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Metric results for numbers with multiple q-expansions

Simon Baker and Yuru Zou

Abstract. Let M be a positive integer and q 2 .1;M C 1�. A q-expansion of a real number x
is a sequence .ci /D c1c2 � � � with ci 2 ¹0; 1; : : : ;M º such that x D

P1
iD1 ciq

�i . In this paper
we study the set Uj

q consisting of those real numbers having exactly j q-expansions. Our main
result is that for Lebesgue almost every q 2 .qKL;M C 1/, we have

dimH Uj
q � max¹0; 2 dimH Uq � 1º for all j 2 ¹2; 3; : : :º:

Here qKL is the Komornik–Loreti constant. As a corollary of this result, we show that for any
j 2 ¹2; 3; : : :º, the function mapping q to dimH Uj

q is not continuous.

1. Introduction

Fix a positive integer M . For q 2 .1;M C 1� we call a sequence .ci / D c1c2 � � � 2

¹0; 1; : : : ;M ºN a q-expansion of x in base q if

x D �q..ci //´

1X
iD1

ci

qi
:

The study of q-expansions was pioneered in the papers of Rényi [28] and Parry [26].
Since these beginnings, the study of q-expansions has drawn significant attention.
This is in part due to its connections with many other areas of mathematics. These
areas include dynamical systems, fractal geometry, and number theory.

It is well known that for q 2 .1;M C 1�, a number x has an expansion in base q if
and only if x 2 Iq ´ Œ0;M=.q � 1/�. When q DM C 1, then Iq D Œ0; 1� and every
x 2 Œ0; 1� has a unique expansion except for a countable set of exceptions that have
precisely two. When q 2 .1;M C 1/, then the situation is much more interesting. For
instance, for any q 2 .1;M C 1/, it is the case that Lebesgue almost every x 2 Iq has
a continuum of q-expansions [8,29]. For completion, we mention that if q > M C 1,
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then the set of points with an expansion in base q is a fractal set, and if a point has an
expansion in base q, then this sequence must be unique.

For each j 2 N let

Uj
q ´

®
x 2 IqW #��1q .x/ D j

¯
:

Similarly, we let

U@0
q ´

®
x 2 IqW�

�1
q .x/ is an infinite countable set

¯
:

We call U1
q the univoque set. For simplicity, throughout this paper we write Uq

instead of U1
q . We also let Uq ´ ��1q .Uq/ be the corresponding set of sequences.

The sets Uq and Uq were first properly studied by Erdős et al. in the early
1990s [12–14]. Since then these sets have received significant attention, and we now
have a good understanding of their combinatorial, topological and fractal properties.
See for instance the papers [1, 9, 10, 16–18, 20, 23, 24] and the results therein. For
j 2 ¹2; 3; : : :º [ ¹@0º, many important theorems have been obtained on the properties
of the set U

j
q , see [4–6, 13, 19, 25, 30, 31, 33]. However, our knowledge of the set U

j
q

is significantly less than that of the set Uq . This paper is in part motivated by a desire
to address this shortcoming.

Very little is known about the metric properties of U
j
q . A simple bifurcation argu-

ment of Sidorov [30] and the first author [5] implies that

dimH Uj
q � dimH Uq for all q > 1 and j 2 ¹2; 3; : : :º [ ¹@0º: (1)

See also [32, Lemma 5.5, Proposition 5.6]. Here and throughout dimH F denotes
the Hausdorff dimension of a set F . When q is such that dimH Uq D 0, then (1)
immediately implies that

dimH Uj
q D dimH Uq for all j 2 ¹2; 3; : : :º [ ¹@0º: (2)

It was shown in [10, 16, 23, 24] that dimH Uq D 0 for all q 2 .1; qKL�, where
qKL is the Komornik–Loreti constant (see Section 2 for more details). Therefore, (2)
holds for all q 2 .1; qKL�. On the other hand, when q DM C 1, U2

q is countable and
Uq D Œ0; 1� nU2

q , so dimH U2
q D 0 < 1 D dimH Uq . When q > M C 1, because

every expansion is unique, we have 1 > dimH Uq > dimH U
j
q D 0. Therefore, (2)

fails for every q � M C 1. Because of these observations, it is natural to restrict our
attention to studying the metric properties of U

j
q for q in the interval .qKL;M C 1/.

Recently Sidorov [30] showed that if M D 1 and q � 1:83929 is the Tribonacci
number, i.e., the positive root of the equation x3 D x2 C x C 1, then dimH U

j
q D

dimH Uq for all j 2 ¹2; 3; : : :º. Motivated by Sidorov’s work, the second author and
her coauthors proved in [32] that there exist infinitely many q 2 .qKL; M C 1/ such
that dimH U

j
q D dimH Uq for all j 2 ¹2; 3; : : :º. In this paper we prove that for
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a typical q 2 .qKL; M C 1/ property (2) does not hold. In particular, we show the
following statement.

Theorem 1. For Lebesgue almost every q 2 .qKL;M C 1/ we have

dimH Uj
q � max¹0; 2 dimH Uq � 1º for all j 2 ¹2; 3; : : :º:

For any q 2 .1;M C 1/ it is the case that dimH Uq < 1. Therefore, Theorem 1
implies that dimH U

j
q < dimH Uq for Lebesgue almost every q 2 .qKL; M C 1/.

Notice that as well as establishing that dimH U
j
q < dimH Uq holds almost every-

where in .qKL; M C 1/, Theorem 1 also provides a lower bound for the difference
between these quantities. We remark that our methods do not imply a version of The-
orem 1 for U

@0
q . This is because if x 2 U

@0
q , then there does not necessarily exist

.ci / 2 �
�1
q .x/ and n > 1, such that �q..cnCi // 2 U2

q .
The following theorem provides information on when U

j
q is empty.

Theorem 2. Let

O ´
®
q 2 .qKL;M C 1/W dimH Uq < 1=2

¯
:

Then for Lebesgue almost every q 2 O we have U
j
q D ; for any j 2 ¹2; 3; : : :º.

The following corollary is a consequence of Theorem 1 and the results from [32]
mentioned above.

Corollary 3. For any j 2 ¹2; 3; : : :º, the function f W .qKL;M C 1/! Œ0; 1� given by
f .q/ D dimH U

j
q is not continuous.

Corollary 3 is contrary to the case when j D 1, for which it is known that the
function mapping q to dimH Uq is continuous, see [2, 20].

The rest of the paper is arranged as follows. In Section 2 we recall some relevant
definitions and results from expansions in non-integer bases. In Section 3 we prove a
number of technical results that will assist in our proof of Theorems 1 and 2. In Sec-
tion 4 we prove Theorems 1 and 2.

