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The pointwise behavior of Riemann’s function

Frederik Broucke and Jasson Vindas

Abstract. We present a new and simple method for the determination of the pointwise Hölder
exponent of Riemann’s function

P1
nD1n

�2 sin.�n2x/ at every point of the real line. In contrast
to earlier approaches, where wavelet analysis and the theta modular group were needed for
the analysis of irrational points, our method is direct and elementary, being only based on the
following tools from number theory and complex analysis: the evaluation of quadratic Gauss
sums, the Poisson summation formula, and Cauchy’s theorem.

1. Introduction

According to an account of Weierstrass, Riemann would have suggested the function

f .x/ D

1X
nD1

sin.n2�x/
n2

(1.1)

as an example of a function which is continuous but nowhere differentiable. In 1916,
Hardy [12] proved, based on earlier work by him and Littlewood [13], that Riemann’s
function f is not differentiable in a certain subset of R that contains every irrational
point. This seemed to confirm the nowhere differentiability conjecture, but, on the
contrary, Gerver [10] showed in 1970 that f is actually differentiable at any rational
number of the form .2r C 1/=.2s C 1/, r; s 2 Z. His results [10, 11] in combination
with Hardy’s ones imply that Riemann’s function is not differentiable at any other real
number. Gerver’s proofs are elementary, but difficult and long. Simpler proofs were
found later by Smith in 1972 [23] and Itatsu in 1981 [15] (see also [14, 18]). They
provided more precise information about the pointwise behavior of Riemann’s “non-
differentiable” function, which in particular gives the pointwise Hölder exponent [17]
at any rational point. This left open the determination of the exact pointwise regularity
of Riemann’s function at the irrationals.
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Duistermaat [7] used a variant of Itatsu’s approach to exhibit explicit dependence
of the O-constants on the analyzed rational point in the Smith–Itatsu asymptotic for-
mulas. His error terms were strong enough to enable him to find an upper bound for
the pointwise Hölder exponent at every irrational point. His upper bound depends
on approximation properties of the irrational number by certain continued fractions.
The problem of finding the pointwise Hölderian regularity of Riemann’s function at
irrational points was finally solved by Jaffard [16] in 1996, who showed that Duis-
termaat’s upper bound was sharp, that is, it is exactly equal to the pointwise Hölder
exponent. Jaffard’s proof is indirect and non-elementary.

A generalization of Jaffard’s result to fractional integrals of modular forms has
recently been obtained by Pastor [20, Theorem 2.3(2)]. As Jaffard’s, his proof is of
Tauberian nature and makes use of wavelet analysis and the action of subgroups of
the modular group.

We refer to the articles [2,3,8,9] for other recently revealed fascinating properties
of Riemann’s function.

The purpose of this paper is to provide a new and self-contained approach for
the determination of the pointwise Hölder exponent of Riemann’s function at every
point. Our arguments are direct and lead to completely elementary and fairly short
proofs that only rely on the following tools: the evaluation of quadratic Gauss sums,
the Poisson summation formula, and Cauchy’s integral theorem. We highlight that the
main novelty in our treatment is the use of a simple contour integral formula for the
pointwise analysis at irrational numbers. To the best of our knowledge, this is the first
explicit proof in the literature that avoids passing through the wavelet transform for
the computation of the pointwise Hölder exponent at each irrational point.

Our method can be sketched as follows. For the sake of convenience, we work
with a rescaled and complex version of Riemann’s function, namely,

�.z/ D

1X
nD1

1

2� in2
e.n2z/; (1.2)

where we use the notation e.z/ for e2� iz and z D x C iy with y � 0. The pointwise
properties of Riemann’s original function can easily be deduced from those of �. We
are interested in the computation of the pointwise Hölder exponent

˛.x/D sup
®
˛ > 0W�.xC h/D Px.h/COx.jhj

˛/ for some polynomial Px
¯
: (1.3)

Restricting the complex variable z to the upper half-plane, one has

�0.z/ D
1

2

�
�.z/ � 1

�
;



