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A combinatorial Fredholm module
on self-similar sets built on n-cubes

Takashi Maruyama and Tatsuki Seto

Abstract. We construct a Fredholm module on self-similar sets such as the Cantor dust, the
Sierpiński carpet and the Menger sponge. Our construction is a higher dimensional analogue
of Connes’ combinatorial construction of the Fredholm module on the Cantor set. We also
calculate the Dixmier trace of two operators induced by the Fredholm module.

Introduction

In the 1990s, A. Connes [3, Chapter IV] introduced the quantized calculus based
on the Fredholm modules. A Fredholm module on an involutive algebra A is a pair
.H; F / of a Hilbert space H and a bounded operator F such that A acts on H and
a.F � F �/; a.F 2 � 1/; ŒF; a� 2 K.H/ for any a 2 A. The commutator ŒF; a� is
called a quantized differential of a. The notion and calculus of Fredholm modules
provide many techniques in studying various spaces. Such examples are noncompact
spaces, foliated spaces, noncommutative spaces, and fractal spaces, to name a few.
In the present paper, we study Fredholm modules on a special class of fractal spaces
called self-similar sets.

The first study of quantized calculus on self-similar sets is given by Connes [3,
Chapter IV]. Connes defined the Fredholm module .H; F / on C.CS/, where CS is
the Cantor set realized in the interval Œ0; 1�, by using vertices of the removed inter-
vals. Specifically, he set HI D `2.¹aº/˚ `2.¹bº/ for an open interval I D .a; b/ and

FI D

"
1

1

#
on HI , and constructed .H; F / by taking a direct sum of .HI ; FI /

on all removed open intervals which appear along the construction of CS. The Fred-
holm module .H; F / defines an element in K0.C.CS//. Connes also calculated the
non-vanishing Dixmier trace Tr!.jŒF; x�jdimH .CS//. Here x is the coordinate function
on R (we consider x as a multiplication operator) and dimH .CS/ is the Hausdorff
dimension of CS. We call jŒF; x�jdimH .CS/ the quantized volume measure on CS and
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Tr!.jŒF; x�jdimH .CS// the quantized volume on CS since the commutator ŒF; x� is a
quantized differential of x.

In this paper, we generalize the quantized volume measure and the quantized
volume to higher dimensional self-similar sets. For the generalization, we construct a
higher dimensional analogue of Connes’ Fredholm module. We now present what we
mean by the generalization of Connes’ quantized volume Tr!.jŒF;x�jdimH .CS//. When
we have the Fredholm module .HK ; FK/ on a fractal setK �Rn such that an algebra
of functions on Rn acts on HK , a commutator of operators ŒFK ; x˛� (˛ D 1; : : : ; n)
for the ˛-th coordinate function x˛ on Rn is obtained. The commutator ŒFK ; x˛� is a
quantized differential of x˛ , hence we say the operator

jŒFK ; x
1�ŒFK ; x

2� � � � ŒFK ; x
n�jp

is a quantized volume measure of the volume measure dx1dx2 � � � dxn on Rn. Here
p 2 R is defined by a fractal dimension on K. Then the value

Tr!.jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�jp/

may also be called a generalization of Connes’ quantized volume on K.
Let us explain some examples that motivate us to conduct this work. We con-

struct a Fredholm module on a self-similar set K built on the square in R2. When we
adopt a standard way to construct Fredholm modules on more general K (see [5, sec-
tion 2]), it suffices to choose a subset S � K for .HS ; FS /. As constructed in [4],
when we choose S D ¹a; bº (2 points), we have the same Fredholm module .HS ; FS /
as Connes’ one. The Fredholm module .HS ; FS / gives rise to a Fredholm module
.HK ; FK/ composed by the direct sum over all steps in the construction of K. Then
the commutator ŒFK ; x� (resp. ŒFK ; y�) is essentially given by the length of the pro-
jection of a segment ab to the x-axis (resp. y-axis), and we can calculate the value
Tr!.jŒFK ; x�ŒFK ; y�jp/. However, the value may vanish: suppose that the vertices of
the square are numbered counterclockwise in the order v0; v1; v2; v3. When K is the
Cantor dust (see Figure 5) and every edge of the square is parallel to either x- or y-
axis, we have ŒFK ; x�ŒFK ; y� D 0 if S D ¹vi ; vj º is the boundary of an edge of the
square. On the other hand, if we choose S D ¹v0; v2º to be the boundary of a diag-
onal line of the square, we have the non-trivial value Tr!.jŒFK ; x�ŒFK ; y�jdimH .K/=2/.
Therefore, the subset S D ¹v0; v2º may look like an appropriate choice for the
Cantor dust. However, the value Tr!.jŒFK ; x�ŒFK ; y�jdimH .K/=2/ for S D ¹v0; v2º
is not preserved under the rotation of the square. In fact, for a self-similar set K
obtained by rotation of the Cantor dust with rotation angle �=4 around v0, we have
ŒFK ; x�ŒFK ; y� D 0 for S D ¹v0; v2º. Thus, the choice of S D ¹a; bº giving a non-
trivial Tr!.jŒFK ; x�ŒFK ; y�jp/ depends on K. In this paper, we also present a way to
construct a Fredholm module for K that specifies a unified choice of S (not neces-
sarily 2 points) and show that the Fredholm module induces a non-trivial higher
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dimensional quantized volume measure which is invariant under the Euclidean iso-
metries in Rn.

The outline of our construction of the Fredholm module .HK ; FK/ on K is the
following. Let n D Œ0; 1�n be the n-cube and ¹fsW n ! nº (s D 1; 2; : : : ; N ) be
similitudes with the similarity ratio 0 < rs < 1. We note that we do not require
the open set condition. We now have a decreasing sequence of compact sets Kj DS
.s1;:::;sj /

fs1 ı � � � ı fsj .n/ in which each fs1 ı � � � ı fsj .n/ is a small copy of the
n-cube. Then, the sequence gives rise to the limiting set K D

T1
jD0 Kj . Our con-

struction of .HK ; FK/ is made of 2 steps: the first step is the construction of the
Fredholm module .H ; Fn/ on the n-cube; see Section 1.1. In our construction, we use
all vertices (instead of 2 points) of n-cubes, that is, we set H D `2.¹verticesº/ with
a suitable Z2-grading. In the definition of Fn, we use induction on the dimension n.
The resulting Fredholm module represents the Kasparov product (n-times) of Connes’
Fredholm module on an interval. The second step is taking the direct sum of .H ; Fn/

on all the copies of n-cubes; see Section 2.1. Our Fredholm module .HK ; FK/ is
defined over C.VK/, where we denote by VK the closure of the vertices of all n-cubes
fs1 ı � � � ı fsj .n/. Note that, in general, VK includes K properly, but VK coincides
with K for some important examples such as the Cantor dust, the Sierpiński carpet
and the Menger sponge. Dividing by the length of edges of each n-cube, we get the
Dirac operator DK on K and the spectral triple on K.

The main results in the paper are basically twofold: our first result is the con-
struction of a higher dimensional analogue of the Connes’ Fredholm module. This
Fredholm module is also non-trivial in the K0 group under additional assumptions,
which are given in Theorem 2.5 as a part of other properties of the Fredholm module
delved in Section 2. The second result is the derivation of concrete values for higher
dimensional variants of the quantized volume measure and the quantized volume for
some self-similar sets. The results are given in Section 3. The calculation is based on
a Clifford algebra’s relation which the commutators ŒFn; x˛� (˛ D 1; : : : ; n) generally
satisfy for the ˛-th coordinate functions x˛ on Rn. The Clifford algebra’s relation
is quantization of the relation of the exterior differentials dx˛; see Propositions 2.8
and 2.9 for the details.

