kn, and let an D
min1�k�Mn¹bkº. If there exists a constant a0 > 0 such that an � a0 for all n, then
Hs.K/ � a0.

The sequence defined in Proposition 1 has a special consequence, as the following
proposition taken from [12] describes.

Proposition 2. For n � 1, the sequence ¹anº defined in Proposition 1 is decreasing,
with limn!1 an D Hs.K/.

One of the goals of this paper consists in finding a sequence of constants a0 (as in
Proposition 1) which increase towards Hs.K/. This will be achieved using case-by-
case analysis. To proceed, we add some additional definitions and notations.

Definition 13. We say a proposition P on the subsets of K is a (valid) case, if

• For every n, there is a family ¹�.n/i º
k
iD1 D ¹�

.n/
1 ; : : : ; �

.n/

k
º � Kn such thatSk

iD1�
.n/
i satisfies P .

• For n > 1 and ¹�.n/i º
k
iD1 � K

n such that
Sk
iD1 �

.n/
i satisfies case P , there is

a family ¹�.n�1/j ºj � K
n�1 such that

Sk
iD1 �

.n/
i �

S
j �

.n�1/
j and

S
j �

.n�1/
j

satisfies case P .

Remark 1. Throughout the main proofs of the paper, the case P will involve contain-
ment and intersection of

Sk
iD1�

.n/
i with certain subsets of K. These are examples of

cases in the sense of Definition 13. For example, Case 2b of Theorem 3 consists ofSk
iD1�

.n/
i intersecting exactly two of the base 1-cells K.1/; K.2/; K.3/ in the Koch

2-surface K while not being contained in the region K.12/ [K.43/ [K.52/ [K.21/.

Definition 14. In view of the notations in Definition 12, we say that ¹�.n/i º
k
iD1 �

Kn is P -scaleable for a proposition P if
Sk
iD1 �

.n/
i satisfies P and there exists

a similarity S of ratio r such that each S�1.�.n/i / is unique and in Kn�1, withSk
iD1 S

�1.�
.n/
i / satisfying P .

We observe that if ¹�.n/i º � K
n is P -scaleable, then there exists a unique family

in Kn whose union coincides with that of ¹S�1.�.n/i /º � Kn�1, thus satisfying P as
well. One then obtains the following result, which will be applied many times in the
proofs of the central results of the paper to exclude certain subcases from considera-
tion.



G. Ferrer and A. Vélez-Santiago 14

Lemma 1. Let

a.P /n D min
1�k�Mn

min
¹�
.n/

i
ºk
iD1
�Kn

´ ˇ̌Sk
iD1�

.n/
i

ˇ̌s
�
�Sk

iD1�
.n/
i

� ˇ̌̌̌ k[
iD1

�
.n/
i satisfies case P

µ
:

Furthermore, let

a0n D min
1�k�Mn

min
¹�
.n/

i
ºk
iD1
�Kn

´ ˇ̌Sk
iD1�

.n/
i

ˇ̌s
�
�Sk

iD1�
.n/
i

� ˇ̌̌̌ k[
iD1

�
.n/
i satisfies case P

and is not P -scaleable

µ
:

Then a.P /n D a0n. That is, we may exclude P -scaleable families from consideration
when calculating lower bounds for ˛.P /´ limn!1 a

.P /
n .

Proof. Clearly,a.P /n � a0n. Suppose next that ¹�.n/i º
k
iD1 � K

n is P -scaleable. Then
jS�1.

Sk
iD1 �

.n/
i /j D r�1j

Sk
iD1 �

.n/
i j. Now note that every S�1.�.n/i / 2 Kn�1 is

the union of ¹�.n/ij º
M
jD1 � K

n. By considering the family
Sk
iD1¹�

.n/
ij
ºMjD1 � K

n, this

satisfies case P since
Sk
iD1

SM
jD1�ij D

Sk
iD1 S

�1.�
.n/
i /, and Mk �M n withˇ̌Sk

iD1�
.n/
i

ˇ̌s
�
�Sk

iD1�
.n/
i

� D rs
ˇ̌
S�1

�Sk
iD1�

.n/
i

�ˇ̌s
�
�Sk

iD1�
.n/
i

� D

ˇ̌S
i;j �

.n/
ij

ˇ̌sPk
iD1 r

�s�
�
�
.n/
i

� D ˇ̌S
i;j �

.n/
ij

ˇ̌s
�
�S

i;j �
.n/
ij

� ;
since

kX
iD1

r�s�.�
.n/
i / D

kX
iD1

�.S�1.�
.n/
i // D

kX
iD1

�

� M[
jD1

�
.n/
ij

�
D �

�[
i;j

�
.n/
ij

�
:

We may repeat this process if the family
SK
iD1¹�

.n/
ij
ºMjD1 is P -scaleable and so forth.

We must eventually obtain a family that is not P -scaleable. Indeed, if one were able to
apply this process n times, thenM nk�M n and kD 1. Thus, the family obtained after
n steps must be exactlyKn, which is not P -scaleable due to the uniqueness condition
¹S�1.�

.n/
i /º would need to satisfy. Thus, the value j

Sk
iD1�

.n/
i j=�.

Sk
iD1�

.n/
i /must

be larger than the value achieved by some family which is not P -scaleable. Therefore,
a
.P /
n � a0n.

The following key result will be constantly applied in the proof of the central
results of the paper, and has value of its own as it can be applied to general fractals. We
present the general version below, which allows us to bound the limit ˛.P / D lima.P /n

for a case P by the sequence an multiplied by a factor which is:
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• proportional to the diameter of K and to any lower bound ˇ on the diameters of
families

Sk
iD1�

.n/
i which satisfy case P ; and

• inversely proportional to the largest scaling ratio of maps in the IFS generatingK,
and the maximum Hausdorff distance between the 1-cells of K.

We will then provide a more specific version of this result as Corollary 1, which
will be useful to us whenK is a KochN -surfaceKN . Finally, we will find such lower
bounds ˇ to obtain lower bounds on the Hausdorff dimension of KN by virtue of this
following theorem.

Theorem 2. Let ¹anº, ¹a
.P /
n º be as in Proposition 1 and Lemma 1, respectively, and

let ˇ � j
Sk
iD1�

.n/
i j, for every ¹�.n/i º

k
iD1 2K

n such that
Sk
iD1�

.n/
i satisfies P . Then

˛.P / � anjKj
s exp

�
�s
n

ˇ.1 � rmax/

�
;

where rmax ´ max1�i�M ri and 
n´ 2rnmax max1�`;k�M dH .F`.K/; Fk.K//.

