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Schrödinger equations
defined by a class of self-similar measures

Sze-Man Ngai and Wei Tang

Abstract. We study linear and non-linear Schrödinger equations defined by fractal measures.
Under the assumption that the Laplacian has compact resolvent, we prove that there exists a
unique weak solution for a linear Schrödinger equation, and then use it to obtain the existence
and uniqueness of a weak solution of a non-linear Schrödinger equation. We prove that for
a class of self-similar measures on R with overlaps, the linear Schrödinger equations can be
discretized so that the finite element method can be applied to obtain approximate solutions.
We also prove that the numerical solutions converge to the actual solution and obtain the rate of
convergence.

1. Introduction

The Schrödinger operator in the fractal setting has been studied by a number of
authors. Strichartz [29] studied the essential spectrum on the product of two cop-
ies of an infinite blowup of the Sierpiński gasket. Chen et al. ([8]) studied the spectral
asymptotics of the eigenvalues and Bohr’s formula on several unbounded fractals.
For Schrödinger operators defined by measures, typically self-similar measures, the
authors of [25] studied the bound states and Bohr’s formula. It has become more and
more apparent to physicists that spacetime exhibits fractal behaviour. A multifractal
spacetime model has recently been proposed by a physicist, Calcagni [2–4]. This is
obtained by replacing the standard Lebesgue measure on a spacetime manifold with a
Borel measure which is in general not absolutely continuous with respect to Lebesgue
measure. Also, solution of the Schrödinger equation could play an important role in
studying related mathematical problems. In fact, Hu and Zähle obtained heat kernel
upper bound in metric measure spaces by using the solution of the Schrödinger equa-
tion [18]. Motivated by these, we study the Schrödinger equation defined by a fractal
measure.
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Let U � Rd , d � 1 be a bounded open set, and let � be a positive finite Borel
measure with supp.�/ � U and �.U / > 0. Let L2.U;�/´ L2.U;�;C/ denote the
space of measurable functions uWU ! C such that kuk� <1 with

kuk�´
�Z
U

juj2 d�
�1=2

:

LetH 1.U /´H 1.U;C/ be the Sobolev space of complex-valued functions equipped
with the norm

kukH1.U /´
�Z
U

juj2 dx C

Z
U

jruj2 dx
�1=2

:

Let H 1
0 .U /´ H 1

0 .U;C/ denote the completion of C1c .U / in the H 1-norm, where
C1c .U / is the space of all complex-valued C1.U / functions with compact support
in U . Throughout this paper, we regard L2.U; �/ and H 1

0 .U / as real Hilbert spaces
with the scalar product

.u; v/�´ Re
Z
U

uv d� and .u; v/H1
0
.U /´ Re

Z
U

ru � rv dx;

respectively (see, e.g., [5,6]), where Re.z/ denotes the real part of a complex number
z and v denotes the conjugate function of v. It is known (see, e.g., [17]) that � defines
a Dirichlet Laplace operator�D� (or simply��), if the following Poincaré inequality
for a measure (PI) holds: There exists some constant C > 0 such thatZ

U

juj2 d� � C

Z
U

jruj2 dx for all u 2 C1c .U / (1.1)

(see, e.g., [17, 22, 23]). Recall that the lower L1-dimension of � is defined as

dim1.�/´ lim
ı!0C

ln
�
supx �.Bı.x//

�
ln ı

;

where the supremum is taken over all x 2 supp.�/. We remark that if dim1.�/ >
d � 2, then inequality (1.1) holds (see [17]). Moreover, one can prove by using [33,
Proposition 2.1] that d � 2 � dimH.�/´ inf¹dimH.E/W�.Rd n E/ D 0º � d . In
particular, if d D 1, (PI) holds for any positive finite Borel measure �, and thus�� is
well defined. For self-similar measures satisfying the open set condition, some con-
ditions equivalent to (PI) can be found in [17]. Validity of more general Poincaré
type inequalities for measures, under various conditions, have been studied extens-
ively in the literature (see, e.g., [1, 15] and the references therein). In particular, it is
shown in [1] that if � is a bounded W 1;p-extension domain on Rd , S � � is closed,
p 2 .1; d/, d � p < ı < d , and � is ı-Ahlfors regular on S , then

kTrf kLq.S;d�/ � Ckf kW 1;p.�/
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for every f 2 W 1;p.�/ and p � q � pı=.d � p/. This implies, in particular, that if
d � 3, p D q D 2, and d � 2 < ı < d , then the Poincaré inequality stated in (1.1)
holds.

The main purpose of this paper is to study the following linear Schrödinger equa-
tion defined by the Dirichlet Laplacian ��:8̂̂<̂

:̂
i@tuC��u D f .t/ on U � Œ0; T �;

u D 0 on @U � Œ0; T �;

u D g on U � ¹t D 0º;

(1.2)

where u´ u.t/ is a Hilbert space valued function of t . We study the solution of
equation (1.2) both theoretically and numerically.

We will describe the construction of the Laplacian ��� in (1.2), as well as the
associated non-negative bilinear form .E;domE/ (see (2.1)) in Section 2.1. To give an
explicit formula for the weak solution of the Schrödinger equation (1.2), we assume
that ��� has compact resolvent. Then there exists a complete orthonormal basis
¹'nº

1
nD1 of L2.U; �/ such that ���'n D �n'n for all n � 1, where the eigenvalues

satisfy 0 < �1 � � � � � �n � �nC1 � � � � with limn!1 �n D 1. Let H be a Hilbert
space with norm k � kH , we say that a map F WH ! H is Lipschitz continuous on H

if there exists some constant C > 0 such that kF.u/ � F.v/kH � Cku � vkH for
all u; v 2 H . See Definition 2.2 and (3.2) for the definitions of L2.Œ0; T �; X/ and
E˛.U; �/, respectively, where X is a Banach space and ˛ � 0. Using Theorem 3.1,
we obtain our first main theorem.

Theorem 1.1. Let U � Rd , d � 1, be a bounded open set, and let � be a posit-
ive finite Borel measure with supp.�/ � U and �.U / > 0. Assume that � satisfies
(PI), ��� has compact resolvent, and F.�/ is Lipschitz continuous on dom E . If
g D

P1
nD1 bn'n 2 dom E , then the following non-linear Schrödinger equation8̂̂<̂

:̂
i@tuC��u D F.u/ on U � Œ0; T �;

u D 0 on @U � Œ0; T �;

u D g on U � ¹t D 0º

(1.3)

has a unique weak solution u.t/ 2 L1.Œ0; T �; dom E/ satisfying

u.t/ D

1X
nD1

bne
�i�nt'n � i

1X
nD1

�Z t

0

e�i�n.t��/
�
F.u.�//; 'n

�
�
d�
�
'n:

Moreover, under the additional assumption that F.�/ is Lipschitz continuous on
E˛.U; �/ and g 2 E˛.U; �/, where ˛ � 2, we have u.t/ 2 L1.Œ0; T �; E˛.U; �//
and @tu.t/ 2 L1.Œ0; T �; E˛�2.U; �//.



S.-M. Ngai and W. Tang 212

As an example, let F.u/ D sin u � mu, m � 0 (see, e.g., [16]). Then F.�/ is
Lipschitz continuous on dom E .

We call a closed and connected �-measurable subset I of U a cell (in U ) if
�.I / > 0. Clearly, each connected component of U is a cell. We say that two cells
I , J in U are measure disjoint with respect to � if �.I \ J / D 0. Let I � U be a
cell. We call a finite family P of measure disjoint cells a �-partition of I if J � I for
all J 2 P, and �.I / D

P
J2P�.J /. A sequence of �-partitions .Pk/k�1 is refining if

for any J1 2 Pk and any J2 2 PkC1, either J2 � J1 or they are measure disjoint, i.e.,
each member of PkC1 is a subset of some member of Pk . Throughout this paper, jEj
denotes the diameter of a subset E � Rd .