Fredholm modules on self-similar sets were constructed by various researchers
and studied from various aspects. F. Cipirani–J. Sauvageot [2] constructed Fredholm
modules on post critically finite fractals (p.c.f. fractals) by regular harmonic struc-
tures. M. Ionescu–L. Rogers–A. Teplyaev [7] studied weakly summable Fredholm
modules in the cases of some finitely and infinitely ramified fractals. As an unbounded
picture of Fredholm modules, spectral triples on some self-similar sets also have been
extensively investigated. E. Christensen–C. Ivan–L. Lapidus [1] defined a spectral
triple on the Sierpiński gasket �G , which in turn defines an element in K1.C.�G //,
by using the Dirac operator on the circle. D. Guido–T. Isola [4] defined a spectral triple
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on self-similar sets with the open set condition in higher dimension by using Connes’
Fredholm module on an interval. Guido–Isola [5] also defined a spectral triple on nes-
ted fractals by using Connes’ Fredholm module on an interval. See Introduction in [5]
for more related literatures.

Let us compare our spectral triple with Guido–Isola’s triples. First, our Fredholm
module cannot be constructed on self-similar sets on arbitrary subsets in Rn, but on
n-cubes. Our construction also does not require the open set condition. An example
of the case for a self-similar set without the open set condition is given in Section 4.5.
Second, our triple and the triple in [4] are not constructed on the algebra C.K/ of
the continuous functions on K. Our algebra C.VK/ coincides with C.K/ for some
important examples such as the Cantor dust, the Sierpiński carpet and the Menger
sponge. The calculation of the value Tr!.jDK j�p/ for our Dirac operator is also given
in Section 3.1. The triple in [5] is defined on C.K/ for the class of nested fractals, but
the examples mentioned above are not the case.

Ours G-I’s [4] G-I’s [5]
space self-similar set on n-cube self-similar set on Rn nested fractal
algebra C.VK/ C.C / C.K/

We are going to study more noncommutative geometry of our Fredholm module
.HK ; FK/ and the corresponding spectral triple .HK ;DK/ in future papers.

1. Fredholm module on n-cubes

1.1. Definition of Fredholm module

In this section, we construct a “good” Fredholm module on n-cubes n. For the simpli-
city, we set nD Œ0;e�n in Rn with the length of edge e > 0; the following construction
applies to any n-cubes.

Let V be the set of vertices of n:

V D ¹.a1; : : : ; an/ 2 RnI ai D 0 or e .i D 1; 2; : : : ; n/º:

We give a number of vertices in V inductively. For n D 1, an interval 1 D Œ0; e� has
two vertices 0 and e. Set v0 D 0 and v1 D e. For an arbitrary n, we assume that we
have a number of vertices of n�1. Then a number of vertices of n is as follows:

(1) vi D .a1; : : : ;an�1;0/D .a1; : : : ;an�1/ (0� i � 2n�1� 1) under the inclusion
n�1 ! n�1 � ¹0º � n.

(2) v2n�1�i D .a1; : : : ; an�1; e/ (0 � i � 2n�1 � 1) if vi D .a1; : : : ; an�1; 0/.
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Example 1.1. We here provide examples of the numbering of vertices for n D 2; 3.

(1) When n D 2, the numbering of vertices is given by v0 D .0; 0/, v1 D .e; 0/,
v2 D .e; e/, v3 D .0; e/; see Figure 1.

(2) When n D 3, the numbering of vertices is given by

v0 D .0; 0; 0/; v1 D .e; 0; 0/; v2 D .e; e; 0/; v3 D .0; e; 0/;

v4 D .0; e; e/; v5 D .e; e; e/; v6 D .e; 0; e/; v7 D .0; 0; e/:

See Figure 2.

v3 v2

v0 v1

Figure 1. n D 2.

v4 v5

v7 v6

v3 v2

v0 v1

Figure 2. n D 3.

Set V0 D ¹vi I i D evenº and V1 D ¹vi I i D oddº, so we have V D V0 [ V1. Set
also

HC D `2.V0/ D `
2.v0/˚ `

2.v2/˚ � � � ˚ `
2.v2n�2/;

H� D `2.V1/ D `
2.v1/˚ `

2.v3/˚ � � � ˚ `
2.v2n�1/

and H D HC ˚H�. The vector space H .Š C2n/ is a Hilbert space of dimension
2n with an inner product

hf; gi D

2n�1X
iD0

f .vi /g.vi /:

We assume that H is Z2-graded with the grading " D ˙1 on H˙, respectively. The
C �-algebra C.V / of continuous functions on V acts on H by multiplication:

�.f / D .f .v0/˚ f .v2/˚ � � � ˚ f .v2n�2//˚ .f .v1/˚ f .v3/˚ � � � ˚ f .v2n�1//:
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A Fredholm operator Fn on H is also defined inductively. We set

X1 D 1 and Xn D

"
O Xn�1

Xn�1 O

#
2M2n�1.C/ .n � 2/;

G1 D 1 and Gn D

"
Gn�1 �Xn�1

Xn�1 Gn�1

#
2M2n�1.C/ .n � 2/;

and Un D
1
p
n
Gn .n � 1/:

Proposition 1.2. Un is a unitary matrix.

Proof. Firstly, we have

XnG
�
n �GnXn

D

"
O Xn�1

Xn�1 O

#"
G�n�1 Xn�1

�Xn�1 G�n�1

#
�

"
Gn�1 �Xn�1

Xn�1 Gn�1

#"
O Xn�1

Xn�1 O

#
D X2 ˝ .Xn�1G

�
n�1 �Gn�1Xn�1/

D � � � D Xn ˝ .X1G
�
1 �G1X1/ D O:

We prove UnU �n D E2n by induction. Clearly, U1 D 1 is unitary. Assume that
Un�1 is a unitary matrix. Then we have

Gn�1G
�
n�1 CX

2
n�1 D .n � 1/E2n�2 CE2n�2 D nE2n�2 :

Thus, we obtain

GnG
�
n D

"
Gn�1 �Xn�1

Xn�1 Gn�1

#"
G�n�1 Xn�1

�Xn�1 G�n�1

#

D

"
Gn�1G

�
n�1 CX

2
n�1 Gn�1Xn�1 �Xn�1G

�
n�1

Xn�1G
�
n�1 �Gn�1Xn�1 X2n�1 CGn�1G

�
n�1

#

D

"
Gn�1G

�
n�1 CX

2
n�1 .Xn�1G

�
n�1 �Gn�1Xn�1/

�

Xn�1G
�
n�1 �Gn�1Xn�1 X2n�1 CGn�1G

�
n�1

#
D nE2n�1 :

Therefore, Un D 1p
n
Gn is a unitary matrix.

Set Fn D

"
U �n

Un

#
2 M2n.C/. By Proposition 1.2, we have F 2n D E2n and

F �n D Fn. We consider that Fn is a bounded operator on a finite dimensional Hilbert
space

HD.`2.v0/˚`
2.v2/˚: : :˚`

2.v2n�2//˚.`
2.v1/˚`

2.v3/˚: : :˚`
2.v2n�1//ŠC2n
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by the left multiplication of a matrix Fn. Because of Fn"C "Fn D O , .H ; Fn/ is an
even Fredholm module on C.V /.

Example 1.3. We here provide examples of Fredholm operators for n D 1; 2; 3.

(1) When n D 1, we have F1 D

"
0 1

1 0

#
, which is introduced by [3, Chapter IV.

3. "].

(2) When n D 2, we have

G2 D

"
1 �1

1 1

#
; U2 D

1
p
2

"
1 �1

1 1

#
; F2 D

1
p
2

26664
1 1

�1 1

1 �1

1 1

37775 :
(3) When n D 3, we have

G3 D

26664
1 �1 0 �1

1 1 �1 0

0 1 1 �1

1 0 1 1

37775 ; U3 D
1
p
3
G3 and F3 D

"
U �3

U3

#
:

Remark 1.4. The components ofGn correspond to the following orientation of edges,
where the correspondence is similar to the adjacency matrices of oriented graphs.
When n D 1, the orientation of the graph 1 D Œ0; e� is from v0 D 0 to v1 D e; we
denote such an orientation by v0 ! v1. Assume that we have the orientation of the
edges of n�1.