Proof. Since Hs.K/ D Hs.K=jKj/=jKjs , we may suppose that jKj D 1. We now
construct a proof motivated by the procedure found in [13]. Indeed, since P is a
case for n > 1 and the family of n-cells ¹�.n/i ºi , there exists a collection of .n � 1/-
cells �.n�1/j 2 Kn�1 such that �.n/i � �

.n�1/
j ,

S
j �

.n�1/
j satisfies case P , and

�
.n�1/
1 ; : : : ; �

.n�1/

kn�1
are all taken to be distinct. Next, we claim thatˇ̌̌̌kn�1[

jD1

�
.n�1/
j

ˇ̌̌̌
� d C 
n�1; for d WD

ˇ̌̌̌ k[
iD1

�
.n/
i

ˇ̌̌̌
: (4.1)

To establish the claim, we proceed as follows. Note that for x; y 2
S
j �

.n�1/
j ,

x 2 �
.n�1/
x and y 2 �.n�1/y for some �.n�1/x ; �

.n�1/
y 2 ¹�

.n�1/
j ºj . We then obtain

kx � yk � min
a2
S
i �

.n/

i
\�

.n�1/
x

kx � ak C d C min
b2
S
i �

.n/

i
\�

.n�1/
y

kb � yk:

Here we write
S
i �

.n/
i \�

.n�1/
x for simplicity, where one should take the union of

the�.n/i which are contained in�.n�1/x . Taking the supremum over x;y 2
S
j �

.n�1/
j

this yields ˇ̌̌̌[
j

�
.n�1/
j

ˇ̌̌̌
� d C 2 max

x2
S
j �

.n�1/

j

min
a2
S
i �

.n/

i
\�

.n�1/
x

kx � ak

D d C 2max
j

max
x2�

.n�1/

j

min
a2
S
i �

.n/

i
\�

.n�1/

j

kx � ak:
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Re-scaling each �.n�1/j onto K, every �.n/i contained in �.n�1/j is mapped to some

�
.1/

k
. Taking the maximum over all families of 1-cells, one bounds the previous term

as followsˇ̌̌̌[
j

�
.n�1/
j

ˇ̌̌̌
� d C 2rn�1max max

x2K
max

¹�
.1/

k
ºk�K

1

min
a2
S
k �

.1/

k

kx � ak

� d C 2rn�1max max
x2K

max
¹�
.1/

k
ºk�K

1

dH

�
¹xº;

[
k

�
.1/

k

�
� d C 2rn�1max max

x2K
max

¹�
.1/

k
ºk�K

1

max
�k02¹�

.1/

k
ºk

dH

�
¹xº; �

.1/

k0

�
D d C 2rn�1max max

x2K
max

�
.1/

k
2K1

dH

�
¹xº; �

.1/

k

�
:

Recall that each �.1/
k
2 K1 is given by Fk.K/, henceˇ̌̌̌[

j

�
.n�1/
j

ˇ̌̌̌
� d C 2rn�1max max

1�k�M
dH .K; Fk.K//;

where the latter value is precisely d C 
n�1. Thus (4.1) is established, as desired.
From here, taking into account the monotonicity of the function f .x/D.xC
n�1/=x
for x > 0 and a fixed n, we deduce that

ˇ̌S
i �

.n�1/
i

ˇ̌
=d � .d C 
n�1/=d �

.ˇ C 
n�1/=ˇ. Moreover, the fact that
S
i �

.n/
i �

S
j �

.n�1/
j implies �.

S
i �

.n/
i / �

�.
S
j �

.n�1/
j /. We then obtain

d s

�
�S

i �
.n/
i

� � � ˇ

ˇ C 
n�1

�s ˇ̌S
i �

.n�1/
i

ˇ̌s
�
�S

j �
.n�1/
j

� : (4.2)

Taking infima over both sides in (4.2), we conclude

a.P /n �

�
ˇ

ˇ C 
n�1

�s
a
.P /
n�1:

Then, for any m � 1, proceeding inductively, we arrive at

a
.P /
nCm � a

.P /
n

mC1Y
iDn

�
ˇ

ˇ C 
i

�s
D a.P /n

mC1Y
iDn

�
1C


i

ˇ

��s
: (4.3)

Taking logarithms on both sides in (4.3), and using the inequality ln.1C x/ < x, valid
for x > 0, we find that

ln.a.P /nCm/ � ln.a.P /n / � s

mC1X
iDn

ln
�
1C


i

ˇ

�
� ln.a.P /n / � s

mC1X
iDn


i

ˇ
: (4.4)
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Proceeding as in Propositions 1 and 2, one sees that the sequence ¹a.P /n º is decreasing
and bounded. Setting ˛.P /´ limn!1 a

.P /
n , and letting m!1 in (4.4), we have

ln.˛.P // � ln.a.P /n / � s

�

n=ˇ

1 � rmax

�
D ln

�
a.P /n exp

�
�s
n

ˇ.1 � rmax/

��
:

Therefore, ˛.P / � a.P /n exp .�s
n=.ˇ.1 � rmax/// � an exp .�s
n=.ˇ.1 � rmax///,
completing the proof.

A useful form of the preceding theorem for particular types of sets K reads as
follows.

Corollary 1. Under the assumptions and notations of Theorem 2, assume that
jKjD1, rmax D rmin D r , and max`;k dH .F`.K/; Fk.K// D 1 � r . Then

˛.P /n � an exp
�
�s � 2rn

ˇ

�
:

It is easily verified that fractals such as the Cantor set, Sierpiński gasket, Koch
curve, and Koch N -surfaces all satisfy the conditions in Corollary 1.

We now present the central results of the paper.

Theorem 3. Let an be a sequence given as in Proposition 1 for the Koch 2-surface
K2 as seen in Example 2. Then for every n 2N, the Hausdorff measure ofK2 satisfies
the following estimation:

an � Hs2.K2/ � an exp
�
�s2.
p
2C
p
6/

2n�6

�
; (4.5)

where we recall that s2´ log.6/=log.2/.

One can calculate and find that a1 D b3 D 2jK.4/ [K.5/ [K.6/js2 D 2.
p
6
4
/s2 .

Theorem 4. Let N > 2 be such that N ¥ 0 .mod 3/, and let an be a sequence as
in Proposition 1 for the Koch N -surface KN defined by Definition 9. Then for every
n 2 N, the Hausdorff measure of the surface KN satisfies the following estimation:

an � HsN .KN / � an exp
�
�sN
p
6

N n�3

�
;

where we recall that sN ´ log.N 2 C 2/=log.N /.

5. Proof of Theorem 3

The leftmost inequality follows immediately from Proposition 2. We now focus on
the remaining inequality. To aid in legibility, we shall write K ´ K2 for the Koch
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2-surface. Let ¹�.n/i ºi be a collection of n-cells in K and let d D j
Sk
iD1�

.n/
i j be the

diameter of such collection. We will organize the proof by cases, based on how many
of the bottom 1-cells K.1/; K.2/; K.3/ the family

Sk
iD1�

.n/
i intersects. These cases

will subdivided by how many of the top 1-cellsK.4/;K.5/;K.6/ the family
Sk
iD1�

.n/
i

intersects and strategically excluding scenarios when
Sk
iD1 �

.n/
i is scaleable. This

will allow us to find a constant ˇ > 0 as in Theorem 2 and Corollary 1; that is, ˇ � d
whenever ¹�.n/i º satisfies the case under consideration.