In order to discretize (1.2) and obtain numerical approximations of the weak
solution, we will often impose the following additional conditions on �: (1) � is
a continuous (i.e., atomless) measure on R; (2) there exists a sequence of refining
�-partitions .Pk/k�1 of U such that for any k � 2 and any I 2 Pk , there exist simil-
itudes .�I;J /J2P1 of the form �I;J .x/ D rI;Jx C bI;J and constants .cI;J /J2P1 such
that �I;J .J / � I , and

�jI D
X
J2P1

cI;J � �jJ ı �
�1
I;J : (1.4)

Formula (1.4) implies that the�measure of each cell in the partition can be computed,
making it possible to discretize the Schrödinger equation (1.2).

Let U D .a; b/ and f .x; t/ � 0 in (1.2). Multiplying the first equation in (1.2) by
v 2 dom E , integrating both sides over Œa; b� with respect to d�, and then taking the
real parts, we obtain

Re
Z b

a

i@tu.x; t/v.x/ d� D Re
Z b

a

@xu.x; t/v
0.x/ dx; (1.5)

where @xu.x; t/ and @tu.x; t/ are the partial derivatives of u with respect to x and
t , respectively. Let u1.x; t/ and u2.x; t/ be the real and imaginary parts of u.x; t/,
respectively. Then (1.5) can be rewritten asZ b

a

@tu2.x; t/v.x/ d� D �

Z b

a

@xu1.x; t/v
0.x/ dx (1.6)

and Z b

a

@tu1.x; t/v.x/ d� D

Z b

a

@xu2.x; t/v
0.x/ dx (1.7)

for all real-valued functions v 2 dom E .

Theorem 1.2. Let � be a continuous positive finite Borel measure on R such that
supp.�/� Œa;b�. Assume that there exists a sequence of refining�-partitions .Pk/k�1
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of Œa; b� satisfying (1.4), and g 2 dom E . Then equations (1.6) and (1.7) can be dis-
cretized, and the finite element method can be applied to yield a system of first-order
ordinary differential equations (4.7). If, in addition,

R
I
xj d�, I 2 P1, j D 0; 1; 2,

can be evaluated explicitly, then the unique solution of equation (4.7) can be solved
numerically.

We are mainly interested in fractal measures. Let F be a non-empty compact
subset of Rd . Throughout this paper, an iterated function system (IFS) refers to a
finite family of contractive similitudes ¹Sj º

q
jD1 defined on F , i.e.,

Sj .x/ D �jx C bj ; j D 1; : : : ; q;

where 0 < �j < 1, and bj 2 Rd . It is well known that for each IFS ¹Sj º
q
jD1, there

exists a unique non-empty compact subset K � F , called the self-similar set, such
that

K D

q[
jD1

Sj .K/I

moreover, associated to each set of probability weights ¹wj º
q
jD1 (that is, wj > 0 andPq

jD1wj D 1), there is a unique probability measure, called the self-similar measure,
satisfying the following identity

� D

qX
jD1

wj� ı S
�1
j

(see [12, 19]). An IFS ¹Sj º
q
jD1 is said to satisfy the open set condition (OSC) if there

exists a non-empty bounded open set O such that
S
k Sk.O/ � O and Sk.O/ \

Sj .O/ D ; for all k ¤ j . IFSs that do not satisfy (OSC), as well as all associated
self-similar measures, are said to have overlaps.

It is worth pointing out that for general self-similar measures with overlaps, it does
not seem possible to discretize the Schrödinger equations (1.2) in the way described in
the paper, and thus it is not clear how numerical approximations of the weak solution
can be obtained. Theorem 1.2 provides a framework under which discretization can
be performed.

Based on Theorem 1.2, we solve the linear Schrödinger equation (1.2) numerically
for three different one-dimensional self-similar measures with overlaps, namely, the
infinite Bernoulli convolution associated with the golden ratio, the three-fold convolu-
tion of the Cantor measure, and a class of self-similar measures that we call essentially
of finite type (EFT) (see [26]). These measures share the common property that the
support can be partitioned into a sequence of arbitrarily small intervals whose meas-
ures can be computed explicitly.
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The following theorem shows that the approximate solutions converge to the ac-
tual weak solution, and we also obtain a rate of convergence. See Section 2.1 and
Definition 2.2 for the definitions of k � kdom E and k � k2;dom E , respectively.

Theorem 1.3. Assume the hypotheses of Theorem 1.2, let U D .a; b/, f � 0 and
g D

P1
nD1 bn'n 2 E3..a; b/; �/ in equation (1.2), and fix t 2 Œ0; T �. If there exist

constants r 2 .0; 1/ and c > 0 satisfying max¹jI jW I 2 Pkº � crk for all k � 1,
then the approximate solutions um obtained by the finite element method converge
in L2..a; b/; �/ to the actual weak solution u. Moreover,

kum � uk� � 2
�p
cT k@tuk2;dom E C kukdom E

�
rm=2:

The rest of this paper is organized as follows. Section 2 summarizes some nota-
tion, definitions and results that will be needed throughout the paper. We give the
existence and uniqueness of solution of the Schrödinger equation (1.2) in Section 3.
Section 4 is devoted to the proof of Theorem 1.2. In Section 5, we apply Theorem 1.2
to three different self-similar measures with overlaps. The proof of Theorem 1.3 is
given in Section 6.

2. Preliminaries

In this section, we summarize some notation, definitions and facts that will be used
throughout the rest of the paper. For a Banach space X , we denote its topological
dual by X 0.

Definition 2.1. Let X be a Banach space, uW .a; b/ � R! X , and t0 2 .a; b/. Then
u is said to be differentiable at t0 in the norm k � kX if there exists v0 2 X such that

lim
h!0

u.t0 C h/ � u.t0/
h

� v0


X
D 0:

v0 is called the derivative of u at t0, and we write

v0 D @tu.t0/ D lim
h!0

u.t0 C h/ � u.t0/

h
:

Higher-order derivatives are defined similarly.

Note that if u is differentiable at t0 in the norm k � kX , then it is continuous at t0
in the norm k � kX .

Definition 2.2. Let X be a separable Banach space with norm k � kX . Denote by
Lp.Œ0; T �; X/ the space of all measurable functions uW Œ0; T �! X satisfying

(1) kukLp.Œ0;T �;X/´
�R T
0
ku.t/k

p
X dt

�1=p
<1, if 1 � p <1, and
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(2) kukL1.Œ0;T �;X/´ ess sup0�t�T ku.t/kX <1, if p D1.

If the interval Œ0; T � is understood, we will abbreviate these norms as kukp;X and
kuk1;X , respectively.

Remark 2.1. For each 1 � p � 1, Lp.Œ0; T �; X/ is a Banach space; furthermore,
Lp2.Œ0; T �;X/ � Lp1.Œ0; T �;X/ if 1 � p1 � p2 � 1. Let X be a separable Banach
space with inner product .�; �/X . If .X; .�; �/X / is a separable Hilbert space, then
L2.Œ0; T �; X/ is a Hilbert space with the inner product

.u; v/L2.Œ0;T �;X/´

Z T

0

.u.t/; v.t//X dt:

Definition 2.3. Let X be a Banach space. We define C.Œ0; T �; X/ to be the vector
space of all continuous functions uW Œ0; T �! X such that

kukC.Œ0;T �;X/´ max
0�t�T

kukX <1:

2.1. Dirichlet Laplacian defined by a measure

Let U � Rd , d � 1, be a bounded open set and � be a positive finite Borel measure
with supp.�/ � U and �.U / > 0. We assume that (PI) holds. In [17], it is shown that
(PI) implies that � defines a Dirichlet operator in

L2.U; �;R/´
°
uWU ! RW

Z
U

juj2 d� <1
±
:

Similarly, we can define a Dirichlet operator in L2.U;�/´ L2.U;�;C/, as follows.
(PI) implies each equivalence class u 2 H 1

0 .U / contains a unique (in the L2.U; �/
sense) member Ou that belongs to L2.U; �/ and satisfies both conditions below.

