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Assouad-like dimensions of a class of random Moran measures.
II. Non-homogeneous Moran sets

Kathryn E. Hare and Franklin Mendivil

Abstract. In this paper, we determine the almost sure values of the ˆ-dimensions of random
measures � supported on random Moran sets in Rd that satisfy a uniform separation condition.
This paper generalizes earlier work done on random measures on homogeneous Moran sets
in Hare and Mendivil (2022) to the case of unequal scaling factors. The ˆ-dimensions are
intermediate Assouad-like dimensions with the (quasi-)Assouad dimensions and the � -Assouad
spectrum being special cases.

The almost sure value of dimˆ � exhibits a threshold phenomenon, with one value for
“large”ˆ (with the quasi-Assouad dimension as an example of a “large” dimension) and another
for “small” ˆ (with the Assouad dimension as an example of a “small” dimension). We give
many applications, including both where the scaling factors are fixed and the probabilities are
uniformly distributed, and also where the probabilities are fixed and the scaling factors are
uniformly distributed.

1. Introduction

A dimension provides a way of quantifying the size of a set. In the context of sub-
sets of a metric space, there are many different dimensions that have been defined
and each describes slightly different geometric properties of the subset. Two well-
known examples of this are the Hausdorff and box-counting dimensions, which are
both global measures of the geometry of the given subset. It is also of substantial
interest to understand the local variation in the geometry and for this other dimen-
sions have been introduced including the (upper and lower) Assouad dimensions and
variations. The Assouad dimensions [1, 6, 21, 22], the less extreme quasi-Assouad
dimensions [3, 11, 23], the � -Assouad spectrum [10], and (the most general of these)
the intermediate Assouad-like ˆ-dimensions [10, 13] all quantify various aspects of
the “thickest” and “thinnest” parts of the set. These same Assouad-like dimensions
are all also available to quantify Borel measures on metric spaces [7, 16, 17].
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The ˆ-dimensions range between the box dimensions and the Assouad dimen-
sions and are also locally defined. However, they differ in the depth of scales that they
consider and thus can provide precise information about the set or measure (see Sec-
tion 2 for definitions). In this paper, we extend the investigation of the ˆ-dimensions
of random 1-variable measures on homogeneous Moran sets [18] to the case of ran-
dom measures supported on random Moran sets with multiple scaling factors for the
similarities.

The study of the dimensional properties of random fractal objects is well estab-
lished, with some early papers investigating the almost sure Hausdorff dimension [5,
14], while more recently the Assouad and related dimensions have also been invest-
igated [8, 9, 12, 18, 25, 26].

By a random Moran measure we mean a random Borel probability measure sup-
ported on a random Moran construction in RD (see Section 3 for the precise details
of the construction); our construction can also be described as a random 1-variable
fractal measure. The support of the measure is constructed by a random iterative pro-
cedure, where at each stage we replace each component of the set with a random (but
uniformly bounded) number of randomly scaled, separated, compact, and similar sub-
sets. A random Borel probability measure is then defined on the random limiting set
by a similar iterative process which subdivides the total mass by randomly choosing
a set of probabilities at each step. The process produces a 1-variable fractal measure
since at each level we make one random choice and use that same choice for all subdi-
visions on that level. Specifically, at level n we choose Kn random geometric scaling
factors for the similarities andKn random probabilities to use in subdividing the mass
and use these 2Kn choices for every subdivision at that level. This is in contrast with
the stochastically self-similar (or1-variable) construction where the choice is made
independently for each subdivision. We make a blanket separation assumption which
can be thought of as a uniform strong convex separation condition.

For any dimension function ˆ, the ˆ-dimension of the resulting random meas-
ure �! is almost surely constant and this value depends on how ˆ compares to the
threshold function ‰.t/ D logjlog t j=jlog t j near 0; this behaviour is similar to what
was seen in [12, 18, 25]. For ˆ� ‰1 (the “small” dimension functions ˆ, such as
the Assouad dimension), the computations of the almost sure values of the upper and
lower ˆ-dimensions of the random measure �! are quite similar to the homogen-
eous (same scaling factor for all children) case dealt with in [18]. These computations
involve the essential supremum (or essential infimum) of ratios of the logarithm of
a probability to the logarithm of a scaling factor (see Section 5.1). Furthermore,

1For f; g > 0, we will write g � f if there is a function A and ı > 0 such that f .t/ �
A.t/g.t/ for all 0 < t < ı and A.t/!1 as t ! 0C.
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the almost sure value of the ˆ-dimension is the same for all small dimension func-
tions. It is natural to ask if there is a choice of probabilities such that the almost sure
ˆ-dimension of the associated random measures coincides with the almost sure ˆ-
dimension of the underlying sets, as is true in the homogeneous case. In Section 5.2
we show that this need not be true in the more general situation.

