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Dimensions of popcorn-like pyramid sets

Amlan Banaji and Haipeng Chen

Abstract. This article concerns the dimension theory of the graphs of a family of functions
which include the well-known ‘popcorn function’ and its pyramid-like higher-dimensional ana-
logues. We calculate the box and Assouad dimensions of these graphs, as well as the interme-
diate dimensions, which are a family of dimensions interpolating between Hausdorff and box
dimensions. As tools in the proofs, we use the Chung–Erdős inequality from probability the-
ory, higher-dimensional Duffin–Schaeffer type estimates from Diophantine approximation, and
a bound for Euler’s totient function. As applications we obtain bounds on the box dimension
of fractional Brownian images of the graphs, and on the Hölder distortion between different
graphs.

1. Introduction and results

The popcorn function, also known as Thomae’s function, is an important example in
real analysis. It has many interesting properties, such as being Riemann integrable
despite not being continuous on any open interval. In fact, it is discontinuous at the
rationals but continuous at the irrationals. There are several intriguing connections
between the popcorn function and different areas of mathematics [11,19,25] and com-
puter science [26]. In this article, as well as working with the popcorn function itself,
we will consider the following higher-dimensional generalisations of it. Throughout
the paper, d will denote an integer with d � 2, and 0 < t < 1. Then the popcorn
pyramid function ft;d W Œ0; 1�d�1 ! R is defined by

ft;d .x/ D

8̂̂<̂
:̂
q�t if x D

�
p1
q
; : : : ; pd�1

q

�
; q 2 N; pi 2 ¹1; : : : ; q � 1º;

gcd .pi ; q/ D 1 8i ,

0 otherwise:

The popcorn function itself is f1;2. Note that the function is 0 unless all numbers in the
product have the same denominator, for example, in the dD3 case ft;3.1=2; 1=3/D0.
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(a) The popcorn graph G1;2 (b) G0:3;2

Figure 1. Two popcorn-like graphs

The graphs of the functions are denoted by

Gt;d WD
®
.x; ft;d .x//W x 2 Œ0; 1�

d�1
¯
:

Two of the graphs in the d D 2 case are shown in Figure 1; the graph on the left is that
of the popcorn function. For completeness, we also include the full set in our analysis,
since we will see that the corresponding sets have the same dimensions:

Ft;d WD
°�p1
q
; : : : ;

pd�1

q
;
�1
q

�t�
W q 2 N; pi 2 ¹1; : : : ; q � 1º 8i

±
[
�
Œ0; 1�d�1 � ¹0º

�
:

ThenGt;d � Ft;d � Œ0; 1�d ; for example, the convex hull ofG1;3 (or F1;3) is a square-
based pyramid in R3, and .1=2; 1=2; 1=4/ 2 F1;3 n G1;3. The sets Gt;d and Ft;d
have an interesting fractal structure, and it is natural to consider different notions of
dimension of these sets. This was done in the case d D 2 in [7, 8]. For an overview
of fractal geometry and dimension theory we refer the reader to [13,17]. We will give
the formal definitions of the notions of dimension in Section 2, prove lower bounds
for box dimension in Section 3, and complete the proof of Theorems 1.1 and 1.3 in
Section 4.

Three of the most well-studied notions of fractal dimension are Hausdorff, box
and Assouad dimensions, which are always ordered as

dimH F � dimB F � dimA F: (1.1)

The Hausdorff dimension of Ft;d (or Gt;d ) is trivially d � 1, since the Hausdorff
dimension is countably stable. The Assouad dimension describes the fine-scale struc-
ture of the ‘thickest’ part of the set F ; for an overview of the Assouad dimension in
the context of fractal geometry, we refer the reader to [17]. We prove that the Assouad
dimension of the popcorn-like pyramids are as follows.



Dimensions of popcorn-like pyramid sets 153

Theorem 1.1. We have

dimAGt;d D dimA Ft;d D

´
d for 0 < t < d

d�1
;

d � 1 for t � d
d�1

:

It follows from Theorem 1.1 and (1.1) that if t � d=.d � 1/ then all three notions
of dimension in (1.1) are equal to d � 1, so in all other results in this paper we assume
that t < d=.d � 1/. The box dimension describes the scaling behaviour of the smallest
number of balls of a given size needed to cover the set.

Theorem 1.2. If 0 < t < d=.d � 1/, then

dimBGt;d D dimB Ft;d D
d2

d C t
:

Proof. This follows by setting �D1 in the more general result Theorem 1.3 below.