(1) There exists a sequence ¹unº in C1c .U / such that un ! Ou in H 1
0 .U / and

un ! Ou in L2.U; �/;

(2) Ou satisfies inequality (1.1).

We call Ou the L2.U;�/-representative of u. Define a mapping �WH 1
0 .U /! L2.U;�/

by �.u/D Ou. � is a bounded linear operator, but not necessarily injective. Consider the
subspace N of H 1

0 .U / defined as N ´
®
u 2 H 1

0 .U /W k�.u/k� D 0
¯
. Now let N ?

be the orthogonal complement of N in H 1
0 .U /. Then �WN ? ! L2.U; �/ is inject-

ive. Unless explicitly stated otherwise, we will denote the L2.U; �/-representative Ou
simply by u.

Consider the non-negative bilinear form E.�; �/ in L2.U; �/ defined by

E.u; v/´ Re
Z
U

ru � rv dx (2.1)
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with domain dom E D N ?, or more precisely, �.N ?/. (PI) implies that .E;dom E/ is
a closed quadratic form in L2.U; �/. Hence, there exists a non-negative self-adjoint
operator A in L2.U; �/ such that

E.u; v/ D
�
A1=2u;A1=2v

�
�

and dom E D dom.A1=2/

(see, e.g., [13, Theorem 1.3.1]). We observe that the domain of A is a subset of
dom E � H 1

0 .U /. We write �D� D �A and call it the (Dirichlet) Laplacian with
respect to �. If no confusion is possible, we denote �D� simply by ��.

Let u2 domE . Then u2 dom�� if and only if there exists a unique f 2L2.U;�/
such that E.u; v/ D .f; v/� for all v 2 dom E . In this case, ���u D f . Throughout
this paper, we let

dom E ´ N ? and k � kdom E ´
p

E.�; �/:

3. Extrapolation and weak solutions

In this section we consider the existence and uniqueness of weak solution of equa-
tion (1.2). Let U � Rd , d � 1, be a bounded open set and � be a positive finite Borel
measure with supp.�/� U and �.U / > 0. We assume that (PI) holds. Let .E;domE/

be defined as in Section 2.1, and ��� be the Dirichlet operator with respect to �. By
identifying L2.U; �/ with .L2.U; �//0, we have the following Gelfand triple (see,
e.g., [14, 32]):

dom E ,! L2.U; �/ Š .L2.U; �//0 ,! .dom E/0;

where all the embeddings are continuous, injective, and dense. Here, the embedding
L2.U; �/ ,! .dom E/0 is given by

w 2 L2.U; �/ 7! .w; �/� 2 .L
2.U; �//0 � .dom E/0:

It follows that for any u 2 dom E , there exists a unique w 2 .dom E/0 such that

E.u; v/ D hw; vi for all v 2 dom E;

where throughout this paper, h�; �i denotes the pairing between .dom E/0 and dom E .
On the other hand, we note that the form E is coercive by (PI). Hence, by the Lax–
Milgram theorem, for every w 2 .dom E/0, there exists a unique u 2 dom E such that

E.u; v/ D hw; vi for all v 2 dom E:

Thus, we can define a bijective operator L from dom E to .dom E/0 by

Lu D w; (3.1)
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and equip .dom E/0 with the scalar product

.u; v/.dom E/0 ´ E.L�1u;L�1v/:

Note that domLD dom E and hw;vi D .w; v/� for all w 2 .dom E/0 and v 2 dom E .
It follows that L is an extension of ���. Throughout this paper, we equip .dom E/0

with the norm

kwk.dom E/0 ´ kL
�1wkdom E for w 2 .dom E/0:

We remark that this norm is the standard norm in .dom E/0, which is equivalent to the
general norm in .dom E/0 (see, e.g., [6]).

Definition 3.1. Use the notation above. Let 0 < T <1. Assume that we are given
f 2 L1.Œ0; T �; dom E/ and g 2 dom E . A function u2L1.Œ0; T �; dom E/ with
@tu2L

1.Œ0; T �; .dom E/0/ is a weak solution of the Schrödinger equation (1.2) if
the following conditions are satisfied.

(1) hi@tu; vi � E.u; v/ D .f .t/; v/� for each v 2 dom E and Lebesgue a.e.
t 2 Œ0; T �;

(2) u.0/ D g.

Remark 3.1. Here we comment on Definition 3.1.

(a) The boundary condition uj@U D 0 in (1.2) is included in the assumption
u.t/ 2 dom E . If u 2 L1.Œ0; T �; dom E/ and @tu 2 L1.Œ0; T �; .dom E/0/,
then u 2 C.Œ0; T �; L2.U; �//, and thus the initial condition u.0/ D g makes
sense.

(b) Condition (1) is equivalent to

i@tu � Lu D f .t/ in .dom E/0 for Lebesgue a.e. t 2 Œ0; T �;

where L is defined as in (3.1).

We now assume that ��� has compact resolvent and let ¹'nº1nD1 be an orthonor-
mal basis of L2.U;�/ such that ���'n D �n'n for all n � 1, where 0 < �1 � � � � �
�n � �nC1 � � � � and limn!1 �n D 1. Some sufficient conditions for ��� to have
compact resolvent can be found in [10, 17, 22]. In particular, if n D 1, then ��� has
compact resolvent for any such �. We remark that

domE D

²1X
nD1

an'nW

1X
nD1

janj
2�n<1

³
and dom��D

²1X
nD1

an'nW

1X
nD1

janj
2�2n<1

³
:

Since dom E ,! L2.U; �/ ,! .dom E/0, ¹'nº1nD1 is also a complete orthogonal
set of dom E . Note that w D

P1
nD1 an'n 2 .dom E/0 if and only if there exists a
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unique L�1w D
P1
nD1 bn'n 2 dom E such that E.L�1w; v/ D hw; vi for all v 2

dom E . Substituting v D 'n for n � 1, we get an D hw;'ni D E.L�1w;'n/D bn�n,
and so w D

P1
nD1 an'n 2 .dom E/0 if and only if kwk2

.dom E/0
D kL�1wk2dom E

DP1
nD1 a

2
n=�n <1. Therefore, for every u D

P1
nD1 an'n 2 dom E , we have Lu DP1

nD1 an�n'n 2 .dom E/0, and

.dom E/0 D

² 1X
nD1

an'nW

1X
nD1

a2n=�n <1

³
:

In order to state the regularity result of equation (1.2), we introduce the spaces
E˛.U; �/, ˛ � 0, to which the initial data g and f belong. For ˛ � 0, define

E˛.U; �/´

² 1X
nD1

bn'nW

1X
nD1

jbnj
2�˛n <1

³
(3.2)

with the norm k � kE˛.U;�/ given by

kukE˛.U;�/´

� 1X
nD1

jbnj
2�˛n

�1=2
for u D

1X
nD1

bn'n:

We remark that .E˛.U;�/; k � kE˛.U;�// is a Hilbert space (see, e.g., [16, Proposition
2.4]) and thatE˛2.U;�/�E˛1.U;�/ if ˛1 � ˛2. In particular,E0.U;�/DL2.U;�/,
E1.U; �/ D dom E , and E2.U; �/ D dom��.

Let

g D

1X
nD1

bn'n 2 L
2.U; �/ and f .t/ D

1X
nD1

ˇn.t/'n 2 L
2.Œ0; T �; L2.U; �//;

where ˇn.t/ D .f .t/; 'n/� for n � 1. Define

u.t/´

1X
nD1

bne
�i�nt'n � i

1X
nD1

�Z t

0

e�i�n.t��/ˇn.�/ d�
�
'n

and

K.t/´�i

1X
nD1

bn�ne
�i�nt'n � if .t/�

1X
nD1

�n

�Z t

0

e�i�n.t��/ˇn.�/ d�
�
'n: (3.3)

Theorem 3.1. Let U � Rd , d � 1, be a bounded open set, and let � be a positive
finite Borel measure with supp.�/ � U and �.U / > 0. Assume that � satisfies (PI)
and ��� has compact resolvent. Let g, f .t/, u.t/ and K.t/ be defined as above. If
g 2 dom E and f .t/ 2 L1.Œ0; T �; dom E/, then the following hold.