Remark 2. In order to find such a lower bound ˇ > 0, we will consider families
¹�

.n/
i º

k
iD1 such that k is as small as possible (so they have minimal diameter for a

fixed n) while satisfying the case in question. Intuitively, as n!1, such ¹�.n/i º
k
iD1

approximate a family of points in K. The diameter of this set of points is meant
to yield an optimal value for ˇ > 0 independent of n. Moreover, since our cases
involve intersecting certain regions inK, each of these points represents a “constraint”
corresponding to one of these regions. Throughout our proof, we provide diagrams
depicting these sets of points (or constraints) whose diameter is ˇ.

We first provide a definition and lemma will be used for cases where there is a
square “critical region”, that is, a square which intersects families ¹�.n/i º

k
iD1 � K

n

satisfying the case under consideration, with arbitrarily small diameters as we let
n!1. As these regions cause problems when trying to find lower bounds on diam-
eters, we must build some machinery to tackle these obstacles throughout the proof
of our first main result.

Definition 15. Let A` � K be a square of side length `
p
2=2 with a distinguished

diagonal L of length `. Furthermore, let An
`
´ ¹� \ A` j � 2 K

nº be the set of
n-cells of Al . We say that ¹‚.n/i º

k
iD1 � A

n
`

is P-scaleable in A`, if there exists a
P -scaleable ¹�iºkiD1 � K

n such that �.n/i \ A` D ‚
.n/
i for all 1 � i � k.

L

Figure 13. The square A` with the diagonal L down the middle in blue

Armed with the previous definition, we may express the required conditions for
the following lemma, which allows us to obtain lower bounds on diameters of fam-
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ilies ¹�.n/i º
k
iD1 satisfying Cases 3c. (ii), 3c. (iii), and 4b. As mentioned before, we

will provide diagrams depicting sets of constraints whose diameter is ˇ, and we will
color each constraint by the region it represents. This is meant to help the reader get
their bearing on the process of finding these values for ˇ. Later in the proof of Theo-
rem 3, we simply color all dots with green. We will also graph the segments between
these points (in green) in order to aid the reader in computing the diameters of these
collections of points.

Lemma 2. Let ¹�.n/i º
k
iD1�K

n and‚.n/i ´�
.n/
i \A`¤; for all 1� i � k. Suppose

that the following conditions hold

• j
Sk
iD1�

.n/
i j � j

Sk
iD1‚

.n/
i j,

•
Sk
iD1 ‚

.n/
i intersects both HL and HR, the regions left and right of the distin-

guished diagonal L, respectively,

• ¹�
.n/
i º

k
iD1 is P -scaleable if and only if ¹‚.n/i º

k
iD1 is P -scaleable in A`.

Then ¹�.n/i º
k
iD1 is scaleable or

d ´
ˇ̌̌ k[
iD1

�
.n/
i

ˇ̌̌
� `.
p
3 � 1/

�1
2

�4
:

Proof. We define R1, R2, R3 to be the following self-similar regions of scale 1=2.

R2R2

R1

R3

Figure 14. The square A` with the regions R1 (red), R2 (purple), and R3 (blue) from top to
bottom, respectively

We provide bounds by cases depending on how many of the regions Ri the figureS
i ‚

.n/
i is contained in.

• When
S
i ‚

.n/
i lies in R1, R2, or R3, it follows that

S
i ‚

.n/
i is P -scaleable in A`

and can be excluded from consideration by Lemma 1.

• When
S
i ‚

.n/
i belongs to either R1 [ R2, or R2 [ R3, and none of the previous

cases, we have that
S
i ‚

.n/
i 6� R1 \ R2 and

S
i ‚

.n/
i 6� R2 \ R3. By symmetry,

we can assume
S
i ‚

.n/
i � R1 [ R2 and

S
i ‚

.n/
i 6� R1 \ R2. Thus,

S
i ‚

.n/
i

must intersect R1 n R2, R2 n R1, HL, and HR. A quick calculation shows that
d � `.

p
3 � 1/.1=2/4.
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Figure 15. The constraints from R1 n R2 (red, uppermost), R2 n R1 (purple, lowermost), and
HR (dark gray, rightmost) form an equilateral triangle with side length `.

p
3 � 1/.1=2/4. We

note that there exists a mirrored configuration of constraints by symmetry, which includes a
constraint from HL instead of HR.

• When
S
i ‚

.n/
i � R1 [ R2 [ R3 and none of the previous cases, one sees thatS

i ‚
.n/
i must intersect R1 nR2 and R3 nR2. Then d � `.1=2/2.

Figure 16. The constraints from R1 n R2 (red, uppermost) and R3 n R2 (blue, lowermost),
which are at distance `.1=2/2. We note that there exists a mirrored configuration of constraints
by symmetry, corresponding the families contained in HR instead of HL.

• When none of the previous cases are satisfied, we have that
S
i ‚

.n/
i 6� R1 [

R2 [R3. By symmetry, we may assume
S
i ‚

.n/
i intersects HL n .

S
i Ri / and

HR. Then d � `.1=2/3.

Combining all cases, we conclude that d � `.
p
3 � 1/.1=2/4, as claimed.

We now proceed to continue with the proof of Theorem 3, which we divide in
four main cases. These are, when

Sk
iD1 �

.n/
i intersects three, two, one, or none of

the 1-cells K.1/, K.2/, K.3/. However, before examining each case, we will note that
when

Sk
iD1 �

.n/
i is contained in a 1-cell, there must exist a similarity of ratio 1=2

onto K, making these families scaleable. By Lemma 1, we will exclude these from
consideration.

Case 1

When
Sk
iD1 �

.n/
i intersects K.1/, K.2/, and K.3/, we have that d � 1=4. Indeed,

notice there exists a projection � onto the triangle T with d � j�.
Sk
iD1 �

.n/
i /j.
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Figure 17. The constraints from HL n .
S
i Ri / (light gray, leftmost) and HR (dark gray, right-

most), which are at distance `.1=2/3. As mentioned before, there is a mirrored configuration of
constraints by symmetry, corresponding to HR n .

S
i RI / and HL.

We then provide the constraints for Case 1 in Figure 18. By Corollary 1,
˛.1/ � an exp .�s2=2n�3/.

Figure 18. Projection of K onto T . By symmetry, we see that the constraints for K.1/, K.2/,
andK.3/ are given by F31.p2/, F12.p3/, and F23.p1/, respectively. These form an equilateral
triangle with side length 1=4.

Case 2

Suppose
Sk
iD1 �

.n/
i only intersects two of the base 1-cells of K. We will assume

these are K.1/ and K.2/, since the other arguments follow by rotations of R3. We
will provide a similar argument to Case 1, by introducing a sequence a.2/n . However,
this case will rely on Lemma 1, since

Sk
iD1�

.n/
i can be arbitrarily close to the point

F1.p2/ D F2.p1/ as n!1, implying that we cannot find lower bound for d unless
we exclude certain scaleable families from consideration. We will show that ˛.2/ �
an exp .�s2

p
2=2n�3/, dividing this part into two sub-cases.

Case 2a. If
Sk
iD1�

.n/
i is contained in the critical region R.2;3b/´ K.12/ [K.43/ [

K.52/ [K.21/, notice we can scale this corner by 2 into K.1/ [K.2/ [K.4/ [K.5/.
By Lemma 1, we may exclude this case from consideration.