2. Preliminaries

Fix a positive integer M . We will denote an element of ¹0; : : : ; M ºN by .ci / or
c1c2 : : : . We call a finite string of digits w D c1 � � � cn with ci 2 ¹0; 1; : : : ; M º a
word. For convenience, we let ¹0; : : : ; M º0 denote the set consisting of the empty
word. Given two finite words w D c1 � � � cn and v D d1 � � � dm, we denote by wv D
c1 � � � cnd1 � � � dm their concatenation. Accordingly, for k 2 N and a finite word w,
we denote by wk or .w/k the concatenation of w with itself k times, and by w1 or
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.w/1 the concatenation of w with itself infinitely many times. For a sequence .ci /
we denote by .ci / D .M � c1/.M � c2/ � � � its reflection.

We will use the lexicographic ordering on sequences. If .ci / and .di / are two
sequences, then we write .ci / � .di / if there exists k 2 N such that ci D di for i D
1; : : : ; k � 1 and ck < dk . Similarly, we write .ci /� .di / if .ci /� .di / or .ci /D .di /.
We also write .di / � .ci / if .ci / � .di /, and .di / � .ci / if .ci / � .di /.

For any fixed base q 2 .1;M C 1�, every x 2 Iq has a lexicographically largest
expansion b.x; q/ D .bi / obtained by the greedy algorithm, and a lexicographically
largest infinite expansion a.x; q/ D .ai /; see [3, 11]. Such expansions are called the
greedy and quasi-greedy expansions of x in base q, respectively. A sequence .ci / is
called finite if it ends with an infinite string of zeros, and it is called infinite otherwise.
The case x D 1 is particularly important. In this special case we introduce the simpler
notation ˛.q/´ a.1; q/ D .˛i /.

We recall from [21,22] that there exists a smallest base qKL 2 .1;M C 1/ (depend-
ing onM ) for which x D 1 has a unique expansion. This number is called the Komor-
nik–Loreti constant and is defined using the classical Thue–Morse sequence .�i /1iD0.

˛.qKL/´

´
.k C �i /

1
iD1 if M D 2k C 1;

.k C �i � �i�1/
1
iD1 if M D 2k;

(3)

where .�i /1iD1 D 1101 0011 � � � denotes the truncated Thue–Morse sequence. Then
the sequence ˛.qKL/ begins with´

.k C 1/.k C 1/k.k C 1/kk.k C 1/.k C 1/ � � � if M D 2k C 1;

.k C 1/k.k � 1/.k C 1/.k � 1/k.k C 1/k � � � if M D 2k:
(4)

The following lexicographic characterisation of the quasi-greedy and greedy ex-
pansions was given in [3].

Lemma 4. The following statements are true:

(i) The map q 7! ˛.q/ is a strictly increasing bijection between the interval
.1;M C 1� and the set of infinite sequences .˛i / satisfying the lexicographic
inequalities

.˛nCi / � .˛i / for all n � 0:

(ii) For a fixed q 2 .1; M C 1�, the map x 7! a.x; q/ is a strictly increasing
bijection between the interval .0;M=.q � 1/� and the infinite sequences .ai /
satisfying the lexicographic inequalities

.anCi / � ˛.q/ whenever an < M:
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(iii) For a fixed q 2 .1; M C 1�, the map x 7! b.x; q/ is a strictly increasing
bijection between the interval Œ0;M=.q � 1/� and the sequences .bi / satis-
fying the lexicographic inequalities

.bnCi / � ˛.q/ whenever bn < M:

Let

V ´
®
q 2 .1;M C 1�W˛.q/ � ˛iC1˛iC2 � � � � ˛.q/ for all i � 0

¯
:

The set V has zero Lebesgue measure, see [10]. For eachM 2N we define the gener-
alised golden ratio qGR to be the unique q 2 .1;M C 1/ for which .0;M=.q � 1// \
Uq ¤ ; for q > qGR and .0;M=.q � 1//\Uq D ; for q < qGR. In [4] it was shown
that for each M 2 N a generalised golden ratio exists, and is given by the following
formula:

qGR D

´
k C 1 if M D 2kI
kC1C

p
k2C6kC5
2

if M D 2k C 1:

Moreover, qGR is the smallest element of V [11] and M C 1 is the largest element
of V . By [11, Theorem 1.3], we have

ŒqGR;M C 1� n V D .qGR;M C 1/ n V D
[
.ql ; qr/;

where the union on the right-hand side is pairwise disjoint and countable. The open
intervals .ql ; qr/ are referred to as the basic intervals of ŒqGR;M C 1� n V . The fol-
lowing property of basic intervals was established in [10].

Lemma 5. Let .ql ;qr/ be a basic interval. For any q1;q22.ql ;qr �we haveUq1
DUq2

.

We now recall some technical results on U
j
q . The following lemma follows from

[6, Lemma 1.6]. We remark that this lemma is phrased in the case when M D 1, but
the same argument applies for arbitrary M .

Lemma 6. Let 1 < q < M C 1 and x 2U
j
q for some j � 3. Then there exists .ci / a

q-expansion of x and an integer k > 0 such that �q..ckCi // 2 U2
q .

Lemma 6 implies the following statement.

Lemma 7. For any 1 < q < M C 1 and j � 3, we have

dimH Uj
q � dimH U2

q:

The subsequent lemma follows from results proved in [4]. See the discussion after
Lemma 2.8 in this paper.
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Lemma 8. Assume x D �q..ci // 2 Uq � Iq .

(i) c1 D 0 if and only if x 2 Œ0; 1=q/.

(ii) For i D 1; : : : ;M � 1, c1 D i if and only if x 2
�
.i�1/.q�1/CM

q2�q
; iC1
q

�
.

(iii) c1 DM if and only if x 2
�
.M�1/.q�1/CM

q2�q
; M
q�1

�
.

With Lemma 8 in mind, we define the switch region as follows:

Sq ´

M[
iD1

�
i

q
;
.i � 1/.q � 1/CM

q2 � q

�
:

Note that Sq is the complement to the intervals listed in items (i), (ii), and (iii) in
Lemma 8. The following properties of the switch region were established in [4].

Lemma 9. Let q 2 .qGR;M C 1�. Then the following statements are true:

(i) Let x 2 Iq n Uq . Then there exist .ai /, .bi / 2 ¹0; : : : ; M ºN such that
�q..ai // D �q..bi // D x and a1 ¤ b1 if and only if x 2 Sq .

(ii) Let k2¹1; : : : ;M º and x2Iq nUq . Then there exist .ai /; .bi /2¹0; : : : ;M ºN

such that a1 D k, b1 D k � 1 and �q..ai // D �q..bi // D x if and only if
x 2

�
k
q
; .k�1/.q�1/CM

q2�q

�
.