(a) @tu D K.t/ in .dom E/0 for Lebesgue a.e. t 2 Œ0; T �.
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(b) u.t/ is the unique weak solution of the Schrödinger equation (1.2).

(c) If, in addition, g 2 E˛.U; �/ and f 2 L1.Œ0; T �; E˛.U; �//, where ˛ � 2,
then u.t/ 2 L1.Œ0; T �; E˛.U; �// and @tu.t/ 2 L1.Œ0; T �; E˛�2.U; �//.

(d) If f � 0, then

ku.t/k� D kgk� and E.u; u/ D E.g; g/ for all t 2 Œ0; T �:

Proof. Since g 2 domE , f .t/ 2L1.Œ0;T �;domE/, we have u.t/ 2 C.Œ0;T �;domE/

and K.t/ 2 L1.Œ0; T �; .dom E/0/. In fact, using Hölder’s inequality, we obtain

ku.t/k2C.Œ0;T �;dom E/ D max
t2Œ0;T �

ku.t/k2dom E

� 2

� 1X
nD1

jbnj
2�n C T

1X
nD1

�n

Z T

0

ˇ̌
ˇn.�/

ˇ̌2
d�

�
D 2

�
kgk2dom E C T kf .t/k

2
2;dom E

�
<1; (3.4)

and

kK.t/k2
1;.dom E/0 D ess sup

t2Œ0;T �

kK.t/k2.dom E/0

� 3

� 1X
nD1

jbnj
2�n C kf .t/k

2
1;.dom E/0

C ess sup
t2Œ0;T �

1X
nD1

�n

ˇ̌̌ Z t

0

e�i�n.t��/ˇn.�/ d�
ˇ̌̌2�

� 3
�
kgk2dom E C kf .t/k

2
1;.dom E/0 C T kf .t/k

2
2;dom E

�
<1: (3.5)

(a) Let ı satisfy 0 < 2ı < T and write u.t/µ
P1
nD1 cn.t/'n. For all t 2 Œı; T � ı�

and each h 2 .�ı; ı/, we have

u.t C h/ � u.t/ D

1X
nD1

bn
�
e�i�n.tCh/ � e�i�nt

�
'n

� i

1X
nD1

�Z tCh

t

e�i�n.tCh��/ˇn.�/ d�
�
'n

� i

1X
nD1

�Z t

0

�
e�i�n.tCh��/ � e�i�n.t��/

�
ˇn.�/ d�

�
'n:
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It follows that

jcn.t C h/ � cn.t/j
2

D

ˇ̌̌
bn
�
e�i�n.tCh/ � e�i�nt

�
� i

Z tCh

t

e�i�n.tCh��/ˇn.�/ d�

� i

Z t

0

�
e�i�n.tCh��/ � e�i�n.t��/

�
ˇn.�/ d�

ˇ̌̌2
� 3

�
jbnj

2
�
ˇ̌
e�i�n.tCh/ � e�i�nt

ˇ̌2
C
ˇ̌Z tCh

t

e�i�n.tCh��/ˇn.�/ d�
ˇ̌2

C

ˇ̌̌Z t

0

�
e�i�n.tCh��/ � e�i�n.t��/

�
ˇn.�/ d�

ˇ̌̌2�
� 3

�
h2jbnj

2�2n C h

Z tCh

t

jˇn.�/j
2 d�

C T

Z T

0

ˇ̌
e�i�n.tCh��/ � e�i�n.t��/

ˇ̌2
� jˇn.�/j

2 d�
�

� 3h2
�
jbnj

2�2n C ess sup
t2Œ0;T �

jˇn.t/j
2
C T �2n

Z T

0

jˇn.�/j
2 d�

�
µ 3h2�nMn; (3.6)

where the fact je�i� � 1j � � for � > 0 is used in the second and third inequalities.
We remark that

P1
nD1Mn D kgk

2
dom E

C kf .t/k2
1;.dom E/0

C T kf .t/k2
2;dom E

< 1.
Write K.t/µ

P1
nD1 dn.t/'n. Using (3.3) and Hölder’s inequality, we have

jdn.t/j
2
D

ˇ̌̌
�ibn�ne

�i�nt � iˇn.t/ � �n

Z t

0

e�i�n.t��/ˇn.�/ d�
ˇ̌̌2

� 3
�
jbnj

2�2n C ess sup
t2Œ0;T �

jˇn.t/j
2
C T �2n

Z T

0

jˇn.�/j
2 d�

�
D 3�nMn:

(3.7)

Note that the classical derivative c0n.t/D dn.t/ for Lebesgue a.e. t 2 Œ0; T �. It follows
that

sn.t; h/´
cn.t C h/ � cn.t/

h
� dn.t/! 0 as h! 0 (3.8)

for Lebesgue a.e. t 2 Œı; T � ı� and h 2 .�ı; ı/. Combining (3.6) and (3.7), we have
for Lebesgue a.e. t 2 Œı; T � ı� and each h 2 .�ı; ı/,

jsn.t; h/j
2

�n
�

2

�n

�
jcn.t C h/ � cn.t/j

2

h2
C jdn.t/j

2

�
� 12Mn: (3.9)

Using (3.9) and Weierstrass’ M-test, we see the series
P1
nD1 jsn.t; h/j

2=�n converges
uniformly for all h 2 .�ı; ı/ and Lebesgue a.e. t 2 Œı; T � ı�. Thus, for Lebesgue a.e.
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t 2 Œı; T � ı�,

lim
h!0

u.t C h/ � u.t/
h

�K.t/
2
.dom E/0

D lim
h!0

1X
nD1

jsn.t; h/j
2=�n

D

1X
nD1

lim
h!0
jsn.t; h/j

2=�n D 0;

where (3.8) is used in the last equality. It follows that @tu.t/ D K.t/ in .dom E/0 for
Lebesgue a.e. t 2 Œı; T � ı�. The desired result follows by letting ı ! 0C.

(b) We first note that u.0/ D g and

Lu D

1X
nD1

bn�ne
�i�nt'n � i

1X
nD1

�n

�Z t

0

e�i�n.t��/ˇn.�/ d�

�
'n; (3.10)

where L is defined as in (3.1). Combining (3.10) and part (a), we have that
i@tu.t/ � Lu.t/ D f .t/ on .dom E/0 for Lebesgue a.e. t 2 Œ0; T �. It follows from
Remark 3.1, that u.t/ is a weak solution of (1.2). To prove uniqueness, it suffices to
show that the only solution of (1.2) with f .t/ � g � 0 is u.t/ � 0. Let u be a weak
solution of (1.2) with f .t/ � g � 0. To verify this, note that

hi@tu;�iui C E.u;�iu/ D 0 for Lebesgue a.e. t 2 Œ0; T �:

Since E.u;�iu/ D Re
R
U
ru � r.�iu/ dx D 0, u.0/ D g � 0, and

hi@tu;�iui D
1

2

d

dt
ku.t/k2�;

we obtain ku.t/k2� D 0 for Lebesgue a.e. t 2 Œ0; T �. It follows that u D 0, which
proves (b).

(c) As in (3.4) and (3.5), we can deduce from the additional assumptions that

ku.t/k2C.Œ0;T �;E˛.U;�// D max
t2Œ0;T �

ku.t/k2E˛.U;�/

� 2

� 1X
nD1

jbnj
2�˛n C

1X
nD1

�Z T

0

jˇn.�/j d�
�2
�˛n

�
� 2

� 1X
nD1

jbnj
2�˛n C T

1X
nD1

�˛n

Z T

0

ˇ̌
ˇn.�/

ˇ̌2
d�

�
D 2

�
kgk2E˛.U;�/ C T kf .t/k

2
2;E˛.U;�/

�
<1
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and

k@tu.t/k
2
1;E˛�2.U;�/

D ess sup
t2Œ0;T �

k@tu.t/k
2
E˛�2.U;�/

� 3

 
1X
nD1

jbnj
2�˛n C kf .t/k

2
1;E˛�2.U;�/

C ess sup
t2Œ0;T �

1X
nD1

�˛n

ˇ̌̌̌Z t

0

e�i�n.t��/ˇn.�/ d�

ˇ̌̌̌2!
� 3

�
kgk2E˛.U;�/Ckf .t/k

2
1;.dom E/0CT kf .t/k

2
2;E˛.U;�/

�
<1:

Hence, the assertions hold.

