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Absolute continuity in families of parametrised
non-homogeneous self-similar measures

Antti Käenmäki and Tuomas Orponen

Abstract. Let � be a planar self-similar measure with similarity dimension exceeding 1, satis-
fying a mild separation condition, and such that the fixed points of the associated similitudes do
not share a common line. Then, we prove that the orthogonal projections �e].�/ are absolutely
continuous for all e 2 S1 nE, where the exceptional set E has zero Hausdorff dimension. The
result is obtained from a more general framework which applies to certain parametrised famil-
ies of self-similar measures on the real line. Our results extend the previous work of Shmerkin
and Solomyak from 2016, where it was assumed that the similitudes associated with � have a
common contraction ratio.

1. Introduction

This paper studies the absolute continuity of parametrised non-homogeneous self-
similar measures on R. It is closely related to the works of Shmerkin [8], Shmerkin
and Solomyak [9], and Saglietti, Shmerkin, and Solomyak [7].

1.1. Statement of the main result

We start by formulating the main result; we explain its connection to previous work in
the next subsection, and, after that, we finish the introduction by stating and proving
the application for projections of self-similar measures.

Definition 1.1 (Setting of the main result). Let U �R be an open interval andm� 2.
We associate with each u 2 U a list of contractive similitudes on R of the form

‰u´ . u;1; : : : ;  u;m/ D .�1x C t1.u/; : : : ; �mx C tm.u//; (1.2)

where
�1; : : : ; �m 2 .0; 1/ and t1.u/; : : : ; tm.u/ 2 R; u 2 U:
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So, the translations are allowed to depend on u 2 U , but their number is constant, m.
We make the following assumptions.

(A1) The map u 7! tj .u/ is real-analytic, and the family ¹‰uºu2U satisfies trans-
versality of order K for some K 2 N; see Definition 1.3.

(A2) There exist three sequences i; j;k 2 ¹1; : : : ;mºN such that none of the maps
u 7!  u;i.0/, u 7!  j;u.0/, and u 7!  k;u.0/ is a convex combination of the
other two. Here u 7!  u;i.0/, for example, refers to the map

u 7! lim
n!1

 u;ijn.0/´ lim
n!1

 u;i1 ı � � � ı  u;in.0/; ijn D .i1; : : : ; in/:

(A3) For some probability vector p D .p1; : : : ; pm/ 2 .0; 1/m with p1 C � � � C
pm D 1, the similarity dimension is

s. N�;p/´
Pm
jD1 pj logpjPm
jD1 pj log�j

;

where N� D .�1; : : : ; �m/ satisfies s. N�;p/ > 1.

Here is the definition of transversality mentioned in (A1).

Definition 1.3 (Transversality of orderK). Let ¹‰uºu2U be a parametrised family of
similitudes as in (1.2), let K 2 ¹0; 1; 2; : : :º, and assume that the map u 7! tj .u/ is K
times continuously differentiable for all 1 � j � m. For u 2 U , write

�i;j.u/´  u;i.0/ �  u;j.0/; i; j 2 ¹1; : : : ; mºn; n 2 N:

The family ¹‰uºu2U satisfies transversality of order K if there exist a constant c > 0
and a sequence of natural numbers .nj /j2N such that nj !1, and

max
k2¹0;:::;Kº

j�
.k/
i;j .u/j � c

nj ; u 2 U; i; j 2 ¹1; : : : ; mºnj ; i ¤ j; j 2 N: (1.4)

Here �.k/i;j is the k-th derivative of �i;j.

This notion of transversality is a variant of the one used by Hochman in [3, Defin-
ition 5.6]. The notion above is weak enough to be applied in Proposition 1.7, yet
strong enough to imply the zero-dimensionality of the exceptional set E appearing in
[3, Theorem 1.7]. We verify this fact in Proposition 4.4 and Appendix A.

Now we can state our main result.

Theorem 1.5. Let �u, u 2 U , be the self-similar measure associated with a pair
.‰u; p/ satisfying the assumptions in Definition 1.1. Then, there exists a set E � U
of Hausdorff dimension 0 such that �u � L1 for all u 2 U nE.
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Here L1 denotes the Lebesgue measure on R. The definition of a self-similar
measure can be found in Section 2.2.

1.2. Comparison to previous work

Theorem 1.5 above is modelled after [9, Theorem A] of Shmerkin and Solomyak.
We now discuss the main differences between the two theorems, and also draw con-
nections to other related results. First, [9, Theorem A] allows for both the contrac-
tion parameters �j D �j .u/ and the translation vectors tj D tj .u/ (as in (1.2)) to
depend on u. However, it is assumed in [9, Theorem A] that �i .u/ D �j .u/ for
all 1 � i; j � m. In other words, the lists of similitudes are equicontractive, but the
contraction ratio may vary with u. The equicontractivity assumption is convenient,
because �u then looks like a “generalised Bernoulli convolution”, and a technique
pioneered by Shmerkin in [8] (in the context of classical Bernoulli convolutions) is
available to study the absolute continuity of �u. A crucial feature of (classical and
generalised) Bernoulli convolutions in the proofs of [8,9] is the property that they can
be expressed as infinite convolutions of (scaled copies) of a single atomic measure.

In the non-homogeneous setting of Theorem 1.5, the measures �u no longer have
an infinite convolution structure, and hence the method of [8,9] is not directly applic-
able. A way around this problem was found in [2]: Galicer, Saglietti, Shmerkin, and
Yavicoli (see [2, Lemma 6.6]) discovered a way to express non-homogeneous self-
similar measures as averages over measures with an infinite convolution structure.
This naturally comes at a price: the infinite convolutions are no longer self-similar
measures. The components of the infinite convolution are no longer rescaled copies
of a single measure, but are, rather, drawn at random from a finite pool of (atomic)
measures.

It turns out that the lack of strict self-similarity is not an insurmountable problem.
In [7], Saglietti, Shmerkin and Solomyak used the decomposition from [2] to study
the absolute continuity of parametrised self-similar measures, where the translation
vectors t1; : : : ; tm are fixed, but the contractions �1; : : : ; �m vary freely in an open set.
The initial motivation for our study was to understand if the technique in [7] could be
adapted to give new information on the projections of planar self-similar measures –
beyond the homogeneous case covered by [9, Theorem A]. The answer is affirmative.
In fact, we improve the method by showing that the exceptional set has Hausdorff
dimension zero, as opposed to Lebesgue measure zero as in [7, Theorem 1.1]. The
reader should, thus, view Theorem 1.5 not only as a non-homogeneous variant of
[9, Theorem A], but also as an adaptation of [7, Theorem 1.1] to the case where the
translation parameters vary.
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1.3. Application to projections of planar self-similar measures

We now describe the main application of Theorem 1.5 to projections of planar self-
similar measures. Let U D .0; 2�/,

‰ D . 1; : : : ;  m/ D .�1x C t1; : : : ; �mx C tm/; �j 2 .0; 1/; tj 2 R2;

be a list of contractive homotheties on R2, and let � be the self-similar measure
associated with ‰ and some probability vector p 2 .0; 1/m such that

s. N�;p/ > 1: (1.6)

Let �uWR2! R, u 2 .0; 2�/, be the orthogonal projection �u.x/D x � .cosu; sinu/,
and note that the measures �u]� are again self-similar: they are the self-similar meas-
ures associated with the probability vector p, and the lists of similitudes

‰u D .�1x C �u.t1/; : : : ; �mx C �u.tm//; u 2 .0; 2�/:

Note that the contraction ratios �1; : : : ; �m are independent of u, so .‰u; p/ satisfies
the condition (A3) by (1.6). To verify that the family of similitudes ¹‰uºu2U also
meets the assumptions (A1) and (A2), we need to impose the following two hypo-
theses on ‰:

(P1) lim supn!1 log�n=n > �1, where

�n D �n.‰/ D min¹j�i;jjW i; j 2 ¹1; : : : ; mºn; i ¤ jº;

and �i;j D  i.0/ �  j.0/.

(P2) The fixed points of the similitudes in ‰ do not lie on a common line.

We make some remarks on the sharpness of these assumptions after the proof
of the following proposition. In case the self-similar measure is generated by maps
having no rotations, the proposition is new in the non-homogeneous case, and also
relaxes the separation assumption compared to [9, Theorem B(i)] in the homogeneous
case. If the maps have dense rotations, then the reader is referred to the works of
Shmerkin and Solomyak [9, Theorem B(ii)] and Rapaport [6].

Proposition 1.7. If the pair .‰; p/ satisfies (1.6) and conditions (P1)–(P2), then the
family ¹‰uºu2U satisfies (A1)– (A3). In particular, the self-similar measure � associ-
ated with the pair .‰;p/ satisfies �u]�� L1 for all u 2 U nE, where dimHE D 0.

Proof. It is easy to check (and very well known) that the projections �u satisfy the
following transversality condition for some absolute constant ı > 0:

max¹j�u.x/j; j@u�u.x/jº > ıjxj; u 2 .0; 2�/; x 2 R2: (1.8)
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Now, we claim that ¹‰uºu2U satisfies transversality of order 1, according to Defini-
tion 1.3. By (P1), there exists c > 0 and a sequence .nj /j2N of natural numbers such
that

j�i;jj � c
nj ; i; j 2 ¹1; : : : ; mºnj ; i ¤ j:

Note that
 u;k.0/ D �u. k.0//; k 2 ¹i; jº; u 2 U;

so �i;j.u/ D �u.�i;j/ for u 2 U . It follows from (1.8) and (P1) that

max¹j�i;j.u/j; j�
0
i;j.u/jº D max¹j�u.�i;j/j; j@u�u.�i;j/jº � ıj�i;jj � ıc

nj

for all j 2N and distinct i; j 2 ¹1; : : : ;mºnj . By adjusting c slightly, this implies (1.4)
with K D 1, and hence assumption (A1) is satisfied.

As noted above, (A3) follows immediately from (1.6). After verifying (A2), the
final claim follows directly from Theorem 1.5. Thus it remains to check assump-
tion (A2). Since the fixed points of the similitudes in ‰ do not share a common line,
there exist three sequences i; j;k 2 ¹1; : : : ; mºN such that  i.0/,  j.0/, and  k.0/ do
not lie on a common line either. Then, using the relations  u;i.0/D �u. i.0// and so
on, it is easy to check that none of the three functions

u 7!  u;i.0/; u 7!  u;j.0/; and u 7!  u;k.0/

can be expressed as a convex combination of the other two. This gives (A2), and the
proof is complete.

We close the section with a few remarks on the assumptions (P1)–(P2)
and (A1)–(A2).