In contrast, forˆ�‰ (the “large” dimension functions, such as the quasi-Assouad
dimension), the computations are significantly different in the current situation of dif-
ferent scaling factors. Roughly, the reason for this is that the choice of the extremal
branch down the tree of subdivisions depends on what exponent (dimension) one
thinks is the correct one. Thus, the computation of the ˆ-dimension involves solv-
ing an equation of the form G.�/ D � to find the correct exponent. The function G
is a ratio of expected values of logarithms of probabilities to logarithms of scaling
ratios (see Section 4.1 for details). Again, the almost sure value of theˆ-dimension is
the same for all large dimension functions. One special case we examine carefully is
when the set is deterministic with two scaling ratios, a and b, and the probabilities are
uniformly chosen. Setting a D b
 , the dimension is the root, � , of b� C b
� D e�1.
Notice that this is a polynomial in b� if 
 is an integer. It is interesting to note that the
dimension of the support (the Cantor-like set) in this case is the root of b� C b
� D 1.
Another special case we examine is again when the set is deterministic, but now the
“left” probability is chosen randomly from the two possibilities p or 1� p (for a fixed
value of p). In this case the almost sure ˆ-dimension of �! is given explicitly as one
of two values where the one to use depends on the relationship between a and b and
also between p and 1� p. All of these examples are discussed in Section 4.4. It is an
open problem if the probabilities can be chosen so that the almost sure ˆ-dimension
of the random measures coincides with that of the random sets.

The definition and basic properties of theˆ-dimensions are given in Section 2 and
the details of the random construction are given in Section 3. Section 4 contains our
results for large ˆ and Section 5 those for small ˆ.

We present most of our discussion in the context of random subsets of R where at
each stage we split each component into two “children”. This is done for simplicity of
exposition only and in Section 4.6 we briefly indicate what changes are necessary to
accommodate random subsets of RD with a random (but uniformly bounded) number
of children at each level.

It is important to note that we always assume that the scaling ratios are uniformly
bounded away from 0. It is certainly possible to remove this assumption, but this
seems to require some delicate technical arguments and we leave this case for future
work.
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2. Assouad-like dimensions

There are many ways to quantify the ‘size’ of subsets of metric spaces and Borel
probability measures on these metric spaces. The so-called ˆ-dimensions provide
refined information on the local size of a set or concentration of a measure. To define
these, we first recall some standard notation and define what we mean by a dimension
function.

Notation 1. We will write B.x; R/ for the open ball centred at x belonging to the
bounded metric space X and radius R. By Nr.E/ we mean the least number of open
balls of radius r required to cover E � X .

Definition 2. A dimension function is a map ˆW .0; 1/! RC with the property that
t1Cˆ.t/ decreases to 0 as t decreases to 0.

Examples include the constant functionsˆ.t/Dı�0, the functionˆ.t/D1=jlog t j
and the function ˆ.t/ D logjlog t j=jlog t j. The latter will be of particular interest in
this paper.

Definition 3. We will say that a dimension function ˆ is large if

ˆ.t/ D H.t/
logjlog t j
jlog t j

;

whereH.t/!1 as t ! 0 and small if (with the same notation)H.t/! 0 as t ! 0.