(d) Since f � 0, we have by parts (a) and (b) that

u.t/ D

1X
nD1

bne
�i�nt'n and @tu.t/ D �i

1X
nD1

bn�ne
�i�nt'n:

It follows that

ku.t/k2�D

1X
nD1

jbnj
2
Dkgk2� and E.u;u/D

1X
nD1

jbnj
2�nDE.g;g/ for all t 2 Œ0;T �:

Now we prove Theorem 1.1. The main ingredients are Banach’s fixed point the-
orem and Theorem 3.1.

Proof of Theorem 1.1. Given a function u 2 L1.Œ0; T �;dom E/, set h.t/´ F.u.t//.
By the assumption on F.�/, we see that h 2 L1.Œ0; T �; dom E/. Consequently, The-
orem 3.1 ensures that the linear Schrödinger equation8̂<̂

:
i@tw C��w D h on U � Œ0; T �;

w D 0 on @U � Œ0; T �;

w D g on U � ¹t D 0º

(3.11)

has a unique weak solution w.t/ 2 L1.Œ0; T �; dom E/ given by

w.t/´

1X
nD1

˛ne
�i�nt'n � i

1X
nD1

�Z t

0

e�i�n.t��/
�
h.�/; 'n

�
�
d�

�
'n: (3.12)

Define AWL1.Œ0; T �; dom E/! L1.Œ0; T �; dom E/ by AŒu� D w.
We now claim that if T > 0 is small enough, thenA is a contraction mapping from

L1.Œ0; T �; dom E/ to L1.Œ0; T �; dom E/. Let u.t/; v.t/ 2 L1.Œ0; T �; dom E/. Since
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F.�/ is Lipschitz continuous on dom E , F.u.t// � F.v.t// 2 L1.Œ0; T �; dom E/. It
follows thatF.u.t// � F.v.t//2dom E

D

1X
nD1

ˇ̌�
F.u.t// � F.v.t//; 'n

�
�

2�n (3.13)

for Lebesgue a.e. t 2 Œ0; T �. We first obtain from (3.12) and (3.13) that for Lebesgue
a.e. 0 � t � T ,AŒu.t/� � AŒv.t/�2dom E

D

1X
nD1

�n

ˇ̌̌̌Z t

0

e�i�n.t��/
�
F.u.�// � F.v.�//; 'n

�
�
d�

ˇ̌̌̌2
� t

Z t

0

1X
nD1

�n
ˇ̌�
F.u.�// � F.v.�//; 'n

�
�

ˇ̌2
d�

D t

Z t

0

kF.u.�// � F.v.�//k2dom E d� (by (3.13))

� CT

Z t

0

ku.�/ � v.�/k2dom E d� � CT
2
ku � vk2

1;dom E ;

where the assumption that F.�/ is Lipschitz is used in the second inequality. It follows
that AŒu� � AŒv�

1;dom E
�
p
CT ku � vk1;dom E :

Thus, AŒ�� is a strict contraction, provided T > 0 is so small that
p
CT D  < 1.

Given any T > 0, we select T1 > 0 so small that
p
CT1 < 1. We can then apply

Banach’s fixed point theorem to obtain a weak solution u of the non-linear Schrö-
dinger equation (1.3) that exists on the time interval Œ0; T1�. Since u.t/ 2 dom E for
a.e. 0 � t � T1, we can find some T2 2 .T1=2; T1/ such that u.T2/ 2 dom E . We can
then repeat the argument above to extend our solution u to the time interval ŒT2; T3�
such that u.T3/ 2 dom E and T3 2 Œ2T2; T1 C T2�. Repeating this process for a finite
number of steps, we obtain a weak solution that exists on the entire interval Œ0; T �.

To prove the uniqueness, suppose that u and v are two weak solutions of the non-
linear Schrödinger equation (1.3). Then we have AŒu� D u and AŒv� D v. It follows
from the uniqueness of the fixed point of A that u.t/ D v.t/ in L1.Œ0; T1�; dom E/.
Combining this argument with the extension argument above shows that u.t/ D v.t/
in L1.Œ0; T �; dom E/.

Assume that F.�/ is Lipschitz continuous on E˛.U; �/ and g 2 E˛.U; �/ for
some ˛ � 2. Then we have that h.t/ D F.u.t// 2 L1.Œ0; T �; E˛�2.U; �// for all
u.t/ 2 L1.Œ0; T �;E˛.U;�//. For any u.t/ 2 L1.Œ0; T �;E˛.U;�//, Theorem 3.1 (c)
implies that equation (3.11) has a unique solution w.t/ 2 L1.Œ0; T �; E˛.U;�// with
@tw.t/ 2 L

1.Œ0;T �;E˛�2.U;�// satisfying (3.12). Similarly, we can show that there
exists a unique u.t/ 2 L1.Œ0; T �; E˛.U; �// with @tu.t/ 2 L1.Œ0; T �; E˛�2.U; �//
such that AŒu� D u, which completes the proof.
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4. The finite element method for linear Schrödinger equations

In this section, we let U D .a; b/ and f � 0 in equation (1.2), and use the finite
element method to solve the homogeneous Schrödinger equation (1.2). Let � be a
continuous positive finite Borel measure on R with supp.�/ � Œa; b�. Assume that
there exists a sequence of refining �-partitions .Pm/m�1 D

�
¹Im;`º

N.m/

`D0

�
m�1

satisfy-
ing (1.4) in Section 1. Without loss of generality, we can write Im;` D Œxm;`; ym;`�

with

a D xm;0 < ym;0 � xm;1 < ym;1 � � � � � xm;N.m/ < ym;N.m/ D b

for all m � 1 and 0 � ` � N.m/. Moreover, we have

Œa; b� n
�N.m/[
`D0

Im;`

�
D

N.m/�1[
`D0

.ym;`; xm;`C1/ � Œa; b� n supp.�/ for all m � 1:

In particular, if supp.�/ D Œa; b�, then ym;` D xm;`C1 for all m � 1 and ` D 0; : : : ;
N.m/ � 1.

We first note that equations (1.6) and (1.7) are derived from the integral form of
the homogeneous Schrödinger equation (1.2) with U D .a; b/. Now, we apply the
finite element method to approximate the solution u.x; t/ satisfying (1.6) and (1.7) by

um.x; t/´

N.m/X
jD0

.w1;j .t/C iw2;j .t//�j .x/; (4.1)

where, for j D 0; 1; : : : ; N.m/, w1;j .t/´ wm1;j .t/ and w2;j .t/´ wm2;j .t/ are real-
valued functions to be determined, and �j .x/´ �m;j .x/ are the standard piecewise
linear finite element basis functions (also called tent functions) defined by

�j .x/´ �m;j .x/

D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

x�xm;j�1
ym;j�1�xm;j�1

if x 2 Im;j�1; j D 1; 2; : : : ; N.m/;

1 if x 2 Œym;j�1; xm;j �; j D 1; 2; : : : ; N.m/�1;
x�ym;j

xm;j�ym;j
if x 2 Im;j ; j D 0; 1; : : : ; N.m/ � 1;

0 otherwise:

(4.2)

Let um1 .x; t/ and um2 .x; t/ be the real and complex parts of um.x; t/, respectively.
We require um.x; t/ to satisfy equations (1.6) and (1.7) as follows:Z b

a

@tu
m
2 .x; t/�j .x/ d� D �

Z b

a

@xu
m
1 .x; t/�

0
j .x/ dx (4.3)
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and Z b

a

@tu
m
1 .x; t/�j .x/ d� D

Z b

a

@xu
m
2 .x; t/�

0
j .x/ dx: (4.4)