Case 2b. Assume that
Sk
iD1�

.n/
i is not contained in the critical regionR.2/. By sym-

metry, we may suppose
Sk
iD1�

.n/
i intersectsK.1/ nR.2/. We then see from Figure 20

that d �
p
2=8.
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Figure 19. Critical corner R.2;3b/ for Case 2 and Subcase 3b

Figure 20. The constraints for Case 2b corresponding toK.1/ nR.2/ (leftmost) andK.2/ (right-
most) are given by F51.p4/ and F1.p2/, respectively, and are at distance .

p
2=2/.1=2/2.

By Corollary 1, ˛.2b/ � a
.2b/
n exp.�s2=2n�3/. Putting ˛.2/ ´ ˛.2b/ and a.2/n ´

a
.2b/
n , we obtain our desired sequence. Furthermore,

˛.2/ � a.2/n exp
�
�s2
p
2

2n�3

�
� an exp

�
�s2
p
2

2n�3

�
:

Case 3

Suppose
Sk
iD1 �

.n/
i only intersects one of the base 1-cells of K. We may assume

that this cell is K.1/ by symmetry. We will subdivide this case by considering whenSk
iD1�

.n/
i intersects K.5/ and K.6/, either of these exclusively, or neither. Defining

˛.3/´ min¹˛.3a/; ˛.3b/; ˛.3c/
º and a.3/´ min¹a.3a/; a.3b/; a.3c/

º;

we will obtain our desired sequence. Furthermore, we will show

˛.3/ � a.3/n exp
�
�s2.
p
2C
p
6/

2n�6

�
� an exp

�
�s2.
p
2C
p
6/

2n�6

�
:

Case 3a. If
Sk
iD1�

.n/
i intersects both K.5/ and K.6/ as well, we see from the sym-

metries of K and Figure 21 that d � .
p
6 � 2/=2.
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More specifically, for pi;j ´ .pi C pj /=2, the constraints for Case 3a seen in
Figure 21 are given by:

q1 D
p1;2 C p1;3

2
;

q2 D .
p
6 � 2/p1;3 C

3 �
p
6

2
p2;3 C

3 �
p
6

2
p4;

q3 D .
p
6 � 2/p1;2 C

3 �
p
6

2
p2;3 C

3 �
p
6

2
p4:

q1

q3q2

Figure 21. K.1/, K.6/, K.5/ together with their respective constraints q1, q2, q3, which form
an equilateral triangle with side length .

p
6 � 2/=2.

Case 3b. If
Sk
iD1 �

.n/
i intersects K.5/ or K.6/ exclusively, an argument similar to

that of Case 2 holds, and we see that either
Sk
iD1�

.n/
i is scaleable or d � 1=8.

Figure 22. The constraints for Case 3b corresponding toK.1/ nR.2/ (leftmost) andK.5/ (right-
most) are given by F51.p4/ and F225.p1/, and are at distance .1=2/3.

Figure 23. The critical region R.3c/ for Case 3c

Case 3c. The difficult case arises when
Sk
iD1�

.n/
i is contained inK.1/ [K.4/, since

there is now a critical face R.3c/ ´ K.1/ \ K.4/ where the diameter j
Sk
iD1 �

.n/
i j
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can approach 0 as n!1. This case must be subdivided into further sub-situations,
depending on the region where

Sk
iD1�

.n/
i is contained.

We first define the following regions:

R01´ K.321/ [K.234/; R1´ K.21/ [K.34/;

R02´ K.351/ [K.234/; R2´ K.51/ [K.64/;

R03´ K.261/ [K.354/; R3´ K.61/ [K.54/;

R04´ K.231/ [K.324/; R4´ K.31/ [K.24/;

R5´ K.141/ [K.151/ [K.161/ [K.414/ [K.514/ [K.614/.

Figure 24. The regions R0
1

through R0
4

(top row), R1 through R4 (middle row), and R5 (bot-
tom) colored in pink

We then divide this case into the following subcases

(i)
S
i �

.n/
i � R1, R2, R3, R4, or R5; or

S
i �

.n/
i � R

0
1 [R

0
2 [R

0
3 [R

0
4.

(ii)
S
i �

.n/
i � R1 [R2 or R3 [R4 and none of the previous cases.

(iii)
S
i �

.n/
i � R2 [R3 and none of the previous cases.

(iv)
S
i �

.n/
i � R1 [R2 [R3 [R4 and none of the previous cases.

(v) None of the previous cases.
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Case 3c. (i). In either scenario, notice there exist similarities into R1 or R4, respec-
tively, of ratio 2. By Lemma 1, we may exclude this case from consideration.

Case 3c. (ii). We now have that
S
�
.n/
i 6� R

0
1 [ R

0
2 [ R

0
3 [ R

0
4. As we are trying to

minimize diameter, we may suppose
Sk
iD1�

.n/
i is contained in R1 [R2 or R3 [R4

exclusively. Furthermore, we may suppose each�.n/i intersects one of the two squares
with diagonal ` D

p
2.1=2/3 in Figure 25. By Lemma 2, we obtain

d �
p
2.
p
3 � 1/

�1
2

�7
:

Figure 25. The critical region R.3c/ and the two squares, with diagonals of length
p
2.1=2/3

contained in the critical region, one half contained inK.1/ and the other inK.4/. The frontmost
square is given by .R1 [ R2/ \ .R01 [ R

0
2
/ and the backmost square is given by .R3 [ R4/ \

.R0
3
[R0

4
/.

Case 3c. (iii). As we are trying to minimize diameter, we may suppose each �.n/i
intersects the square with diameter ` D .1=2/2 seen in Figure 26. By Lemma 2, we
obtain d � .

p
3 � 1/.1=2/6.

Figure 26. The critical region R.3c/ and the square contained in the critical region, given by
.R0
2
[R0

3
/ \R.3c/, with diagonal of length .1=2/2.

Case 3c. (iv). We may assume that
Sk
iD1�

.n/
i intersects R1 and R3, or R2 and R4

by exclusion of previous cases. By symmetry we may suppose
Sk
iD1�

.n/
i intersects

R1 and R3. From Figure 27 we conclude d �
p
2.1=2/4.

Case 3c. (v). When
Sk
iD1�

.n/
i 6�

S5
iD1Ri , a simple calculation yields d�

p
2.1=2/4.
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Figure 27. The regions R0
1

and R0
3

(red, innermost), R1 n R01 and R3 n R03 (pink, outermost),
and the constraints for Case 3c. (iv) corresponding to R3 (backmost) and R1 nR01 (frontmost),
which are at distance

p
2.1=2/4. More specifically, these constraints are given by F31.p2/

and F51.p4/, respectively. There exists a mirrored configuration of constraints by symmetry,
corresponding to R1 and R3 nR03.

Figure 28. The region
S5
iD1Ri colored in pink, and the constraints for Case 3c. (v) correspond-

ing toR1 n .
S5
iD1Ri / (lowermost) andR4 (uppermost), which are at distance

p
2.1=2/4. More

specifically, these constraints are given by F141.p4/ and F4.p4/, respectively. There exists a
mirrored configuration of constraints by symmetry, corresponding to R4 n .

S5
iD1Ri / and R1.