Remark 1.9. We do not know if assumption (P1) is necessary: maybe it is pos-
sible to bundle (1.6) and (P1) to the single assumption that dimH � > 1.Then, of
course, (P2) would become redundant and our result would strictly generalise what
Marstrand’s projection theorem results in this setting. In the present circumstances,
however, assumption (P2) is necessary. To see this, we apply a result of Simon and
Vágó [10] concerning the projections of the standard Sierpiński carpet S , namely the
self-similar set on R2 generated by the homotheties²

 i .x/ D
x

3
C
ti

3

³8
iD1

;

where the translation vectors ti range in the set ¹0; 1; 2º � ¹0; 1; 2º n ¹.1; 1/º. It is
shown in [10, Theorem 14] that if � is the self-similar measure on S determined by

� D

8X
iD1

1

8
�  i]�;
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then there exists a dense Gı -set of directions u 2 .0; 2�/ such that �u]� 6� L1. We
note that �u]� is again a self-similar measure on R, associated with the family of
similitudes ²

 u;i .x/ D
x

3
C
�u.ti /

3

³8
iD1

:

Further, it follows from the argument of [3, Theorem 1.6] that for every u2 .0; 2�/nQ,
there exist c > 0 (in fact, one can take c D 1=30) and a sequence of natural numbers
.nj /j2N such that

j u;i.0/ �  u;j.0/j � c
nj ; i; j 2 ¹1; : : : ; 8ºnj ; i ¤ j: (1.10)

In particular, we may find u 2 .0; 2�/ such that (1.10) holds, and �u]� 6�L1. Finally,
if �´ �u]�, for this choice of u 2 .0; 2�/, is viewed as a measure on R� ¹0º � R2,
then both (1.6) and (P1) are satisfied, yet all the projections of � are evidently also
singular. Of course, (P2) fails in this case, so Proposition 1.7 is not contradicted.

Remark 1.11. In the homogeneous analogue for our main theorem, namely [9, The-
orem A], the assumptions (A1) and (A2) are elegantly bundled into a single hypo-
thesis, which reads as follows: for any distinct i; j 2 ¹1; : : : ;mºN , the map u 7!�i;j.u/

is not identically zero. We prefer to avoid making this assumption, as it would limit
the scope of the previous application; it would force us to assume that ‰ (in Propos-
ition 1.7) satisfies the strong separation condition. Now (P1) is satisfied under – for
example – the open set condition.

2. A model of random measures

As we explained in Section 1.2, a major hurdle in proving our main theorem is the fact
that non-homogeneous self-similar measures do not have an “infinite convolution”
structure. However, by the results in [2], a non-homogeneous self-similar measure
can, nonetheless, be expressed as an average of certain “statistically self-similar” ran-
dom measures with an infinite convolution structure. We will need all the details of
this decomposition, and they will now be thoroughly explained for the reader’s con-
venience.

2.1. An abstract random model

Let T be a finite index set; we will often refer to elements � 2 T as types. To every
� 2 T , we assign a list of equicontractive similitudes on Rd

‰.�/´ . �1 ; : : : ;  
�
m.�// D .�.�/x C t1.�/; : : : ; �.�/C tm.�/.�//; (2.1)
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�.!1/

�!1 �!2

Figure 1. The transition from �!
1

to �!
2

in (2.3).

where tj .�/ 2 Rd , �.�/ 2 .0; 1/, and m.�/ � 1. We emphasise that the contraction
ratios �.�/ 2 .0; 1/ are allowed to depend on � , but they are constant within each
individual family ‰.�/. Also, repetitions are allowed: a single similitude may appear
with multiple different indices in ‰.�/. We also allow m.�/ D 1 for one or more
� 2 T .

To each � 2 T , we assign the following discrete measure:

�.�/´
1

m.�/

m.�/X
jD1

ı �
j
.0/ D

1

m.�/

m.�/X
jD1

ıtj .�/: (2.2)

Finally, to every type � 2 T we assign some probability q.�/ 2 .0; 1/ such thatX
�2T

q.�/ D 1:

Next, we let �´ T N , and we let P be the usual product probability (Bernoulli)
measure on� determined by the probabilities q.�/. With each ! D .!1;!2; : : :/ 2�,
we then associate the following infinite convolution:

�! ´ �
n�1

�!n ´ �
n�1

�n�1Y
jD1

�.!j /

�
]

�.!n/: (2.3)

Here r]�, r > 0 stands for the push-forward of � 2M.Rd / under the dilation x 7! rx

and M.X/ D ¹�W � is a non-trivial Radon measure on X with compact supportº. To
get an idea of what is happening here, consider the following. If all the families ‰.�/
were the same, ‰.�/ � ‰ and, in particular, �.�/ � �, then (2.3) would simply give
the usual self-similar measure generated by ‰. To get an intuition of the general case,
we refer to Figure 1. Now, the triple .�; ¹�!º!2�;P / is a probability space of “stat-
istically self-similar” measures.
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2.2. Disintegration of self-similar measures

The random measures introduced above are mostly a tool in this paper; eventually, we
are interested in deterministic self-similar measures. We now explain the connection,
but the reader may wish to take a look at Proposition 2.8 to see where we are heading.
Let

m � 2; �1; : : : ; �m 2 .0; 1/; and t1; : : : ; tm 2 Rd :

Let ‰ be the corresponding list of homotheties

‰´ . 1; : : : ;  m/ D .�1x C t1; : : : ; �mx C tm/: (2.4)

To each j 2 ¹1; : : : ;mºwe further assign a probability pj 2 .0;1/ such that
P
pj D 1.

Then, there exists a unique probability measure � on Rd satisfying the relation

� D

mX
jD1

pj �  j ]�:

Writing p D .p1; : : : ; pm/, we call � the self-similar measure associated with the
pair .‰; p/. Now, we relate the measure � to the random measures discussed in the
previous section. Fix an integer N � 1 and write

T ´ T N
´ ¹.N1; : : : ; Nm/ 2 Nm

0 WN1 C � � � CNm D N º: (2.5)

The elements of T should be understood as the types from the previous section,
and N � 1 should be understood as a free parameter whose role will be clarified
much later. We next define the probabilities q.�/, � 2 T , and eventually the lists
‰.�/, � 2 T . Recall that m 2 N was the cardinality of the family ‰. We say that an
N -sequence .n1; : : : ; nN / 2 ¹1; : : : ; mºN has type

�.n1; : : : ; nN / D .N1; : : : ; Nm/ 2 T

if k appears in the sequence Nk times for all 1 � k � m. The formula above defines
a map � W ¹1; : : : ; mºN ! T .

Example 2.6. If m D 3 and N D 4, then �.1; 2; 1; 2/ D .2; 2; 0/.

Recalling the probabilities p1; : : : ; pm from above, we define the probabilities for
each type in T as follows:

q.N1; : : : ;Nm/´
X

.n1;:::;nN /2¹1;:::;mº
N

�.n1;:::;nN /D.N1;:::;Nm/

pn1 � � �pnN Dm.N1; : : : ;Nm/p
N1
1 � � �p

Nm
m :

(2.7)
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Here m.�/ is the number of N -sequences with type � . We used the fact that the value
of the product pn1 � � � pnN only depends on the type of the sequence .n1; : : : ; nN /.
Clearly, X

�2T

q.�/ D 1:

Finally, it is time to define the lists ‰.�/ for � 2 T . Recall that N � 1 is a fixed
parameter. For a type � 2 T , we define the list

‰.�/´ ‰N .�/´ . n1 ı � � � ı  nN W �.n1; : : : ; nN / D �/:

Note that a single similitude may appear several times in this list, so in general

‰.�/ ¤ ¹ n1 ı � � � nN W �.n1; : : : ; nN / D �º;

unless one interprets the right-hand side as a multiset. It is nevertheless convenient to
write “' 2‰.�/”; this simply means that ' appears at least once in the sequence‰.�/.

A key point of the definition of ‰.�/ is that all the similitudes in ‰.�/ now have
the same contraction ratio. More precisely, if � D .N1; : : : ; Nm/ 2 T and ' 2 ‰.�/,
then

�.'/ D �
N1
1 � � ��

Nm
m µ �.�/:

Thus, the lists‰.�/, � 2 T , indeed have the form (2.1). With this in mind, the general
framework from the previous section is applicable, and it yields the discrete measures
�.�/ as in (2.2), the infinite convolutions �! , ! 2 �D T N , as in (2.3), and the meas-
ure P derived from the probabilities q.�/, � 2 T . Further, the self-similar measure �
is related to the measures �! via the following disintegration formula.

Proposition 2.8. With the notation above, we have

� D

Z
�

�! dP .!/:

Proof. Although the proof can be found in [7, Lemma 6.2] or [2, (55)], we give the
details for the convenience of the reader. Let T be the left shift on � defined by
T .!1; !2; : : :/D .!2; !3; : : :/. By (2.3), (2.2), and the fact that P is the product prob-
ability measure on � determined by the probabilities q.�/, � 2 T , defined in (2.7),
we haveZ
�

�! dP .!/ D

Z
�

�.!1/ � �.!1/]�
T.!/ dP .!/

D

Z
�

1

m.!1/

m.!1/X
jD1

ıtj .!1/ � �.!1/]�
T.!/ dP .!/
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D

Z
�

1

m.!1/

m.!1/X
jD1

 
!1
j ]
�T.!/ dP .!/

D

X
�2T

q.�/

Z
�

1

m.�/

m.�/X
jD1

 �j ]�
! dP .!/

D

X
�2T

q.�/

m.�/

m.�/X
jD1

 �j ]

Z
�

�! dP .!/

D

X
.n1;:::;nN /2¹1;:::;mºN

pn1 � � �pnN � . n1 ı � � � ı  nN /]

Z
�

�! dP .!/:

The proof is finished by the uniqueness of the self-similar measure; recall (2.4).

3. Fourier dimension estimates

In this section, we will work with the following hypotheses.

Definition 3.1. Let T be a (finite) collection of types as in Section 2.1, and let U �R

be an open interval. To each u 2 U and � 2 T , assign a family of similitudes of the
form

‰u.�/ D . 
u
1 ; : : : ;  

u
m.�// D .�.�/x C t1.�; u/; : : : ; �.�/x C tm.�/.�; u//; (3.2)

where

m.�/ � 1; �.�/ 2 .0; 1/; and t1.�; u/; : : : ; tm.�/.�; u/ 2 R:

Note that since T is finite, we automatically have the inequalities min¹�.�/W � 2T º>0

and max¹�.�/W � 2 T º < 1. We will assume that for fixed � 2 T and 1 � j � m.�/
the map

u 7! tj .�; u/; u 2 U

is real-analytic, and we assume that sup jtj .�;u/j<1, where the sup runs over � 2 T ,
1 � j � m.�/, and u 2 U .