(1) Assume 0 � i; j � 2n�1 � 1. The orientation in n is from vi to vj ; vi ! vj ,
when the orientation in n�1 is from vi to vj . Here we consider that n�1 is a
subset in n under the inclusion n�1 ! n�1 � ¹0º � n.

(2) vi ! v2n�1�i .0 � i � 2
n�1 � 1/, which translates to .a1; : : : ; an�1; 0/!

.a1; : : : ; an�1; e/.

(3) v2n�1�i  v2n�1�j if vi ! vj .0 � i; j � 2
n�1 � 1/.

See Figure 3 (resp. Figure 4) for n D 2 (resp. n D 3). Then the .i; j /-component gij
.1 � i; j � 2n�1/ of Gn is as follows.

(1) gij D 1 when v2j�2 ! v2i�1.

(2) gij D �1 when v2j�2  v2i�1.

(3) gij D 0 when v2j�2 and v2i�1 do not connect by an edge.
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v3 v2oo

v0 //

OO

v1

OO

Figure 3. Orientation of edges of 2

v4

~~

// v5

~~
v7 v6oo

v3

OO

v2oo

OO

v0 //

>>

OO

v1

>>

OO

Figure 4. Orientation of edges of 3

1.2. Calculation of the quantized differential form

In this section we calculate an operator ŒFn; x˛� for the coordinate function x˛ on Rn

(˛ D 1; 2; : : : ; n). We also show that they satisfy a relation of the Clifford algebra on
the Euclidean vector space of dimension n.

Set dnf D ŒFn; f � D

"
d�n f

dCn f

#
. Then

dCn f D Uf
C
� f �U

d�n f D U
�f � � f CU � D �.U Nf C � Nf �U/� D �tdCn f;

where f CD f jV0 and f �D f jV1 . Denote byA ıB D Œaij bij � the Hadamard product
of two matrices A D Œaij � and B D Œbij � of the same size.

Proposition 1.5. For any f 2 C.V /, we set fa;b D f .va/ � f .vb/ and

�nf D Œf2j;2iC1�i;jD0;1;:::;2n�1�1 2 B.`2.V0/; `
2.V1// ŠM2n�1.C/:

We have

dnf D
1
p
n

"
�t .�nf ıGn/

�nf ıGn

#
:
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Proof. As in Remark 1.4, we denote Gn D Œgij �. We have

p
ndCn f D Gn

26664
f .v0/

f .v2/

: : :

f .v2n�2/

37775 �
26664
f .v1/

f .v3/

: : :

f .v2n�1/

37775Gn
D
�
gijf .v2j /

�
�
�
f .v2i�1/gij

�
D
�
f2j;2i�1gij

�
D �nf ıGn:

Thus, an .i; j /-component of dCn f is 0 if v2i�1 and v2j do not connect by an
edge.

Proposition 1.6. For the coordinate function x˛ on Rn (˛ D 1; 2; : : : ; n), we set
e˛
.n/
D

p
n

e
dnx

˛ . We have

e˛.n/D

p
n

e
dnx

˛
D

266664
E2n�˛�1 ˝

"
1

�1

#
�E2n�˛�1 ˝

"
1

�1

#
377775˝X˛: (1.1)

Here E1=2 ˝

"
1

�1

#
D 1.

Proof. By using�nxn ıGnD�eXn and Proposition 1.5, we have en
.n/
D

"
Xn

�Xn

#
.

Next, we calculate en�1C
.n/

D

p
n

e
dCn x

n�1. By the definition of the numbering of
vertices and the orientation of edges of n, for 0 � i; j � 2n � 1, “vi ! vj is positive
(resp. negative) with xn�1 direction” if and only if “viC2n�1 ! vjC2n�1 is negative
(resp. positive) with xn�1 direction”. So we have

en�1C
.n/

D

"
en�1C
.n�1/

�en�1C
.n�1/

#
D

"
1

�1

#
˝ .�Xn�1/:

This implies

en�1.n/ D

266664
E1 ˝

"
1

�1

#
�E1 ˝

"
1

�1

#
377775˝Xn�1:
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We calculate e˛
.n/

(˛ D 1; 2; : : : ; n � 2) by induction on n � 3. Note that the
calculation of e˛

.n/
for nD 1;2 is already done. Namely, the beginning of the induction

is the following:

e1.1/ D

"
1

�1

#
; e1.2/ D

26664
1

�1

�1

1

37775 ; e2.2/ D

26664
1

1

�1

�1

37775 :
Assume that equation (1.1) holds for n � 1. By the definition of the numbering

of vertices and the orientation of edges of n, for 1 � ˛ � n � 2, “i ! j is positive
(resp. negative) with x˛ direction” if and only if “viC2n�1 ! vjC2n�1 is positive
(resp. negative) with x˛ direction”. So we have

e˛C
.n/
D

"
e˛C
.n�1/

e˛C
.n�1/

#
D E2 ˝ e

˛C
.n�1/

D �E2 ˝

 
E2n�1�˛�1 ˝

"
1

�1

#
˝X˛

!

D �E2n�˛�1 ˝

"
1

�1

#
˝X˛:

Therefore, we have

e˛.n/ D

266664
E2n�˛�1 ˝

"
1

�1

#
�E2n�˛�1 ˝

"
1

�1

#
377775˝X˛ .˛ D 1; 2; : : : ; n� 2/:

Equation (1.1) follows from the above calculations for any n and ˛ D 1; 2; : : : ; n.

By the explicit formula of e˛
.n/

in Proposition 1.6, we have a Clifford relation
of dnx˛ .

Proposition 1.7. We have

e˛.n/e
ˇ

.n/
D

´
�e

ˇ

.n/
e˛
.n/

.˛ ¤ ˇ/

�E2n .˛ D ˇ/
:

By dnx˛ D ep
n
e˛
.n/

, we have

dnx
˛dnx

ˇ
D

´
�dnx

ˇdnx
˛ .˛ ¤ ˇ/

�
e2

n
E2n .˛ D ˇ/

:
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Proof. Firstly, we have

e˛.n/e
˛
.n/ D

266664
�E2

2n�˛�1
˝

"
1

�1

#2
�E2

2n�˛�1
˝

"
1

�1

#2
377775˝X2˛ D �E2n :

Set k D ˛ � ˇ > 0, then we have X˛ D XkC1˝Xˇ . We can rewrite e˛
.n/

and eˇ
.n/

as follows:

e˛.n/ D

266664
E2n�˛�1 ˝

"
XkC1

�XkC1

#
�E2n�˛�1 ˝

"
XkC1

�XkC1

#
377775˝Xˇ ;

e
ˇ

.n/
D

266664
E2n�˛�1 ˝E2k ˝

"
1

�1

#
�E2n�˛�1 ˝E2k ˝

"
1

�1

#
377775˝Xˇ :

Now, we set "1 D

"
1

�1

#
, and we have

"
XkC1

�XkC1

# 
E2k ˝

"
1

�1

#!
D

"
Xk ˝ .X2"1/

�Xk ˝ .X2"1/

#
and 

E2k ˝

"
1

�1

#!"
XkC1

�XkC1

#
D

"
Xk ˝ ."1X2/

�Xk ˝ ."1X2/

#
:

Thus, the relation e˛
.n/
e˛
.n/
D �e˛

.n/
e˛
.n/

(˛ ¤ ˇ) holds since X2"1 C "1X2 D O .