The pointwise behavior of Riemann’s function 335

where � stands for the Jacobi theta function, namely, �.z/D
P
n2Z e.n

2z/. Therefore,
for each x 2 R, we obtain the basic identity

�.x C h/ � �.x/C
1

2
h D

1

2
lim
y!0C

Z hCiy

iy
�.x C z/dz; (1.4)

a formula that was already employed by Itatsu for x D 0.
We will exploit the formula (1.4) for the analysis of both rational and irrational

numbers x. Itatsu and Duistermaat used (1.4) at x D 0 and then transformation prop-
erties (under the theta modular group) to study all rational points. We take a different
path, in the spirit of Smith, and use the Poisson summation formula to study the
boundary behavior of �.x C z/. This directly gives an exact expression for the limit
of the integral in (1.4) when x is rational that yields an asymptotic series and that
we shall discuss in Section 3. Approximating x by the nth convergent rn D pn=qn in
its continued fraction expansion when x is irrational and using our exact formula for
�.rn C z/, one generates sufficiently good bounds for �.x C z/. The next key step in
our method is to use Cauchy’s theorem to transform (1.4) into

�.x C h/ � �.x/C
1

2
h D �

1

2

Z
�

�.x C z/dz; (1.5)

where � is the part of the counterclockwise oriented boundary of the rectangle with
vertices 0, h, ijhj, and hC ijhj that lies in the (open) upper half-plane. In Section 4 we
shall combine the crucial formula (1.5) with our bounds for �.x C z/ to give a lower
bound for ˛.x/, and hence to obtain a new and simpler proof of Jaffard’s theorem.

We would like to point out that a straightforward modification of our arguments
from Section 4 can also be used to deduce Pastor’s result [20, Theorem 2.3(2)] without
having to resort on Tauberian theorems for the wavelet transform. We briefly sketch
this in Section 5.

We close this introduction by mentioning other generalizations of the function �.
Its fractional integrals

�a.x/ D

1X
nD1

e.n2x/

na

are covered by the results of Jaffard [16] and Pastor only when a > 1. For a � 1, �a is
no longer a continuous function. Interestingly, Seuret and Ubis [22] have performed
a pointwise regularity analysis of the Fourier series �a for values of the parameter
a 2 .1=2; 1� in terms of L2-type local Hölder exponents. Another important general-
ization of � is obtained when one replaces the frequency n2 by a polynomial P.n/
and considers

�P;a.x/ D

1X
nD1

e.P.n/x/

na
; a > 1:
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When the degree k of P is larger than 2, the analysis becomes much more difficult:
one loses the underlying modularity and Poisson summation only seems to yield good
control in intervals jx � p=qj � q�k , which appear to be too small to obtain the
pointwise regularity at the irrationals. Only partial results are known, but more can be
said about the local behavior “on average” by considering the spectrum of singularities
d�P;a.˛/, which is defined as the Hausdorff dimension of the set of points x at which
the Hölder exponent of �P;a equals ˛. We refer to [5, 6] for investigations in this
direction.

2. Preliminaries: Quadratic Gauss sums

The following exponential sums naturally arise in the analysis of � at rational points.

Definition 2.1. Let q; p; m be integers with .p; q/ D 1. The quadratic Gauss sum
S.q; p/ and the generalized quadratic Gauss sum S.q; p;m/ are defined as

S.q; p/ D

qX
jD1

e
�pj 2
q

�
and S.q; p;m/ D

qX
jD1

e
�pj 2 Cmj

q

�
:

The quadratic Gauss sums were already evaluated by Gauss (see e.g. [1, Section
9.10] or [19, Section 9.3]).

Theorem 2.2. Suppose p and q are positive integers with .p; q/ D 1. For odd n,
define

"n D

´
1 if n � 1 mod 4;

i if n � 3 mod 4:

Then

S.q; p/ D

8̂̂<̂
:̂
"q
�
p
q

�p
q if q is odd;

0 if q � 2 mod 4;

.1C i/"p
�
q
p

�p
q if q � 0 mod 4:

Here,
�
p
q

�
is the Jacobi symbol (see [1, 19]).