As in Case 2, we apply Corollary 1 and obtain

˛.3/ D ˛.3c/
D ˛.3c. (ii)/

� a.3/n exp
�
�s2.
p
2C
p
6/

2n�6

�
� an exp

�
�s2.
p
2C
p
6/

2n�6

�
:

Case 4

Suppose that
Sk
iD1�

.n/
i does not intersect any of the base 1-cells. We will subdivide

this case by considering when
Sk
iD1�

.n/
i intersects three or two of the 1-cells K.4/,

K.5/, and K.6/. Defining ˛.4/ ´ min¹˛.4a/; ˛.4b/º and a.4/ ´ min¹a.4a/; a.4b/º, we
obtain our desired sequence. Furthermore, ˛.4/ � a.4/n exp .�s2.1C

p
3/=2n�5/ �

an exp .�s2.1C
p
3/=2n�5/.

Case 4a. Consider when
Sk
iD1�

.n/
i intersectsK.4/;K.5/;K.6/. For this subcase, the

critical region is the uppermost corner R.4a/ ´ K.41/ [K.51/ [K.61/. As usual, ifSk
iD1�

.n/
i � R.4a/, there exists a similarity into R4 [R5 [R6 of ratio 1=2, making

the family case (4a)-scaleable. If
Sk
iD1�

.n/
i is not contained in the upper cornerR.4a/,

we see from the symmetries ofK and Figure 29 that d � .
p
6 � 2/=4. This is identical

to the argument in Case 3a.
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Figure 29. The critical region R.4a/ for Case 4a in color and, through K.14/ (in blue), we find
the constraints corresponding to K.4/ n R.4a/, K.5/, and K.6/. These form a triangle similar,
but of scale 1=2, to that formed by the constraints in Case 3a.

Case 4b. Consider when
Sk
iD1�

.n/
i intersects only two ofK.4/;K.5/;K.6/. By sym-

metry, one can assume these are K.4/ and K.5/. Note that there is now a critical edge
L between the points p4 and F1.p2/D F2.p1/, which is of length `D 1=2. As we are
trying to minimize the diameter, we may suppose each�.n/i intersects the square with
diagonal L seen in Figure 30. An application of Lemma 2 gives d � .

p
3� 1/.1=2/5.

Figure 30. The critical regionL for Case 4b depicted by a bold line (in blue), and the square with
vertices p4, F1.p4/, F2.p1/, and F2.p4/, with diagonal L of length 1=2, one side contained
K.4/ and the other in K.5/.

We then see that

˛.4/ D ˛.4b/
� a.4b/

n exp
�
�s2.1C

p
3/

2n�5

�
� an exp

�
�s2.1C

p
3/

2n�5

�
:

Henceforth, combining all the above cases, we obtain

Hs.K/ D lim
n!1

an D lim
n!1

min
®
a.1/n ; a.2/n ; a.3/n ; a.4/n

¯
D min

®
˛.1/; ˛.2/; ˛.3/; ˛.4/

¯
� an min

²
exp

�
�s2

2n�3

�
; exp

�
�s2
p
2

2n�3

�
; exp

�
�s2.
p
2C
p
6/

2n�6

�
; exp

�
�s2.1C

p
3/

2n�5

�³
D an exp

�
�s2.
p
2C
p
6/

2n�6

�
:

Combining the above inequality with Proposition 2, we are led to the inequality (4.5),
completing the proof.
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6. Proof of Theorem 4

This demonstration will be akin to that of the proof of Theorem 3. Let N > 2 be such
that N ¥ 0 .mod 3/ and let ¹�.n/i ºi be a collection of n-cells of KN with diameter
d ´ j

Sk
iD1 �

.n/
i j. For notational simplicity, we will denote K ´ KN , the Koch

N -surface. We will also organize this proof by cases, based on how many of the
bottom 1-cells tangent at an edge to the peak of KN the family

Sk
iD1�

.n/
i intersects.

In order to make this procedure as similar as possible to what was done for K2, we
will choose to denote the 1-cells adjacent to the “peak” byK.1/;K.2/;K.3/ and those
1-cells making up the “peak” by K.4/; K.5/; K.6/ (see Figure 31).

Figure 31. Koch 4-surface and 5-surface prefractals, first iteration (left and right, respectively).
The 1-cells K.1/ through K.6/ are colored in red, yellow, green, blue, purple, orange, respec-
tively (in the left diagram, K.4/ is not visible; while in the right, K.6/ is not visible). Notice
K.1/; K.2/; K.3/ are contained in the base triangle T , while K.4/; K.5/; K.6/ are not as they
consist of the “peak”. Furthermore, we note thatK.1/ andK.4/,K.2/ andK.5/,K.3/ andK.6/

each intersect at an edge.

Due to the difficulty in naming most of the 1-cells inKN , we will depend strongly
on diagrams throughout the proof, without providing formulas for the constraints
these diagrams illustrate. We will again represent such constraints by green dots and
graph the segments between these collections of points. The first instance of such dia-
grams is found in the following technical lemma, which will play an analogous role
to that of Lemma 2 and will be used in Cases 3c, 4b, 4d.

Lemma 3. Consider two Koch N -surfaces of scale 1=N intersecting at a base edge
of length 1=N forming a dihedral angle of � D arccos.1=3/; 0; arccos.1=3/ � � . By
a base edge of the Koch N -surface K, we mean one of the three sides of length 1 in
the triangle T .

Then, if
Sk
iD1�

.n/
i is a family of n-cells that intersects both Koch N -surfaces, it

follows that ¹�.n/i º
k
iD1 is scaleable or

d ´

ˇ̌̌̌ k[
iD1

�
.n/
i

ˇ̌̌̌
�

p
6

3N 3
:

Proof. Note that we can cover the critical edge L having two Koch N -surfaces given
by N self-similar copies of scale 1=N of the whole figure, see yellow-shaded regions
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Figure 32. Two first iteration prefractals of the Koch 4-surface, intersecting at a base edge,
forming a dihedral angle of arccos.1=3/ (left), 0 (middle), and arccos.1=3/ � � . These specific
angles arise in Cases 3c, 4d, and 4b, respectively.

in Figure 33. We can further cover the points where adjacent yellow-shaded regions
meet byN � 1 hexagonal regions of scale 1=N 2, see red-shaded regions in Figure 33.
Let R be the region containing L consisting of these N self-similar copies of the
whole figure together with the N � 1 hexagonal regions. We will denote these self-
similar copies by S1; : : : ; SN and the hexagonal regions by H1; : : : ; HN�1 such that
Sk and SkC1 intersect at a point which is contained in Hk for each 1 � k � N � 1.

~
L

Figure 33. Planar representation of two Koch N -surfaces meeting at an edge L

: : : L

Figure 34. Planar representation of a self-similar copy Sk of scale 1=N (left), a hexagonal
region Hk of scale 1=N 2 (middle), and the critical region R (right)

We first consider
S
i �

.n/
i � R.

(1) If
S
i �

.n/
i is contained in some Sk ,

S
i �

.n/
i is scaleable.

(2) If not, suppose
S
i �

.n/
i is contained in Sk [Hk [ SkC1 for some 1 � k �

N � 1.