Remark 1.8. When we take the limit as the length of edges tends to 0, that is e! 0,
we have

dnx
˛dnx

˛
D �

e2

n
E2n ! O:

Thus, we regard dnx˛ as a quantization of the ordinal exterior differential dx˛ on Rn.

Remark 1.9. For any unitary matrixU 2U.2n�1/, since an odd matrixF D

"
U �

U

#
defines an operator on H , F defines a Fredholm module on C.V /. Moreover, since
any F is homotopic to Fn, it defines the sameK-homology class inK0.C.V //. How-
ever, the general F sometimes does not have good properties. For example, we have



T. Maruyama and T. Seto 314

ŒF; x˛� D O for ˛ D 2; 3; : : : ; n when we assume U D E2n�1 . Thus, in this case, we
cannot regard ŒF; x˛� as a quantization of the ordinal exterior differential dx˛ on Rn.

By Proposition 1.7, we have the volume element !n D e1.n/e
2
.n/
� � � en

.n/
in the Clif-

ford algebra. We can easily calculate its absolute value j!nj. We do not use j!nj
directly, but we use jdnx1dnx2 � � � dnxnj, which is a constant multiple of j!nj; see
also Section 3.2.

Proposition 1.10. We have jŒFn; x1� � � � ŒFn; xn�j D en

nn=2
E2n . By the definition of e˛

.n/
,

we also have j!nj D E2n .

Proof. Because of ŒFn; x˛��ŒFn; x˛� D e2

n
e˛�
.n/
e˛
.n/
D
�e2

n
.e˛
.n/
/2 D e2

n
E2n , we have

jŒFn; x
1� � � � ŒFn; x

n�j2 D .ŒFn; x
1� � � � ŒFn; x

n�/�ŒFn; x
1� � � � ŒFn; x

n�

D ŒFn; x
n�� � � � ŒFn; x

1��ŒFn; x
1� � � � ŒFn; x

n�

D

�
e2

n

�n
E2n :

This implies the claim.

2. Fredholm module on self-similar sets built on n-cubes

2.1. Fredholm module and spectral triple

In this section we construct a Fredholm module and a spectral triple on self-similar
sets built on any n-cubes n. For the simplicity, we assume that the length of edges of
n equals 1. Let fsW n ! n (s D 1; : : : ; N ) be similitudes. We define the similarity
ratio of fs to be

rs D
kfs.x/ � fs.y/kRn

kx � ykRn
.< 1/ .x ¤ y/:

An iterated function system (IFS) .n; S D ¹1; : : : ; N º; ¹fsºs2S / defines the unique
non-empty compact set K D K.n; S D ¹1; : : : ; N º; ¹fsºs2S / called the self-similar
set such that K D

SN
sD1 fs.K/. We use dimS .K/ to denote the similarity dimension

of K, that is, the number d that satisfies

NX
sD1

rds D 1:

If an IFS .n; S; ¹fsºs2S / satisfies the open set condition, dimS .K/ turns out to be
equal to the Hausdorff dimension dimH .K/ of K.
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Set fs D fs1 ı � � � ı fsj for s D .s1; : : : ; sj / 2 S
1 D

S1
jD0 S

�j and f; D id. For
simplicity, we will use i to express the vertex fs.vi / of an n-cube fs.n/ and write Vs

as the vertices of an n-cube fs.n/. We also denote the length of the edge of fs.n/

by es. As introduced in Section 1.1, we define the Hilbert space Hs D `
2.Vs/ on an

n-cube of the length es that consists of the positive part HCs and the negative part
H�s . By taking the direct sum on all n-cubes, we define the following data:

HK D

M
s2S1

Hs; FK D
M

s2S1

Fn; DK D
M

s2S1

1

es

Fn:

Let VK be the closure of the set of vertices of all n-cubes fs.n/ � Rn. That is,
VK is the closure of

S
s2S1 Vs. Then, if V �

SN
sD1 fs.V / holds, we have VK DK. If

not, VK equals the union of
S

s2S1 Vs and K. We also let AK be the Banach algebra
of Lipschitz functions Lip.VK/ on VK with the norm kakAK D kak1 C Lip.a/,
where the second term is the Lipschitz constant of a Lipschitz function a. The Banach
algebra AK acts on HK by

�K WAK ! B.HK/I �K.a/
�M

�s

�
D

M
.ajVs / � �s:

Lemma 2.1. Define

H1
K D

´ M
s2S1

�s 2 HK I k

M
�sk

2

H1
K

D

X
s2S1

1

e2s

2n�1X
iD0

j�s.i/j
2 <1

µ
:

Then, DK is a self-adjoint operator of dom.DK/ D H1
K .

Proof. By the inclusions ¹
L
�s 2HK I �s D 0 except finite sº �H1

K �HK , H1
K is a

dense subset in HK .
On each n-cube fs.n/, we have

kFn�sk
2
`2
D kUn�

C
s k

2
`2
C kU �n �

�
s k

2
`2
D k�Cs k

2
`2
C k��s k

2
`2
D

2n�1X
iD0

j�s.i/j
2

for any function �s on Vs, where �˙s denote the H˙s parts of �s, respectively. Then,
we have

DK�M �s

�2
HK
D

X
s2S1

1

e2s

2n�1X
iD0

j�s.i/j
2
D
M �s

2
H1
K

for
L
�s 2 HK . Thus, we have DK.H1

K/ � HK , and DK is a symmetric operator
with domain H1

K .
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On the other hand, we set
L
�s D

L
esFn�s for any

L
�s 2 HK . Then,

L
�s 2

H1
K sinceM �s

2
H1
K

D

X
s2S1

kFn�sk
2
`2
D

X
s2S1

k�sk
2
`2
D
M �s

2
HK

<1:

This implies DK.H1
K/ � HK . Thus, we have DK.H1

K/ D HK . Therefore, DK is a
self-adjoint operator of the stated domain.

Note that we have �K.AK/.H
1
K/ � H1

K and FK D DK jDK j
�1. We now prove

some regularity of FK and DK .

Lemma 2.2. We have the following regularity properties:

(1) ŒFK ; a� 2K.HK/ for any a 2 C.VK/.

(2) ŒDK ; a� 2 B.HK/ for any a 2 AK .

(3) jDK j�1 2K.HK/.

(4) .D2
K C 1/

�1=2 2K.HK/.

(5) jDK j�p 2 L1.HK/ ” p > dimS .K/, where L1.HK/ is the set of trace
class operators on HK .

(6) .D2
K C 1/

�p=2 2 L1.HK/ ” p > dimS .K/.

Proof. (1) First, we take a 2 AK . For any s 2 S�j , we have

ŒFK ; a�jHs D
1
p
n

"
�t .�na ıGn/

�na ıGn

#
:

Therefore, the operator norm kŒFK ; a�jHsk is less than

Lip.a/ � es D Lip.a/ �
jY
kD1

rsk :

Thus, ŒFK ; a� is compact for a 2 AK since we have
Qj

kD1
rsk � maxs2S r

j
s ! 0

as j !1. The case for any continuous function is proved by the denseness of AK

in C.VK/.

(2) For any s 2 S�j , we have

ŒDK ; a�jHs D
1
p
n

 
jY
kD1

rsk

!�1 "
�t .�na ıGn/

�na ıGn

#
:

So the operator norm kŒDK ; a�jHsk is less than Lip.a/, which is independent of j .
Therefore, ŒDK ; a� is bounded on HK .
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(3) Because of jDK j D
L

s2S1
1
es
E2n , we have

jDK j
�1
D

1M
jD0

M
s2S�j

 
jY
kD1

rsk

!
E2n :

Thus, jDK j�1 is compact since we have
Qj

kD1
rsk ! 0 as j !1.