The generalized quadratic Gauss sums S.q; p; m/ can be related to S.q; p/ as
follows. Let p? be the multiplicative inverse of p mod q. Suppose first that m �
2m0 mod q for some m0. Then we can complete the square to get

S.q; p;m/ D

qX
jD1

e

�
p.j C p?m0/2

q

�
e

�
�
p?m02

q

�
D e

�
�
p?m02

q

�
S.q; p/: (2.1)
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If there is no such m0, then q is even and m odd. In this case we have

S.4q; p/ D

2qX
jD1

e
�p.2j C p?m/2

4q

�
C

2qX
jD1

e
�p.2j /2

4q

�
D 2e

�p?m2
4q

�
S.q; p;m/C 2S.q; p/;

since 2j C p?m runs over all odd residues mod 4q when j runs over ¹1; : : : ; 2qº.
Therefore,

S.q; p;m/ D

´
1
2
e
�
�
p?m2

4q

�
S.4q; p/ if q � 2 mod 4;

0 if q � 0 mod 4:
(2.2)

3. Behavior at rational points

In this section we deduce an asymptotic expansion for � at every rational number. We
first prove a simple but crucial lemma that describes the behavior of � near rationals1.
This lemma will be used again in Section 4 to derive bounds for � near irrational
points. For a complex number z ¤ 0, we define z�1=2 via the principal branch of the
logarithm continuously extended to the negative real axis from the upper half-plane,
i.e., arg.z/ 2 .��; ��. Accordingly, our convention is thus t1=2 D ijt j1=2 for t < 0,
which simplifies the writing of some formulas below.

Lemma 3.1. Suppose 1 � p � q, .p; q/ D 1 and Im z > 0. Then

�
�p
q
C z

�
D

e� i=4

q
p
2
z�1=2

�
S.q; p/C 2

1X
mD1

S.q; p;m/ exp
�
�

i�m2

2q2z

��
:

Proof. Rearranging terms according to their value mod q, we write

�
�p
q
C z

�
D

X
n2Z

e
�pn2
q

�
e.n2z/ D

qX
jD1

e
�pj 2
q

� X
n2jCqZ

e.n2z/:

For fixed z, the function fz WR! C, fz W t 7! e.zt2/ has Fourier transform

Ofz.u/ D

Z 1
�1

fz.t/e�2� iut dt D
e� i=4

p
2
z�1=2 exp

�
�

i�u2

2z

�
:

An application of the well-known Poisson summation formula then yields

�
�p
q
C z

�
D

e� i=4

q
p
2
z�1=2

qX
jD1

e
�pj 2
q

� X
m2Z

e
�mj
q

�
exp

�
�

i�m2

2q2z

�
1In the language of modular forms, this lemma gives the expansion of � at the cusps.
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D
e� i=4

q
p
2
z�1=2

X
m2Z

S.q; p;m/ exp
�
�

i�m2

2q2z

�
D

e� i=4

q
p
2
z�1=2

�
S.q; p/C 2

1X
mD1

S.q; p;m/ exp
�
�

i�m2

2q2z

��
:

Define the “twisted” �-function

�q;p.z/ D

1X
mD1

S.q; p;m/

2� im2
e.m2z/:

Lemma 3.1 allows us to give a short proof of the following theorem, essentially due
to Smith [23] and Itatsu [15] (cf. [7, 14]; a generalization of Theorem 3.2 is given
in [5, Corollary 2.4]).

Theorem 3.2. Let p and q be integers, q � 1, .p; q/ D 1. Then

�.p=q C h/ D �.p=q/C C�p=qjhj
1=2
� C C

C

p=q
jhj

1=2
C � h=2CRq;p.h/;

where C˙
p=q

are given by

C�p=q D
e3� i=4

q
p
2
S.q; p/ and CC

p=q
D

e� i=4

q
p
2
S.q; p/; (3.1)

and Rq;p.h/ satisfies the estimate Rq;p.h/ � q3=2jhj3=2. Furthermore, C�
p=q
D

CC
p=q
D 0 (and hence � is differentiable at p=q) if and only if q � 2 mod 4.

Proof. Suppose y > 0. By equation (1.4),

�
�p
q
C hC iy

�
D �

�p
q
C iy

�
C
1

2

Z hCiy

iy
�
�p
q
C �

�
d� �

1

2
h:

Using Lemma 3.1 and integrating by parts,Z hCiy

iy
�
�p
q
C �

�
d� D

e� i=4

q
p
2

 
S.q; p/

h
2�1=2

ihCiy

iy

C 2

Z hCiy

iy
��1=2.4q2�2/

�
�q;p

�
�

1

4q2�

��0
d�

!