Note that dimB Gt;d is continuous in t but dimA Gt;d is not, since the Assouad
dimension depends sensitively on the local scaling behaviour of the set. Although our
proof of Theorem 1.2 is to observe that it follows from Theorem 1.3, we do not call it a
corollary because perhaps the most challenging part of the proof of Theorem 1.3 is to
establish lower bounds for the box dimension. We do this directly in Section 3 using
a similar strategy to the d D 2 case in [7, 8]. Indeed, to bound the covering num-
ber, we make use of the Chung–Erdős inequality from probability theory. One part
of the resulting expression can be bounded using the estimate �.n/ & n=.log log n/
for Euler’s totient function �.n/ (defined in (2.5)). Another part is bounded using
methods related to Diophantine approximation. Indeed, in the paper [12] in which
Duffin and Schaeffer formulated their famous conjecture (which was recently proved
by Koukoulopoulos and Maynard [21]), they also established bounds for intersections
of sets of numbers which can be approximated by rationals in a certain way. For our
results in the d > 2 case, we use bounds on higher-dimensional Diophantine approx-
imation sets which can be deduced from the bounds in [12]. These bounds are also
noted by Pollington and Vaughan in [24], where they prove the higher-dimensional
version of the Duffin–Schaeffer conjecture (which is substantially less challenging
than the proof of the one-dimensional version).

A topic which has generated significant interest in recent years is dimension inter-
polation. The idea is to consider two different notions of dimension and find a geo-
metrically meaningful family of dimensions that lies between them. For a survey of
this topic, we refer the reader to [18]. One example of dimension interpolation is the
Assouad spectrum, which lies between the box and Assouad dimensions and depends
on a parameter � 2 .0; 1/. The Assouad spectrum of the popcorn graph and the sets
Gt;2 and Ft;2 have been computed in [7, 8]. A natural question would therefore be to
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calculate the Assouad spectrum of the sets Gt;d and Ft;d as a function of d , t and � .
The spectrum of dimensions which we will consider in this paper, however, is the
intermediate dimensions, introduced in [16]. These depend on a parameter � 2 Œ0; 1�
and lie between the Hausdorff dimension (� D 0) and the box dimension (� D 1). The
motivation for these dimensions comes from the observation that the box dimension
is defined by covering the set with balls of a fixed size, whereas for the Hausdorff
dimension the covering sets can have very different sizes. The intermediate dimen-
sions are defined by covering the set in question with sets whose diameter lies in
intervals of the form Œı1=� ; ı� for a small number ı > 0. A precise characterisation of
the attainable forms of intermediate dimensions of sets has been obtained in [4]; for
a survey of the intermediate dimensions, we refer the reader to [15]. The following
result extends Theorem 1.2.

Theorem 1.3. If 0 < t < d=.d � 1/, then

dim� Gt;d D dim� Ft;d D

´
d � 1 for 0 � � � .d�1/t

d
;

d2�
d�Ct

for .d�1/t
d

< � � 1:

We see that after the phase transition at � D .d � 1/t=d , the graph of the inter-
mediate dimensions is analytic and strictly concave. One simple way to complete the
proof is to make use of Banaji’s general bounds (2.2) and (2.3), but we also give a dir-
ect proof. As a special case of Theorem 1.3, we obtain a formula for the intermediate
dimensions of the graph of the popcorn function.

Corollary 1.4.

dim� G1;2 D dim� F1;2 D

´
1 for 0 � � � 1

2
;

4�
2�C1

for 1
2
< � � 1:

Proof. This is immediate from Theorem 1.3.

It was shown in [16] that the maps � 7! dim�F and � 7! dim�F are always
continuous for � 2 .0; 1�, but for some sets F they are not continuous at � D 0. Con-
tinuity at � D 0 has been shown in [5,6] to have powerful consequences. In particular,
in the following corollary of Theorem 1.3, we apply results of Burrell [5] to give
bounds for the box dimension of images of the sets Gt;d and Ft;d under fractional
Brownian motion (which is a stochastic process defined and studied in Kahane’s clas-
sical text [20]). Falconer [14] has explicitly computed the intermediate dimensions of
fractional Brownian images of certain sequence sets.
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Corollary 1.5. Fix d 2 N with d � 2, 0 < t < d=.d � 1/ and ˛ > .d � 1/=d . If
B˛WRd ! Rd is index-˛ fractional Brownian motion, then

dimH B˛.Gt;d / D dimH B˛.Ft;d / D
d � 1

˛
;

dimBB˛.Gt;d / � dimBB˛.Ft;d / < d

hold almost surely.