For the remainder of this section, we fix a collection of types T , an open interval
U � R, and families of similitudes ‰u.�/, .u; �/ 2 U � T , as in (3.2), satisfying the
assumptions of Definition 3.1. We also fix probabilities q.�/ 2 .0; 1/, � 2 T , such thatP
�2T q.�/D 1. Given these parameters, we follow the construction in Section 2.1 to

generate the probability space .�;P /which is independent of u and also the measures

�u.�/; � 2 T ; and �!u ; ! 2 �:
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We recall the following explicit formula for the measures �u.�/:

�u.�/ D
1

m.�/

m.�/X
jD1

ıtj .�;u/:

We are interested in the Fourier transforms of the measures �!u . Recall that if � 2
M.Rd /, then

dimF �´ sup¹s 2 Œ0; d �W 9 C > 0 such that j O�.�/j � C j�j�s=2 for all � 2 Rd n ¹0ºº:

Here is the main result of this section.

Proposition 3.3. Assume that there exist � 2 T and three indices 1 � i1 < i2 < i3 �
m.�/ such that u 7! ti3.�; u/ � ti1.�; u/ is not identically zero, and

u 7!
ti2.�; u/ � ti1.�; u/

ti3.�; u/ � ti1.�; u/
; u 2 U (3.4)

is non-constant. Then, there exists a set G � � with P .G/ D 1 such that if ! 2 G,
then

dimH¹u 2 U W dimF �
!
u D 0º D 0: (3.5)

Notice that as the maps u 7! tj .�; u/ are real-analytic by assumption, the denom-
inator in (3.4) can vanish at most in a finite number of points for � 2 T fixed. To get
started, we compute an explicit expression for the Fourier transform c�!u . Recall that
for all r > 0, cr]�.�/ D O�.r�/; � 2M.Rd /; � 2 Rd : (3.6)

For brevity, we write

�.!jn/´

nY
jD1

�.!j /; n � 0; (3.7)

where !jn ´ .!1; : : : ; !n/ is the initial segment of ! of length n. In particular,
recalling (2.3),

�!u D �
n�1

Œ�.!jn�1/]�u.!n/�:

Then, by (3.6),c�!u .�/ DY
n�1

2�u.!n/.�.!jn�1/�/

D

Y
n�1

1

m.!n/

m.!n/X
jD1

exp
�
�2�i�.!jn�1/tj .!n; u/�

�
: (3.8)

Now that we have the formula (3.8) at hand, we record a continuity property for c�!u ,
which will be needed to verify the measurabilty of sets defined via dimF �

!
u .
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Lemma 3.9. For � 2 R fixed, the map .!; u/ 7!c�!u .�/ is continuous.

Proof. The statement concerns the product topology on � � U , therefore, conver-
gence .!j ; uj /! .!; u/ means that for any N 2 N and ı > 0, the following holds
for j 2 N sufficiently large:

!j jN D !jN and juj � uj < ı: (3.10)

Fix " > 0. We now claim that the difference jb�!juj .�/ �c�!u .�/j can be made smaller
than " by first choosing N in (3.10) large enough, depending on "; � , and then ı small
enough, depending on ";N . To see this, write first

b
�
!j
uj .�/ D

NY
nD1

F.!jn ; uj ; �/ �

1Y
nDNC1

F.!jn ; uj ; �/µ…�N .!
j ; uj ; �/ �…>N .!

j ; uj ; �/;

where F.: : :/ is an abbreviation for the function appearing in (3.8). Similarly,c�!u .�/µ …�N .!; u; �/ � …>N .!; u; �/. Then, introducing a cross-term, one may
estimateˇ̌̌b
�
!j
uj .�/ �

c�!u .�/ˇ̌̌ � ˇ̌…�N .!j ; uj ; �/ˇ̌ˇ̌…>N .!
j ; uj ; �/ �…>N .!; u; �/

ˇ̌
C
ˇ̌
…>N .!; u; �/

ˇ̌ˇ̌
…�N .!

j ; uj ; �/ �…�N .!; u; �/
ˇ̌

�
ˇ̌
…>N .!

j ; uj ; �/ �…>N .!; u; �/
ˇ̌

(3.11)

C
ˇ̌
…�N .!; u

j ; �/ �…�N .!; u; �/
ˇ̌
; (3.12)

noting that all partial products are bounded by 1, and using !j jN D !jN upon arrival
at (3.12). Since � 2 R is fixed, the term …>N .!; u; �/ will converge to 1 as N !1
at a rate independent of ! and u, and the same is true for …>N .!

j ; uj ; �/. To see
this, first estimate the individual factors in the product …>N .!; u; �/ for n > N .

jF.!n; u; �/ � 1j �
1

m.!n/

m.!n/X
jD1

ˇ̌
exp

�
�2�i�.!jn�1/tj .!n; u/�

�
� 1

ˇ̌
� 2��n�1sup tsupj�j;

using that x 7! eix is 1-Lipschitz, and recalling from Definition 3.1 that

�sup ´ sup¹�.�/W � 2 T º < 1 and tsup ´ sup¹jt .�; u/jW � 2 T ; u 2 U º <1:

This implies that the factors of …>N .!; u; �/ converge to 1 rapidly enough to also
ensure …>N .!; u; �/! 1 as N !1, uniformly in .!; u/. So, (3.11) can be made
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less than " by choosing N large, in a manner depending only on "; �. After this, to
handle (3.12), one recalls that

(3.12) D
ˇ̌̌̌ NY
nD1

F.!n; u
j ; �/ �

NY
nD1

F.!n; u; �/

ˇ̌̌̌
:

Since each individual function u 7! F.!n; u; �/ is continuous, 1 � n � N , the dif-
ference above can be made less than " by requiring that ı in (3.10) is small enough,
depending only on ";N . This completes the proof.

Corollary 3.13. The set ¹.!; u/ 2 � � U W dimF �
!
u D 0º is Borel.

Proof. The set in question can be expressed as\
">0

1\
iD1

[
j�j�i

¹.!; u/W jc�!u .�/j > j�j�"º;
where the unions and intersections run over rational numbers, and the individual sets
¹.!; u/W jc�!u .�/j > j�j�"º are open by the previous lemma.

We now return to the proof of Proposition 3.3. We single out the type �0 2 T such
that (3.4) holds, and assume without loss of generality that u 7! t3.�0; u/ � t1.�0; u/

is not identically zero and

u 7!
t2.�0; u/ � t1.�0; u/

t3.�0; u/ � t1.�0; u/

is non-constant on U . We note that the event

G0´
°
! 2 �W lim inf

n!1

1

n

ˇ̌®
1 � i � nW!i D �0

¯ˇ̌
> }

±
(3.14)

has probability P .G0/ D 1 by the law of large numbers for any choice of

0 < } < q.�0/:

We write } ´ q.�0/=2. In the sequel, we will only consider points ! 2 G0. We will
not quite prove (3.5) for ! 2 G0, but the eventual full probability set appearing in
Proposition 3.3 will be contained in G0.

We start by noting that

1

m.!n/

ˇ̌̌̌m.!n/X
jD4

exp
�
�2�i�.!jn�1/tj .!n; u/�

�ˇ̌̌̌
� 1 �

3

m.!n/
:
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With this in mind, and writing

f1.u/´ t2.�0; u/ � t1.�0; u/ and f2.u/´ t3.�0; u/ � t1.�0; u/; u 2 U;

we may rather crudely estimate as follows for all n � 1 such that !n D �0:

1

m.!n/

ˇ̌̌̌m.!n/X
jD1

exp
�
�2�i�.!jn�1/tj .!n; u/�

�ˇ̌̌̌
�

1

m.!n/

ˇ̌̌
1C exp

�
�2�i�.!jn�1/f1.u/�

�
C exp

�
�2�i�.!jn�1/f2.u/�

�ˇ̌̌
C

�
1 �

3

m.!n/

�
:

So, if we write �!;u.n; �/ for the term on the middle line, that is,

�!;u.n; �/ D
ˇ̌̌
1C exp

�
�2�i�

�
!jn�1

�
f1.u/�

�
C exp

�
�2�i�.!jn�1/f2.u/�

�ˇ̌̌
;

then, recalling (3.8), we have now shown that

jc�!u .�/j � Y
n�1
!nD�0

�
�!;u.n; �/

m.!n/
C

�
1 �

3

m.!n/

��
: (3.15)

The indices !n with !n ¤ �0 will be irrelevant for the estimate, but there are plenty of
indices !n D �0 by the assumption ! 2 G0. Note that trivially �!;u.n; �/ � 3, and the
right-hand side of (3.15) gives useful information about precisely those indices n � 1
with !n D �0 for which �!;u.n; �/ < 3.

To achieve a useful estimate for �!;u.n; r/, we note that

j1C exp.�2�ix/C exp.�2�iy/j D 3

if and only if kxk D 0 D kyk, where kxk 2 Œ0; 1=2� stands for the distance of x 2 R

to the nearest integer. Furthermore, by compactness (or a more quantitative argument
if desired), for any � > 0 there exists ˛ > 0 such that

max¹kxk; kykº � � ) j1C exp.�2�ix/C exp.�2�iy/j � 3 � ˛:

Recalling the definition of �!;u.n; r/, it follows that

max
®
k�.!jn�1/f1.u/�k; k�.!jn�1/f2.u/�k

¯
� � ) �!;u.n; �/ � 3 � ˛: (3.16)

So, now the remaining task is to show that the quantity on the left-hand side of (3.16)
is greater than � quite often, if � > 0 is taken sufficiently small. To formulate a more
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rigorous statement, a few additional pieces of notation are beneficial. First, we will
write

�.�/´ �.�/�1; �.W /´

jCkY
iDj

�.!i /; and �.W /´

jCkY
iDj

�.!i /;

whenever � 2 T , and W D .!j ; : : : ; !jCk/ is a finite word over T . The collection of
all finite words over T will be denoted by T �. The notation above agrees with (3.7).
We also define

�.;/´ 1µ �.;/;

where ; is the empty word. It is unpleasant that the numbers �.!jn�1/fj .u/� from
(3.16) decrease as n increases, so we wish to reindex them in increasing order. Second,
we are only interested in those n � 1 for which !n D �0, and we want to reshape our
notation to reflect this. So, for ! 2 G0, write

! D W1W2 � � � ; (3.17)

where eachWm has the formWm DW
0
m�0 withW 0m 2 .T n ¹�0º/

� (we allowW 0m D ;

here). We will generally use the letter m to index the words Wm.
Now, we fix ! 2 G0 and a large integer M � 1, and we define

‚m´ ‚.M;!/m ´ �.�0/�.WM�mC1 � � �WM /; 1 � m �M: (3.18)

Then ‚1 D �.�0/�.WM / and ‚m � ‚mC1 for 1 � m �M � 1.