D
2e� i=4

q
p
2

 
S.q; p/

�
�1=2

�hCiy
iy C

�
4q2�3=2�q;p

�
�

1

4q2�

��hCiy

iy

� 6q2
Z hCiy

iy
�1=2�q;p

�
�

1

4q2�

�
d�

!
:
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All the occurring functions have continuous extensions to R. Letting y ! 0C we
obtain the desired result, with the constants C˙

p=q
as in (3.1) and with

Rq;p.h/ D �4q
e�3� i sgnh=4

p
2

�q;p

�
�

1

4q2h

�
jhj3=2 � 6q

e� i=4

p
2

Z h

0

t1=2�q;p

�
�

1

4q2t

�
dt:

(3.2)
The fact that the coefficients C˙

p=q
are both zero if and only if q� 2mod 4 is an imme-

diate consequence of Theorem 2.2. The bound Rq;p.h/� q3=2jhj3=2 easily follows
since �q;p �

p
q, in view of (2.1), (2.2), and Theorem 2.2.

Iterating the integration by parts procedure, we obtain a full asymptotic series for
the remainder Rq;p . Indeed, for any K 2 N,

Rq;p.h/ D �
e�3� i sgnh=4

p
2

KX
kD0

akq
2kC1�.�k/q;p

�
�

1

4q2h

�
ek� i.1�sgnh/=2

jhjkC3=2

�
e� i=4

p
2
.K C 3=2/aKq

2KC1

Z h

0

tKC1=2�.�K/q;p

�
�

1

4q2t

�
dt;

where2

ak D .�1/
k4kC1

kY
jD1

.j C 1=2/

and �.�k/q;p stands for the kth-order primitive

�.�k/q;p .x/ D

1X
mD1

S.q; p;m/

.2� im2/kC1
e.m2x/:

A similar asymptotic series was obtained by Duistermaat in [7].
Inspecting the kth term in this asymptotic series, we see that it is of the form

jhj3=2Ckg˙
k
.jhj�1/, where ˙ D sgn h and where the functions g˙

k
are 4q2-periodic

with zero mean and global Hölder regularity 1=2C k. One readily verifies thatRq;p is
a so-called trigonometric chirp at 0 of type .3=2; 1/ and of regularity 1=2. The latter
refines a theorem of Jaffard and Meyer [17, Theorem 7.1] for Riemann’s function;
see [17, p. 73] for the precise definition of a trigonometric chirp. The prototypical
example of a trigonometric chirp at 0 of type .˛; ˇ/, ˛ > �1, ˇ > 0 is the function
jxj˛ sin.jxj�ˇ /.

Using the explicit expression for S.q; p/ given by Theorem 2.2, we can exhibit
the behavior of Re

�
�.p=qC h/� �.p=q/

�
in a precise fashion, which we summarize

2For k D 0, the product equals 1 in accordance with the empty product convention.
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q mod 4 p mod 4 h < 0 h > 0

1 any �

�p
q

� 1

2
p
q

p
jhj COq

�
jhj
� �p

q

� 1

2
p
q

p
hCOq.h/

3 any �

�p
q

� 1

2
p
q

p
jhj COq

�
jhj
�
�

�p
q

� 1

2
p
q

p
hCOq.h/

2 any �
1

2
hCO

�
q3=2jhj3=2

�
�
1

2
hCO

�
q3=2h3=2

�
0 1 �

� q
p

� 1
p
q

p
jhj COq

�
jhj
�
�
1

2
hCO

�
q3=2h3=2

�
0 3 �

1

2
hCO

�
q3=2jhj3=2

� � q
p

� 1
p
q

p
hCOq.h/

Table 1. Behavior of Re
�
�.p=q C h/ � �.p=q/

�
D
P1
nD1

sin.2�n2x/
2�n2

in Table 1. Note that at some rational points the function Re� has a (finite) left (resp.
right) derivative, but an infinite right (resp. left) derivative. The table displays the
behavior of the 1-periodic function Re

�
�.p=q C h/ � �.p=q/

�
. By rescaling Re �

by a factor of 1=2, we obtain the well-known regularity of the 2-periodic Riemann’s
function f (1.1) at rational points.