Proof. The value of the Hausdorff dimension of the fractional Brownian image is
a direct consequence of Kahane’s general results [20, Chapter 18], since Gt;d and
Ft;d are Borel. The box dimension result follows from Burrell’s [5, Corollary 3.7],
since the intermediate dimensions of Gt;d and Ft;d are continuous at �D0 by The-
orem 1.3.

It is interesting to note that the condition ˛ > .d � 1/=d does not depend on t ,
even though the box dimension of the sets Gt;d and Ft;d does depend on t .

Recall that for ˛ 2 .0; 1� we say that a map is ˛-Hölder if that there exists c > 0
such that kf .x/� f .y/k � ckx � yk˛ for all x; y 2 F . Dimension theory can play a
role in determining the Hölder distortion between sets; for a discussion of this topic,
we refer the reader to [17, Section 17.10]. The intermediate dimensions can often
give better information than either the Hausdorff or box dimensions, for example, in
the case of Bedford–McMullen carpets (see [3, Example 2.12]) and continued frac-
tion sets (see [2, Example 4.5]). In fact, we show in Corollary 1.6 that the same
is true for the sets Gt;d and Ft;d . To do so, we use the following simple estimate
noted by Falconer [15, Section 2.1 5.]: if f WF ! Rd is ˛-Hölder, then dim�f .F / �

˛�1dim�F and dim�f .F / � ˛
�1dim�F . For further Hölder distortion estimates for

the intermediate dimensions we refer the reader to [5, Theorem 3.1] and [1, Section 4].
The bound achieved by different values of � for a certain choice of parameters is
shown in Figure 2.

Corollary 1.6. Suppose 0 < t1< t2 � d=.d � 1/. Then if f WGt2;d ! Rd satisfies
f .Gt2;d / � Gt1;d and is ˛-Hölder, then

˛ �
.d � 1/t2 C t1

dt2
:

The same holds if Gt1;d is replaced by Ft1;d or Gt2;d is replaced by Ft2;d .

Proof. If � D .d � 1/t2=d , then

˛ �
dim�Gt2;d

dim�f .Gt2;d /
�

dim� Gt2;d

dim� Gt1;d
D
.d � 1/t2 C t1

dt2
:
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Figure 2. Graph of the intermediate dimensions of the popcorn sets from Figure 1, and their
ratio (which gives upper bounds on the possible Hölder exponents of surjective maps fromG1;2

to G0:3;2).

It is straightforward to see that the value of � which gives the best bound for
˛ in the proof of Corollary 1.6 is indeed � D .d � 1/t2=d (the largest value � for
which dim� Gt2;d D d � 1). It may be of interest to determine whether the bounds
in Corollary 1.6 are sharp, but we will not pursue this. It follows from Corollary 1.6
(or directly from Theorem 1.2) that if 0 < t1 < t2 � d=.d � 1/ then Gt1;d and Gt2;d
are not bi-Lipschitz equivalent.

2. Preliminaries

We denote the cardinality of a set S by #S . Throughout, we write a . b to mean
a � cb for some constant c which may depend on d or t but is independent of other
parameters (such as ı) unless stated otherwise. If a . b and b . a, we write a � b.
For each x > 0, we denote

bxc WD max
®
n 2 NCWn � x

¯
:

Let Ln be the Lebesgue measure on Rn. All sets we consider will be non-empty,
bounded subsets of Euclidean space. Given such a set F , we denote its diameter by
jF j WD sup¹kx � ykW x; y 2 F º, where k � k is Euclidean distance. Let Nı.F / denote
the minimal number of closed cubes with side length ı needed to cover F . The upper
and lower box dimensions are defined by

dimBF WD lim sup
ı!0C

logNı.F /
� log ı

I dimBF WD lim inf
ı!0C

logNı.F /
� log ı

: (2.1)
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If these coincide, then we simply refer to the box dimension of F , denoted dimB F .
We can define the Hausdorff dimension without using Hausdorff measure by

dimH F D inf
°
s � 0W for all " > 0 there exists a finite or countable cover

¹U1; U2; : : :º of F such that
X
i

jUi j
s
� "

±
:

This motivates the definition of the intermediate dimensions. For � 2 .0; 1�, the upper
� -intermediate dimension of F is

dim�F D inf
°
s � 0W for all " > 0 there exists ı0 2 .0; 1� such that for all

ı 2 .0; ı0/ there exists a cover ¹U1; U2; : : :º of F

such that ı1=� � jUi j � ı for all i; and
X
i

jUi j
s
� "

±
:

Similarly the lower � -intermediate dimension of F is

dim�F D inf
°
s � 0W for all " > 0 and ı0 2 .0; 1� there exist ı 2 .0; ı0/

and a cover ¹U1; U2; : : :º of F such that ı1=� � jUi j � ı

for all i; and
X
i

jUi j
s
� "

±
:

If these coincide, then we refer to the intermediate dimension of F , denoted dim� F .
By definition, dim1 D dimB and dim1 D dimB, and dim0 D dim0 WD dimH.

Finally, the Assouad dimension of F � Rd is defined by

dimA F D inf
®
˛W there exists C > 0 such that for all x 2 F and
0 < r < R; we have Nr.B.x;R/ \ F / � C.R=r/˛

¯
:

The following inequalities are always satisfied:

0 � dimH F � dim�F � dim�F � dimBF � dimA F � d;

dim�F � dimBF � dimBF:

It will be useful to recall the following general bounds for subsets of Rd , proved
in [1, Propositions 3.8 and 3.10]. We will see that these bounds are sharp for large �
for the families Gt;d and Ft;d . If 0 < � � � � 1, then

dim�F � dim�F � dim�F C
dim�F.dimA F � dim�F /

.� � �/dim�F C � dimA F
.� � �/: (2.2)

Moreover, there is a lower bound for the intermediate dimensions in terms of the box
and Assouad dimensions:

dim�F �
� dimA F dimBF

dimA F � .1 � �/dimBF
: (2.3)
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Both bounds hold with dim replaced by dim throughout. It is clear that if dimA F is
replaced by d throughout then the bounds will hold for all subsets of Rd .

In Section 3 we will use the Chung–Erdős inequality (see [10, equation (4)] and
[23, equation (6.10)]) which states that if A1; : : : ;Am are events in a probability space
.X;X; �/ and least one of them is positive, then

�

� m[
iD1

Ai

�
�

�Pm
jD1 �.Aj /

�2Pm
kD1

Pm
lD1 �.Ak \ Al/

: (2.4)

We will also use the Euler totient function from number theory, defined by

�.n/ WD #
®
mW gcd.m; n/ D 1; 1 � m < n

¯
: (2.5)

Specifically we will use the following bound on its growth (see [22, Theorem 2.9]):
for integers n � 2,

�.n/ &
n

log logn
; (2.6)

with the implicit constant independent of n. This bound suffices for our purposes
because logarithmic factors will not affect dimension estimates.

3. Lower bound for box dimension

The most challenging argument is the proof of the lower bound for the box dimension,
which follows a similar structure to the d D 2 case in [7,8], using tools from probab-
ility theory and number theory. In light of Theorem 1.1, in this section we make the
standing assumption that 0 < t < d=.d � 1/. We first introduce some notation and
make some preliminary claims. It follows from the definition of Gt;d that

Gt;d \ .Œ0; 1�
d�1
� .0; 1�/ D

1[
nD2

°�m1
n
; : : : ;

md�1

n
;
1

nt

�
W

gcd .mi ; n/ D 1; 1 � mi < n; 1 � i � d � 1
±
:

Given 0 < t < d
d�1

, ı > 0 and 1 � k � bı�1c C 1, we denote

lt .k; ı/ WD

�� 1
kı

� 1
t

�
: (3.1)

Given sufficiently small 0 < ı < 1, for each k � 1, we define the following sets of
input values which give rise to horizontal layers of Gt;d of height ı:

Lt;d .ı; k/ WD

lt .k;ı/[
nDlt .kC1;ı/C1

°�m1
n
; : : : ;

md�1

n

�
W gcd .mi ; n/ D 1;1 � mi < n;

1 � i � d � 1
±
:
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The following lemma gives some explanation to the choice of some parameters in the
lemmas below.

Lemma 3.1. For all 0 < " < 1
16
� min¹. dt

tCd
�

t
tC1

/; .1 � dt
dCt

/º, for all sufficiently
small ı > 0 and for all

bı
dt
tCd
�1�"
c � k � bı

t
tC1
�1C"
c;

the following assertions hold.