(4) Because of D2
K C 1 D

L
s2S1

�
1

e2s
C 1

�
E2n , we have

.D2
K C 1/

�1=2
D

1M
jD0

M
s2S�j

 
jY
kD1

r�2sk C 1

!�1=2
E2n :

Thus, .D2
K C 1/

�1=2 is a compact operator.

(5) Because of jDK j�p D
L1
jD0

L
s2S�j

�Qj

kD1
r
p
sk

�
E2n , we have

Tr.jDK j�p/ D
1X
jD0

X
s2S�j

2n
jY
kD1

rpsk D 2
n

1X
jD0

 
NX
sD1

rps

!j
:

Thus we have

jDK j
�p
2 L1.HK/ ”

NX
sD1

rps < 1:

This implies part (5).

(6) Because of

.D2
K C 1/

�p=2
D

1M
jD0

M
s2S�j

 
jY
kD1

r�2sk C 1

!�p=2
E2n ;

we have

Tr..D2
K C 1/

�p=2/ D

1X
jD0

X
s2S�j

2n

 
jY
kD1

r�2sk C 1

!�p=2
:

Thus we have
1X
jD0

X
s2S�j

2n�p=2
jY
kD1

rpsk � Tr..D2
K C 1/

�p=2/ �

1X
jD0

X
s2S�j

2n
jY
kD1

rpsk ;

that is, we have

2n�p=2
1X
jD0

 
NX
sD1

rpsk

!j
� Tr..D2

K C 1/
�p=2/ � 2n

1X
jD0

 
NX
sD1

rpsk

!j
:
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This implies

.D2
K C 1/

�p=2
2 L1.HK/ ”

NX
sD1

rpsk < 1 ” p > dimS .K/:

Theorem 2.3. The pair .HK ; FK/ is an even Fredholm module over C.VK/ with the
Z2-grading "K D

L
s2S1 ". The pair .HK ;FK/ is a .ŒdimS .K/�C 1/-summable even

Fredholm module over AK . In particular, if we have dimS .K/ < n, and the operator

ŒFK ; a
1�ŒFK ; a

2� � � � ŒFK ; a
n�

is of trace class for any a1; a2; : : : ; an 2 AK .

Proof. By the definition of FK , we have F 2K D 1, F �K D FK , and FK"K C "KFK D 0.
ŒFK ; a� is also a compact operator by Lemma 2.2. Therefore, .HK ; FK/ is an even
Fredholm module over C.VK/.

Next we prove summability of the Fredholm module .HK ; FK/ over AK . Since
ŒDK ; a� is a bounded operator for a 2 AK and jDK j�.ŒdimS .K/�C1/ is of trace class,
we have

ŒFK ; a
1�ŒFK ; a

2� � � � ŒFK ; a
ŒdimS .K/�C1�

DŒDK ; a
1�jDK j

�1ŒDK ; a
2�jDK j

�1
� � � ŒDK ; a

ŒdimS .K/�C1�jDK j
�1

DŒDK ; a
1�ŒDK ; a

2� � � � ŒDK ; a
ŒdimS .K/�C1�jDK j

�.ŒdimS .K/�C1/ 2 L1.HK/

for a1; a2; : : : ; aŒdimS .K/�C1 2AK . Here we have ŒjDK j�1; T �D 0 if T 2B.HK/ is a
direct sum of operators on all n-cubes fs.n/. Therefore we conclude that .HK ; FK/

is a .ŒdimS .K/�C 1/-summable even Fredholm module.

Theorem 2.4. The triple .AK ;HK ;DK/ is an even QC1-spectral triple of spectral
dimension dimS .K/.

Proof. By the definition of DK and Lemma 2.2, .AK ;HK ; DK/ is an even spectral
triple of spectral dimension dimS .K/. .AK ;HK ; DK/ is also of QC1-class since
we have ŒjDK j; T � D 0 for an operator T 2 B.HK/ of the direct sum of operators on
n-cubes fs.n/.

We next prove a non-vanishing property of the K0-class of the Fredholm module
.HK ; FK/.

Theorem 2.5. Denote byX1; : : : ;Xk the connected components of V [
S
s2S fs.n/.

Then, if there is a set Xi such that

#.V0 \Xi / ¤ #.V1 \Xi /;



A combinatorial Fredholm module on self-similar sets built on n-cubes 319

then the Connes–Chern character Ch�.HK ; FK/ 2 H
even
�

.AK/ induces a non-
zero additive map K0.C.VK// Š K0.AK/! C by the Connes pairing. Moreover,
ŒHK ; FK � 2 K

0.C.VK// is not trivial.

Proof. Set
d0 D #.V0 \Xi /; d1 D #.V1 \Xi /

and

p.x/ D

´
1 x 2 Xi ;

0 otherwise

for x 2 VK . Then p is a continuous function, and we have

index.pFCK pWpHCK ! pH�K / D index.pUnpWp`2.V0/! p`2.V1//

D d0 � d1 ¤ 0:

Therefore, we have Ch�.HK ; FK/ ¤ 0 on K0.C.VK//.

Remark 2.6. The assumption in Theorem 2.5 does not hold for some examples such
as the Sierpiński carpet (see Section 4.3) and the n-cube n. In these cases, the
Connes–Chern character induces the 0-map on K0.AK/.

Remark 2.7. As mentioned in Remark 1.9, we can define a Fredholm module on
C.V / by using any unitary matrix U instead of Un. All properties in Section 2.1 hold
without changing the proofs in such a situation.

2.2. Quantized differential form on self-similar sets

Note that all similitudes on n take the form fs.x/ D rsTsx C bs for an orthogonal
matrix Ts 2 O.n/ and bs 2 Rn. It is easy to calculate the quantum differential form
ŒFK ; x

˛� in the case for n D Œ0; 1�n and Ts D En (for any s 2 S ), which is the direct
sum of the matrix dnx˛; see Proposition 1.6. We can also express ŒFK ; x˛� explicitly
for the general case and show that they satisfy “a variation” of the Clifford relation.

Proposition 2.8. We have

ŒFK ; x
˛�ŒFK ; x

ˇ � D

´
�ŒFK ; x

ˇ �ŒFK ; x
˛� ˛ ¤ ˇ;

�
L

s2S1
e2s
n
E2n ˛ D ˇ:

Proof. Take an orthogonal matrix Ts D Œtij �i;j 2O.n/ and a vector bs 2Rn such that
the image of the affine transformation gs.x/ D esTsx C bs of Œ0; 1�n equals fs.n/,
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and gs.x/ preserves the numbering of the vertices of Œ0; 1�n and fs.n/. If we assume
n D Œ0; 1�

n, we have fs D gs. Note that we have

ŒFK ; x
˛�jHs D

1
p
n

"
�t .�nx

˛ ıGn/

�nx
˛ ıGn

#
:

Recall that v2j � v2i�1 D ˙esTsek when g�1s .v2j / is connecting g�1s .v2i�1/ by an
edge of the n-cube Œ0; 1�n parallel with xk-direction and Tsek D

Pn
˛D1 t˛ke˛ , and

we have

ŒFK ; x
˛�jHs D

es
p
n

nX
jD1

t j̨ e
j

.n/
:

Thus,

ŒFK ; x
˛�ŒFK ; x

ˇ �jHs D
e2s
n

� nX
jD1

t j̨ e
j

.n/

�� nX
jD1

tˇke
k
.n/

�
D
e2s
n

X
j;k

t j̨ tˇke
j

.n/
ek.n/

D
e2s
n

X
j¤k

t j̨ tˇke
j

.n/
ek.n/ �

e2s
n

nX
jD1

t j̨ tˇj

D

´
e2s
n

P
j¤k t j̨ tˇke

j

.n/
ek
.n/

.˛ ¤ ˇ/;

�
e2s
n
E2n .˛ D ˇ/:

Therefore, we have the claim proven.