Corollary 3.3. Suppose r D p=q is rational. If p and q are both odd, then f is
differentiable at r and its Hölder exponent at r is 3=2; otherwise the Hölder exponent
of f at r equals 1=2.

4. Behavior at irrational points

We now investigate the behavior of � at irrational points �. Unlike in the rational
case, we will not be able to derive an asymptotic formula for � near �. Instead, we
will determine the Hölder exponent ˛.�/ introduced in (1.3).

We need some preparation in order to state the formula for ˛.�/. Denote the nth
convergent in the continued fraction expansion of � by rnDpn=qn, where .pn; qn/D1.
The quality of the approximation of � by rn is quantified by the number �n, which is
defined via the relation

j� � rnj D
� 1
qn

��n
:
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Let .rnk /k be the subsequence3 of convergents rnk with qnk 6� 2 mod 4, and set

�.�/ WD lim sup
k!1

�nk : (4.1)

Theorem 4.1. Let � be irrational. The Hölder exponent ˛.�/ of � at � is given by

˛.�/ D
1

2
C

1

2�.�/
: (4.2)

The same result also holds for the Hölder exponent at � of Re� and Im�.

The rest of this section is devoted to the proof of Theorem 4.1, which consists
of two parts, namely, establishing the two inequalities � and � in (4.2). Let us first
recall some basic properties of continued fractions (we refer to [21] for proofs and
more advanced properties). The continued fractions have the following properties: for
every n 2 N, �n > 2, consecutive convergents rn and rnC1 lie on different sides of �,
j� � rnC1j < j� � rnj, and

pnC1qn � pnqnC1 D .�1/
n: (4.3)

Since jrn � rnC1j D 1=.qnqnC1/, we have

j� � rnj �
1

qnqnC1
� 2j� � rnj;

so � 1
qn

��n�1
�

1

qnC1
� 2

� 1
qn

��n�1
: (4.4)

Note also that in view of (4.3), we have that qn and qnC1 are never both congruent
to 2 modulo 4.

4.1. The lower bound for ˛.�/

The lower bound for ˛.�/ was first found by Jaffard [16] by means of Tauberian argu-
ments involving the continuous wavelet transform. To estimate the wavelet transform,
Jaffard deduced bounds4 for the theta function near the irrational number �. We will
present a simple proof of these bounds, using Lemma 3.1. Furthermore, we will show
how these bounds directly furnish the lower bound for ˛.�/, without needing to pass
through the wavelet transform.

3Using a basic property of continued fractions (see (4.3) below), it is readily seen that this
is an infinite subsequence.

4Recently, Pastor has extended such bounds to modular forms, see Lemma 5.2 below.
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Comparing the sum with an integral, we immediately obtain the following esti-
mate:

1X
nD1

e.n2z/� y�1=2 (4.5)

for z D x C iy with y > 0. Here and below ‘�’ stands for Vinogradov’s notation.

Proposition 4.2. Let z D x C iy with y > 0. For each " > 0 there exists a ı D
ı.�; "/ > 0 such that for jzj < ı, y > 0 the following bound holds:

�.�C z/� jzj
1

2�.�/
�"� 12 C y�1=2jzj

1
2�.�/

�": (4.6)

Proof. We first derive bounds for � near a rational p=q with .p;q/D1. By Lemma 3.1,

�
�p
q
C �

�
D
e� i=4

q
p
2
��1=2

X
m2Z

S.q; p;m/ exp
�
�
� i
2q2�

m2
�
:

By the results obtained in Section 2, we have that S.q; p; m/ �
p
q. Estimating

via (4.5),

�
�p
q
C �

�
�
jS.q; p/j

qj�j1=2
C

p
qj�j1=2

.Im �/1=2
: (4.7)