(1) There exists at least one n 2 N such that kı � 1
nt
< .k C 1/ı.

(2) If n is such that kı � 1
nt
< .k C 1/ı, then 1

n
> ı.

Proof. (1) Suppose bı
dt
tCd
�1�"
c�k�bı

t
tC1
�1C"
c, and let n�2 be such that n�t <kı.

Then since kı < ı
t
tC1
C "2 , by the mean value theorem we obtain

1

.n � 1/t
�
1

nt
.

1

ntC1
< ı:

(2) If kı � 1
nt
< .k C 1/ı, then

1

n
� .kı/

1
t > ı

d
tCd > ı:

We introduce the higher-dimensional Duffin–Schaeffer type estimate. For each
F � R1, we denote .L1.F //

d�1 by Ld�1
1 .F /. For each real function  WN 7! R1,

we write

E.1/. .n/; n/ D
°�m
n
�
 .n/

n
;
m

n
C
 .n/

n

�
W gcd .m; n/ D 1; 1 � m < n

±
:

It follows that E. .n/; n/ is a finite union of intervals with diameter 2 .n/=n pro-
vided  .n/ < 1=2. For the d -dimensional case, we write

E.d�1/. .n/; n/ D
°�m1

n
�
 .n/

n
;
m1

n
C
 .n/

n

�
� � � �

�

�md�1
n
�
 .n/

n
;
md�1

n
C
 .n/

n

�
W

gcd .mi ; n/ D 1; 1 � mi < n; 1 � i � d � 1
±
: (3.2)

For the rest of this section, we consider  .n/ D nı, and simplify E.1/. .n/; n/
and E.d�1/. .n/; n/ to E.1/.ı; n/ and E.d�1/.ı; n/, respectively.

Proposition 3.2 (Higher-dimensional Duffin–Schaeffer type estimate). There exists
a constant c (depending only on d ) such that for all distinct integers q; k � 2,

Ld�1

�
E.d�1/.ı; q/ \E.d�1/.ı; k/

�
� c � .q � k � ı2/d�1:
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Proof. By the one-dimensional Duffin–Schaeffer estimate [12, Lemma 2],

L1

�
E.1/.ı; q/ \E.1/.ı; k/

�
� 4 � q � k � ı2:

The desired estimate now follows from the fact that by the definition of Lebesgue
measure on Rd�1 and E.d�1/.ı; q/,

Ld�1

�
E.d�1/.ı; q/ \E.d�1/.ı; k/

�
D Ld�1

1

�
E.1/.ı; q/ \E.1/.ı; k/

�
(see also [24]).

The following lemma estimates Nı.Lt;d .ı; k//.

Lemma 3.3. Fix " > 0 as in Lemma 3.1. For all sufficiently small ı> 0 and all
bı

dt
tCd
�1�"
c � k � bı

t
tC1
�1C"
c,

ıd�1Nı.Lt;d .ı; k// � Ld�1

� lt .k;ı/[
nDlt .kC1;ı/C1

E.d�1/.ı; n/

�
:

Proof. Since
Slt .k;ı/

nDlt .kC1;ı/C1
E.d�1/.ı; n/ is a finite union of cubes in Rd�1 with

side length 2ı, the result follows by a straightforward geometric argument.

For the estimate of the lower bound ofNı.Lt;d .ı; k//, it follows from the Chung–
Erdős inequality (2.4) that

Ld�1

� lt .k;ı/[
nDlt .kC1;ı/C1

E.d�1/.ı; n/

�

�

�
lt .k;ı/P

nDlt .kC1;ı/C1

Ld�1

�
E.d�1/.ı; n/

��2
lt .k;ı/P

nDlt .kC1;ı/C1

lt .k;ı/P
mDlt .kC1;ı/C1

Ld�1

�
E.d�1/.ı; n/ \E.d�1/.ı;m/

� : (3.3)

The following lemmas now give estimates for the nominator and the denominator
respectively of the right-hand side of the expression above.

Lemma 3.4. Fix " > 0 as in Lemma 3.1. For all sufficiently small ı> 0 and all
bı

dt
tCd
�1�"
c � k � bı

t
tC1
�1C"
c,

ıd�1 �
1

k
d
t C1ı

d
t

�

�
1

log log ı�
d
tCd

�d
.

lt .k;ı/X
nDlt .kC1;ı/C1

Ld�1

�
E.d�1/.ı; n/

�
.