(iii) If i ¤ j , then
�
i
q
; .i�1/.q�1/CM

q2�q

�
\
�
j
q
; .j�1/.q�1/CM

q2�q

�
D ;.

Lemma 9 implies the useful fact that if x 2 Iq and there exist sequences
.ai /; .bi / 2 ¹0; : : : ; M º

N such that �q..ai // D �q..bi // D x and a1 ¤ b1, then a1
and b1 are successive digits in ¹0; : : : ;M º, and if .ci / is another sequence such that
�q..ci // D x, then either c1 D a1 or c1 D b1.

3. Properties of U2
q

In this section we prove some properties of the set U2
q and associated power series.

Lemma 10. Let q 2 .qGR;M C 1�. Then x 2U2
q if and only if there exist .ai /; .bi / 2

Uq , a finite word w 2
S1
nD0¹0; 1; : : : ;M º

n and 0 � m < M such that

x D �q.wm.ai // D �q.w.mC 1/.bi // (5)

and
�q.wjC1 : : : wnm.ai // … Sq for all 0 � j < n: (6)

Proof. Let x 2 Iq and suppose that (5) and (6) hold for some .ai /; .bi / 2 Uq . Then
(5) implies that x has at least two different q-expansions, which are wm.ai / and
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w.mC 1/.bi /. Furthermore, Lemma 9, (6), and the fact that .ai /; .bi / 2 Uq imply
that these are the only q-expansions. Therefore, x 2 U2

q .
Now we prove the necessity. Take x 2 U2

q having exactly two q-expansions .ci /
and .di /. Let n� 1 be the least integer such that c1 � � �cn�1D d1 � � �dn�1 and cn¤ dn.
Without loss of generality we assume cn < dn. By Lemma 9 we know that there exists
0 � m < M such that

�q..cn�1Ci //D�q..dn�1Ci //2

�
mC 1

q
;
m.q � 1/CM

q2 � q

�
and cnDm;dnDmC 1:

Moreover, because x 2U2
q , we know that .cnCi /; .dnCi /2Uq . TakingwD c1 � � �cn�1,

.ai /D .cnCi /, and .bi /D .dnCi /, we see that xD �q.wm.ai //D �q.w.mC 1/.bi //,
and so (5) holds. To see that (6) holds, we remark that if it did not hold, then Lemma 9
would imply that we have a choice of digit before the n-th position. This would imply
that x has at least three different q-expansions and so would contradict that x 2 U2

q .
Therefore, (6) holds.

As we will see later on in the paper, two sequences .ai /; .bi / 2 Uq give rise to a
point with exactly two q-expansions if and only if q is the zero of some appropriate
power series with coefficients given by .ai / and .bi /. We now set out to show that
such a power series has at most one zero in .qKL; M C 1/. To prove this, we will
make use of ideas from [27].

Fix M � 1. We consider functions of the form

g.x/ D 1C

1X
iD1

bix
i with bi 2 ¹0;˙1; : : : ;˙M º: (7)

We say that the ı-transversality condition holds on the interval I for some ı > 0 if for
any x 2 I and g of the form (7), whenever g.x/ < ı we have g0.x/ < �ı. A power
series h is called a .�/-function if for some n � 1 and an 2 Œ�M;M� we have

h.x/ D 1 �M

n�1X
iD1

xi C anx
n
CM

1X
iDnC1

xi :

The following lemma connects .�/-functions and ı-transversality.

Lemma 11. If h is a .�/-function such that

h.xM / > ı and h0.xM / < �ı

for some xM 2 .0; 1/ and ı 2 .0; 1/, then the ı-transversality condition holds on the
interval Œ0; xM �.

Proof. The case where M D 1 was proved in [27]. The case where M > 1 is proved
by an analogous argument.
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The following lemma will allow us to establish ı-transversality within the interval
Œ0; q�1KL � for some ı > 0.

Lemma 12. For each M 2 N let the .�/-function h and xM be defined as follows.

• Assume M is of the form M D 2k C 1. Let

h.x/ D

8̂̂<̂
:̂
1 � x � x2 � x3 C 0:5x4 C

P1
iD5 xi when k D 0;

1 � 3x � 0:5x2 C 3
P1
iD3 x

i when k D 1;

1 � .k C 3/x C .2k C 1/
P1
iD2 x

i when k � 2:

Let

xM D

8̂̂<̂
:̂
2�2=3 when k D 0;
�.kC1/C

p
.kC1/2C4.kC1/

2.kC1/
when 1 � k < 3;

1
.kC1/

when k � 3:

• Assume M is of the form M D 2k. Let

h.x/ D

´
1 � 2x � 0:5x2 C 2

P1
iD3 x

i when k D 1;

1 � .k C 2/x C 2k
P1
iD2 x

i when k � 2:

Let

xM D

8<: �.kC1/C
p
.kC1/2C4k

2k
when 1 � k < 3;

1
.kC1/

when k � 3:

Then h.xM / > 0 and h0.xM / < 0 and Œ1=.M C 1/; 1=qKL� � Œ0; xM �.

Proof. We begin by remarking that the fact h.xM / > 0 and h0.xM / < 0 was estab-
lished whenM D 1 in [27]. Moreover, Œ1=2; 1=qKL�� Œ0; 2

�2=3� follows from the fact
qKL � 1:787 : : :.

We now prove that x�1M < qKL for all M � 2. This implies our final assertion
Œ1=.M C 1/; 1=qKL� � Œ0; xM � for the remaining values of M . When M D 3 or 5, it
follows from the definition that xM is the solution to .k C 1/x2 C .k C 1/x � 1 D
0 for the appropriate value of k. Using this algebraic relation it can be shown that
the quasi-greedy expansion of 1 in base x�1M is ..k C 1/k/1. Similarly, it can be
shown when M D 2 or M D 4 that the quasi-greedy expansion of 1 in base x�1M is
..k C 1/.k � 1//1 for the appropriate value of k. For the remaining values of M the
quasi-greedy expansion of 1 in base x�1M is k1. By inspection of (4), we see that the
quasi-greedy expansion of 1 in base x�1M is lexicographically smaller than ˛.qKL/ for
any M 2 N. Lemma 4 (i) then implies x�1M < qKL.
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It remains to show that h.xM / > 0 and h0.xM / < 0. For M D 2; 3; 4; 5 this can
be checked by a direct computation. For M D 2k C 1 and k � 3, we have

h0.x/ D �3 � k C .2k C 1/
2x � x2

.x � 1/2
:

Substituting in our value for xM , we have

h.xM / D
1

k C k2
and h0.xM / D 1C

1

k2
C
4

k
� k:

We always have h.xM / > 0, and it is simple to show that h0.xM / < 0 for all k � 3.
For M D 2k and k � 3 we have

h0.x/ D �2 � k C 2k
2x � x2

.x � 1/2
:

Substituting in our value of xM , we have

h.xM / D
1

k C 1
and h0.xM / D 2C

2

k
� k:

We always have h.xM / > 0, and it is easy to show that h0.xM / < 0 for all k � 3.