Let N be such that n � N implies �n � �.�/C "0 whenever qn 6� 2 mod 4, and
where "0 is such that 1=.2�.�/ C 2"0/ D 1=.2�.�// � ". Set ı WD 2j� � rN j. For z
with jzj � ı, let n be the unique integer larger than N such that 2j� � rnC1j < jzj �
2j� � rnj, and set � D z C .� � rnC1/. Then

1

2
jzj � j�j �

3

2
jzj; Im � D Im z D y: (4.8)

Suppose first that qn 6� 2 mod 4. We then apply (4.7) with p D pnC1, q D qnC1.
For the second term, we use (4.4) to see that

p
qnC1 � q

�n�1
2

n D j� � rnj
1
2�n
� 12 �

p
2jzj

1
2�n
� 12 :

Since 1=.2�n/� 1=.2�.�//� " (because qn 6� 2mod 4) and j�j � jzj, this second term
is of the desired order. The first term vanishes if qnC1 � 2mod 4, while otherwise we
have

1
p
qnC1

D j� � rnC1j
1

2�nC1 � jzj
1

2�.�/
�";

so this first term is also of the desired order.
Suppose now that qn � 2mod 4. We then apply (4.7) with pD pn, q D qn and get

�.�C z/ D �

�
pn

qn
C

�
� C

pnC1

qnC1
�
pn

qn

��
�

p
qn
p
y

ˇ̌̌
� C

.�1/n

qnC1qn

ˇ̌̌1=2
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D
1

p
qnC1
p
y

ˇ̌
�qnqnC1 C .�1/

n
ˇ̌1=2
�

1
p
qnC1
p
y
:

In the first estimate we employed (4.3), while in the last estimate we used that j�j �
j�� rnj � 1=.qnqnC1/. Since qn � 2mod 4, we have that qnC1 6� 2mod 4 (by (4.3)),
so that we can bound .qnC1/�1=2 like before.

Using this bound for � near �, we now deduce the lower bound for ˛.�/. Pick
" > 0 arbitrarily, and use Proposition 4.2 to find a ı > 0 such that the bound (4.6)
holds for jzj < ı. Suppose jhj < ı=

p
2. We use again (1.4), so that

�.�C h/ � �.�/ D �
1

2
hC

1

2
lim
y!0C

Z hCiy

iy
�.�C z/dz:

By Cauchy’s theorem, the limit of this integral equalsZ ijhj

0

�.�C z/dz C
Z hCijhj

ijhj
�.�C z/dz �

Z hCijhj

h

�.�C z/dz DW I1 C I2 C I3:

Using the bounds (4.6), we get

I1 �

Z jhj
0

y�
1
2C

1
2�.�/

�"
� jhj

1
2C

1
2�.�/

�";

I2 � jhj
� 12C

1
2�.�/

�"
� jhj D jhj

1
2C

1
2�.�/

�";

I3 � jhj
� 12C

1
2�.�/

�"
� jhj C jhj

1
2�.�/

�"

Z jhj
0

y�1=2dy � jhj
1
2C

1
2�.�/

�":

Since "was arbitrary, ˛.�/� 1=2C 1=.2�.�//. A fortiori, this lower bound also holds
for the Hölder exponent at � of the real and imaginary part of �.

4.2. The upper bound for ˛.�/

An upper bound for the Hölder exponent at � can be obtained from the expansion of
� at rationals, and was first done by Duistermaat [7, Proposition 5.2]. For the sake of
being self-contained, we repeat his proof here.

Let " > 0 be arbitrary, and let .rl/l be a subsequence of .rn/n with the properties
that ql 6� 2mod 4 and that �l � �.�/� ". We will construct a sequence of points .hl/l
such that hl ! 0 and �.�C hl/� �.�/ is bounded from below by a constant multiple
of jhl j1=2C1=.2.�.�/�"//. We will do this by exploiting the square root behavior of �
in rl . Set

xl D �j� � rl j; (4.9)
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where � is a fixed positive constant, independent of l , to be determined later. Using
Theorem 3.2 and Theorem 2.2 we see that

j�.rl C xl/ � �.rl/j �
x
1=2

l
p
2ql
�
1

2
xl CO

�
.qlxl/

3=2
�
;

where the big-O constant is absolute (independent of ql ). By equation (4.9), and using
that j� � rl j � q�2l , this is at least

p
�
p
ql
j� � rl j

1=2

�
1
p
2
�

1

2
p
ql

p
�CO.�/

�
:

If we now fix a � > 0 sufficiently small, then for ql sufficiently large

j�.rl C xl/ � �.rl/j �

p
�
p
ql
j� � rl j

1=2:

Using that q�.�.�/�"/
l

� j� � rl j, we get

j�.rl C xl/ � �.rl/j � j� � rl j
1
2C

1
2.�.�/�"/ � jxl j

1
2C

1
2.�.�/�"/ :

Finally, since j�.�/ � �.rl/j and j�.�/ � �.rl C xl/j are not both smaller than the
term j�.rl C xl/ � �.rl/j=2, we can take hl D rl � � or hl D rl C xl � � such that
j�.�/ � �.�C hl/j is maximal, and we get

j�.�/ � �.�C hl/j � jhl j
1
2C

1
2.�.�/�"/ ; hl ! 0:

Since " was arbitrary, this shows that ˛.�/ � 1=2C 1=.2�.�//.
With a small modification, the above argument shows that the same upper bound

also holds for the Hölder exponent at � of the real and imaginary part of �. Indeed,
using the same notation as above, we now define xl by setting jxl jD �j� � rl j and by
choosing the sign of xl so that rl C xl lies on the side where the square root behavior
is present (see Table 1 for Re�; for Im� one can make a similar table).

5. Behavior at irrationals for fractional integrals of modular forms

As we indicated in the introduction, our ideas can also be applied to simplify the
proof of a theorem of Pastor on the pointwise Hölder exponents of modular forms at
the irrationals.
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We adopt here similar notations as in Pastor’s paper [20]. We let g be a modular
form of weight k for a subgroup � of finite index of SL.2;Z/, let5

g.z/ D

1X
nD0

cne.nz/

be its Fourier expansion at1, and define for a > 0 its a-fractional integral as

ga.z/ WD

1X
nD1

cn

na
e.nz/;

which converges uniformly for z D x 2 R if a > k in general, and for a > k=2 when-
ever g is a cusp form. Let ˇ.�/ be the pointwise Hölder exponent of ga at an irrational
number �. It was shown in [4] that ˇ.�/ D a � k=2 if g is a cusp form. The corre-
sponding computation of ˇ.�/ when g is not a cusp form is one of the main results
from [20]. In the remainder of this section we assume that g is not a cusp form and
that a > k.

Theorem 5.1 ([20, Theorem 2.3(2)]). Let � be irrational and let6

�.�/ WD sup
²
� W
ˇ̌̌
� �

p

q

ˇ̌̌
�

1

q�
for infinitely many noncuspidal rationals

p

q

³
: (5.1)

Then, the Hölder exponent ˇ.�/ of ga at � is given by

ˇ.�/ D a � k
�
1 �

1

�.�/

�
:

Note that the case of Riemann’s (complex) function (1.2) corresponds to g being
the theta function, which is modular of weight 1=2 and for which the noncuspidal
rationals are precisely those rationals p=q with q 6� 2 mod 4.

In order to prove Theorem 5.1, Pastor uses a Tauberian argument involving the
wavelet transform, in combination with bounds of g near rationals. In this section,
we show that the evaluation of the Hölder exponent ˇ.�/ follows directly from these
bounds of g by using basic complex analysis. The bounds on g are expressed in the
following lemma of Pastor, which extends Proposition 4.2 to general modular forms,
and which we shall use as a black box.

5For simplicity, we assume (without loss of generality) that the modular form is holomor-
phic at the cusp at1 and that this cusp has width 1.