ıd�1

k
d
t C1ı

d
t

:
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Proof. For the upper bound,

lt .k;ı/X
nDlt .kC1;ı/C1

Ld�1.E.d�1/.ı; n// .
lt .k;ı/X

nDlt .kC1;ı/C1

nd�1ıd�1 by (3.2)

. ıd�1 �

�� 1
kı

�d
t

�

� 1

.k C 1/ı

�d
t

�
by (3.1)

. ıd�1 �
1

k
d
t C1ı

d
t

;

with the last line by the mean value theorem. For the lower bound, it follows from
Lemma 3.1 that the distance between centres of cubes inE.d�1/.ı; n/ is larger than ı.
Therefore it follows from the bound (2.6) for the Euler totient function that

lt .k;ı/X
nDlt .kC1;ı/C1

Ld�1

�
E.d�1/.ı; n/

�
&

lt .k;ı/X
nDlt .kC1;ı/C1

�
nı �

1

log logn

�d�1
: (3.4)

Since bı
dt
tCd
�1�"
c � k � bı

t
tC1
�1C"
c, if n is such that lt .k C 1; ı/ < n � lt .k; ı/,

then ı
dt
dCt < 1

nt
< ı

t
1Ct so ı�

1
1Ct � n � ı�

d
dCt , and hence

1

log logn
�

1

log log ı�
d
dCt

: (3.5)

Moreover, by the mean value theorem,

lt .k;ı/X
nDlt .kC1;ı/C1

nd�1 &
� 1
kı

�d
t

�

� 1

.k C 1/ı

�d
t &

1

k
d
t C1ı

d
t

: (3.6)

Combining (3.4), (3.5) and (3.6) gives the desired result.

Lemma 3.5. Fix " > 0 as in Lemma 3.1. For all sufficiently small ı> 0 and all
bı

dt
tCd
�1�"
c � k � bı

t
tC1
�1C"
c,

lt .k;ı/X
nDlt .kC1;ı/C1

lt .k;ı/X
mDlt .kC1;ı/C1

Ld�1

�
E.d�1/.ı;n/\E.d�1/.ı;m/

�
. ıd�1 �

1

k
d
t C1ı

d
t

:
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Proof. First, note that

lt .k;ı/X
nDlt .kC1;ı/C1

lt .k;ı/X
mDlt .kC1;ı/C1

Ld�1.E
.d�1/.ı; n/ \E.d�1/.ı;m//

D

lt .k;ı/X
n;mDlt .kC1;ı/C1

m¤n

Ld�1

�
E.d�1/.ı; n/ \E.d�1/.ı;m/

�

C

lt .k;ı/X
nDlt .kC1;ı/C1

Ld�1

�
E.d�1/.ı; n/

�
:

By the upper bound of Lemma 3.4 and the range of k under consideration

lt .k;ı/X
nDlt .kC1;ı/C1

Ld�1

�
E.d�1/.ı; n/

�
. ıd�1 �

1

k
d
t C1ı

d
t

. 1:

By the higher-dimensional Duffin–Schaeffer type estimate (Proposition 3.2), for all
m ¤ n, we obtain

Ld�1

�
E.d�1/.ı; n/ \E.d�1/.ı;m/

�
. .m � n � ı2/d�1:

Hence, using again the same calculation as in the proof of Lemma 3.4, we get

lt .k;ı/X
n;mDlt .kC1;ı/C1

m¤n

Ld�1

�
E.d�1/.ı; n/ \E.d�1/.ı;m/

�
.
� lt .k;ı/X
nDlt .kC1;ı/C1

ıd�1 � nd�1
�2

.
�
ıd�1 �

1

k
d
t C1ı

d
t

�2
. ıd�1 �

1

k
d
t C1ı

d
t

;

completing the proof of the bound.

Bringing together the above bounds, we obtain the following important estimate.