Remark 3.19. Let M � 1 be a large integer, and let ! 2 G0. Let 1 � n.1/ < n.2/ <
� � � < n.M C 1/ be the first M C 1 indices with !.n.m// D �0. Let

� 2 Œ�.!jn.M//; �.!jn.MC1/// and �´
�

�.!jn.M//
2 Œ1; �.WMC1//:

Then, if 1 � m �M , and the numbers ‚m are defined as in (3.18), we have

‚mfj .u/� D �.�0/
�.W1 � � �WM /fj .u/�

�.WM�mC1 � � �WM /
D �.!jn.M�m/�1/fj .u/�: (3.20)

So, ‚mfj .u/� is far from an integer

for all � 2 Œ1; �.WMC1// and for most 1 � m �M;

if and only if �.!jn.m/�1/fj .u/� is far from an integer

for all � 2 Œ�.!jn.M//; �.!jn.MC1/// and for most 1 � m �M:

Recalling (3.16), we need exactly the latter kind of information to treat the product
(3.15), while the next lemma will give information of the former kind.
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Lemma 3.21. There is a set G � G0 with P .G/ D 1 such that the following holds
for all

! D W1W2 � � � 2 G (as in (3.17));

M � 1, c > 0, and ı 2 .0; 1/. If � > 0 is sufficiently small, depending on ı; }; �max

and log �max= log �min, where

�min ´ inf¹�.�/W � 2 T º > 1 and �max ´ sup¹�.�/W � 2 T º <1;

then the set

E�;ı;M;!;c ´

²
z1

z2
W jzi j 2 Œc; 2c� and 9 � 2

�
1; �.WMC1/

�
such that

1

M

ˇ̌̌®
1 � m �M Wmax¹k‚mz1�k; k‚mz2�kº < �

¯ˇ̌̌
� 1 � ı

³
can be covered by .!;c exp.H � log.1=ı/ � ıM/ intervals of length .c �Mmax, where
�max D �

�1
min, and H � 1 depends on �min; �max and .�; P /. Here ‚m D ‚

.M;!/
m as

in (3.18).

The notation a .p b above means that there exists a constant C � 1 depending
only on the parameter p such that 0 � a � Cb. The proof of the lemma is an “Erdős–
Kahanes”-type argument, and is very similar to [7, Proposition 5.4] – so similar, in
fact, that we can use many estimates from [7, Proposition 5.4] verbatim. The best way
to describe the difference between Lemma 3.21 and [7, Proposition 5.4] is perhaps to
say that Lemma 3.21 is a combination of [7, Proposition 5.4] and [9, Lemma 3.2]. The
argument originates back to the works of Erdős [1] and Kahane [4]. If the reader is
not familiar with the general scheme of the proof, then we recommend [5, Proposition
6.1] for a neat version of the argument in a simpler setting.

Before proving the lemma, we use it to prove Proposition 3.3.

Proof of Proposition 3.3. We claim that the set G appearing in the statement of Lem-
ma 3.21 also works here. In other words, if ! 2 G, then

dimH¹u 2 U W dimF �
!
u D 0º D 0: (3.22)

Assume that (3.22) fails, define a Borel set B ´ ¹u 2 U W dimF �
!
u D 0º, and let

� 2M.B/ be an "-Frostman measure for some " > 0 (i.e., �.Œa; b�/ � .b � a/" for
all a < b). One can show that B is Borel as in Corollary 3.13. We will reach a con-
tradiction by showing that �.B/ D 0. To do so, it suffices to show that �.B \ I / D 0
for all intervals I � R such that

u 7! �.u/´
f1.u/

f2.u/
D
t2.�; u/ � t1.�; u/

t3.�; u/ � t1.�; u/
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is CI -bilipschitz on I . Indeed, by analyticity, there is only a discrete set of values
u 2U where either t3.�;u/� t1.�;u/D 0 or �0.u/D 0. We now fix such an interval I .
Then, we also fix ı 2 .0; 1/ and M � 1. We assume without loss of generality that
there exists c D cI > 0 such that

c � inf
u2I

min¹jf1.u/j; jf2.u/jº � sup
u2I

max¹jf1.u/j; jf2.u/jº � 2c: (3.23)

The maps f1; f2 are real-analytic and non-constant by assumption, so I can, up to a
countable set, be further partitioned into intervals where (3.23) holds. Thus, it suffices
to show that �.B \ I / D 0 for all such intervals I .

Next, we find � > 0 so small that the conclusion of Lemma 3.21 holds
for E D E�;ıM;!;c . As the lemma says, the set E \ �.I / can be covered by
.!;c exp.H � log.1=ı/ � ıM/ intervals of length .c �Mmax, where c D cI is the con-
stant appearing in (3.23). Since � is CI -bilipschitz on I , the same conclusion (up to a
change of constants) is true for the following set:

QEM;ı ´
°
u 2 I W 9 � 2

�
1; �.WMC1/

�
such that

1

M

ˇ̌̌®
1 � m �M Wmax

®
k‚mf1.u/�k; k‚mf2.u/�k

¯
< �

¯ˇ̌̌
� 1 � ı

±
:

From the "-Frostman property of � , we infer that

�. QEM;ı/ .!;cI ;CI exp.H � log.1=ı/ � ıM/ � �"Mmax: (3.24)

Taking ı > 0 sufficiently small, depending on ",H , and �max, we see from (3.24) thatX
M�1

�. QEM;ı/ <1;

and consequently QE ´ lim supM!1 QEM;ı has vanishing � measure by the Borel–
Cantelli lemma. To complete the proof, it remains to show that

B \ I � QE:

Pick u 2 I n QE. We wish to show that u … B , or in other words,

dimF �
!
u > 0:

Pick any M � 1 so large that u … QEM;ı , and, as in Remark 3.19 above, let 1 �
n.1/ < n.2/ < � � � < n.M C 1/ be an enumeration of the first M C 1 indices for
which !.n.m// D �0. Recall from (3.20) the relationship

‚mfj .u/

�
�

�.!jn.M//

�
D �.!jn.M�m/�1/fj .u/�;
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valid for j 2 ¹1; 2º, 1 � m �M , and � 2 Œ�.!jn.M//; �.!jn.MC1///. Since

�´
�

�.!jn.M//
2 Œ1; �.WMC1//

for any such choice of � , the assumption u … QEM;ı states thatˇ̌̌°
1 � m �M Wmax

®
k�.!jn.m/�1/f1.u/�k; k�.!jn.m/�1/f2.u/�k

¯
� �

±ˇ̌̌
D

ˇ̌̌®
1 � m �M Wmax¹k‚mf1.u/�k; k‚mf2.u/�kº � �

¯ˇ̌̌
� ıM

for all � 2 Œ�.!jn.M//; �.!jn.MC1///. Recalling (3.16) and then (3.15), we infer that

ˇ̌c�!u .�/ˇ̌ � �1 � ˛

m.�0/

�ıM
; � 2

�
�.!jn.M//; �.!jn.MC1//

�
; (3.25)

where ˛ D ˛.�/ > 0. But since }n.M/ . M � n.M/ for M � 1 sufficiently large
(recall the parameter } from (3.14) and that ! 2 G � G0), and also

�
n.M/
min � �.!jn.M// � �.!jn.MC1// � �

n.MC1/
max ;

the estimate in (3.25) yields dimF �
!
u > 0. The proof is complete.

It remains to establish Lemma 3.21.

Proof of Lemma 3.21. Fix ! D W1W2 � � � 2 G0,M � 1, c > 0, ı, � 2 .0; 1/. Assume
that

z1=z2 2 E ´ E�;ı;M;!;c

with jz1j; jz2j 2 Œc; 2c�, so by definition there exists � 2 Œ1; �.WMC1// such thatˇ̌̌®
1 � m �M Wmax¹k‚mz1�k; k‚mz2�kº < �

¯ˇ̌̌
� .1 � ı/M: (3.26)

We only consider the case z1; z2 2 Œc; 2c�. Now, for 1 � m �M , we write

‚mz1�µ Km C "m and ‚mz2�µ Lm C ım; (3.27)

where Km; Lm 2 N, and "m; ım 2 Œ�1=2; 1=2/. To emphasise the obvious, all the
numbers Km; Lm; "m and ım depend on the parameters M; zj ; �; !; u even if we
suppress this from the notation – whenever the reader sees Km, say, we ask them to
think of KM;z1;z2;�;!;um . We note that

min¹KM ; LM º & ‚M min¹z1; z2º� � c��jW1���WM jmax � c��Mmax (3.28)
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by the definition of ‚M . Now, we discuss the rest of the proof in a heuristic manner.
By (3.28), we have

z1

z2
D
‚M z1�

‚M z2�
D
KM C "M

LM C ıM
2 B

�
KM

LM
; C�Mmax

�
; C D Cc � 1: (3.29)

To cover the ratios z1=z2, we will use the balls above, and hence we need to estimate
the number of possible ratios KM=LM for all admissible choices of z1; z2; �; !. This
number will be, in fact, estimated by finding an upper bound on the number of possible
sequences

.Km/
M
mD1 and .Lm/

M
mD1: (3.30)

We will use the fact that these sequences arise from the (real) sequences .‚mzj �/MjD1
satisfying (3.26). This will imply the following useful property on both sequences
in (3.30). If � > 0 is picked sufficiently small in (3.26), then for most indices 1�m�
M � 2 (depending on ı > 0 in (3.26)), the number KmC2 (resp. LmC2) is determ-
ined by Km and KmC1 (resp. Lm and LmC1). And even for those values of m for
which this fails, there are . 1 options for KmC2 and LmC2. These properties will be
established in Lemma 3.44 below. So, at the end of the day, estimating the number
of sequences (3.30) boils down to the following combinatorial question. How many
sequences .nm/MmD1 of natural numbers are there such that

• for most indices m the number nmC2 is determined by .nm; nmC1/, and

• for the remaining indices there are . 1 choices for nmC2.

Note that this problem no longer contains any reference to u; �; !. The answer turns
out to be so small that the proof can be concluded.