6One always has �.�/ � 2.
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Lemma 5.2 ([20, Lemma 3.3]). Let � be irrational and � D �.�/ be given by (5.1).
For each " > 0, the following bounds hold:

g.x C iy/� y
k
� �"�k C y�kjx C iy � �j

k
� �" for 0 < y < 1=2; (5.2)

and
g.�C iy/� y�kC

k
�C" infinitely often as y ! 0C: (5.3)

We slightly adapt our method from Section 4.1 in order to obtain the lower bound
for ˇ.�/. The starting point is the following integral representation for ga ([20, Eq.
(3.3)]):

ga.x/ D
.2�/a

ia�.a/

Z xCi1

x

.z � x/a�1
�
g.z/ � c0

�
dz:

Let J be the integer such that a � .1 � 1=�/k 2 .J; J C 1�. Then by taking " small
enough in (5.2) from Lemma 5.2, one sees that the integrals7

.2�/a

ia�.a/

Z �Ci1

�

.�1/j
�
a�1

j

�
.z � �/a�1�j

�
g.z/� c0

�
dzDW

g
.j /
a .�/

j Š
; j D 1; : : : ;J;

converge absolutely. Let now h be a small number. By Cauchy’s theorem we have

ia�.a/

.2�/a

�
ga.�C h/ � ga.�/ �

JX
jD1

g
.j /
a .�/

j Š
hj
�

D

Z �Cih

�Ch

.z � � � h/a�1
�
g.z/ � c0

�
dz

�

Z �Cih

�

JX
jD0

.�1/j
�
a � 1

j

�
.z � �/a�1�jhj

�
g.z/ � c0

�
dz

C

Z �Ci1

�Cih

�
.z � � � h/a�1 �

JX
jD0

.�1/j
�
a � 1

j

�
.z � �/a�1�jhj

��
g.z/ � c0

�
dz:

Applying Taylor’s theorem and the bounds provided by Lemma 5.2 (and the exponen-
tial decay of g.z/� c0 as z!1), one readily sees that this is bounded by a constant
times jhja�.1�

1
� /k�", showing that ˇ.�/ � a � .1 � 1=�/k.

It might also be possible to apply a variant of Duistermaat’s method from Sec-
tion 4.2 in combination with an approximate functional equation to deduce the upper
bound for ˇ.�/. This would however require to exhibit explicit bounds in terms of

7Note that a is not necessarily an integer. As customary,
�
a�1

j

�
D .a � 1/ � � � .a � j /=j Š.
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the involved parameters of the error term in e.g. [20, Theorem 2.5]. We rather choose
a shorter path and shall show the upper bound via a simple Abelian argument that
involves the maximum modulus principle and Pastor’s oscillation bound (5.3). We
now distinguish two cases according to whether a is a positive integer or not.

Assume first that a is a positive integer. Let ˇ be such that ga.�C h/ D P�.h/C
O.jhjˇ / for a certain polynomial P�. We have

g.z/ D c0 C
aŠ

.2� i/aC1

I
ga.�/

.� � z/aC1
d�; for Im z > 0;

where the integral is over a counterclockwise oriented circle with centre z in the
upper half-plane. Consider now the function .z � �/�ˇ

�
ga.z/ � P�.z � �/

�
. It is

holomorphic for Im z > 0, has a continuous extension to ¹zW Im z � 0 and z ¤ �º,
it is O.jz � �j�ˇ / when z ! �, and bounded on R n ¹�º. Hence, by the Phragmén–
Lindelöf theorem8, it is bounded on Im z > 0. Let now z be close to �. Integrating
over a circle of radius jz � �j=2, we get

g.z/D c0C
aŠ

.2� i/aC1

I
ga.�/�P�.���/

.��z/aC1
d�CO.1/� 1C jz��jˇ�a; as z! �:

Comparing this to (5.3) from Lemma 5.2, we see that ˇ � a � k.1 � 1=�/.
Suppose now that a is not a positive integer, and let N D dae. We have

g.z/ D c0 C
1

iN .2�/a�.N � a/

Z 1
0

tN�ag.N/a .z C it /
dt
t
:

If we again assume that ga.�C h/D P�.h/CO.jhjˇ /, then by the first part we have
g
.N/
a .z/� jz � �jˇ�N C 1 as z ! �. Hence,

g.�C iy/ D c0 C
1

iN .2�/a�.N � a/

Z 1

0

tN�ag.N/a

�
�C i.y C t /

� dt
t
CO.1/

�

Z 1

0

tN�a.y C t /ˇ�N
dt
t
C 1� yˇ�a; as y ! 0;

provided that ˇ < a, which we may assume without loss of generality. Comparing
again with (5.3) this yields ˇ � a � k.1 � 1=�/.
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