(a) If
S
i �

.n/
i � is contained in Hk , then

S
i �

.n/
i is scaleable.
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Figure 35. Planar representation of the region Sk [ Hk [ SkC1 for some 1 � k � N � 1,
with two constraints corresponding Sk nHk (leftmost) and SkC1 (center). More specifically,
the first constraint is the midpoint of one of the edges of Hk which is contained in Sk . The
second constraint is the unique point in the intersection Sk \ SkC1. These are at a distance of
.
p
3=2/.1=N /3. An important fact to note during this computation is that, due to the planar rep-

resentation, the four yellow triangles in this image are skewed when they are in fact equilateral.
By symmetry, there exist three similar configurations of constraints per value of k.

(b) Otherwise, we see in Figure 35 that d �
p
3=2N 3 regardless of � .

(3) If neither (1) nor (2) hold, we see in Figure 36 that d � 1=N 2 regardless of
� .

Figure 36. Planar representation of the region Sk [Hk [ SkC1 [HkC1 [ SkC2 for some
1 � k � N � 2, with two constraints corresponding to Sk and SkC2. These are given by the
unique points at the intersections Sk \ SkC1 and SkC1 \ SkC2, respectively, which are at a
distance of .1=2/3.

Now we consider
S
i �

.n/
i 6� R.

(1) When � D arccos.1=3/, we see in Figure 37 that d �
p
3=2N 3.

(2) When � D 0, we see in Figure 38 that d �
p
3=2N 3.

(3) When � D arccos.1=3/ � � , we see in Figure 39 that d �
p
6=3N 3.

We now proceed to complete the body of the proof of Theorem 4, which again is
divided into four main cases. As before, we will note that when

Sk
iD1 �

.n/
i is con-

tained in a 1-cell, there exists a similarity of ratio 1=N ontoK, making these families
scaleable. By Lemma 1, we will exclude these from consideration.

Case 1

When
Sk
iD1�

.n/
i intersects all of the distinguished base 1-cellsK.1/,K.2/, andK.3/,

we have that d � 1=.2N /. Indeed, notice that there exists a projection � onto the
triangle T with d � j�.

Sk
iD1�

.n/
i /j. As in Case 1 of Theorem 3, we use symmetry

to find the three constraints as in Figure 40, yielding d � 1=.2N /. By Corollary 1,
˛.1/ � an exp .�4sN =N n�1/.
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Figure 37. The critical region R when � D arccos.1=3/ and N D 4, with two constraints corre-
sponding to one of the two KochN -surfaces (on the edgeL) and the other KochN -surface with
the critical region R removed (frontmost, slightly to the right). In particular, the first constraint
is the unique point in Sk \ SkC1 for some 1 � k � N � 1. The second constraint is given
by the midpoint of one of the edges of Hk which are not contained in Sk nor SkC1. Due to
symmetry, there are 2.N � 1/ similar configurations of constraints (in this image N D 4, so 6
total), two configurations per hexagon.

Figure 38. The critical region R when � D 0 and N D 4, with two constraints corresponding
to one of the two Koch N -surfaces (on the edge L) and the other Koch N -surface with the
critical region R removed (frontmost, slightly to the right). Despite the change in geometry,
these constraints are identical to those found in Figure 37. Here there are also 2.N � 1/ similar
configurations of constraints.

Case 2

Suppose
Sk
iD1 �

.n/
i only intersects two of the distinguished base 1-cells of K. We

will assume these are K.1/ and K.2/, since the other arguments follow by rotations
of R3. We will provide a similar argument to Case 1, by introducing a sequence a.2/n .
However, this case will rely on Lemma 1, since

Sk
iD1�

.n/
i can be arbitrarily close to

the point F1.p2/ D F2.p1/ as n!1, implying that we cannot find lower bound for
d unless we exclude Case 2-scaleable families from consideration. We will show that
˛.2/ � an exp .�4

p
3sN =.3N

n�2// divide this part into two sub-cases.

Case 2a. If
Sk
iD1�

.n/
i is contained in the critical region R.2;3b;4c/, we can scale this

corner by N into R0
.2;3b;4c/. By Lemma 1, we may exclude this case from considera-

tion.

Case 2b. Assume that
Sk
iD1�

.n/
i is not contained in the critical region R.2;3b;4c/. We

see from Figure 43 that d �
p
3=2N 2.
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Figure 39. The critical region R when � D arccos.1=3/ � � and N D 4, with two constraints
corresponding to one of the two Koch N -surfaces (uppermost) and the other Koch N -surface
with the critical region R removed (lowermost). In particular, the second constraint is given
by a point on one of the two edges of Hk which are not contained in Sk nor SkC1 for some
1 � k � N � 1. The first constraint is then given by the point in Hk directly above the second
constraint. By translation, there exist infinitely many similar configurations of constraints.

Figure 40. Projection of K onto T (when N D 4, first prefractal) with three constraints corre-
sponding to K.1/, K.2/, K.3/. These form an equilateral triangle with side length 1=.2N /.

By Corollary 1, ˛.2b/ � a
.2b/
n exp .�4

p
3sN =.3N

n�2//. Putting ˛.2/´ ˛.2b/ and
a
.2/
n ´ a

.2b/
n , we obtain our desired sequence. Furthermore,

˛.2/ � a.2/n exp
�
�4
p
3sN

3N n�2

�
� an exp

�
�4
p
3sN

3N n�2

�
:

Case 3

Suppose
Sk
iD1 �

.n/
i only intersects one of the three distinguished base 1-cells

of K. We may assume that this cell is K.1/ by symmetry. We will subdivide
this case by considering when

Sk
iD1 �

.n/
i intersects K.5/ and K.6/ , either of

these exclusively, or neither. Defining ˛.3/ ´ min¹˛.3a/; ˛.3b/; ˛.3c/º and a.3/ ´
min¹a.3a/; a.3b/; a.3c/º, we will obtain our desired sequence. Furthermore, we will
show ˛.3/ � an exp .�

p
6sN =N

n�3/.

Case 3a. If
Sk
iD1�

.n/
i intersects both K.5/ and K.6/, a calculation similar to that of

the case of N D 2 reveals that d � .
p
6 � 2/=N .

Case 3b. If
Sk
iD1�

.n/
i intersectsK.5/ orK.6/ exclusively, an argument similar to that

of Case 2 holds. Indeed, we may suppose
Sk
iD1�

.n/
i intersectsK.5/ by symmetry and

exclude when
Sk
iD1�

.n/
i is contained in the critical regionR.2;3b;4c/ by Lemma 1. We

then see from the following diagram that d �
p
6=.3N 2/.
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Figure 41. Critical region R.2;3b;4c/ for Cases 2, 3b, and 4c (in color), when N D 4 (left) and
N D 5 (right)

Figure 42. Critical corner R.2;3b;4c/ for Cases 2, 3b, 4c: zoomed in (left), in R0
.2;3b;4c/ (right)

Case 3c. If
Sk
iD1 �

.n/
i does not intersect K.5/ or K.6/, then

Sk
iD1 �

.n/
i intersects

the two Koch n-surfaces K.1/ and K.4/ of scale 1=N meeting at an angle of � D
arccos.1=3/ (see Figure 45). So by lemma 3, d �

p
6=.3N 3/.