By Proposition 2.8, we get an explicit formula for jŒFK ; x1� � � � ŒFK ; xn�j.

Proposition 2.9. We have

jŒFK ; x
1� � � � ŒFK ; x

n�j D
M

s2S1

ens

nn=2
E2n :

Proof. Similar to the proof of Proposition 1.10.

Remark 2.10. Setting e˛K D
L

s2S1 e
˛
.n/

, we have the Clifford relation

e˛Ke
ˇ
K D

´
�e

ˇ
Ke

˛
K .˛ ¤ ˇ/;

�idHK .˛ D ˇ/:

Thus, we can regard e˛K as a 0-Q-form in the sense of [8].
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3. Dixmier traces

In this section we calculate the Dixmier trace of two operators. In general, the value
for the second operator changes if the Fredholm operator Fn changes to a different
Fredholm operator.

3.1. Dixmier trace of jDK j
�p

In this section we calculate the Dixmier trace of jDK j�p . This is given by the residue
at the pole of the zeta function �DK .s/ D Tr.jDK j�s/.

Theorem 3.1. For any p � dimS .K/, we have jDK j�p 2 L.1;1/.HK/ and

Tr!.jDK j�p/ D

8<:�2n
�

dimS .K/
PN
sD1 r

dimS .K/
s log rs

��1
for p D dimS .K/;

0 for p > dimS .K/:

Thus we have

Tr!.f jDK j� dimS .K// D �2n
�

dimS .K/

NX
sD1

rdimS .K/
s log rs

��1 Z
K

f jK dƒ

for any f 2 C.VK/ by the Riesz–Markov–Kakutani representation theorem. Here ƒ
is the dimS .K/-dimensional Hausdorff probability measure of K.

In particular, if all similarity ratios rs are equal, we have

Tr!.jDK j� dimS .K// D
2n

logN
:

Proof. By the proof of Lemma 2.2, we have

Tr.jDK j�p/ D 2n
1X
jD0

� NX
sD1

rps

�j
D 2n

�
1 �

NX
sD1

rps

��1
:

Thus we have

.z � 1/Tr.jDK j�zp/ D 2n
z � 1

1 �
PN
sD1 r

zp
s

D 2n
z � 1PN

sD1

�
r

dimS .K/
s � r

zp
s

�
D 2n

� NX
sD1

r
dimS .K/
s � r

zp
s

z � 1

��1
;

and the value

Tr!.jDK j�p/ D lim
z!C1

.z � 1/Tr.jDK j�zp/ D 2n
� NX
sD1

lim
z!C1

r
dimS .K/
s � r

zp
s

z � 1

��1
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converges for p � dimS .K/. Finally, we get

Tr!.jDK j�p/ D �2n
� NX
sD1

d

dz

ˇ̌̌̌
zD1

rz dimS .K/
s

��1
D �2n

�
dimS .K/

NX
sD1

rdimS .K/
s log rs

��1
for p D dimS .K/

and Tr!.jDK j�p/ D 0 for p > dimS .K/:

3.2. Dixmier trace of jŒFK ; x1� � � � ŒFK ; xn�jp

In this section we calculate the Dixmier trace of jŒFK ; x1� � � � ŒFK ; xn�jp by using
Proposition 2.9.

Theorem 3.2. We have jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�jp 2 L.1;1/.HK/ for any p �
dimS .K/=n. Moreover, we have

Tr!.jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�jp/ D
1

nnp=2
Tr!.jDK j�np/

D

8<: �2n

ndimS.K/=2

�
dimS .K/

PN
sD1 r

dimS .K/
s log rs

��1
for p D 1

n
dimS .K/;

0 for p > 1
n

dimS .K/:

Thus we have

Tr!.f jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�j
1
n dimS .K//

D
�2n

ndimS .K/=2

�
dimS .K/

NX
sD1

rdimS .K/
s log rs

��1 Z
K

f jK dƒ

D
1

ndimS .K/=2
Tr!.jDK j� dimS .K//

Z
K

f jK dƒ

for any f 2 C.VK/ by the Riesz–Markov–Kakutani representation theorem. Here ƒ
is the dimH .K/-dimensional Hausdorff probability measure of K.

Proof. By Proposition 2.9 we have

jŒFK ; x
1�ŒFK ; x

2� � � � ŒFK ; x
n�jp D

M
s2S1

e
np
s

nnp=2
E2n :
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Therefore, we get

Tr.jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�jp/ D 2n
1X
jD0

X
.s1;:::;sj /2S

j

1

nnp=2

jY
kD1

rnpsk

D
2n

nnp=2

1X
jD0

 
NX
sD1

rnps

!j
and the following condition

Tr.jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�jp/ <1 ” p >
1

n
dimS .K/:

If p satisfies the above condition, the LHS can be written as

Tr.jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�jp/ D
2n

nnp=2

 
1 �

NX
sD1

rnps

!�1
:

Therefore, a proof similar to that of Theorem 3.1 implies

jŒFK ; x
1�ŒFK ; x

2� � � � ŒFK ; x
n�jp 2 L.1;1/.HK/

for p � 1
n

dimS .K/. Moreover, we get

Tr!.jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�jp/

D lim
z!C1

.z � 1/Tr.jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�jzp/

D
2n

ndimS .K/=2

� NX
sD1

lim
z!C1

r
dimS .K/
s � r

z dimS .K/
s

z � 1

��1
D �

2n

ndimS .K/=2

�
dimS .K/

NX
sD1

rdimS .K/
s log rs

��1
for p D

1

n
dimS .K/

and Tr!.jŒFK ; x1�ŒFK ; x2� � � � ŒFK ; xn�jp/ D 0 for p >
1

n
dimS .K/

4. Examples

In this section we apply arguments of Sections 2 and 3 to some examples.
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4.1. Cantor dust

The Cantor dust is a generalization of the middle third Cantor set to a higher dimen-
sion. Let CDn be the Cantor dust defined on n D Œ0; 1�n and the similitudes be

fs.x/ D
1

3
x C

2

3

nX
˛D1

a˛e˛ .x 2 n; s D 0; 1; 2; : : : ; 2
n
� 1/:

Here we write anan�1 � � � a2a1 as a number s in binary, and e˛ is the standard basis
of Rn. See Figure 5 for n D 2. Since CDn satisfies the open set condition, we have
dimH .CDn/ D dimS .CDn/ D n log3 2. We also have VCDn

D CDn since V �S2n�1
sD0 fs.V /. Then we get

ACDn
D Lip.CDn/ and C.VCDn

/ D C.CDn/:

Figure 5. The first 3 steps of the construction of CD2.

Since all fs.n/ are disconnected from each other and also #.V0 \ f1.n// D 1
and #.V1 \ f1.n// D 0, the K0-class of .HCDn

; FCDn
/ in K0.C.CDn// does not

vanish by Theorem 2.5.

Theorem 4.1. The Connes–Chern character

Ch�.HCDn
; FCDn

/ 2 H even
� .Lip.CDn//

induces a non-zero additive map K0.C.CDn//! C. In particular, ŒHCDn
; FCDn

�

is not trivial in K0.C.CDn//.

Since dimS .CDn/ D n log3 2, we also get the next results.

Corollary 4.2. The following properties hold.

(1) .HCDn
; FCDn

/ is a .Œn log3 2�C 1/-summable even Fredholm module over
Lip.CDn/.

(2) .Lip.CDn/;HCDn
; DCDn

/ is a QC1-spectral triple of spectral dimension
n log3 2.
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Corollary 4.3. We have the following.

(1) Tr.jDCDn
j�p/ D 2n�3p

3p�2n
for any p > n log3 2.

(2) Tr!.jDCDn
j�n log3 2/ D 2n

n log2 .