Proposition 13. Let .ai /; .bi / 2 ¹0; 1; : : : ; M ºN . Then there exists at most one q 2
ŒqKL;M C 1� such that �q..ai // D �q..bi //C 1.

Proof. The equation �q..ai // D �q..bi // C 1 can be rewritten in the form of
0 D 1C

P1
iD1.bi � ai /=q

i . The zeros of this function can be mapped to the zeros of
0 D 1C

P1
iD1.bi � ai /x

i by taking this reciprocal. Importantly, this map is a bijec-
tion. By Lemmas 11 and 12 we know that the ı-transversality condition holds on the
interval Œ1=.M C 1/;q�1KL � for ıDmin¹h.xM /=2; jh0.xM /j=2º. Therefore, there exists
at most one x� 2 Œ1=.M C 1/; q�1KL � such that 0 D 1C

P1
iD1.bi � ai /.x

�/i . Using
the bijection mentioned above, we may conclude our result.

4. Proofs of Theorems 1 and 2

The main focus of this section will be to prove Theorem 1. We will then explain
how the argument can be adapted to prove Theorem 2. We start by remarking that by
Lemma 7 we know that for any q > 1 we have

dimH Uj
q � dimH U2

q

for every j 2 ¹3; 4; : : :º. Because of this lemma, to prove Theorem 1, it suffices to
show that for Lebesgue almost every q 2 .qKL;M C 1/ we have

dimH U2
q � max¹2 dimH Uq � 1; 0º:
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Moreover, to prove this statement, it is sufficient to show that for any " > 0

dimH U2
q � max¹2 dimH Uq � 1C "; 0º (8)

for Lebesgue almost every q 2 .qKL;M C 1/. We now fix such an " > 0 and set out
to show that this is the case.

To prove (8) holds for Lebesgue almost every q 2 .qKL; M C 1/, we will make
use of a countable collection of closed intervals ¹Jiº that are chosen in a way that
depends upon " and M . These intervals satisfy the following properties:

(J-i) ¹Jiº cover .qKL;M C 1/ up to a set of Lebesgue measure zero.

(J-ii) Each Ji is small in a way that depends upon " and M .

(J-iii) Each Ji is contained in a basic interval .ql ; qr/ of ŒqGR;M C 1� n V .

(J-iv) For any Ji , if q1; q2 2 Ji , then j dimH Uq1
� dimH Uq2

j < "=2.

Item (J-ii) is important because we will soon show that if the ¹Jiº are chosen to be
small in an appropriate way that depends upon " andM , then certain useful properties
hold. We remark that item (J-iii) in the above, together with Lemma 5, implies that
for any q1; q2 2 Ji � .ql ; qr/, we have

Uq1
D Uq2

:

Item (J-iv) follows from the continuity of the function which maps q to dimH Uq .
This fact was established in [2, 20].

From the collection ¹Jiº we now make an arbitrary choice that we will denote
by J . For the rest of the proof of Theorem 1 the interval J is fixed. By property
(J-i) of the collection ¹Jiº, and the arbitrariness of J , to prove (8) holds for Lebesgue
almost every q 2 .qKL; M C 1/, it is sufficient to show that it holds for Lebesgue
almost every q 2 J . To do this, we need to introduce two new sets and a function
between them.

Let q0´ min¹qW q 2 J º. To each 0 � m < M we assign

Am´
[

a;b2Uq0
9q�2J W�q� .a/D�q� .b/C1

®�
�q0

.ma/; �q0
..mC 1/b/

�¯
and

A´

M�1[
mD0

Am: (9)

We emphasise that for each m, the terms in the union in Am are elements of R2 and
not intervals. Even thoughA consists of elements of R2 obtained by applying �q0

to a
collection of sequences fromUq0

, becauseUq DUq0
for each q 2 J , the setA, in fact,

contains information about the whole interval J and not just the specific base q0. This
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fact is crucial in our proof. By Proposition 13, we know that if a; b 2 Uq0
are such

that there exists q� 2 J for which �q�.a/ D �q�.b/C 1, then q� is unique. When
such a q� exists, then we will denote it by q�.a; b/.

To each 0 � m < M we assign

Bm´
[

a;b2Uq0
9q�2J W�q� .a/D�q� .b/C1

®
.q�.a; b/; �q�.ma//

¯
and

B ´

M�1[
mD0

Bm:

As above, for each m the terms in the union in Bm are elements of R2 and are not
intervals. We emphasise that both A and B depend upon our choice of interval J .
However, because J is fixed, we suppress this dependence within our notation.

The following lemma connects vertical slices through B with the set U2
q .

Lemma 14. For any q 2 J we have

dimH
�
¹.q; y/Wy 2 Rº \ B

�
D dimH U2

q:

Moreover, if ¹.q; y/Wy 2 Rº \ B D ;, then U2
q D ;.

Proof. Fix q 2 J . We begin by remarking that

¹.q; y/Wy 2 Rº \ B D
M�1[
mD0

[
a;b2Uq0

�q.a/D�q.b/C1

.q; �q.ma//:

Moreover, because q 2 J and Uq0
D Uq for all q 2 J , we in fact have

¹.q; y/Wy 2 Rº \ B D
M�1[
mD0

[
a;b2Uq

�q.a/D�q.b/C1

.q; �q.ma//:

Therefore,
dimH .¹.q; y/Wy 2 Rº \ B/ D dimH Cq; (10)

where

Cq ´

M�1[
mD0

[
a;b2Uq

�q.a/D�q.b/C1

�q.ma/:

If a; b 2 Uq are such that �q.a/D �q.b/C 1, then �q.ma/D �q..mC 1/b/ for each
0 � m < M . Therefore, by Lemma 10 we may conclude that �q.ma/ 2 U2

q for all
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0 � m < M and
dimH Cq � dimH U2

q:

Now we prove that dimH Cq � dimH U2
q . Suppose x 2 U2

q , then by Lemma 10
again, there exists a finite word w 2

S1
nD0¹0; : : : ;M º

n, 0 � m < M , and a; b 2 Uq
such that x D �q.wma/ D �q.w.mC 1/b/. Therefore,

x 2 �q.w0
1/C

1

qn
Cq;

and so

U2
q �

1[
nD0

[
w2¹0;:::;M ºn

�
�q.w0

1/C
1

qn
Cq

�
:

Since U2
q is covered by countably many sets, each of which is an affine image of Cq ,

we conclude that dimH U2
q � dimH Cq . We have shown that dimH U2

q D dimH Cq .
Combining this with (10) we conclude that dimH .¹.q; y/Wy 2 Rº \ B/D dimH U2

q ,
as required.