Moreover, we require um.x; t/ to satisfy the Dirichlet boundary condition um.a; t/D
um.b; t/ D 0. We note that �`.a/ D �`.xm;0/ D 0 and �j .b/ D �j .ym;N.m// D 0 for
all ` D 1; : : : ; N.m/ and j D 0; 1; : : : ; N.m/ � 1. Thus, wk;0.t/ D wk;N.m/.t/ D 0
for all t 2 Œ0; T � and k D 1; 2. Using this and (4.1), we can express (4.3) and (4.4) in
matrix form as

yMyw0´

"
M 0
0 M

#"
w1
w2

#0
D �

"
0 �K
K 0

#"
w1
w2

#
µ �yKyw; (4.5)

where MDM.m/ D .M
.m/

j̀
/ and KD K.m/ D .K

.m/

j̀
/ are, respectively, the mass and

stiffness matrices, defined by

M
.m/

j̀
´

Z b

a

�`.x/�j .x/ d� and K
.m/

j̀
´

Z b

a

�0`.x/�
0
j .x/ dx

for all 1 � `; j � N.m/ � 1, and

w1.t/Dw1;m.t/´

264 w1;1.t/
:::

w1;N.m/�1.t/

375 and w2.t/Dw2;m.t/´

264 w2;1.t/
:::

w2;N.m/�1.t/

375 :
This gives us a system of first-order linear ODEs with constant coefficients. To solve
it, we need to impose initial conditions. Based on the initial condition u.x; 0/ D
g.x/ 2 dom E , we require um.x; t/ to satisfy the initial condition um.xm;j ; 0/ D
g.xm;j / for all 1 � j � N.m/ � 1. This leads to the initial condition

yw.0/ D ywm.0/´
�
g1.xm;1/; : : : ; g1.xm;N.m/�1/; g2.xm;1/; : : : ; g2.xm;N.m/�1/

�T
;

(4.6)
where g1.x/ and g2.x/ are the real and complex parts of g.x/, respectively. Con-
sequently, we obtain the linear system

yMyw0 D �yKyw; t > 0; and yw.0/ D ywm;0: (4.7)

It is well known that K is invertible (see, e.g., [31]). Here, M depends on the meas-
ure � and its �-partitions .Pm/m�1 D .¹Im;`º

N.m/

`D0
/m�1. We prove below that M is

invertible. It follows that yM is also invertible. Thus, the system in (4.7) has a unique
solution. More precisely, the following proposition holds.
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Proposition 4.1. Let � be a continuous positive finite Borel measure on R such that
supp.�/ � Œa; b�. Assume moreover, that there exists a sequence of refining �-parti-
tions .Pm/m�1 D .¹Im;`º

N.m/

`D0
/m�1 of Œa; b�. Then the mass matrix M defined as

above is positive definite. Consequently, (4.7) has a unique solution yw.t/. Further-
more, w1j .t/ 2 C.0; T / and w2j .t/ 2 C.0; T / for j D 1; : : : ; N.m/ � 1.

Proof. Suppose, on the contrary, that M were not positive definite. Then there would
exist some c D .c1; : : : ; cN.m/�1/ 2 RN.m/�1 n ¹0º such that cTMc � 0. Let v DPN.m/�1

`D1
c`�m;`.x/, where each �m;`.x/ is defined by (4.2). Then cTMcD hMv; vi.

Since hMv; vi D kvk2�, we have kvk2� � 0. On the other hand, since �.Im;`/ > 0

for all 0 � ` � N.m/, the definition of �m;`.x/ implies that k�m;`k2� > 0 for all
0 � ` � N.m/, and thus kvk2� > 0, a contradiction. Hence, M is positive definite. The
continuity of w1j .t/ and w2j .t/ follows from standard theory.

Proof of Theorem 1.2. The assertions hold by combining the derivations above and
Proposition 4.1.

As in the classical case, the matrix K can be computed directly. In order to com-
pute M, we use the assumption that .Pm/m�1 D

�
¹Im;`º

N.m/

`D0

�
m�1

satisfies (1.4). In
the following, the constants cI;J and similitudes �I;J come from (1.4). From the defin-
ition of the �m;j and (1.4), for 1 � ` � N.m/ � 1, we have

M
.m/

`;`
D .ym;`�1 � xm;`�1/

�2
�

X
J2P1

cIm;`�1;J

Z
J

.�Im;`�1;J .x/ � xm;`�1/
2 d�

C .xm;` � ym;`/
�2
�

X
J2P1

cIm;`;J

Z
J

.�Im;`;J .x/ � ym;`/
2 d�:

For 2 � ` � N.m/ � 1, we obtain

M
.m/

`;`�1
D �.ym;`�1 � xm;`�1/

�2

�

X
J2P1

cIm;`�1;J

Z
J

.�Im;`�1;J .x/ � xm;`�1/.�Im;`�1;J .x/ � ym;`�1/ d�;

and M .m/

`�1;`
DM

.m/

`;`�1
. For the special case supp.�/ D Œa; b�, the authors have given

the explicit formula for M in [31].
Define

Jk;j ´

Z
I1;j

xk d�; k D 0; 1; 2; and j D 0; : : : ; N.1/:

Since each �I;J is of the form �I;J .x/ D rI;Jx C bI;J , we see that the matrix M is
completely determined by the integrals Jk;j , where k D 0; 1; 2 and j D 0; : : : ;N.1/.
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Hereafter, we assume that the constant Jk;j can be evaluated explicitly for k D 0; 1; 2
and j D 0; : : : ; N.1/.

We now use the central difference method to solve equation (4.7). Let tn D n�t
and ywn ´ yw.tn/ for all n � 0 and some �t > 0. We approximate the derivative as

yw0.tn/ �
ywnC1 � ywn

�t
and yw.tn/ �

ywnC1 C ywn
2

: (4.8)

Since M and K are positive definite, so is 2 yM C .�t/yK for all �t > 0. Substitut-
ing (4.8) into (4.7), we can rewrite (4.7) as8̂<̂

:
ywnC1 D .2 yMC .�t/yK/�1.2 yM � .�t/yK/ywn; n D 0; 1; 2; : : : ;

yw0 D yw.t0/ D yw.0/;
tn D n�t:

(4.9)

To solve this system, fix �t and substitute the initial condition yw0 from (4.6) into the
first equation in (4.9) to get yw1. Then ywnC1 can be computed recursively.

5. Fractal measures defined by iterated function systems

In this section, we solve the homogeneous Schrödinger equation numerically for three
different measures. These measures are defined by IFSs with overlaps and satisfy (1.4)
(see [31, Proposition 5.1 and Section 5.3]). In the first and second cases, the meas-
ures satisfy a family of second-order self-similar identities. These identities were first
introduced by Strichartz et al. [30] to approximate the density of the infinite Bernoulli
convolution associated with the golden ratio.