(3) Tr!.f jDCDn
j�n log3 2/ D 2n

n log2

R
CDn

f dƒ for any f 2 C.CDn/. Here ƒ
is the .n log3 2/-dimensional Hausdorff probability measure of CDn.

Corollary 4.4. The operator jŒFCDn
; x1� ŒFCDn

; x2� � � � ŒFCDn
; xn�jlog3 2 is of

L.1;1/-class, and we have

Tr!.jŒFCDn
; x1�ŒFCDn

; x2� � � � ŒFCDn
; xn�jlog3 2/ D

2n

n.2Cn log3 2/=2 log 2
:

Thus we have

Tr!.f jŒFCDn
; x1�ŒFCDn

; x2� � � � ŒFCDn
; xn�jlog3 2/ D

2n

n.2Cn log3 2/=2 log 2

Z
CDn

f dƒ

for any f 2 C.CDn/. Here ƒ is the .n log3 2/-dimensional Hausdorff probability
measure of CDn.

4.2. Middle third Cantor set, revisited

In this section we focus on the middle third Cantor set C� D CD1.
First, we see a relationship between our Fredholm module and Connes’ Fredholm

module defined in [3, Chapter IV. 3. "]. We recall Connes’ Fredholm module .H; F /
on C.C�/. Let Ii;j D .ai;j ; bi;j / (i 2 N, j D 1; 2; : : : ; 2i ) be open intervals in Œ0; 1�
which are defined as

I1;1 D

�
1

3
;
2

3

�
and IiC1;j D

�
2bi;j�1 C ai;j

3
;
bi;j�1 C 2ai;j

3

�
:

Here we set bi;0 D 0 and ai;iC1 D 1. The middle third Cantor set satisfies C� D

Œ0; 1� n
S
i;j Ii;j . Connes defined

H D
M
i;j

`2.¹ai;j ; bi;j º/ and F D
M
i;j

F1:

Note that H ˚ `2.¹0; 1º/ Š HC� as Hilbert spaces.

Lemma 4.5. Let a < b < c be real numbers. We assume

Œ`2.¹a; bº/; F1�; Œ`
2.¹b; cº/; F1�; Œ`

2.¹a; cº/; F1� 2 K
0.C.¹a; b; cº//
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under homomorphisms

K0.C.¹a; bº//! K0.C.¹a; b; cº//;

K0.C.¹b; cº//! K0.C.¹a; b; cº//;

K0.C.¹a; cº//! K0.C.¹a; b; cº//;

defined by inclusions ¹a; bº ! ¹a; b; cº, ¹b; cº ! ¹a; b; cº and ¹a; cº ! ¹a; b; cº,
respectively. Then we have

Œ`2.¹a; bº/; F1�C Œ`
2.¹b; cº/; F1� D Œ`

2.¹a; cº/; F1� in K0.C.¹a; b; cº//:

Proof. Set b D b1 D b2, ¹a; bº D ¹a; b1º, and ¹b; cº D ¹b2; cº. We have

Œ`2.¹a; b1º/; F1�C Œ`
2.¹b2; cº/; F1� D Œ`

2.¹a; b1º/˚ `
2.¹b2; cº/; F1 ˚ F1�

D

"
`2.¹a; cº/˚ `2.¹b1; b2º/;

"
E2

E2

##
:

Here the Z2-grading operator of the last Fredholm module is defined by Q"D "˚ .�"/.
Set

Tt D

"
F1 cos t sin t

sin t �F1 cos t

#
on `2.¹a; cº/˚ `2.¹b1; b2º/. Then we have Tt Q"C Q"Tt D 0, T0 D F1 ˚ .�F1/, and

T�=2 D

"
E2

E2

#
. Thus we get

Œ`2.¹a; b1º/; F1�C Œ`
2.¹b2; cº/; F1� D

�
`2.¹a; cº/˚ `2.¹b1; b2º/; F1 ˚ .�F1/

�
D Œ`2.¹a; cº/; F1� � Œ`

2.¹b1; b2º/; F1�

D Œ`2.¹a; cº/; F1�:

Here the last equality is given by b D b1 D b2.

By Lemma 4.5, we have

ŒH; F �C ŒHC� ; FC� � D ŒHC� ; FC� �C Œ`
2.¹0; 1º/; F1�:

Therefore, we have ŒH; F � D Œ`2.¹0; 1º/; F1� in K0.C.C�//. On the other hand, if
we set

pk.x/ D

´
1 x 2 Œ0; 1=3k� \ C� ;

0 otherwise

for x 2C� , then we get hŒHC� ;FC� �; Œpk�i D k and hŒ`2.¹0;1º/;F1�; Œpk�i D 1 by the
index pairing betweenK-homology andK-theory. Thus, a pair .ŒHC� ; FC� �; ŒH;F �/

is linearly independent on Z in K0.C.C�//.
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Second, we set similitudes

f1.x/ D
1

3
x; f2.x/ D

1

3
x C

2

3
e1

for x 2 2, and denote byK the self-similar set defined by the IFS (2; ¹f1; f2º). Then
we get K D C� � ¹0º as sets (see Figure 6). So the Fredholm module .HK ; FK/ is
a novel Fredholm module of the middle third Cantor set. Note that we have VK ¤ K
and

�S
s2S1 Vs

�
\K ¤ ; in this case.

Figure 6. The first 3 steps of construction of K.

4.3. Sierpiński carpet and its higher dimensional analogue

The Sierpiński carpet is another generalization of the middle third Cantor set to a
“2-dimensional space”. The Menger sponge is also an analogue of the Sierpiński car-
pet but in a “3-dimensional space”. In this section we delve into such self-similar sets
in n-dimensional spaces (n � 2). Let Sn � N [ ¹0º be the index set defined by

Sn D ¹s 2 N [ ¹0º I 0 � s � 3n � 1 and at most one

of its digits equals 1 in ternary expression of sº:

For example, for n D 2; 3, we have S2 D ¹0; 1; 2; 3; 5; 6; 7; 8º and

S3 D S2 [ ¹9; 11; 15; 17; 18; 19; 20; 21; 23; 24; 25; 26º:

Define similitudes fsW n ! n for s 2 Sn by

fs.x/ D
1

3
x C

1

3

nX
˛D1

a˛e˛:

Here we use a number s to express anan�1 � � � a2a1 in ternary. We write �Cn for the
self-similar set on the IFS .n;Sn;¹fsºs2Sn/. When nD 2 and 3, �C2 is the Sierpiński
carpet (see Figure 7) and �C3 is the Menger sponge. Since CDn satisfies the open set
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condition, we have dimH .CDn/ D dimS .CDn/ D log3.#Sn/ D log3.2
n�1.nC 2//.

We have V�Cn D �Cn since we have V �
S
s2Sn

fs.V /. Then, we get

A�Cn D Lip.�Cn/; C.V�Cn/ D C.�Cn/:

Figure 7. The first 3 steps of construction of �C2.

Since X D V [
S
s2Sn

fs.n/ is connected, we have #.V0 \ X/ D #.V1 \ X/;
the assumption in Theorem 2.5 does not hold.

Remark 4.6. The Sierpiński carpet �C2 is a compact set in R2. Furthermore, we
have K0.C.�C2// D Z which is generated by (matrix valued) constant functions on
�C2, and the index pairing between K-theory and K-homology induces the 0-map
K0.C.�C2//! Z. Therefore we get ŒH�C2 ; F�C2 � D 0 inK0.C.�C2// by [6, The-
orem 7.5.5].

On the other hand, we can construct a non-trivial Fredholm module corresponding
to the Sierpiński carpet in a manner similar to the construction shown in Section 4.2.
Define zW 1 ! 1 by z.t/ D t=3 and Qfs D .fs; z/W 3 ! 3 for s 2 S2. Then we
get a new IFS .3; S2; ¹ Qfsºs2S2/. Denote by f�C2 the self-similar set on the new IFS,
and we get f�C2 D �C2 � ¹0º. The corresponding Fredholm module .Hf�C2

; Ff�C2
/

represents a non-trivial element in K0.C.Vf�C2
//.