It remains to verify that if ¹.q; y/W y 2 Rº \ B D ;, then U2
q D ;. Now, if

¹.q; y/Wy 2 Rº \ B D ;, then Cq as defined above is also empty. The fact U2
q is

covered by countably many affine images of Cq holds even if Cq is empty. Therefore,
if ¹.q; y/Wy 2 Rº \ B is empty, then so is U2

q .

What remains of our proof of Theorem 1 focuses on the properties of a map
f WA! B defined below. To make sure this map is well defined, it is necessary to
assume that Ai \Aj D ; for i ¤ j . The following lemma allows us to make such an
assumption.

Lemma 15. The intervals ¹Jiº can be chosen to be sufficiently small such that the set
Ai \ Aj D ; for i ¤ j .

Proof. Consider the interval �
i C 1

q0
;
i.q0 � 1/CM

q20 � q0

�
:

If i ¤ j , then Lemma 9 tells us that�
i C 1

q0
;
i.q0 � 1/CM

q20 � q0

�
\

�
j C 1

q0
;
j.q0 � 1/CM

q20 � q0

�
D ;:

Moreover, there exists ı > 0 (for example, we could take ı´ 1
3
2qKL�2�M

q2
KL�qKL

) depending
only upon M such that�
i C 1

q0
� ı;

i.q0 � 1/CM

q20 � q0
C ı

�
\

�
j C 1

q0
� ı;

j.q0 � 1/CM

q20 � q0
C ı

�
D ;: (11)



Metric results for numbers with multiple q-expansions 13

Let a; b 2 Uq0
be such that there exists q� 2 J for which �q�.a/D �q�.b/C 1. Then

for each 0 � i < M we have �q�.ia/ D �q�..i C 1/b/ and

�q�.ia/ 2

�
i C 1

q�
;
i.q� � 1/CM

.q�/2 � q�

�
by Lemma 9. By continuity, we can assume that our intervals ¹Jiº were chosen to be
sufficiently small such that�

i C 1

q�
;
i.q� � 1/CM

.q�/2 � q�

�
�

�
i C 1

q0
� ı;

i.q0 � 1/CM

q20 � q0
C ı

�
for any q� 2 J . Therefore, by continuity we can choose our ¹Jiº to be sufficiently
small such that

�q0
.ia/; �q0

..i C 1/b/ 2

�
i C 1

q0
� ı;

i.q0 � 1/CM

q20 � q0
C ı

�
: (12)

Combining (11) and (12) we may conclude that Ai \ Aj for i ¤ j .

For each 0 � m < M we define fmWAm ! Bm by

fm
�
.�q0

.ma/; �q0
..mC 1/b//

�
D .q�.a; b/; �q�.ma//:

Since we can assume the Am are disjoint by Lemma 15, we can define

f WA! B (13)

by f jAm
D fm. Importantly, it follows from the definitions of A, B , and f that

f .A/ D B . Our goal now is to prove that the function f WA! B is Lipschitz. The
following three lemmas are all technical results that will allow us to establish this fact.

Lemma 16. Let q 2 .qKL;M C 1/ and .ai /; .bi / 2 Uq . If

�q..ai // D �q..bi //C 1; (14)

then for all n � 1 we have

(i) .ai /�˛.q/�˛.qKL/ and �q.a1 � � � an01/��q.˛1.qKL/ � � �˛n.qKL/0
1/.

(ii) .bi /�˛.q/�˛.qKL/ and �q.b1 � � � bnM1/��q.˛1.qKL/ � � �˛n.qKL/M
1/.

Proof. Let .ai /; .bi / 2 Uq satisfy (14). Equation (14) implies that �q..ai //� 1. Since
.ai / 2Uq , it must be the greedy expansion of some element in Iq greater than or equal
to 1. By Lemma 4 (ii) we have

.ai / � ˛.q/:

Moreover, because q 2 .qKL;M C 1/, we know by Lemma 4 (i) that ˛.q/ � ˛.qKL/.
This implies the first part of (i).
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Now we show the second part of (i). We claim that the two sequences a1 � � �an01

and ˛1.qKL/ � � � ˛n.qKL/0
1 are greedy q-expansions. This is true because of the

characterisation of greedy expansions in base q provided by Lemma 4 (ii), and
because both .ai / and ˛.qKL/ are greedy expansions in base q. It now follows from
.ai / � ˛.qKL/ that

a1 � � � an0
1
� ˛1.qKL/ � � �˛n.qKL/0

1:

Thus, the second part of (i) follows from Lemma 4 (iii).
Statement (ii) is proved similarly, this time exploiting the fact that if .ai /, .bi / 2

Uq satisfy (14), then we must have �q..bi // �M=.q � 1/ � 1.

Lemma 17. We can choose our ¹Jiº in such a way that the following is true. There
exists C0 > 0 that does not depend upon our choice J , such that if .ai /; .bi / 2 Uq0

are such that
�q..ai // D �q..bi //C 1; (15)

for some q 2 J , then for all n sufficiently large we have

inf
q1;q22J

ˇ̌̌̌
1

q1q2
C

nX
iD1

.bi � ai /.q
i
2 C q

i�1
2 q1 C � � � C q

i
1/

qiC11 qiC12

ˇ̌̌̌
� C0:

Proof. If we set q2 D q1 in the above expression, we obtain

inf
q12J

ˇ̌̌̌
1

q21
C

nX
iD1

.bi � ai /.i C 1/

qiC21

ˇ̌̌̌
:

Now suppose that we have shown that there exists C1 > 0 independent of J , such that
if .ai /; .bi / 2 Uq0

satisfy (15) for some q 2 J , then for all n sufficiently large we have

inf
q12J

ˇ̌̌̌
1

q21
C

nX
iD1

.bi � ai /.i C 1/

qiC21

ˇ̌̌̌
� C1: (16)

Then by a continuity and compactness argument, if the ¹Jiº are chosen sufficiently
small, then

inf
q1;q22J

ˇ̌̌̌
1

q1q2
C

nX
iD1

.bi � ai /.q
i
2 C q

i�1
2 q1 C � � � C q

i
1/

qiC11 qiC12

ˇ̌̌̌
�
C1

2

for all n sufficiently large. Therefore, to complete our proof we only need to show that
inequality (16) is satisfied for all n sufficiently large.