Definition 4. Let � be a measure on X and ˆ be a dimension function. The upper
and lower ˆ-dimensions of � are given, respectively, by

dimˆ� D inf
²
d W .9C1; C2 > 0/.80 < r < R

1Cˆ.R/
� R � C1/

�.B.x;R//

�.B.x; r//
� C2

�R
r

�d
8x 2 supp�

³
and

dimˆ� D sup
²
d W .9C1; C2 > 0/.80 < r < R

1Cˆ.R/
� R � C1/

�.B.x;R//

�.B.x; r//
� C2

�R
r

�d
8x 2 supp�

³
:

These dimensions were introduced in [16] and were motivated, in part, by the ˆ-
dimensions of sets, introduced in [10] and thoroughly studied in [13]. We recall the
definition.
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Definition 5. The upper and lowerˆ-dimensions ofE�X are given, respectively, by

dimˆE D inf
²
d W .9C1; C2 > 0/.80 < r � R

1Cˆ.R/ < R < C1/

Nr.B.z;R/ \E/ � C2

�R
r

�d
8z 2 E

³
and

dimˆE D sup
²
d W .9C1; C2 > 0/.80 < r � R

1Cˆ.R/ < R < C1/

Nr.B.z;R/ \E/ � C2

�R
r

�d
8z 2 E

³
:

Remark 1. (i) In the special case ofˆD 0, these dimensions are known as the upper
and lower Assouad dimensions of the measure or set. For measures, these dimensions
are also known as the upper and lower regularity dimensions and were studied by
Käenmäki et al. in [20, 21] and Fraser and Howroyd in [7]. The upper and lower
Assouad dimensions of the measure � are denoted dimA � and dimL � respectively,
and are important because the measure � is doubling if and only if dimA� <1 ([7])
and uniformly perfect if and only if dimL � > 0 ([20]).

(ii) If we put ˆ� D 1=� � 1 for 0 < � < 1, then dimˆ�� and dimˆ�� are (basic-
ally) the upper and lower � -Assouad spectrum introduced in [10]. The upper and
lower quasi-Assouad dimensions of �, developed in [17, 19], are given by

dimqA � D lim
�!1

dimˆ�� and dimqL � D lim
�!1

dimˆ�
�:

Here are some basic relationships between these dimensions; for proofs see [10,
13, 16] and the references cited there.

Proposition 6. Let ˆ;‰ be dimension functions and � be a measure.

(i) If ˆ.t/ � ‰.t/ for all t > 0, then dim‰� � dimˆ� and dimˆ� � dim‰�.

(ii) We have that

dimA � � dimˆ� � dimˆ supp� � dimH supp�

and dimL � � dimˆ�. If � is doubling, then dimˆ� � dimˆ supp�.

(iii) If ˆ.t/! 0 as t ! 0, then dimˆ� � dimqL � and dimqA � � dimˆ�.

(iv) If ˆ.t/ � 1=jlog t j for t near 0, then dimˆ� D dimA � and dimˆ� D

dimL �.

(v) For any set E,

dimLE � dimˆE � dimBE � dimBE � dimˆE � dimAE:

(Here dimB and dimB are the lower and upper box dimensions.)
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3. Random Moran sets and measures

3.1. Definition of random Moran sets C! and random measures �!

For the majority of this paper we describe our results in the simple context of subsets
of Œ0; 1� with two “children” at each “level”. We do this for clarity and to highlight the
important features of the construction. However, in Section 4.6 we briefly indicate the
natural extension to compact subsets of RD with an arbitrary (but uniformly bounded)
number of children at each level. All of our proofs are given so that they can be easily
modified for the more general situation.

Let .�;P / be a probability space. Fix 0 < 2A� B < 1 and choose independently
and identically distributed random variables

.an.!/; bn.!/; pn.!// 2 ¹.x; y; z/ 2 Œ0; 1�
3
WA � min¹x; yº < x C y � Bº:

We assume that E.e�t logpn/DE.p�tn / <1 and E.e�t log.1�pn//DE..1�p/�t /<1

for some t > 0. Note that this implies that the probability that pnD 0 or pnD 1 is zero.
Note also that since A > 0, we have E.e�t logan/ D E.a�tn / <1 and E.e�t logbn/ D

E.b�tn / <1 for all t > 0.
Let L denote the minimal positive integer such that

2BL�1 � 1 � B:

To create the random Moran set, C! , we begin with the closed interval Œ0; 1�
and then at step one form the set C

.1/
! by keeping the outermost left subinterval of

length a1.!/ and the outermost right subinterval of length b1.!/. Having induct-
ively created C