5.1. Infinite Bernoulli convolution associated with the golden ratio

We consider the infinite Bernoulli convolution associated with the golden ratio:

� D
1

2
� ı S�11 C

1

2
� ı S�12 ;

where

S1.x/ D �x; S2.x/ D �x C .1 � �/; � D

p
5 � 1

2
:

We note that supp.�/ D Œ0; 1�. Strichartz et al. [30] showed that � satisfies a family
of second-order identities with respect to the following auxiliary IFS:

T1.x/´ �2x; T2.x/´ �3x C �2; T3.x/´ �2x C �:
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Moreover, � satisfies the following second-order identities [20]. For each Borel set
A � Œ0; 1�, 264�.T1TjA/�.T2TjA/

�.T3TjA/

375 DMj
264�.T1A/�.T2A/

�.T3A/

375 ; j D 1; 2; 3;

where

M1 D
1

8

2642 0 0

1 2 0

0 4 0

375 ; M2 D
1

4

2640 1 0

0 1 0

0 1 0

375 ; M3 D
1

8

2640 4 0

0 2 1

0 0 2

375 :
These identities can be used to compute the measure of suitable subintervals of Œ0; 1�.
Define

Pk ´
°
Tj .Œ0; 1�/W j 2 ¹1; 2; 3º

k
±

for k � 1: (5.1)

It follows from [31, Proposition 5.1] that .Pk/k�1 is a sequence of refining �-parti-
tions of Œ0; 1� satisfying (1.4). Moreover, the integrals

R 1
0
xk d� ı Tj , k D 0; 1; 2,

j D 1; 2; 3 have been calculated in [7, Section 4.2]. We remark thatZ 1

0

x d� ı T3 D
1

2.3C �/
and

Z 1

0

x2 d� ı T3 D
2 � �

2.�C 8/
I

the calculations of these integrals in [7, 9] are incorrect. Let .a; b/ D .0; 1/, and thus
we can calculate the entries of the mass matrix M and solve the linear system (4.5).
The result is shown in Figure 1. Here we choose g to have small support so that it
models the Dirac delta function.

5.2. Three-fold convolution of the Cantor measure

We consider the following three-fold convolution of the Cantor measure studied in
[20, 24, 26]. The three-fold convolution of the Cantor measure � is the self-similar
measure defined by the following IFS with overlaps (see [24]):

Sj .x/ D
1

3
x C

2

3
.j � 1/; j D 1; 2; 3; 4;

together with probability weights ¹1=8; 3=8; 3=8; 1=8º. That is,

� D
1

8
� ı S�11 C

3

8
� ı S�12 C

3

8
� ı S�13 C

1

8
� ı S�14 :

Note that supp.�/D Œ0; 3�. It is shown in [20] that � satisfies a family of second-order
identities with respect to the following auxiliary IFS:

T1.x/ D
1

3
x; T2.x/ D

1

3
x C 1; T3.x/ D

1

3
x C 2:



Schrödinger equations defined by a class of self-similar measures 229
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Figure 1. Figure for numerical solutions of the homogeneous Schrödinger equation (1.2)
with U D .0; 1/ and � being the infinite Bernoulli convolution associated with the golden
ratio. .Pk/k�1 is defined by (5.1). The initial condition is given by the function g.x/ ´
sin.20�.x � 0:475//C i sin.20�.x � 0:475// for x 2 .0:475; 0:525/, and g.x/´ 0 otherwise.
Here �t D 0:0001. From (a) to (f), the values of t are 0:0, 0:001, 0:002, 0:004, 0:008, 0:02,
respectively.
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In fact, for each Borel A � Œ0; 3�,264�.T1TjA/�.T2TjA/

�.T3TjA/

375 DMj
264�.T1A/�.T2A/

�.T3A/

375 ; j D1; 2; 3;

where M1, M2, M3 are given by

M1 D
1

8

2641 0 0

0 3 0

1 0 3

375 ; M2 D
1

8

2640 1 0

3 0 3

0 1 0

375 ; M3 D
1

8

2643 0 1

0 3 0

0 0 1

375 :
Define

Pk ´
®
Tj .Œ0; 3�/W j 2 ¹1; 2; 3º

k
¯

for k � 1: (5.2)

It follows from [31, Proposition 5.1] that .Pk/k�1 is a sequence of refining �-parti-
tions of Œ0; 3� satisfying (1.4). The integrals

R 3
0
xk d� ı Tj , k D 0; 1; 2, j D 1; 2; 3

have been calculated in [7, Section 4.3]. Let .a; b/D .0; 3/, and thus we can calculate
the entries of the mass matrix M and solve the linear system (4.5). The result is shown
in Figure 2.

5.3. A class of self-similar measures that are essentially of finite type

In this subsection, we consider the following family of IFSs:

S1.x/ D r1x; S2.x/ D r2x C r1.1 � r2/; S3.x/ D r2x C 1 � r2; (5.3)

where the contraction ratios r1; r2 2 .0; 1/ satisfy the inequality r1 C 2r2 � r1r2 � 1,
i.e., S2.1/ � S3.0/. The Hausdorff dimension of the self-similar sets is computed
in [21]. The multifractal properties and spectral dimension of the corresponding self-
similar measures are recently studied in [11, 26, 27].

Let � be a self-similar measure defined by an IFS in (5.3) and a probability vector
.pi /

3
iD1. Let I1;1 ´ S1.Œ0; 1�/[S2.Œ0; 1�/ and I1;0 ´ S3.Œ0; 1�/. In order to define

a sequence of refining �-partitions of Œ0; 1�, we adopt the definition of an island
from [26]. Let Mk ´ ¹1; 2; 3º

k for k � 1 and M0 ´ ;. A closed subset I � Œ0; 1�
is called a level-k island with respect to ¹Mkº if the following conditions hold.

(1) There exists a finite sequence of indexes i 0; i 1; : : : ; i n in Mk with the
properties Sik .0; 1/ \ SikC1.0; 1/ ¤ ; for all k D 0; : : : ; n � 1, and I DSn
kD0 Sik .Œ0; 1�/.

(2) For any j 2Mkn¹i 0; : : : ; i nº and any k2¹0; : : : ;nº, Sj .0; 1/ \ Sik .0; 1/D;.
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Figure 2. Figure for numerical solutions of the homogeneous Schrödinger equation (1.2) with
U D .0; 3/ and � being the three-fold convolution of the Cantor measure. .Pk/k�1 is defined
by (5.2). The initial condition is given by the function g.x/ D sin.20�.x=3 � 0:475// C
i sin.20�.x=3� 0:475//;x 2 .1:425;1:575/, and g.x/D 0 otherwise. Here�t D 0:0001. From
(a) to (f), the values of t are the same as those in Figure 1.
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Intuitively, for each level-k island I , I ı is a connected component of SMk
.0; 1/´S

i2Mk
Si .0; 1/ (see Figure 3). For k � 1, define

Pk ´
®
I W I is a level-k island with respect to ¹Mkº

¯
: (5.4)

It follows from [31, Section 5.3 ] that .Pk/k�1 is a sequence of refining �-partitions
of Œ0; 1� satisfying (1.4).

r0 1
X

k D 1

I1;1
I1;0r r rr r rr r r r r r

k D 2

r r rr r r r rr r rrr r r
r r r r r rr r r r r rk D 3

Figure 3. �-partitions Pk for k D 1; 2; 3, where Pk is defined as in (5.4). Cells that are labeled
consist of line segments enclosed by a box. The figure is drawn with r1 D 1=2 and r2 D 1=3.

For every continuous function ' on Œ0; 1�, we haveZ 1

0

' d� D

3X
iD1

pi

Z 1

0

'.Si .x// d�: (5.5)

Using (5.5) repeatedly, we can obtainZ 1

0

d� D 1;Z 1

0

x d� D
.p2r1 C p3/.1 � r2/

1 � p1r1 � p2r2 � p3r2
;Z 1

0

x2 d� D
2.p3 C p2r1/r2.1 � r2/

R 1
0
x d�C .1 � r2/

2.p3 C p2r
2
1 /

1 � p1r
2
1 � p2r

2
2 � p3r

2
2

:
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Moreover, we can calculate the integrals
R
I1;j

xk d�, j D 0; 1 and k D 0; 1; 2, as
follows:Z

I1;0

d� D p3;Z
I1;0

x d� D r2p3

Z 1

0

x d�C p3.1 � r2/;Z
I1;0

x2 d� D r22p3

Z 1

0

x2 d�C 2p3r2.1 � r2/

Z 1

0

x d�C p3.1 � r2/
2;Z

I1;1

d� D p1 C p2;Z
I1;1

x d� D .p1r1 C r2p2/

Z 1

0

x d�C p2r1.1 � r2/;Z
I1;1

x2 d� D .p1r
2
1 C p2r

2
2 /

Z 1

0

x2 d�C 2p1r1r2.1 � r2/

Z 1

0

x d�C p2r
2
1 .1 � r2/

2:

Let .a; b/ D .0; 1/, and thus we can calculate the entries of the mass matrix M and
solve the linear system (4.5). The results are shown in Figures 4–6. We point out that
in Figure 5, supp.�/ is a proper subset of Œ0; 1�.