We can choose our ¹Jiº to be sufficiently small so that for all n sufficiently large,
we have by (15) that

nX
iD1

ai

qi1
�

nX
iD1

bi

qi1
� 1 � ! (17)

for all q1 2 J . Here we fix ! D 0:01.
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Using (17) for n sufficiently large we have

1

q21
C

nX
iD1

.bi � ai /.i C 1/

qiC21

D
1

q21
C 2

nX
iD1

bi � ai

qiC21

C

nX
iD1

.bi � ai /.i � 1/

qiC21

�
1

q21
.�1C 2!/C

nX
iD1

.bi � ai /.i � 1/

qiC21

: (18)

We now proceed via a case analysis.

Case 1. M D 1. It follows from Lemma 16 and (4) that

.ai / � ˛.qKL/ D 11010011 � � � and .bi / � ˛.qKL/ D 00101100 � � � ; (19)

then we obtain

b1 � a1 D �1; b2 � a2 D �1 and bi � ai � 1 for all i � 3: (20)

Case 1a. If b3 � a3 � 0, then by (18) and (20) we obtain

1

q21
C

nX
iD1

.bi � ai /.i C 1/

qiC21

�
1

q21
.�1C 2!/C

nX
iD1

.bi � ai /.i � 1/

qiC21

<
1

q21
.�1C 2!/ �

1

q41
C

0

q51
C

1X
iD4

i � 1

qiC21

D
1

q21
.�1C 2!/ �

2

q41
�
2

q51
C

1

q21.q1 � 1/
2
:

The last equality follows from

1

.q1 � 1/2
D

1X
iD1

i � 1

qi1
:

A quick computer inspection verifies that

1

q21
.�1C 2!/ �

2

q41
�
2

q51
C

1

q21.q1 � 1/
2
< 0

for all q1 2 .qKL; 2/. Therefore, C1 exists in this case.

Case 1b. If b3 � a3 D 1, that is b3 D 1; a3 D 0. By (19) we must have b4 D 0 and
a4 D 1. Then it follows from (20) again that

1

q21
C

nX
iD1

.bi � ai /.i C 1/

qiC21

�
1

q21
.�1C 2!/C

nX
iD1

.bi � ai /.i � 1/

qiC21

<
1

q21
.�1C 2!/ �

1

q41
C

2

q51
�
3

q61
C

1X
iD5

i � 1

qiC21
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D
1

q21
.�1C 2!/ �

2

q41
�
6

q61
C

1

q21.q1 � 1/
2
:

A quick computer inspection verifies that

1

q21
.�1C 2!/ �

2

q41
�
6

q61
C

1

q21.q1 � 1/
2
< 0

for all q1 2 .qKL; 2/. Therefore, C1 exists in this case.

Case 2. M � 2. Let ˛.q1/ D .˛i /. Our assumption (J-iii) on the collection of inter-
vals ¹Jiº implies that q1 2 J � .p; p C 1/ for some p � M , since p 2 V for any
p 2 .qKL;M C 1/ \N. This implies that ˛1 � p. We will now prove that

bi � p for all i � 1: (21)

If p DM , then (21) is trivially true. We now prove it for p < M .
Combining ˛1 � p and Lemma 4 (i), we have ˛.q1/ � p1. By Lemma 16 we

have .bi / � ˛.q1/. Since ˛.q1/ � ˛.q1/ for q � qKL we have .bi / � ˛.q1/ � p1.
Therefore, b1 � p and b1 <M . Moreover, since .bi / is the greedy expansion of some
real number, Lemma 4 (iii) implies that

.bnCi / � ˛.q1/

for all n � 1. This implies that bi � p for all i � 2. This completes our proof of (21).

Using (18) and (21), for n sufficiently large we have

1

q21
C

nX
iD1

.bi � ai /.i C 1/

qiC21

D
1

q21
C 2

nX
iD1

bi � ai

qiC21

C

nX
iD1

.bi � ai /.i � 1/

qiC21

�
1

q21
.�1C 2!/C

nX
iD1

.bi � ai /.i � 1/

qiC21

�
1

q21
.�1C 2!/C p

1X
iD1

.i � 1/

qiC21

D
1

q21

�
�1C 2! C

p

.q1 � 1/2

�
:

Recall that ! D 0:01. To complete our proof, it suffices to show that there exists
C1 > 0 such that

�1C 2! C
p

.q1 � 1/2
< �C1:

Suppose p � 3. We must have q1 > p since J � .p; p C 1/. Therefore,

�1C 2! C
p

.q1 � 1/2
� �1C 2! C

p

.p � 1/2
:

For p � 3 the right-hand side of this expression can be uniformly bounded from above
by a negative number. Therefore, C1 exists in this case. If p D 2, then we are either
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in the case whereM D 2 orM D 3, since it follows from (3) that 2:5 < qKL < 3 only
when M D 2 or M D 3. It can be verified using a computer calculation that

�1C 2! C
2

.q1 � 1/2
< 0

for any q1 � 2:43 for M D 2 or M D 3. The existence of C1 follows.

Lemma 18. There exists C > 0 depending only upon J, such that for any q 2 J if
x D �q..ai //; y D �q..bi // 2 Uq satisfies

jx � yj � Cq�n;

then bi D ai for all 1 � i � n.

Proof. Let

C ´ min
q2J

1

2

�
M

q � 1
� 1

�
:

We proceed by induction on n. For n D 1 suppose jx � yj � Cq�1, we now prove
b1 D a1. If b1 ¤ a1, then it follows from Lemma 8 that

jx � yj >
M

q2 � q
�
1

q
> Cq�1:

Which is a contradiction.
Assume that if jx � yj � Cq�nC1, then bi D ai for all 1 � i � n� 1. Using this

assumption we now prove that if jx � yj � Cq�n, then bi D ai for all 1 � i � n.
Since jx � yj � Cq�n < Cq�nC1, our assumption on n � 1 implies that bi D ai for
all 1 � i � n � 1. Now we prove bn D an. Assume that bn ¤ an. Then

Cq�1 � qn�1jx � yj D qn�1
ˇ̌̌̌ 1X
iD1

ai

qi
�

1X
iD1

bi

qi

ˇ̌̌̌
D

ˇ̌̌̌ 1X
iD1

an�1Ci

qi
�

1X
iD1

bn�1Ci

qi

ˇ̌̌̌
: (22)

Because an ¤ bn, Lemma 8 implies thatˇ̌̌̌ 1X
iD1

an�1Ci

qi
�

1X
iD1

bn�1Ci

qi

ˇ̌̌̌
> Cq�1:

This contradicts (22) and so completes our proof.