By Corollary 1,

˛.3/ D ˛.3c/
� a.3c/

n exp
�
�
p
6sN

N n�3

�
� an exp

�
�
p
6sN

N n�3

�
:

Case 4

Suppose that
Sk
iD1�

.n/
i does not intersect any of the three distinguished base 1-cells

ofK. We will subdivide this case by considering how many of the 1-cellsK.4/,K.5/,
K.6/ the set

Sk
iD1�

.n/
i intersects. Defining

˛.4/´ min¹˛.4a/; ˛.4b/
º and a.4/´ min¹a.4a/; a.4b/

º;

Figure 43. The region R0
.2;3b;4c/ with R.2;3b;4c/ colored, and two constraints for Case 2b cor-

responding to K.1/ nR.2;3b;4c/ (left) and K.2/. In particular, the first constraint corresponds to
the unique point on the boundary of R.2;3b;4c/ and in the intersection K.1/ \K.4/. The second
constraint corresponds to the midpoint of the interval K.2/ \ K.5/ \ R.2;3b;4c/. These are at
a distance of .

p
3=2/.1=N /2. We note that by translation, there exist infinitely many similar

configurations of constraints.
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Figure 44. The region R0
.2;3b;4c/ with R.2;3b;4c/ colored, and two constraints for Case 3b cor-

responding to K.1/ nR.2;3b;4c/ (left) and K.5/. In particular, the first constraint corresponds to
the unique point on the boundary of R.2;3b;4c/ and in the intersection K.1/ \K.4/. The second
constraint corresponds to the midpoint of the equilateral triangle K.5/ \ R.2;3b;4c/. These are
at a distance of .

p
6=3/.1=N /2.

Figure 45. The 1-cells K.1/ in red (below) and K.4/ in blue (above), which form a dihedral
angle of arccos.1=3/

we obtain our desired sequence. Furthermore, we show that

˛.4/ � a.4/n exp
�
�
p
6sN

N n�3

�
� an exp

�
�
p
6sN

N n�3

�
:

Case 4a. If
Sk
iD1�

.n/
i intersectsK.4/,K.5/, andK.6/, an argument similar to that of

Case 2b and 3b holds. Indeed, we may exclude when
Sk
iD1�

.n/
i is contained in the

uppermost corner R.4a/ (see Figure 46) by Lemma 1.

Figure 46. The critical region R.4a/ (when N D 5) from above (left), from the side (middle),
and zoomed in from above (right); with a thickened red border to aid visibility. Note that R.4a/

consists of three 2-cells, corresponding to K.4/, K.5/, and K.6/.

Now supposing
Sk
iD1 �

.n/
i 6� R.4a/, it follows from the symmetries of KN and

from the following diagram that d � .
p
6 � 2/=N 2. Finding this bound is identical

to the calculation when N D 2 (see Figure 47).
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Figure 47. The critical region R.4a/ for Case 4a in color and the constraints corresponding to
K.4/ n R.4a/, K.5/, and K.6/. These form a triangle similar, but of scale 2=N 2, to that formed
by the constraints in Theorem 3, Case 3a.

In the case where
Sk
iD1�

.n/
i � R.4a/, there exists a similarity intoK.4/ [K.5/ [

K.6/ of ratio N , making the family Case (4a)-scaleable.

Case 4b. Consider when
Sk
iD1�

.n/
i intersects only two of K.4/, K.5/, K.6/, so thatSk

iD1�
.n/
i intersects two Koch n-surfaces of scale 1=N meeting at an angle of � D

arccos.1=3/ � � . By Lemma 3, d �
p
6=.3N 3/.

Case 4c. If
Sk
iD1 �

.n/
i intersects only one of K.4/, K.5/, K.6/, then an identical

argument to Cases 2b and 3b holds. First, we may suppose
Sk
iD1�

.n/
i only intersects

K.4/ by symmetry. Then, we may exclude when
Sk
iD1�

.n/
i is contained in the critical

region R.2;3b;4c/ since we may scale this corner by N into R0
.2;3b;4c/. On the other

hand, if
Sk
iD1�

.n/
i is not contained in R.2;3b;4c/, we see from the following diagram

that d �
p
3=2N 2.

Figure 48. The critical region R.2;3b;4c/ excluding K.1/; K.2/; K.4/ (in color), together with
four different configurations of two constraints for Case 4c. These correspond to the regions
K.4/ andK n .K.1/ [K.2/ [K.4/ [R.2;3b;4c// and yield a distance of .

p
3=2/.1=N /2. There

exist infinitely many of these configurations by translation.

Case 4d. If
Sk
iD1 �

.n/
i does not intersect any of the 1-cells K.4/; K.5/; K.6/, we

may assume that
Sk
iD1�

.n/
i intersects distinct adjacent 1-cells�.1/

k
;�

.1/

`
as we try to

minimize diameter. If �.1/
k

and �.1/
`

intersect at an edge (forming a dihedral angle of
� D 0), it follows from Lemma 3 that d �

p
6=3N 3. On the other hand, if �.1/

k
and

�
.1/

`
only intersect at a point p, then an argument similar to Case 2b and 3b holds.
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Indeed, consider the region R0
.4d/ consisting of the six 1-cells which intersect at p.

Note that there exists a similar region R.4d/ of six 2-cells which intersect at p.

Figure 49. The region R.4d/ (in gray) inside R0
.4d/

Now if
Sk
iD1�

.n/
i � R

0, we can scale R.4d/ by a factor of N into R0
.4d/. So by

Lemma 1, we may exclude this case from consideration. When
Sk
iD1�

.n/
i 6� R.4d/,

we see from the following diagram that d �
p
3=2N 2.

Figure 50. The region�.1/
k

in pink (left) with the three possible choices for�.1/
`

in blue (right),
together with a configuration of two constraints corresponding to �.k/

k
(left) and a possible

�
.1/

`
(right). These are at a distance of .

p
3=2/.1=N /2. Note that there are infinitely many such

configurations by translation.

We then see that

˛.4/ D ˛.4b/
� a.4b/

n exp
�
�
p
6sN

N n�3

�
� an exp

�
�
p
6sN

N n�3

�
:

Henceforth, combining all the above cases, we obtain

Hs.K/ D lim
n!1

an D lim
n!1

min
®
a.1/n ; a.2/n ; a.3/n ; a.4/n

¯
D min

®
˛.1/; ˛.2/; ˛.3/; ˛.4/

¯
� an min

²
exp

�
�4sN

N n�1

�
; exp

�
�4
p
3sN

3N n�2

�
; exp

�
�
p
6sN

N n�3

�³
D an exp

�
�
p
6sN

N n�3

�
:

Combining the above inequality with Proposition 2, we are led to the inequal-
ity (4.5), completing the proof.