6. Convergence of numerical approximations for linear Schrödinger
equations

In this section we prove the convergence of numerical approximations of the homo-
geneous Schrödinger equation (1.2) with U D .a; b/. Some of our results are obtained
by modifying similar ones in [28]. Let � be a positive finite Borel measure on R with
supp.�/ � Œa; b�. In this case, there exists a complete orthonormal basis ¹'nº1nD1 of
L2..a; b/; �/ such that ���'n D �n'n for all n � 1, where the eigenvalues satisfy
0 < �1 � � � � � �n � �nC1 � � � � with limn!1 �n D 1. Assume that there exists
a sequence of refining partitions .Pk/k�1 satisfying (1.4). Let Vm be the set of end-
points of all level-m sub-intervals, and arrange its elements in such a way that Vm D
¹xm;`W ` D 0; : : : ; N.m/º [ ¹ym;`W ` D 0; : : : ; N.m/º with xm;` < ym;`C1 � xm;`C1
for ` D 0; 1; : : : ; N.m/ � 1, xm;0 D a and ym;N.m/ D b. Let Sm be the space of
continuous piecewise linear functions on Œa; b� with nodes Vm, and let

SmD D
®
u 2 SmWu.a/ D u.b/ D 0

¯
be the subspace of Sm consisting of functions satisfying the Dirichlet boundary con-
dition.
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Figure 4. Numerical solutions of the homogeneous Schrödinger equation (1.2) with U D .0; 1/
and � being the self-similar measure defined by the IFS in (5.3) with probability weights p1 D
p2 D p3 D 1=3 and contraction ratios r1 D 1=2 and r2 D 1=3. .Pk/k�1 is defined by (5.4).
The initial condition and the values of �t and t are the same as those in Figure 1.
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Figure 5. Numerical solutions of the homogeneous Schrödinger equation (1.2) with U D .0; 1/
and � being the self-similar measure defined by the IFS in (5.3) with probability weights p1 D
p2 D p3 D 1=3 and contraction ratios r1 D 1=2 and r2 D 1=4. .Pk/k�1 is defined by (5.4).
The initial condition, and the values of �t and t are the same as those in Figure 1. Unlike the
other examples, supp.�/ in this example is a proper subset of .0; 1/.
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Figure 6. Numerical solutions of the homogeneous Schrödinger equation (1.2) with U D .0; 1/
and � being the self-similar measure defined by the IFS in (5.3) with probability weights p1 D
2=3;p2D p3D 1=6 and contraction ratios r1D 1=2 and r2D 1=3. .Pk/k�1 is defined by (5.4).
The initial condition, and the values of �t and t are the same as those in Figure 1.
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We choose the basis of Sm consisting of the tent functions ¹�`º
N.m/

`D0
defined

in (4.2) and choose the basis ¹�`º
N.m/�1

`D1
for SmD . The linear map FmW dom E ! SmD

defined by

Fmv D

N.m/�1X
`D1

v.xm;`/�`.x/; v 2 dom E;

is called the Rayleigh–Ritz projection with respect to Vm. Let

kVmk ´ max
®
jym;` � xm;`jW 0 � ` � N.m/

¯
be the norm of Vm for m � 1.

Lemma 6.1. Form� 1, let Vm and Fm be defined as above. Then for any u 2 dom E ,
Fmu is the component of u in the subspace SmD , u � Fmu vanishes on the boundary
¹a; bº, and

E.u � Fmu; v/ D 0 for all v 2 SmD :

Proof. The proof can be found in [28].

Throughout the rest of this section, let g D
P1
nD1 ˛n'n 2 E3..a; b/; �/, f D 0,

and u be the solution of the corresponding homogeneous Schrödinger equation (1.2).
Then

.i@tu; v/� � E.u; v/ D 0 for all v 2 dom E: (6.1)

By Theorem 3.1 (c), @tu 2 dom E . As in Section 4,

um.x; t/ D

N.m/�1X
jD1

�
w1j .t/C iw2j .t/

�
�j .x/:

Thus, it follows from the derivations in Section 4 that um satisfies

.i@tu
m; vm/� C E.um; vm/ D 0 for all vm 2 SmD ; (6.2)

and um.x; 0/ D
PN.m/�1

`D1
g.xm;`/�`.x/. Finally, define

e.x; t/´ em.x; t/ D Fmu.x; t/ � u
m.x; t/:

Lemma 6.2. Let u; um; e be as above. Then

.@te; e/� D .Fm@tu � @tu; e/�: (6.3)

Proof. We first note that the functions e, @te, and @t .Fmu/ D Fm@tu all belong
to SmD . Thus, substituting ie for v in (6.1) and for vm in (6.2), we get

.i@tu; ie/� C E.u; ie/ D 0 and .i@tu
m; ie/� C E.um; ie/ D 0:
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Subtracting these equations gives .i.@tu � @tum/; ie/� C E.u � um; ie/ D 0. Using
the fact that .i.@tu � @tum/; ie/� D .@tu � @tum; e/�, we get

.@tu � Fm@tuC Fm@tu � @tu
m; e/� C E.u � FmuC Fmu � u

m; ie/ D 0;

which, together with the fact E.u � Fmu; ie/ D 0 (see Lemma 6.1), yields

.Fm@tu � @tu
m; e/� C E.Fmu � u

m; ie/ D .Fm@tu � @tu; e/�:

The desired result follows from the equalities E.Fmu � u
m; ie/ D E.e; ie/ D 0 and

Fm@tu � @tu
m D @te.

Lemma 6.3 ([7, Lemma 5.3]). Assume the hypotheses of Lemma 6.1, and let v 2
dom E . Then

kFmv � vk� � 2kVmk
1=2
kvkdom E for all m � 1:

Theorem 6.4. Assume the hypotheses of Lemma 6.2. If there exist constants r 2 .0; 1/
and c > 0 satisfying max¹jI jW I 2 Pkº � crk for all k � 1, then

kFmu � u
m
k� � 2

p
cT rm=2k@tuk2;dom E :

Proof. The proof is similar to that of [31, Theorem 6.4]; we include it here for com-
pleteness. The left side of (6.3) can be rewritten as

.@te; e/� D
1

2

d

dt

�
kek2�

�
D kek� �

d

dt

�
kek�

�
:

Thus, (6.3) leads to

kek� �
d

dt

�
kek�

�
D .Fm@tu � @tu; e/� � kFm@tu � @tuk� � kek�;

and hence
d

dt

�
kek�

�
� kFm@tu � @tuk�: (6.4)

Integrating the left side of (6.4) with respect to � from 0 to t , we getZ t

0

d

d�

�
ke.�/k�

�
d� D ke.t/k� � ke.0/k� D ke.t/k�; (6.5)

where the fact e.0/DFmu.x; 0/� u
m.x; 0/DFmg.x/�

PN.m/�1

`D1
g.xm;`/�`.x/D0

is used in the last equality. Combining (6.4), (6.5), Lemma 6.3, and Hölder’s inequal-
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ity, we have

ke.t/k� �

Z t

0

kFm@tu.�/ � @tu.�/k� d� (by (6.4) and (6.5))

�

Z T

0

2kVmk
1=2
k@tukdom E d� (by Lemma 6.3)

� 2
p
T kVmk

1=2
k@tuk2;dom E (by Hölder’s inequality)

� 2
p
cT rm=2k@tuk2;dom E ;

proving the desired result.

Proof of Theorem 1.3. Combining Theorem 6.4 and Lemma 6.3, we have, for each
fixed t 2 Œ0; T �,

kum � uk� � ku
m
� Fmuk� C kFmu � uk�

� 2
p
cT rm=2k@tuk2;dom E C 2r

m=2
kukdom E

� 2
�p
cT k@tuk2;dom E C kukdom E

�
rm=2;

which completes the proof.
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