Remark 4.7. The construction of the IFS in Remark 4.6 can be generalized. Let
.n; S; ¹fsºs2S / be an IFS and K its self-similar set. Then .nC1; S; ¹.fs; z/ºs2S /
is a new IFS and the corresponding self-similar set is denoted by zK for which zK D
K � ¹0º and ŒH zK ; F zK � ¤ 0 in K0.C.V zK//.

Since dimS .�Cn/ D log3.2
n�1.nC 2//, we get the next results.

Corollary 4.8. The following properties hold.

(1) .H�Cn ;F�Cn/ is a .Œlog3.2
n�1.nC 2//�C 1/-summable even Fredholm mod-

ule over Lip.�Cn/.

(2) .Lip.�Cn/;H�Cn ; D�Cn/ is a QC1-spectral triple of spectral dimension
log3.2

n�1.nC 2//.
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Corollary 4.9. We have the following.

(1) Tr.jD�Cn j
�p/ D 2n�3p

3p�2n�1.nC2/
for any p > log3.2

n�1.nC 2//.

(2) Tr!.jD�Cn j
� log3.2

n�1.nC2/// D 2n

log.2n�1.nC2//
.

(3) Tr!.f jD�Cn j
� log3.2

n�1.nC2///D 2n

log.2n�1.nC2//

R
�Cn

f dƒ for f 2C.�Cn/.

Here ƒ is the .log3.2
n�1.nC 2///-dimensional Hausdorff probability meas-

ure of �Cn.

Corollary 4.10. For d D .log3.2
n�1.nC 2///=n, we have

jŒF�Cn ; x
1�ŒF�Cn ; x

2� � � � ŒF�Cn ; x
n�jd 2 L.1;1/.H�Cn/

and

Tr!.jŒF�Cn ; x
1�ŒF�Cn ; x

2� � � � ŒF�Cn ; x
n�jd / D

2n

nnd=2 log.2n�1.nC 2//
:

Thus we have

Tr!.f jŒFCDn
; x1�ŒFCDn

; x2� � � � ŒFCDn
; xn�jd /D

2n

nnd=2 log.2n�1.nC2//

Z
�Cn

f dƒ

for any f 2C.�Cn/. Hereƒ is the .log3.2
n�1.nC 2///-dimensional Hausdorff prob-

ability measure of �Cn.

4.4. With rotations

Let R D

"
cos � � sin �
sin � cos �

#
be a rotation matrix. Let also f1; f2; f3; f4 be four simil-

itudes defined by

fs.x/ D
1

2
p
2
R

 
x �

1

2

"
1

1

#!
C bs:

Here we set

b1 D
1

4

"
1

1

#
; b2 D

1

4

"
3

1

#
; b3 D

1

4

"
1

3

#
; b4 D

1

4

"
3

3

#
:

The IFS .2; ¹f1; f2; f3; f4º/ is defined by using a rotation of angle � . We get the self-
similar setK on the IFS .2; ¹f1; f2; f3; f4º/ that satisfies the open set condition (see
Figure 8). Then we have VK ¤ K and

�S
s2¹1;2;3;4º1 Vs

�
\K D ;. Since ¹.0; 0/º is

a connected component of V [
S
s2¹1;2;3;4º fs.2/, the Fredholm module .HK ; FK/

defines a non-trivial element in K0.C.VK//.
Since dimS .K/ D log2

p
2 4 D 4=3, we get the next results.
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Figure 8. The first 3 steps of construction of K.

Corollary 4.11. The following properties hold.

(1) .HK ; FK/ is a 2-summable even Fredholm module over AK .

(2) .AK ;HK ;DK/ is a QC1-spectral triple of spectral dimension 4=3.

Corollary 4.12. We have the following.

(1) Tr.jDK j�p/ D 4=.23p=2 � 4/ for any p > 4=3.

(2) Tr!.jDK j�4=3/ D 2=.log 2/.

(3) Tr!.f jDK j�4=3/ D .2=.log 2//
R
K
f jK dƒ for any f 2 C.VK/. Here ƒ is

the 4=3-dimensional Hausdorff probability measure of K.

By Proposition 1.5, the quantized differential forms ŒFK ;x˛� (˛D1;2) are given as

ŒFK ; x
1� D

1M
jD0

M
s2S�j

es
p
2

26664
0 0 cos j� � sin j�
0 0 � sin j� � cos j�

� cos j� sin j� 0 0

sin j� cos j� 0 0

37775 ;

ŒFK ; x
2� D

1M
jD0

M
s2S�j

es
p
2

26664
0 0 sin j� cos j�
0 0 cos j� � sin j�

� sin j� � cos j� 0 0

� cos j� sin j� 0 0

37775 :
Thus, we have

jŒFK ; x
1�ŒFK ; x

2�j D
M

s2S1

e2s
2
E4:

This implies the next result.

Corollary 4.13. The operator jŒFK ; x1�ŒFK ; x2�j2=3 is of L.1;1/-class and we have

Tr!.jŒFK ; x1�ŒFK ; x2�j2=3/ D
3
p
2

log 2
:



A combinatorial Fredholm module on self-similar sets built on n-cubes 331

Thus we have

Tr!.f jŒFK ; x1�ŒFK ; x2�j2=3/ D
3
p
2

log 2

Z
K

f jK dƒ

for any f 2 C.VK/. Here ƒ is the 4=3-dimensional Hausdorff probability meas-
ure of K.

4.5. Without the open set condition

In this section we present an example of a self-similar set that does not satisfy the
open set condition. In this case, we can detect the similarity dimension by using our
Fredholm module but not detect the Hausdorff dimension explicitly.

Let .2; S D ¹1; 2; 3; 4; 5º; ¹fsºs2S / be the IFS defined by

f1.x/ D
1

3
x; f2.x/ D

1

3
x C

2

3
e1; f3.x/ D

1

3
x C

2

3
e2;

f4.x/ D
1

3
x C

2

3
e1 C

2

3
e2; f5.x/ D

2

3
x C

1

6
e1 C

1

6
e2:

Note that this IFS does not satisfy the open set condition. Let K be the self-similar
set on this IFS. Since we have V �

S5
sD1 fs.V /, we have VK D K. The similarity

dimension s D dimS .K/ of K is given by the identity

4 �

�
1

3

�s
C

�
2

3

�s
D 1:

We can easily check that 1 < s < 2.

Corollary 4.14. The following properties hold.

(1) .HK ; FK/ is a 2-summable even Fredholm module over Lip.K/.

(2) .Lip.K/;HK ;DK/ is a QC1-spectral triple of spectral dimension s.

Corollary 4.15. We have the following.

(1) Tr.jDK j�p/ D 4�3p

3p�2p�4
for any p > s.

(2) Tr!.jDK j� dimS .K// D 4�3s

3ss log3�2ss log2 .

(3) Tr!.f jDK j� dimS .K// D 4�3s

3ss log3�2ss log2

R
K
f dƒ for f 2 C.K/. Here ƒ is

the dimH .K/-dimensional Hausdorff probability measure of K.

Corollary 4.16. The operator jŒFK ; x1�ŒFK ; x2�js=2 is of L.1;1/-class, and we have

Tr!.jŒFK ; x1�ŒFK ; x2�jd / D
22�s=2 � 3s

3ss log 3 � 2ss log 2
:
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Thus we have

Tr!.f jŒFK ; x1�ŒFK ; x2�jd / D
22�s=2 � 3s

3ss log 3 � 2ss log 2

Z
K

f dƒ

for any f 2 C.K/. Hereƒ is the dimH .K/-dimensional Hausdorff probability meas-
ure of K.
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