We turn to the details, and the first main task is to quantify the dependence of
KmC2 on Km; KmC1. This estimate is verbatim the same as the one obtained in the
proof of [7, Proposition 5.4], but we repeat the details for the reader’s convenience.
We start by observing that

‚mC1

‚m
D

�.WM�m � � �WM /

�.WM�mC1 � � �WM /
D �.WM�m/; 1 � m �M � 1 (3.31)

by (3.18). On the other hand, as a direct computation based on (3.27) shows, the ratio
‚mC1=‚m is quite close to KmC1=Km as the difference of the two quantities is

‚mC1

‚m
�
KmC1

Km
D
"mC1

Km
�

�‚mC1
‚m

� "m
Km

; (3.32)

as a direct computation based on (3.27) shows. In the sequel we will write

� ´ �.�0/ > 1:
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We also define ˇ.�/ > 0, � 2 T such that �.�/D �ˇ.�/ (in particular, ˇ.�0/D 1), and
we write

ˇ.W /´

jCkX
iDj

ˇ.!j /; W D .!j ; : : : ; !jCk/ 2 T �:

Then (3.31) can be rewritten as

‚mC1

‚m
D �ˇ.WM�m/; 1 � m �M � 1: (3.33)

Next, combining (3.32) and (3.33), we obtainˇ̌̌
�ˇ.WM�m/ �

KmC1

Km

ˇ̌̌
�
�ˇ.WM�m/j"mj C j"mC1j

Km
; 1 � m �M � 1: (3.34)

Noting that ˇ.WM�m/�1 � ˇ.�0/�1 D 1 since WM�m ends in �0, we may infer
from (3.34) further thatˇ̌̌
� �

�KmC1
Km

�ˇ.WM�m/�1 ˇ̌̌
D

ˇ̌̌
.�ˇ.WM�m//ˇ.WM�m/

�1

�

�KmC1
Km

�ˇ.WM�m/�1 ˇ̌̌
�

ˇ̌̌
�ˇ.WM�m/ �

KmC1

Km

ˇ̌̌
�
�ˇ.WM�m/j"mj C j"mC1j

Km
;

(3.35)

using also the inequality jxs � ysj � jx � yj, valid for x; y � 1 and 0 � s � 1. Sim-
ilarly, we haveˇ̌̌

� �
�KmC2
KmC1

�ˇ.WM�.mC1//�1 ˇ̌̌
�
�ˇ.WM�.mC1//j"mC1j C j"mC2j

KmC1
: (3.36)

Using trivial estimates, it follows from (3.34) that

KmC1

Km
� �ˇ.WM�m/ C

�ˇ.WM�m/ C 1

2Km
� 2�ˇ.WM�m/ � .2�max/

ˇ.WM�m/ (3.37)

and we have a similar estimate forKmC2=KmC1, with the only difference of replacing
m by mC 1. Note that

ˇ.WM�.mC1// � 1C ˇ.WM�.mC1// � �
ˇ.WM�.mC1//= log �

� �
kˇ.WM�.mC1//
max ;

where k 2 N is such that e1=k � �min, and consequently, by (3.37),

ˇ.WM�.mC1//max
²�KmC2
KmC1

�ˇ.WM�.mC1//�1
ˇ.WM�.mC1// ;

�KmC1
Km

�ˇ.WM�.mC1//�1
ˇ.WM�m/

³
� �

kˇ.WM�.mC1//
max .2�max/

ˇ.WM�.mC1//�1µ .C�kC1max /
ˇ.WM�.mC1//: (3.38)
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Thus, using the inequality jxs � ysj � smax¹xs�1; ys�1ºjx � yj valid for x; y > 0
and s � 1, we get (note that s D ˇ.WM�.mC1// � 1 since WM�.mC1/ ends in �0)ˇ̌̌̌
KmC2

KmC1
�

�
KmC1

Km

�ˇ.WM�.mC1//
ˇ.WM�m/

ˇ̌̌̌
D

ˇ̌̌̌�
KmC2

KmC1

�ˇ.WM�.mC1//
ˇ.WM�.mC1//

�

�
KmC1

Km

�ˇ.WM�.mC1//
ˇ.WM�m/

ˇ̌̌̌
� ˇ.WM�.mC1//max

²�
KmC2

KmC1

�ˇ.WM�.mC1//�1
ˇ.WM�.mC1//

;

�
KmC1

Km

�ˇ.WM�.mC1//�1
ˇ.WM�m/

³
�

ˇ̌̌̌�
KmC2

KmC1

�ˇ.WM�.mC1//�1
�

�
KmC1

Km

�ˇ.WM�m/�1 ˇ̌̌̌
�.C�kC1max /

ˇ.WM�.mC1//

�
�ˇ.WM�.mC1//j"mC1jCj"mC2j

KmC1
C
�ˇ.WM�m/j"mjCj"mC1j

Km

�
by applying (3.37), (3.38), (3.35), and (3.36). Finally, this yieldsˇ̌̌̌
ˇKmC2 �KmC1

�
KmC1

Km

�ˇ.WM�.mC1//
ˇ.WM�m/

ˇ̌̌̌
ˇ

� .C�kC2max /
ˇmax.jWM�mjCjWM�.mC1/j/ �max¹j"mj; j"mC1j; j"mC2jº;

1 � m �M � 2: (3.39)

Here jW j denotes the length of the wordW 2 T �, C � 1 is an absolute constant, and

ˇmax ´ sup¹ˇ.�/W � 2 T º �
log �max

log �min
: (3.40)

As far as the argument above is concerned, there is no difference between the numbers
Km and Lm (recall (3.27)). Hence alsoˇ̌̌̌
ˇLmC2 � LmC1

�
LmC1

Lm

�ˇ.WM�.mC1//
ˇ.WM�m/

ˇ̌̌̌
ˇ

� .C�kC2max /
ˇmax.jWM�mjCjWM�.mC1/j/ �max¹jımj; jımC1j; jımC2jº;

� m �M � 2: (3.41)

For 1 � m �M � 2, we write

Bm´ .C�kC2max /
ˇmax.jWM�mjCjWM�.mC1/j/ and �m´ .2Bm/

�1: (3.42)

Then, it is immediate from (3.39) and (3.41) that whenever 1 � m �M � 2 and

max¹jımj; jımC1j; jımC2j; j"mj; j"mC1j; j"mC2jº < �m; (3.43)
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we have

max

´̌̌̌
ˇKmC2�KmC1�KmC1Km

�ˇ.WM�.mC1//
ˇ.WM�m/

ˇ̌̌̌
;

ˇ̌̌̌
LmC2�LmC1

�
LmC1

Lm

�ˇ.WM�.mC1//
ˇ.WM�m/

ˇ̌̌̌µ
<
1

2

Since KmC2 and LmC2 are integers, this implies that the pair .KmC2; LmC2/ is
uniquely determined by the pairs .Km; Lm/ and .KmC1; LmC1/. This proves (b) of
the following lemma, which is a modification of [7, Lemma 5.5] to the case of two
sequences.

Lemma 3.44. Let 1 � m �M � 2.

(a) Given .Km; Lm/, .KmC1; LmC1/, there are at most .2Bm C 1/2 possible
choices for the pair .KmC2; LmC2/. Further, there are .c;�0 B40 choices for
the quadruple .K1; L1; K2; L2/, where

B0´ .�max/
jWM�1WMWMC1j:

(b) If (3.43) holds, then the pair .KmC2; LmC2/ is uniquely determined by the
pairs .Km; Lm/ and .KmC1; LmC1/.

The first statement in (a) follows from the estimates (3.39) and (3.41). We justify
the second statement in (a). The number of possible choices for Kj , j 2 ¹1; 2º is the
cardinality of natural numbers, Kj satisfying the equation ‚j zj � D Kj C "j with
parameters ‚j ; zj and � 2 Œ1; �.WMC1//. By definition,

‚1 D �.�0/�.WM / .�0 B0 and ‚2 D �.�0/�.WM�1WM / .�0 B0:

Since jzj j 2 Œc; 2c� by assumption, we see that jK1j .c;�0 B0 and jK2j .c;�0 B0.
In other words, the number of possible values of K1 and K2 is bounded from above
by .c;�0 B0. A similar estimate holds for the number of possible values forL1 andL2.

Heuristic digression. Before giving the final details, we make a little heuristic
digression. Assume for a moment (completely unrealistically) that (3.43) holds for
all 1 � m �M � 2. Then, by Lemma 3.44 (b), the pair .KmC2;LmC2/ would always
be uniquely determined by .Km; Lm/ and .KmC1; LmC1/. This would imply that the
total number of sequences .Km; Lm/MmD1 is equal to the number of initial quadruples
.K1; L1;K2; L2/, that is, .c;�0 B40 . So, how large is B40 actually? Recall that ! 2 G0
(as in (3.14)), so

lim inf
n!1

1

n

ˇ̌
¹1 � i � nW!i D �0º

ˇ̌
> }: (3.45)

In particular, the gap jWMC1j D n.M C 1/� n.M/ between two consecutive indices
n.j / with !.n.j // D �0 becomes arbitrarily short relative to n.M/, as M !1. It
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follows that for any ı > 0, we have

jWM�1WMWMC1j � ıjW1 � � �WM j

forM �ı;! 1, and henceB40 D .�
4
max/

jWM�1WMWMC1j � exp.CıjW1 � � �WM j/. Since
jW1 � � �WM j is comparable toM forM �! 1 by (3.45), this would complete the proof
under the assumption that (3.43) holds for all 1 � m �M � 2.

The remaining details. We shall now continue the rigorous proof of Lemma 3.21.
Recall from (3.26) that z1; z2 2 Œ�2c;�c� [ Œc; 2c� and � 2 Œ1; �.WMC1// are such
that

j¹1 � m �M Wmax¹k‚mz1�k; k‚mz2�kº < �ºj � .1 � ı/M;

and note that this can be re-written as

j¹1 � m �M Wmax¹j"mj; jımjº � �ºj < ıM:

Consequently,

j¹1 � m �M � 2Wmax¹j"mj; j"mC1j; j"mC2j; jımj; jımC1j; jımC2jº � �ºj � 3ıM:
(3.46)

The property in (3.46) may look similar to the useful condition (3.43), except that
there is now a fixed number � instead of �m. Fortunately, it turns out that if � > 0 is
taken small enough, depending on ı, jT j, �max, then actually � � �m for most choices
of m, and (3.46) does provide useful information.

Let N ´ jW1 � � �WM j, and pick M � 1 (depending on !) so large that

M

N
D

1

N

ˇ̌
¹1 � n � N W!n D �0º

ˇ̌
� }: (3.47)

This is possible by (3.45). Since N D
P
1�m�M jWmj, we infer from Chebyshev’s

inequality and (3.47) thatˇ̌̌̌°
1 � m �M W jWmj �

2

}ı

±ˇ̌̌̌
�
}ıN

2
�
ıM

2
: (3.48)

Then set
�´

1

2
.C�max/

�4ˇmax=.}ı/;

where ˇmax � log �max= log �min is familiar from (3.40). Now is also a good time to
recall the number �m, 1 � m �M � 2 from (3.40). We next claim that

j¹1 � m �M � 2W � � �mºj � ıM: (3.49)

To see this, re-write the inequality � � �m as

.C�max/
�4ˇmax=.}ı/ � .C�max/

�ˇmax.jWm�mjCjWM�m�1j/:
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This is equivalent to
jWM�mj C jWM�m�1j � 4=.}ı/;

which implies max¹jWM�mj; jWM�m�1jº � 2=.}ı/. By (3.48), this is only possible
for at most ıM indices m 2 ¹1; : : : ;M � 2º, as claimed.

Now, note that if max¹j"mj; j"mC1j; j"mC2j; jımj; jımC1j; jımC2jº � �m, then either

max¹j"mj; j"mC1j; j"mC2j; jımj; jımC1j; jımC2jº � � or � � �m:

Thus, combining (3.46) and (3.49), we find that the index set

	´ 	M;z1;z2;�;!