Equipped with Lemmas 17 and 18, we are now in a position to prove that f is
Lipschitz. To prove this statement, it is convenient to use the infinity norm on R2

which we denote by k � k1 (i.e., k.x; y/k1´ max¹jxj; jyjº).

Proposition 19. Let A and f be defined as in (9) and (13). Then there exists C 0 > 0
depending only upon J such that

kf .x1; y1/ � f .x2; y2/k1 � C
0
k.x1; y1/ � .x2; y2/k1

for all .x1; y1/; .x2; y2/ 2 A.



S. Baker and Y. Zou 18

Proof. To prove that such a C 0 exists, it suffices to consider .x1; y1/; .x2; y2/ 2 A for
which k.x1; y1/ � .x2; y2/k1 is small. As such, by Lemma 15 we can restrict our
attention to those .x1; y1/; .x2; y2/ 2 A for which there exists a unique m satisfying

.x1; y1/; .x2; y2/ 2
Uq0
Cm

q0
�

Uq0
CmC 1

q0
:

Moreover, by the definition of A there exist .a1i /; .a
2
i /; .b

1
i /; .b

2
i / 2 Uq0

such that

x1 D �q0
.m.a1i //; x2 D �q0

.m.a2i //;

y1 D �q0
..mC 1/.b1i //; y2 D �q0

..mC 1/.b2i //;

and q1; q2 2 J for which

�q1
.m.a1i // D �q1

..mC 1/.b1i // and �q2
.m.a2i // D �q2

..mC 1/.b2i //: (23)

By the definition of f , we have

f ..x1; y1// D .q1; �q1
.m.a1i /// and f ..x2; y2// D .q2; �q2

.m.a2i ///:

Therefore,

kf .x1; y1/ � f .x2; y2/k1 D


�q1; �q1

.m.a1i //
�
�
�
q2; �q2

.m.a2i //
�


1

D max
®
jq1 � q2j; j�q1

.m.a1i // � �q2
.m.a2i //j

¯
:

We now bound the two terms appearing in this maximum accordingly. We begin by
showing that there exists C 0 such that

jq1 � q2j < C
0
k.x1; y1/ � .x2; y2/k1:

As stated above, it is sufficient to consider those .x1; y1/; .x2; y2/ 2 A for which the
norm k.x1; y1/� .x2; y2/k1 is small. In particular, we can take .x1; y1/; .x2; y2/ 2A
such that the unique n satisfying

Cq�n�20 < k.x1; y1/ � .x2; y2/k1 � Cq
�n�1
0 (24)

is sufficiently large so that Lemma 17 applies. Here C is as in Lemma 18. Equation
(24) implies that

j�q0
..a1i // � �q0

..a2i //j � Cq
�n
0 and j�q0

..b1i // � �q0
..b2i //j � Cq

�n
0 :

Therefore, Lemma 18 implies that a1i D a
2
i and b1i D b

2
i for 1 � i � n.
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It follows from (23) that

1

q1
C

1X
iD1

b1i � a
1
i

qiC11

D 0 and
1

q2
C

1X
iD1

b2i � a
2
i

qiC12

D 0:

Combining these two equations, we have

1

q1
C

1X
iD1

b1i � a
1
i

qiC11

�
1

q2
�

1X
iD1

b2i � a
2
i

qiC12

D 0: (25)

Using the fact a1i D a
2
i and b1i D b

2
i for 1 � i � n, we see that (25) yieldsˇ̌̌̌

1

q1
C

nX
iD1

b1i � a
1
i

qiC11

�
1

q2
�

nX
iD1

b1i � a
1
i

qiC12

ˇ̌̌̌
D

ˇ̌̌̌ 1X
iDnC1

b2i � a
2
i

qiC12

�

1X
iDnC1

b1i � a
1
i

qiC11

ˇ̌̌̌
�

1X
iDnC1

2M

qiC10

D
2M

q20 � q0
q�n0 < C1q

�n
0 :

Here C1 ´ 2M=.q2KL � qKL/. In the final line we used that q0 D min¹qW q 2 J º. It
now follows from (24) thatˇ̌̌̌

1

q1
C

nX
iD1

b1i � a
1
i

qiC11

�
1

q2
�

nX
iD1

b1i � a
1
i

qiC12

ˇ̌̌̌
� C2k.x1; y1/ � .x2; y2/k1: (26)

Here C2´ C1M
2=C .

We now focus on removing a jq1 � q2j term from the left-hand side of (26):ˇ̌̌̌
1

q1
C

nX
iD1

b1i � a
1
i

qiC11

�
1

q2
�

nX
iD1

b1i � a
1
i

qiC12

ˇ̌̌̌
D

ˇ̌̌̌
q2 � q1

q1q2
C

nX
iD1

.b1i � a
1
i /.q

iC1
2 � qiC11 /

qiC11 qiC12

ˇ̌̌̌
D

ˇ̌̌̌
q2 � q1

q1q2
C .q2 � q1/

nX
iD1

.b1i � a
1
i /.q

i
2 C q

i�1
2 q1 C � � � C q

i
1/

qiC11 qiC12

ˇ̌̌̌
D jq2 � q1j

ˇ̌̌̌
1

q1q2
C

nX
iD1

.b1i � a
1
i /.q

i
2 C q

i�1
2 q1 C � � � C q

i
1/

qiC11 qiC12

ˇ̌̌̌
:

Lemma 17 tells us that the second term in the product in the final line can be bounded
from below by a constant. Therefore, if we combine Lemma 17 and (26) with the
above, we can assert that

jq2 � q1j � C3k.x1; y1/ � .x2; y2/k1: (27)

Here C3´ C2=C0 and C0 is as in Lemma 17.
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It remains to show that there exists C 0 > 0 such that

j�q1
.m.a1i // � �q2

.m.a2i //j < C
0
k.x1; y1/ � .x2; y2/k1:

Note that

�q1
.m.a1i // D

m

q1
C

1X
iD1

a1i

qiC11

and �q2
.m.a2i // D

m

q2
C

1X
iD1

a2i

qiC12

;

and a1i D a
2
i for 1 � i � n. Therefore,ˇ̌̌̌

�q1
.m.a1i // � �q2

.m.a2i //

ˇ̌̌̌
�

ˇ̌̌̌
m

q1
�
m

q2

ˇ̌̌̌
C

ˇ̌̌̌ nX
iD1

a1i

qiC11

�

nX
iD1

a1i

qiC12

ˇ̌̌̌
C

ˇ̌̌̌ 1X
iDnC1

a1i

qiC11

�

1X
iDnC1

a2i

qiC12

ˇ̌̌̌
D

ˇ̌̌̌
m

q1
�
m

q2

ˇ̌̌̌
C

ˇ̌̌̌ nX
iD1

a1i .q
iC1
2 � qiC11 /

qiC11 qiC12

ˇ̌̌̌
C

ˇ̌̌̌ 1X
iDnC1

a1i

qiC11

�

1X
iDnC1

a2i

qiC12

ˇ̌̌̌
D jq2 � q1j

�ˇ̌̌̌
m

q1q2

ˇ̌̌̌
C

ˇ̌̌̌ nX
iD1

a1i .q
i
2 C q

i�1
2 q1 C � � � C q

i
1/

qiC11 qiC12

ˇ̌̌̌�
C

ˇ̌̌̌ 1X
iDnC1

a1i

qiC11

�

1X
iDnC1

a2i

qiC12

ˇ̌̌̌
: (28)

There exists C4 ´ M
�
q�2KL C .qKL � 1/

�2
�
> 0 and C5 ´ M=.q20 � q0/ > 0 such

thatˇ̌̌̌
m

q1q2

ˇ̌̌̌
C

ˇ̌̌̌ nX
iD1

a1i .q
i
2 C q

i�1
2 q1 C � � � C q

i
1/

qiC11 qiC12

ˇ̌̌̌
�M

�
1

q2KL
C

nX
iD1

i C 1

qiC2KL

�
�M

�
1

q2KL
C

1X
iD0

i C 1

qiC2KL

�
D C4 (29)

and ˇ̌̌̌ 1X
iDnC1

a1i

qiC11

�

1X
iDnC1

a2i

qiC12

ˇ̌̌̌
�

1X
iDnC1

M

qiC10

D C5q
�n
0 :

Using the line above and (24), it follows that there exists C6 ´ C5M
2=C > 0 such

that ˇ̌̌̌ 1X
iDnC1

a1i

qiC11

�

1X
iDnC1

a2i

qiC12

ˇ̌̌̌
� C6k.x1; y1/ � .x2; y2/k1: (30)

Using (27), (29), and (30), we see that (28) implies that there exists C7 ´ C3C4 C

C6 > 0 such that

j�q1
.m.a1i // � �q2

.m.a2i //j � C7k.x1; y1/ � .x2; y2/k1: (31)
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Equations (27) and (31) together imply that there exists C 0´ max¹C3; C7º > 0 such
that

kf .x1; y1/ � f .x2; y2/k1 � C
0
k.x1; y1/ � .x2; y2/k1:

We have now proved all of the technical results we need to prove Theorem 1. We
just require the following well-known theorem due to Marstrand and a lemma which
both can be found in the book by Bishop and Peres [7].

Theorem 20 (Marstrand slicing theorem). Let E � R2.

(i) If dimH E < 1, then

¹.q; y/Wy 2 Rº \E D ;

for Lebesgue almost every q.

(ii) If dimH E � 1, then

dimH .¹.q; y/Wy 2 Rº \E/ � dimH E � 1

for Lebesgue almost every q.

Lemma 21. Suppose K � Rd and f WRd ! Rn is Lipschitz. Then dimH f .K/ �
dimH K.

Proof of Theorem 1. As previously remarked, to prove Theorem 1, it suffices to show
that for our fixed choice of ", for Lebesgue almost every q 2 J we have

dimH U2
q � max¹2 dimH Uq � 1C "; 0º: (32)

The set A satisfies A �
SM�1
mD0 .Uq0

C m/=q0 � .Uq0
C m C 1/=q0. In [1] it was

shown that dimH Uq0
D dimB Uq0

for any q 2 .1;M C 1�. Therefore, using well-
known properties of the Cartesian product of sets, see for instance [15], we know
that

dimH

 
M�1[
mD0

.Uq0
Cm/=q0 � .Uq0

CmC 1/=q0

!
D 2 dimH Uq0

:

This equality and the inclusion above imply

dimH A � 2 dimH Uq0
: (33)

Since f .A/ D B and f is Lipschitz by Proposition 19, (33) and Lemma 21 tell
us that

dimH B � 2 dimH Uq0
: (34)

For any q 2 J , it follows by Lemma 14 that

dimH .¹.q; y/Wy 2 Rº \ B/ D dimH U2
q: (35)
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Theorem 20 and (34) imply that for Lebesgue almost every q 2 J we have

dimH .¹.q; y/Wy 2 Rº \ B/ � max¹2 dimH Uq0
� 1; 0º:

Therefore, (35) implies that for Lebesgue almost every q 2 J we have

dimH U2
q � max¹2 dimH Uq0

� 1; 0º: (36)

Let q0 2 J be an arbitrary element of the full measure subset of J for which (36)
holds. Property (J-iv) of the collection of intervals ¹Jiº tells us that

j dimH Uq0 � dimH Uq0
j < "=2:

Using this fact and (36), we see that q0 satisfies

dimH U2
q0 � max¹2 dimH Uq0 � 1C "; 0º:

Since q0 was an arbitrary element of a full measure subset of J , this completes our
proof that (32) holds for Lebesgue almost every q 2 J .

We now briefly explain how the argument used to prove Theorem 1 can be adapted
to prove Theorem 2.

Proof of Theorem 2. We recall that

O ´
°
q 2 .qKL;M C 1/W dimH Uq <

1

2

±
:

Just as in the proof of Theorem 1, we can cover O up to a set of measure zero by a
collection of intervals ¹Jiº satisfying properties (J-ii)–(J-iv). We can also assume that
each Ji is chosen such that qi ´ min¹qW q 2 Jiº satisfies qi 2 O .

We now fix an arbitrary J from the collection ¹Jiº and let q0 ´ min¹qW q 2 J º.
To prove Theorem 2, it suffices to show that for Lebesgue almost every q 2 J we
have U

j
q D ; for j � 2. Moreover, because of Lemma 6, it is in fact sufficient to

show that for Lebesgue almost every q 2 J we have U2
q D ;. We now proceed as

in our proof of Theorem 1 and define the sets A;B and the map f in the same way.
Importantly, (34) tells us that dimH B � 2 dimH Uq0

. We chose our intervals ¹Jiº
in such a way that qi 2 O . Therefore, q0 2 O and we have dimH B < 1. Applying
Theorem 20 we may conclude that ¹.q; y/W y 2 Rº \ B D ; for Lebesgue almost
every q 2 J . Our theorem now follows via an application of Lemma 14 which tells us
that if ¹.q; y/Wy 2 Rº \ B D ;, then U2

q D ;.
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