Lemma 3.6. Fix " > 0 as in Lemma 3.1. For all sufficiently small ı> 0 and all
bı

dt
tCd
�1�"
c � k � bı

t
tC1
�1C"
c,

Nı.ft;d .Lt;d .ı; k/// � Nı.Lt;d .ı; k// &
1

k
d
t C1ı

d
t

�

�
1

log log ı�
d
tCd

�2d
:



Dimensions of popcorn-like pyramid sets 163

Proof. The first approximate equality holds since the height of each strip is

ft;d .Lt;d .ı; k// � ı:

By Lemma 3.3,

Nı.Lt;d .ı; k// �
1

ıd�1
�Ld�1

� lt .k;ı/[
nDlt .kC1;ı/C1

E.d�1/.ı; n/

�
:

Since k > ı
dt
tCd
�1, we have k

d
t C1ı

d
t �dC1 > ıd�

tCd
d
C t
d
�dC1

D 1. Therefore com-
bining the Chung–Erdős inequality (3.3) with Lemmas 3.4 and 3.5 gives

1

ıd�1
�Ld�1

� lt .k;ı/[
nDlt .kC1;ı/C1

E.d�1/.ı;n/

�
&

1

ıd�1
�

1

k
d
t C1ı

d
t �dC1

�

�
1

log log ı�
d
tCd

�2d
:

We are now ready to give the proof of the lower bound for box dimension.

Proposition 3.7. If 0 < t < d=.d � 1/, then

dimBGt;d �
d2

d C t
:

Proof. The idea is to bound the covering number (up to constants) from below by the
sum of the covering numbers of an appropriate selection of layers of equal height,
each of which can in turn be bounded using Lemma 3.6. For all sufficiently small
" > 0 satisfying

0 < " <
1

16
�min

°� dt

t C d
�

t

t C 1

�
;
�
1 �

dt

t C d

�±
and sufficiently small ı > 0,

bı
t
tC1
�1C"

c[
kDbı

dt
tCd
�1�"

c

ft;d .Lt;d .ı; k// � Gt;d :

It follows that

Nı.Gt;d / & Nı

� bı
t
tC1
�1C"

c[
kDbı

dt
tCd
�1�"

c

ft;d .Lt;d .ı; k//

�

&
bı

t
tC1
�1C"

cX
kDbı

dt
tCd
�1�"

c

Nı
�
ft;d .Lt;d .ı; k//

�
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&
bı

t
tC1
�1C"

cX
kDbı

dt
tCd
�1�"

c

1

k
d
t C1ı

d
t

�

�
1

log log ı�
d
tCd

�2d
by Lemma 3.6

&
�

1

log log ı�
d
tCd

�2d
� ı�

�
dt
dCt
�1�2"

�
�dt C

d
t :

But there exists ı0 > 0 depending on ", t , d such that for all ı 2 .0; ı0/,

log log ı�
d
tCd � ı�":

Therefore for all sufficiently small ı,

Nı.Gt;d / & ı�
�
d2

tCd
�2d.1Ct�1/"

�
:

By definition (2.1),

dimBGt;d �
d2

t C d
� 2d.1C t�1/";

and letting "! 0C completes the proof.

4. Proof of dimension results

Next, we use Proposition 3.7 to prove the lower bound for the intermediate dimen-
sions.

Lemma 4.1. If 0 < t < d=.d � 1/ and .d � 1/t=d � � < 1, then

dim�Gt;d �
d2�

d� C t
:

Proof. The idea is to transform a cover for Œı1=� ; ı� into a cover with balls of fixed
size by ‘fattening’ the smallest sets and breaking up the largest sets, and then use
the formula for the box dimension. Fix � 2 ..d � 1/t=d; 1/ and assume for contra-
diction that dim�Gt < d

2�=.d� C t /. Then there exists s 2 .1; d2�=.d� C t // with
s < d2�=.d� C t / and a sequence of ı! 0C for which there exists a cover ¹Uiºi2I of
Gt satisfying ı1=� � jUi j � ı for all i , and

P
i jUi j

s � 1. Let ˇ WD .d C t /=.d� C t /.
We write I D I1 [ I2 where

I1 WD ¹i 2 I W jUi j � ı
ˇ
ºI I2 WD ¹i 2 I W jUi j > ı

ˇ
º:
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If i 2 I1, then we fix a ball Bi of diameter ıˇ such that Ui � Bi . For each j 2 I2,
let 
j 2 Œ1; ˇ/ be such that jUj j D ı
j , so by a simple volume argument Uj can be
covered by a collection Sj of balls of size ıˇ with #Sj . ı�d.ˇ�
j /. Then

¹Biºi2I1 [
[
j2I2

Sj (4.1)

is a cover of Gt . We will now bound the number of balls in this cover. First note that
#I1 � #I � ı�s=� . Also,

ısC2ˇ�2
X
j2I2

#Sj .
X
j2I2

ı�d.ˇ�
j /CsCdˇ�d �
X
j2I2

ı
j s D
X
j2I2

jUj j
s
� 1;

where the middle inequality holds since each 
j � 1. Therefore the number of balls
in the cover (4.1) can be bounded from above by

#I1 C
X
j2I2

#Sj . ı�s=� C ı�.sCdˇ�d/ . .ıˇ /�max¹s=.�ˇ/;.sCdˇ�d/=ˇº:

But max¹s=.�ˇ/; .s C dˇ � d/=ˇº < d2=.t C d/, contradicting Proposition 3.7.