´ ¹1 � m �M � 2Wmax¹j"mj; j"mC1j; j"mC2j; jımj; jımC1j; jımC2jº � �mº

has cardinality
j	j � 4ıM: (3.50)

Now, it is time to set aside the parameters !; � for a moment. Let us just con-
sider the following combinatorial question. Fix an index set J � ¹1; : : : ;M � 2º and
consider all possible sequences of pairs of natural numbers .km; lm/MmD1 with the
properties that

(i) there are A0 2 N choices for the initial quadruple .k1; l1; k2; l2/,

(ii) for .km; lm/ and .kmC1; lmC1/ fixed, the pair .kmC2; lmC2/ can be chosen
in at most Am 2 N different ways, and

(iii) for m 2 ¹1; : : : ;M � 2º n J, the pair .kmC2; lmC2/ is uniquely determined
by the pairs .km; lm/ and .kmC1; lmC1/.

How many sequences .km; lm/MmD1 are there satisfying (i)–(iii)? The answer is: at
most

A0 �
Y
m2J

Am

sequences.
Returning to the main line of the proof, we recall from Lemma 3.44, combined

with (3.50), that the sequence .Km;Lm/MmD1 satisfies the conditions (i)–(iii) with con-
stants A0 .c;�0 B40 and Am D .2BmC 1/2, and with index set J D 	M;z1;z2;�;! D 	.
Thus, there are at most

.c;�0 BM ´ BM;!;� ´ B40 �
Y
m2	

.2Bm C 1/
2 (3.51)

sequences .Km; Lm/MmD1 corresponding to this 	.
The proof so far has only used the assumption ! 2G0, but the rest of the argument

only works for ! in a slightly smaller setG �� (which still has full probability). This
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is because of the quantity on the right-hand side of (3.51), which depends on !; recall
the definitions of B0 and Bm from Lemma 3.44 and (3.42). The quantity would be too
large if the lengths of the words W1; : : : ; WMC1 were very unevenly distributed. At
the end of the proof of [7, Proposition 5.4] (see also [7, Lemma 5.2]), the following
estimate is obtained, which holds for all ! 2 G0 in a set of full probability (this set is
finally the set G), and for all M � 1 sufficiently large (depending on !):

max
	�¹0;:::;M�2º
j	j�4ıM

X
m2	

.jWM�nj C jWM�n�1j/ � C � log.1=4ı/ � ıM; (3.52)

where C � 1 is a constant depending on .�; P /. In particular, for these sequences
! 2G0, and recalling from (3.50) that j	j � 4ıM , one obtains the following estimate
from the definition of the numbers B0; Bm, and (3.52):

BM � exp.H � log.1=ı/ � ıM/: (3.53)

HereH � 1 is a constant depending only on �min; �max, and .P ;�/, as desired. In fact,
the contribution from the lonely factorB40 could be handled in a more elementary way,
as explained in the heuristic digression earlier, and only requires ! 2 G0.

Now we have argued that the number of sequences .Km; Lm/MmD1 arising from
the fixed index set 	M;z1;z2;!;� is bounded by a constant times the right-hand side
of (3.53). To wrap up, we use Stirling’s formula to observe that the number of subsets
of ¹0; : : : ;M � 2º of cardinality at most 4ıM is bounded from above by exp.CıM/.
So, the previous estimate for the number of sequences only changes by a constant
factor if we take all relevant index sets into account!

Recalling (3.29) and the discussion following (3.29), the proof of Lemma 3.21 is
now complete.

4. Proof of the main result

This section contains the proof of Theorem 1.5. The argument is very similar to that
in [7, Section 6]. However, from a technical perspective, many steps in the proof in [7]
seem to require slight adjustment in our setting. Such adjustments would be difficult
to explain properly without repeating virtually all of the details from [7] – even where
no adjustments are necessary.

Here are the assumptions of the main theorem once more.

Definition 4.1. Let U � R be an open interval and m � 2. We assign to each u 2 U
a list of contractive similitudes on R of the form

‰u´ . u;1; : : : ;  u;m/ D .�1x C t1.u/; : : : ; �mx C tm.u//; (4.2)
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where
�1; : : : ; �m 2 .0; 1/ and t1.u/; : : : ; tm.u/ 2 R; u 2 U:

We make the following assumptions:

(A1) The map u 7! tj .u/ is real-analytic, and the family ¹‰uºu2U satisfies trans-
versality of order K for some K 2 N, recall Definition 1.3.

(A2) There exist three sequences i; j;k 2 ¹1; : : : ;mºN such that none of the maps
u 7!  u;i.0/, u 7!  j;u.0/, and u 7!  k;u.0/ is a convex combination of the
other two.

(A3) For some probability vector p D .p1; : : : ; pm/ 2 .0; 1/m with p1 C � � � C
pm D 1, the similarity dimension is

s. N�;p/´
Pm
jD1 pj logpjPm
jD1 pj log�j

;

where N� D .�1; : : : ; �m/, satisfies s. N�;p/ > 1.

Here is the main result again.

Theorem 4.3. Let �u, u 2 U , be the self-similar measure associated with a pair
.‰u; p/ satisfying the assumptions in Definition 4.1. Then, there exists a set E � U
of Hausdorff dimension 0 such that �u � L1 for all u 2 U nE.

We start by recording the following consequence of assumption (A1).

Proposition 4.4. Assume (A1), and define the numbers

�n.u/´ min¹j u;i.0/ �  u;j.0/jW i; j 2 ¹1; : : : ; mºn; i ¤ jº:

Then, there exists a set E � U with dimHE D 0 such that

lim sup
n!1

log�n.u/
n

> �1; u 2 U nE:

The statement above is superficially the same as [3, Theorem 5.9], but recall that
we are using a definition of transversality somewhat different from Hochman’s. We
postpone the proof to the appendix, see Proposition A.3.

Now we start the proof of Theorem 4.3 by fixing a number N � 1. We recall the
types T D T N defined in (2.5). Then, for every u 2 U , we follow the procedure of
Sections 2.1–2.2 to write

�u D

Z
�

�!u dP .!/; (4.5)

where

�!u D �
n�1

�n�1Y
jD1

�.!j /

�
]

�u.!n/
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and

�u.�/ D
1

m.�/

m.�/X
jD1

ı �
u;j

.0/:

We recall that the maps in

‰u.�/ D . 
�
u;1; : : : ;  

�
u;m.�// D .�.�/x C t1.�; u/; : : : ; �.�/x C tm.�/.�; u//;

u 2 U; � 2 T ;

were obtained (via the procedure described in Section 2.2) as N -fold compositions of
the maps in‰u in (4.2), and they all have a common contraction ratio �.�/, depending
only on � 2 T .

Next, as in [7], we fix another integer parameter s � 1. Then, for ! 2� and u 2U
fixed, we split the infinite convolution defining �!u as �!u D �

!
small;u � �

!
big;u, where

�!small;u´

�
�

s divides n

hn�1Y
jD1

�.!j /
i
]
�u.!n/

�
(4.6)

and

�!big;u´

�
�

s does not divide n

hn�1Y
jD1

�.!j /
i
]
�u.!n/

�
:

The plan will be to show that, for generic choices of !; u, the measure �!small;u
has positive Fourier dimension, whereas �!big;u has Hausdorff dimension one (if N
and s were chosen large enough). These observations are eventually combined in
Section 4.3 to complete the proof of Theorem 4.3. If the reader is not familiar with
the argument in [7], then it might be a good idea to start with reading (the short)
Section 4.3 to see where we are heading.

4.1. Fourier decay for �!
small;u

We infer the following corollary from Proposition 3.3.

Corollary 4.7. Assume the same notation as in the previous section. Assume that
there exist �0 2 T and three indices 1 � i1 < i2 < i3 � m.�0/ such that the map
u 7! ti3.�0; u/ � ti1.�0; u/ is not identically zero, and

u 7!
ti2.�0; u/ � ti1.�0; u/

ti3.�0; u/ � ti1.�0; u/
; u 2 U; (4.8)

is non-constant. Then, there exists a set G � � with P .G/ D 1 such that if ! 2 G,
then

dimH¹u 2 U W dimF �
!
small;u D 0º D 0:
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Here tj .�;u/, 1� j �m.�/, are the translation vectors of the similitudes in‰u.�/.
For Proposition 3.3 to be applicable, we first need to realise �!small;u as a typical meas-
ure arising from a random model as in Section 2.1. Here we mostly follow the proof
of [7, Lemma 6.4].

Proof of Corollary 4.7. We first define a new set of types T 0 ´ T s . For any choice
of � 0´ .!1; : : : ; !s/ 2 T 0, we define the contraction ratio

�.� 0/´ �.!1/ � � ��.!s/: (4.9)

We also define the probabilities

q0.� 0/´ q.!1/ � � � q.!s/; � 0 D .!1; : : : ; !s/ 2 T 0;

where q.�/ > 0 are the probabilities associated with the initial types � 2 T . Clearly,X
� 02T 0

q0.� 0/ D 1:

We let P 0 be the product probability measure on the space �0 ´ .T 0/N induced by
the probabilities q0.� 0/. Then, we define the similitudes

‰u.�
0/´ ¹�.� 0/x C t1.!s; u/; : : : ; �.�

0/x C tm.!s/.!s; u/º (4.10)

for � 0 D .!1; : : : ; !s/ 2 T 0. Now that these types and similitudes have been defined,
the formulae in Section 2.1 give rise to the measures

�u.!1; : : : ; !s/ D
1

m.!s/

m.!s/X
jD1

tj .!s; u/ D �u.!s/; .!1; : : : ; !s/ 2 T 0;

and finally,

�!
0

u D �
n�1

hn�1Y
jD1

�.!0j /
i
]
�u.!

0
n/; (4.11)

where !0j ; !
0
n 2 T 0 for j; n � 1.

Next, we “embed” the random measures �!small;u inside the family of random meas-
ures defined in (4.11). To this end, if ! D .!1; !2; : : :/ 2 �, we define the sequence
F.!/ 2 �0 by the obvious formula

F.!/ D ..!1; : : : ; !s/; .!sC1; : : : ; !2s/; : : :/: (4.12)

Then, it follows from the definitions (4.6) and (4.9)–(4.11) that

�F.!/u D �!small;u; ! 2 �;
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where the left-hand side refers to the measure defined in (4.11). Further, we note that
F]P D P 0, where P is the probability on � D T N induced by the probabilities q.�/.
Hence, the conclusion of Corollary 4.7 will follow once we manage to produce a set
G0 � �0 of full P 0-probability such that

dimH¹u 2 U W dimF �
!0

u D 0º D 0; !0 2 G0:

Here we finally use Proposition 3.3. All we need to find is a type � 0 2 T 0 and three
indices 1 � i1 < i2 < i3 � m.� 0/ such that the map u 7! t 0i3.�

0; u/ � t 0i1.�
0; u/ is not

identically zero and

u 7!
t 0i2.�

0; u/ � t 0i1.�
0; u/

t 0i3.�
0; u/ � t 0i1.�

0; u/
; u 2 U; (4.13)

is non-constant. (We also note that the assumption sup¹jtj .� 0; u/jW u 2 U; � 2 T 0;

1 � j �m.� 0/º <1 from Definition 3.1 can be arranged by splitting U to countably
many intervals, since the maps u 7! tj .�

0; u/ 2 .0; 1/ are continuous each, and T 0 is
finite.)