7. Application

We now present an application to the theory of Partial Differential Equations over the
Koch N -crystals.
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7.1. Preliminaries

To begin, denote by �N ´ int.CN / � R3 the interior of the Koch N -crystal defined
by Definition 10 with boundary �N ´ KN (as in Definition 9), for N > 2 with
N ¥ 0 .mod 3/. As discussed at the end of Section 3, one has that �N is a uni-
form domain whose boundary �N is an sN -set with respect to the sN -dimensional
Hausdorff measure, where sN ´ log.N 2 C 2/= log.N /. Given a set E, we denote by
Lp.E/´ Lp.E; �/ the Lp-based space of �-measurable functions, and we write
�3 as the 3-dimensional Lebesgue measure. Also, for a domain D, we denote by
W 1;p.D/ the well-known p-Sobolev spaces, for 1 � p � 1. When p D 2, we write
H 1.D/´ W 1;2.D/. Finally, by �N we denote the closure of the set �N .

For non-Lipschitz domains, a normal derivative may not be well defined. This is a
key point when defining a Robin problem over irregular regions. However, define the
Robin-type bilinear form .E;D.E// by

D.E/´ .H 1.�N / \ C.�N // � .H
1.�N / \ C.�N //;

and
E.v; w/´

Z
�N

rvrw dx C

Z
�N

ˇvw dH sN ; (7.1)

for ˇ 2 L1.�N / with ess infx2�N ˇ.x/ � b0 for some constant b0 > 0. Then as
H sN is an sN -Ahlfors measure, it follows from [3, Remark 6.5] that H sN fulfills
the [1, conditions (11)], and consequently from [1, Theorem 3.3], one has that the
form .E; D.E// is closable, which means that the corresponding Robin problem is
well posed over this domain. Furthermore, it is shown in [3] that there exists a compact
trace map from H 1.�N / into L2.�N /. Thus, following this argument, we define an
appropriate interpretation of the normal derivative over s-sets, whose motivation and
general form is taken from [5].

Definition 16. Let F W�N ! R3 be a measurable function. If there exists an f 2
L1loc.R

3/ with Z
�N

Frv dx D

Z
�N

f v dx C

Z
�N

v dH sN ;

for all v 2 C 1c .�N /, then we say that H sN is the normal measure of F , and we write

N �s .F /´ H sN :

Note that when the normal measure N �s .F / exists, then it is unique, and the equality
dN �s .�F / D �dN

�
s .F / holds for all � 2 C 1.�N /. Therefore, if u 2 W 1;1

loc .�N / and
ru exist, then we denote by

@u

@�s
´ N �s .ru/

the generalized normal derivative of u in �N .
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Observe that if �N � Rn is a bounded Lipschitz domain and sN D n � 1, then
Definition 16 agrees with the classical definition of a normal derivative. In the case of
non-Lipschitz domains Definition 16 is a sort of interpretation of a normal derivative,
which we use to write a well-posed Robin problem over irregular regions (as explained
above).

Remark 3. Since �N � R3 is a bounded extension domain (in the sense of
Jones [14]) whose boundary �N is an sN -set with respect to the Hausdorff mea-
sure H sN , then one can follow the approach given by Hinz, Rozanova-Pierrat and
Teplyaev [9, 10] to give sense to the normal derivative over non-Lipschitz domains.
To be more precise, in [9, Theorem 7], the authors established the existence of the gen-
eralized normal derivative @u=@�s ´ N �s .ru/ of u over �N as the linear bounded
functional @u=@�s 2 .Tr�N .H

1.R3///�, given by�
@u

@�s
;Tr�N ;�N v

�
.Tr�N .H

1.R3///�;Tr�N .H
1.R3//

D

Z
�N

v�udx C

Z
�N

rurv dx;

for all u; v 2 H 1.�N /, provided that �u 2 L2.�N /, where Tr�N WH
1.Rm/ !

L2.�N / denotes a bounded trace operator defined as in [9, equalities (14) and (13)],
and

Tr�N ;�N ´ Tr�N ıS�N ;

for Tr�N WH
1.R3/! L2.�N / a bounded operator, and S�N WH

1.�N /! H 1.R3/

the bounded extension operator (e.g. [9, Theorem 7]). One has that Definition 16 is a
more general interpretation of a normal derivative (since it can include domains which
may not have the extension property), but the latter formulation gives a more concrete
structure for the normal derivative over classes of bounded domains with (possibly)
irregular boundaries. Since it is not the intention of this paper to go deeper into these
subjects, we do not go into further details.

We now present the following example.

7.2. The Robin boundary value problem

Consider now the realization of the following boundary value problem:8<:��u D f in �N ;
@u
@�sN

C ˇu D g on �N ;
(7.2)

for f 2 Lp.�N /, g 2 Lq.�N /, and ˇ 2 L1.�N / with ess infx2�N ˇ.x/ � b0 for
some constant b0 > 0. Then equation (7.2) turns out to be a Robin boundary value
problem over the Koch N -crystal. In fact, in [22] it is shown that one can define the
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Robin problem over more classes of irregular domains, in which the Koch N -crystals
form family of domains fulfilling the required properties.

A function u2H 1.�N / is said to be a weak solution of the Robin problem (7.2), if

EN .u; '/ D

Z
�N

f ' dx C

Z
�N

g' dHsN

for all ' 2 H 1.�N /, where EN .�; �/´ E.�; �/ denotes the bilinear form defined by
(7.1), for D´ �N , @D´ �N , and �´ HsN .

Since �N is a uniform domain, �N is an sN -set with respect to HsN , and sN 2
.1; 3/, recalling [4, Theorem 4.24], one gets that the form EN .�; �/ is continuous, and
coercive. Moreover, the conclusions in [22] imply the following important result.

Theorem 5. If f 2 Lp.�N / and g 2 Lq.�N / for p > 3=2 and q > sN =.sN � 1/,
then the Robin problem (7.2) admits a unique weak solution u 2 H 1.�N /, and there
exists a constant ı 2 .0; 1/ such that u 2 C 0;ı.�N /, that is, u is globally Hölder
continuous. Furthermore, there is a constant C > 0 (independent of u), such that

kukC0;ı.�N / � C
�
kf kp;�N C kgkq;�N

�
:

The above result is also valid in the quasi-linear case involving the p-Laplace
operator, for 6.sN C 2/�1 < p <1 (under some modifications on q and r ; see [22]).
Recently a generalization of this result has been obtained to the Robin problem involv-
ing variable exponents and anisotropic structures. For more details, refer to [6].

The above results can be considered as generalizations of results obtained in [2,18,
20, 21], where regularity results were obtained for the Dirichlet problem over classes
of non-Lipschitz domains. However, it is important to point out that most of the results
in [2, 18, 20, 21] were developed over bounded NTA domains whose boundaries are
.n � 1/-sets, while in our case we are allowing the boundary to be an sN -set for
sN 2 .1; 3/. It is important to mention that NTA domains include the classical Koch
snowflake domains and other fractal-like domains whose Hausdorff dimensions may
not be n � 1. However, on the works in [2, 18, 20, 21], the authors are assuming the
Ahlfors–David regular condition over the boundary, which is equivalent to say that
the boundary of the domain has Hausdorff dimension of n � 1, with such boundary
being an .n � 1/-set. Furthermore, for Robin-type boundary value problems, usually
one needs more “geometrical structure” in the domains under consideration, in order
to have a notion of a normal derivative (as explained at the beginning of this section),
and for the well-posedness.
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