A shorter, but less direct, way to prove Lemma 4.1 is to combine Proposition 3.7
with the bound (2.3) with dimA F replaced by d .

Next, we give a direct proof of the upper bound for the intermediate dimensions.

Lemma 4.2. If 0 < t < d=.d � 1/ and .d � 1/t=d � � � 1, then

dim�Ft;d �
d2�

d� C t
:

Proof. The idea is to fix a small number ı > 0 and separate Ft into two parts:

F
.1/

t;d
D Ft;d \

�
Œ0; 1�d�1 � Œ0; ıdt=.d�Ct/�

�
;

F
.2/

t;d
D Ft;d \

�
Œ0; 1�d�1 � .ıdt=.d�Ct/; 1�

�
:

Covering Œ0; 1�d�1 � Œ0; ıdt=.d�Ct/� with balls of size ı gives

Nı.F
.1/

t;d
/ . ı�.d�1/ıdt=.d�Ct/�1 D ı�d

2�=.d�Ct/:

It follows from a simple cardinality estimate that

#F .2/
t;d

. .ı�d=.d�Ct//d D ı�d
2=.d�Ct/:

We can cover each point in F .2/
t;d

with a ball of size ı1=� and the result now follows
from the estimate

Nı.F
.1/

t;d
/ � ıd

2�=.d�Ct/
C #F .2/

t;d
� .ı1=� /d

2�=.d�Ct/ . 1:
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An alternative way to prove Lemma 4.2 is to combine the simple special case

dim.d�1/t=d Ft;d � d � 1

with (2.2) with dimA F replaced by d .
We are finally ready to complete the proof of our dimension results Theorem 1.3

(from which Theorem 1.2 follows by setting � D 1) and Theorem 1.1.

Proof of Theorem 1.3. Since the intermediate dimensions are clearly non-decreasing
in � , it follows from Lemma 4.1 that dim�Ft;d � dim.d�1/t=dFt;d � d � 1 for all
� 2 Œ0; .d � 1/t=d �. Moreover, dim�Gt;d � dimH Gt;d D d � 1 for all � 2 Œ0; 1�.
Since Gt;d � Ft;d , we have dim�Gt;d � dim�Ft;d � dim�Ft;d and dim�Gt;d �

dim�Gt;d � dim�Ft;d , so Theorem 1.3 now follows from Lemmas 4.1 and 4.2.

Proof of Theorem 1.1. The t < d=.d � 1/ case follows by combining Theorem 1.3
with the general bound (2.3). Therefore it suffices to prove that dimA Ft;d � d � 1

when t � d=.d � 1/; we use similar methods to the d D 2 case in [9]. Indeed, for
each 0 < r < R < 1 there are unique m; n 2 N with m � n such that

1

n
� R <

1

n � 1
;

1

m
� r <

1

m � 1
:

Given x D .x1; : : : ; xd / 2 Rd with each xi � 0, define

C.x;R/ WD Ft;d \

dY
iD1

Œxi ; xi CR�:

Define

C1 WD C
�
x;

1

n � 1

�
\

�
Rd�1 �

� 1
m
;1

��
;

C2 WD C
�
x;

1

n � 1

�
\

�
Rd�1 �

h
0;
1

m

i�
to be regions separated by whether the last coordinate is larger or smaller than 1=m.
A simple counting argument shows that the number of points in Ft;d whose last coor-
dinate is greater than 1=m is . md=t , and that

N1=m.C1/ � #C1 .
�1
n

�d�1
md=t �

md�1

nd�1
;

where we used that t � d=.d � 1/ in the last step. Moreover, covering C2 using a
1=m-mesh of cubes gives

N1=m.C2/ .
�1=.n � 1/

1=m

�d�1
.
�m
n

�d�1
:
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Therefore

Nr.C.x;R//�N1=m.C.x;1=n//�N1=m.C1/CN1=m.C2/.
�m
n

�d�1
.
�R
r

�d�1
;

so dimA Ft;d � d � 1, as required.
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