Returning to (4.13), we recall from (4.10) that the translation vectors associated
with the type .!1; : : : ; !s/ 2 T 0 coincide with the translation vectors of the type
!s 2 T . Thus, we can – for example – take � 0´ .�0; �0; : : : ; �0/ 2 T s , where �0 2 T

is the type appearing in (4.8). The proof of Corollary 4.7 is complete.

In order to use Corollary 4.7 in the proof of Theorem 4.3, we need to secure its
main hypothesis. This is the content of the next lemma.

Lemma 4.14. Under the assumptions (A1)–(A2), there are arbitrarily large values of
N � 1 such that the following holds. There exist a type �N 2 T N and three values 1�
i1 < i2 < i3 �m.�N / such that the map u 7! ti3.�N ; u/� ti1.�N ; u/ is not identically
zero, and

u 7!
ti2.�N ; u/ � ti1.�N ; u/

ti3.�N ; u/ � ti1.�N ; u/
; u 2 U;

is non-constant.

Proof. Let i; j; k 2 ¹1; : : : ; mºN be the sequences specified in (A2). In other words,
none of the maps u 7!  u;i.0/, u 7!  u;j.0/, and u 7!  u;k.0/ can be expressed as a
convex combination of the other two. In particular,

 u;i.0/ 6�  u;j.0/ and  u;i.0/ 6�  u;k.0/:

Thus, by analyticity, u 7!  u;k.0/ �  u;i.0/ has a discrete set of zeroes on U , and

u 7! �.u/´
 u;j.0/ �  u;i.0/

 u;k.0/ �  u;i.0/
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is well defined and analytic in the complement of those points. Moreover, � is non-
constant, because if � � C for some C 2 Œ0; 1�, one can solve

 u;j.0/ � C �  u;k.0/C .1 � C/ �  u;i.0/;

violating the choice of i; j;k. The cases C < 0 and C > 1 are also ruled out by similar
calculations. For example, if � � C 2 .�1; 0/, then one can solve

 u;i.0/ �
1

1 � C
�  u;j.0/C

�C

1 � C
�  u;k.0/

instead, again violating the choice of i; j; k. We now pick u1; u2 2 U such that
�.u1/; �.u2/ are finite and distinct.

Then, we note that for any u 2 U , in particular, u 2 ¹u1; u2º, it holds that

sup¹j u;i.0/ �  u;w.0/jWw 2 ¹1; : : : ; mº�; wjn D ijnº ! 0; (4.15)

as n!1, where ¹1; : : : ; mº� D
S
n2N¹1; : : : ; mº

n. The same holds with i replaced
by j or k. Applying (4.15) at the points u1; u2 2 U , we infer that there exists M 2 N

such that the following holds. If i0; j0;k0 2 ¹1; : : : ; mº� are any finite sequences with

i0jM D ijM µ i0; j0jM D jjM µ j0; and k0jM D kjM µ k0;

then u 7!  u;k0.0/ �  u;i0.0/ is not identically zero, and the map

u 7!
 u;j0.0/ �  u;i0.0/

 u;k0.0/ �  u;i0.0/
; u 2 U; (4.16)

is non-constant (it suffices to check that the map takes different values at u1 and u2).
We apply this to sequences i0; j0;k0 of the form

i0´ .i0j0k0/N ; j0´ .j0k0i0/N ; and k0´ .k0i0j0/N ;

which have common length 3MN , and more importantly common type in T 3MN ,
say � , recalling the definition (2.5). Then the numbers  u;i0.0/;  u;j0.0/, and  u;k0.0/
coincide with certain translation vectors ti1.�; u/; ti2.�; u/, and ti3.�; u/, with
1 � i1 < i2 < i3 � m.�/. Thus, the non-constancy of the map in (4.16) is equival-
ent to the claim of the lemma.

Combining the previous lemma with Corollary 4.7 finally gives the following con-
sequence, which can be applied – eventually – in the proof of Theorem 4.3.

Corollary 4.17. Under the assumptions (A1)–(A2), and if N � 1 is chosen as in
Lemma 4.14, there exists a set G � � with P .G/ D 1 such that if ! 2 G, then

dimH¹u 2 U W dimF �
!
small;u D 0º D 0:
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4.2. Dimension of �!
big;u

In this section, we study the dimension of the measures �!big;u, again following [7]
closely. Here is the goal.

Proposition 4.18. If the parameters N; s � 1 are chosen large enough, then there
exists a set E � U of Hausdorff dimension zero such that for all u 2 U nE

dimH �
!
big;u D 1 for P a.e. ! 2 �:

In fact, the set E coincides with the set from Proposition 4.4.

The first task is, again, to realise �!big;u as a typical measure arising from a random
model, as in Section 2.1. The details are the same as in the proof of [7, Lemma 6.5],
but we record most of them here for completeness. As in the previous section, we
define T 0´ .T /s , and we also define

�.� 0/´ �.!1/ � � ��.!s/ and q.� 0/´ q.!1/ � � � q.!s/ (4.19)

for � 0 D .!1; : : : ; !s/ 2 T 0, as before. We also let P 0 be the product probability meas-
ure on �0 D .T 0/N induced by the numbers q.� 0/. Defining the translation vectors
for the similitudes in ‰u.� 0/ is a little trickier in this case. Here is how to do it. For
� 0 D .!1; : : : ; !s/ 2 T 0 fixed, we first let

	.� 0/´

s�1Y
lD1

¹1; : : : ; m.!l/º:

Then, for any i D .i1; : : : ; is�1/ 2 	.� 0/, we define the translation vector

ti.�
0; u/´

s�1X
lD1

hl�1Y
jD1

�.!j /
i
til .!l ; u/;

where til .!l ; u/, il 2 ¹1; : : : ; m.!l/º, is the il -th translation vector of the family
‰u.!l/. Then, we set

‰u.�
0/´ ¹�.� 0/x C ti.�

0; u/W i 2 	.� 0/º: (4.20)

As in the previous section, we define the map F W�!�0 by the formula (4.12). Then,
one can check, see [7, (61)], that

�F.!/u D �!big;u; ! 2 �;

where the left-hand side now refers to the measures generated by the model with the
types and similitudes introduced in this section. Since F]P D P 0, we can now proceed
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to study the P -almost sure dimension of the measures �!big;u, ! 2 �, by studying the
P 0-almost sure dimension of the measures �!

0

u , !0 2 �0.
Before doing this, however, we record an observation that requires staring at the

precise structure of ‰u.� 0/.

Remark 4.21. Let n � 1, and let .!01; : : : ; !
0
n/ 2 .T

0/N . For each !j , 1 � j � n,
pick two similitudes

 
!0
j
u;vj ;  

!0
j
u;wj 2 ‰u.!

0
j /; vj ;wj 2 	.!0j /;

and consider their n-fold compositions

fu;v D  
!0
1

u;v1 ı � � � ı  
!0n
u;vn and fu;w D  

!0
1

u;w1 ı � � � ı  
!0n
u;wn :

For reasons to become apparent a little later, we are interested in relating the quant-
ity jfu;v.0/ � fu;w.0/j to the numbers �n.u/ defined in Proposition 4.4. This would
be completely straightforward if fu;v; fu;w were obtained as certain compositions of
mappings in ‰u, but this is not quite the case.

To understand the problem better, consider first � 0 D .!1; : : : ; !s/ 2 T 0, pick
i D .i1; : : : ; is�1/ 2 	.� 0/, and note that the map

x 7! �.!1/ � � ��.!s�1/x C ti.�
0; u/ (4.22)

is, in fact, the composition
 
!1
u;i1
ı � � � ı  

!s�1
u;is�1

;

where  !ju;ij is the ij -th similitude in ‰u.!j /. Unfortunately, the contraction ratio of
the map in (4.22) differs by a factor of �.!s/ from the contraction ratio of the map
x 7! �.� 0/x C ti.�

0; u/ 2 ‰u.�
0/.

Despite this issue, the difference fu;v � fu;w can be expressed as the difference of
compositions in ‰u. We explain this in the case n D 1, that is, when

fu;v.0/ � fu;w.0/ D  
� 0

u;i.0/ �  
� 0

u;j.0/; i; j 2 	.� 0/;

for some � 0 D .!1; : : : ; !s/ 2 T 0. We write i D .i1; : : : ; is�1/ and j D .j1; : : : ; js�1/,
where 1 � il ; jl � m.!l/, and we let  !su be any similitude in ‰u.!s/. Then,

 �
0

u;i �  
� 0

u;j D . 
!1
u;i1
ı � � � ı  

!s�1
u;is�1

ı  !su / � . 
!1
u;j1
ı � � � ı  

!s�1
u;js�1

ı  !su /;

where both the maps on the right-hand side are .Ns/-fold compositions of maps
in‰u. For general n� 1, the difference fu;v � fu;w can always be expressed as the dif-
ference of .Nns/-fold of compositions of maps in ‰u, by repeating the above idea n
times and hence, adding altogether n “dummy” maps instead of one; for more details,
see the proof of Lemma 6.5 (and the equation (62)) in [7].
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In particular, we have

jfu;v.0/ � fu;w.0/j � �Nns.u/; v;w 2
nY

jD1

	.!0j /; v ¤ w; (4.23)

by the above observations.

To study the P 0-almost sure dimension of the measures �!
0

u , !0 2 �0, we need
to import more technology from [7]. First, it follows from [7, Theorem 1.2] that the
measures �!

0

u are exact-dimensional P 0-almost surely. For u 2 U , there exists a con-
stant ˛u 2 Œ0; 1� such that

9 lim
r!0

log �!
0

u .B.x; r//

log r
D ˛u

for P 0-almost all !0 2 �0, and for �!
0

u -almost every x 2 R. In particular,

dimH �
!0

u D ˛u

for P 0-almost every !0 2 �0. Another concept we need to recall from [7, Section
1.3] is the similarity dimension of a random model. Given a collection of types T 00,
equipped with contraction ratios �.� 00/ 2 .0; 1/ and probabilities q.� 00/ 2 .0; 1/, the
similarity dimension of the family of random measures �!

00

generated by this data
(through the procedure described in Section 2.1) is the number

s.¹�!
00

º!002�00/´

�Z
�00

log.�.!001 // dP 00.!00/

��1 Z
�00

log
1

m.!001 /
dP 00.!00/:

Here P 00 is the product probability measure on�00´ .T 00/N induced by the probabil-
ities q.� 00/, � 00 2 T 00. In fact, we have no use for the explicit expression above (which
can be found in [7, Section 1.3]), but we need the concept – twice.

First, it follows from [7, Lemma 6.2 (v)] that if ı > 0, and the parameter N � 1
is chosen large enough, depending only on ı and the probability vectors p, then

s.¹�!u º!2�/ � .1 � ı/s.
N�;p/; u 2 U: (4.24)

Here s. N�;p/ and ¹�!u º!2� were introduced around the statement of Theorem 4.3. We
note, as is clear from the proof of [7, Lemma 6.2 (v)], that the choice of N in (4.24)
depends only on ı > 0, and the fixed probability vector p. In particular, recalling our
main assumption 1 < s. N�;p/µ 1C ", we may choose N � 1 so large that also

s.¹�!u º!2�/ > 1C "=2; u 2 U; (4.25)

where " > 0 does not depend on the choice of u 2 U .
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Now we have fixed N � 1, and next we fix s � 1. On the very last page of [7], the
following relationship between the similarity dimensions of ¹�!u º!2� and ¹�!

0

u º!02�0

is established:

s.¹�!
0

u º!02�0/ D
�
1 �

1

s

�
s.¹�!u º!2�/; u 2 U:

Here ¹�!
0

u º!02�0 is the random model discussed in this section, recall (4.19)-(4.20).
So, by taking s � 1 large enough, depending on " > 0 alone, we can ensure that

s.¹�!
0

u º!02�0/ � 1C "=3; u 2 U: (4.26)

We summarise the previous conclusions for a fixed u 2 U :

• To show that
dimH �

!
big;u D 1 for P a.e. ! 2 �;

it suffices to prove that

dimH �
!0

u D 1 for P 0 a.e. !0 2 �0:

• The map !0 7! dimH �
!0

u has P 0-almost surely constant value ˛u.

• The similarity dimension of the model ¹�!
0

u º!02�0 exceeds one.

So, to wrap up the proof of Proposition 4.18, it remains to argue that

˛u D min¹s.¹�!
0

u º!02�0/; 1º D 1; u 2 U nE; (4.27)

where dimH E D 0. This will follow from a combination of [7, Theorem 1.3] and
[3, Theorem 1.8].

For !0 D .!01; !
0
2; : : :/ 2 �

0 and a fixed n � 1, define the index set

	0n.!
0/´

nY
jD1

	.!0j /:

Here 	.!0j / is the index set used in (4.20) to define the similitudes ‰u.!0j /, !
0
j 2 T 0.

Now, given u 2 U , and a word v D .v1; : : : ; vn/ 2 	0n.!
0/, consider the map fu;v,

obtained as the n-fold composition

fu;v D  
!0
1

u;v1 ı � � � ı  
!0n
u;vn ; (4.28)

where  
!0
j
u;vj .x/ D �.!0j /x C tvj .!

0
j ; u/ 2 ‰u.!

0
j /, as defined in (4.20). Then, we

define the quantity

�n.u; !
0/´

´
min¹jfu;v.0/ � fu;w.0/jWu;w 2 	0n.!

0/; v ¤ wº; if j	0n.!
0/j � 2;

0; if j	0n.!
0/j D 1:
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Now, (4.26) and [7, Theorem 1.3] show that

˛u < 1 ) P

²
!0 2 �0W

log�n.u; �/
n

� �M

³
! 1 for all M > 0: (4.29)

So, to prove (4.27), it suffices to show that the right-hand side of (4.29) can occur
only for u in a zero-dimensional set. This is an easy consequence of Proposition 4.4
and (4.23). Indeed, (4.23) shows that �n.u; !0/ � �Nns.u/ whenever j	0n.!

0/j � 2.
Evidently, for P 0-almost every !0 2 �0 we have j	0n.!

0/j � 2 for all n � 1 suffi-
ciently large, depending on !0. It follows that P 0.G0n/! 1 as n!1, where

G0n´ ¹!
0
2 �0W j	0n.!

0/j � 2º:

Recall the exceptional E from Proposition 4.4: if u 2 U n E, it follows that there
exists M > 0, and a sequence .nj /j2N of natural numbers, depending on u, such that

log�Nnj s.u/
nj

� �M; j 2 N:

Consequently,

P 0
°
!0 2 �0W

log�nj .u; !
0/

nj
� �M

±
� P

°
!0 2 G0nj W

log�Nnj s.u/
nj

� �M
±

D P 0.G0nj /! 1:

We conclude that the right-hand side of (4.29) does not hold, and hence ˛u D 1 for
all u 2 U nE. The proof of Proposition 4.18 is complete.

4.3. Concluding the proof of the main theorem

We now conclude the proof of Theorem 4.3 (also known as Theorem 1.5). We start
by making a counter-assumption that

dimHE > " > 0;

where E ´ ¹u 2 U W�u 6� L1º. We record that E is a Gı -set. Indeed, following
[5, Proposition 8.1] we first consider

Eˇ ´
®
u 2 U W 9 open Vu � R such that �u.Vu/ > 1 � ˇ and L1.Vu/ < ˇ

¯
:

Since �u0 * �u as u0 ! u by the continuity of the function u 7! tj .u/, the sets Eˇ
are open. We have thus shown the claim since E D

T
ˇ>0Eˇ and, by [5, Proposition

3.1], self-similar measures are of pure type. We may now use Frostman’s lemma to
pick � 2M.E/ such that �.B.x; r// � r" for all x 2 R and r > 0.
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Now, recall the decomposition of �u to the measures �!u from (4.5) and the sub-
sequent decomposition of the measures �!u to the pieces �!small;u and �!large;u. From
Corollary 4.17 and Fubini’s theorem we infer that for � -almost every u 2 U ,

dimF �
!
small;u > 0 (4.30)

for P -almost every ! 2 �. The use of Fubini’s theorem is legitimate, because the set

¹.!; u/ 2 � � U W dimF �
!
small;u D 0º

is Borel by same the argument we used in Corollary 3.13. Also, from Proposition 4.18,
we deduce that for � -almost every u 2 U ,

dimH �
!
big;u D 1 (4.31)

for P -almost every ! 2 � (here Fubini’s theorem was not used, so we do not to
need check that ¹.!; u/W dimH �

!
big;u D 1º is Borel). It follows that for � -almost every

u 2 U , the conclusions (4.30)–(4.31) hold simultaneously for P -almost every ! 2�.
But whenever (4.30)–(4.31) both hold, [8, Lemma 2.1 (2)] implies that

�!u D �
!
big;u � �

!
small;u � L1:

In particular, for � -almost all u 2 U , we have �!u � L1 for P -almost all ! 2 �, and
then �u�L1 by the decomposition (4.5). So, we have now argued that �u�L1 for
� -almost every u 2 U , which contradicts the choice of � . The proof of Theorem 4.3
is complete.

A. Order K transversality and the size of exceptions

Recall that we used a notion of orderK transversality somewhat different from Hoch-
man’s convention in [3, Definition 5.6]. We recall our definition.

Definition A.1 (Transversality of order K). Let U � R be an open interval, and let
¹‰uºu2U be a parametrised family of similitudes of the form

‰u´ . u;1; : : : ;  u;m/ D .�1.u/x C t1.u/; : : : ; �m.u/x C tm.u//:

Note that we allow also the contraction parameters �j .u/ to depend on u 2 U . Let
K 2N, and assume that the maps u 7! �j .u/ and u 7! tj .u/ areK times continuously
differentiable for all 1 � j � m. For u 2 U , write

�i;j.u/´  u;i.0/ �  u;j.0/; i; j 2 ¹1; : : : ; mºn; n 2 N:
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The family ¹‰uºu2U satisfies transversality of orderK if there exists a constant c > 0
and a sequence of natural numbers .nj /j2N such that nj !1, and

max
k2¹0;:::;Kº

j�
.k/
i;j .u/j � c

nj ; u 2 U; i; j 2 ¹1; : : : ; mºnj ; i ¤ j; j 2 N:

Here �.k/i;j is the k-th derivative of �i;j.

Recall from Proposition 4.4 that we need to show that the following set has Haus-
dorff dimension zero:

E ´
°
u 2 U W lim

n!1

log�n.u/
n

D �1

±
; (A.2)

where �n.u/´ min¹j�i;j.u/jW i; j 2 ¹1; : : : ; mºn; i ¤ jº. This follows from trans-
versality of order K, as in Definition A.1.

Proposition A.3. Assume that ¹‰uºu2N is a parametrised family of similitudes sat-
isfying transversality of some finite order K 2 N, as in Definition A.1. Then, the set
E in (A.2) has Hausdorff dimension zero.

Proof. We follow the proof of [3, Theorem 5.9], which seems to work fine with our
definition of transversality. Without change in notation, we replace U by a compact
subinterval; it clearly suffices to show that the part of E in any such subinterval has
Hausdorff dimension zero. In particular, then we have

C ´ CU ´ max
0�k�K

sup
n�1

max
i;j2¹1;:::;mºn

k�
.k/
i;j kL1.U / <1;

noting that the contraction parameters �j .u/ are uniformly bounded away from 1

on U . We observe that E �
T
">0E", where

E"´
[
N2N

\
j�N

[
i;j2¹1;:::;mºnj

i¤j

¹u 2 U W j�i;j.u/j < "
nj º µ

[
N2N

EN" ;

and .nj /j2N is the sequence from the definition of transversality. So, it suffices to
argue that dimBE

N
" ! 0 uniformly in N 2 N as " ! 0, where dimB denotes the

lower box dimension, an upper bound for Hausdorff dimension. Fix N 2 N, pick
0 < " < c, and then choose j � N so large that "nj < cnj =2K . By [3, Lemma 5.8],
the sets

E i;j
" ´ ¹u 2 U W j�i;j.u/j < "

nj º; i; j 2 ¹1; : : : ; mºnj ; i ¤ j;

can be covered, each, by .C c�2nj intervals of length at most

2."nj =cnj /1=2
K

µ rnj :
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Given that there are only m2nj options for the pair i; j 2 ¹1; : : : ; mºnj , this implies
that

N.EN" ; rnj / � N

 [
i;j2¹1;:::;mºnj

i¤j

E i;j
" ; rnj

!
.C

�m
c

�2nj
;

where N.A; r/ is the least number of intervals of length r > 0 needed to cover a
bounded set A � R. It follows that

dimBE
N
" � lim inf

j!1

logN.EN" ; rnj /
� log rnj

� lim inf
j!1

O.C/C 2nj log.m=c/
.nj =2K/ log.c="/ � log 2

:

The right-hand side evidently tends to 0 as "! 0, with rate of convergence independ-
ent of N 2 N, as claimed. The proof is complete.
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