.n�1/
! , a union of 2n�1 closed intervals ¹Ij .!/º2

n�1

jD1 (which we call

the Moran intervals of step (or level) n � 1), we let C
.n/
! D

S2n�1

jD1 .I
.1/
j [ I

.2/
j /

where I .1/j D I
.1/
j .!/ is the outermost left closed subinterval of Ij D Ij .!/ of length

jI
.1/
j j D an.!/jIj j and I .2/j D I

.2/
j .!/ is the outermost right closed subinterval of Ij

of length jI .2/j j D bn.!/jIj j. We call I .1/j the left child of Ij and I .2/j , the right child.
The random Moran set C! is the compact set

C! D

1\
nD1

C .n/! :

It can be convenient to label the Moran intervals of step N as Iv1���vN with
vj 2 ¹0; 1º, where Iv1���vN�10 is the left child of Iv1���vN�1 and Iv1���vN�11 is the right
child. When we write IN .x/ we mean the Moran interval of step N containing the
element x 2 C! .
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Notice that any Moran interval of step N has length between AN and BN and

Ak �
jINCk.x/j

jIN .x/j
� Bk

for any N; x. In particular, this means that none of the intervals disappear.
The random measure �! is defined by the rule that �!.Œ0; 1�/ D 1 and if IN is a

Moran interval of step N , then (with the notation as above)

�!.I
.1/
N / D pNC1.!/�!.In/ and �!.I

.2/
N / D .1 � pNC1.!//�!.IN /:

For each !, this uniquely determines a probability measure on C! . In addition, for
almost all ! the support is all of C! . For those familiar with V -variable fractals
(see [2]), we mention that our construction produces a random 1-variable fractal meas-
ure. Our entire random model can also be viewed as sampling from the product space

� D

1Y
nD1

�
¹.x; y; z/WA � min¹x; yº � x C y � B; 0 � z � 1º

�
;

where we use the product measure on � induced by a given probability measure on
each factor.

Notice that we allow the possibility that an, bn and pn can be dependent or inde-
pendent of each other; we only assume that .an;bn;pn/ is independent of .am;bm;pm/
when n ¤ m.

We remark that C! has a “uniform separation” property in the sense that the dis-
tance between the two children of IN is at least .1 � B/jIN j. This fact allows us
to prove the following simple, but useful, relationship between Moran intervals of
various levels and balls.

Lemma 7. Given ! 2 �, x 2 C! and 0 < R < 1, choose the integer N D N.!; x/
such that jIN .x/j � R < jIN�1.x/j. Then

IN .x/ \ C! � B.x;R/ \ C! � IN�L.x/ \ C! :

Proof. The proof is similar to [18, Lemma 1], but we include it here for completeness.
Obviously, IN .x/ is contained in B.x;R/.

Assume I 0N is another Moran interval of step N which intersects B.x; R/ and
suppose IN�k.x/ is the common ancestor of IN .x/ and I 0N with k minimal. Then
the two level N intervals IN .x/ and I 0N must be separated by a distance of at least
jIN�k.x/j.1 � B/ and at most 2R. If k � L, the definition of L gives

jIN�k.x/j.1 � B/ � 2R < 2jIN�1.x/j � 2B
k�1
jIN�k.x/j

� 2BL�1jIN�k.x/j � jIN�k.x/j.1 � B/;
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which is a contradiction. Hence, all step N Moran intervals intersecting B.x; R/ are
contained in IN�L.x/ and that implies B.x;R/ \ C! � IN�L.x/.

Our next lemma shows that the dimension of �! is completely determined by
the lengths and measures of the Moran intervals. While this result is not surprising
because of our separation assumption, it is very useful to make it explicit.

Lemma 8. Let

�! D inf
²
d W .9c1; c2 > 0/.8 In.!/ � IN .!/; jIN j � c1; jInj < jIN j

1Cˆ.jIN j//

�!.IN /

�!.In/
� c2

�
jIN j

jInj

�d³
:

Then �! D dimˆ�! . A similar statement holds for the lower ˆ-dimension.

Proof. We fix an ! 2� for the rest of the proof and simplify our notation by removing
any explicit mention of the dependence on !.

Let " > 0 and get constants c1; c2 such that

�.IN /

�.In/
� c2

�
jIN j

jInj

��C"
whenever In � IN with jIN j � c1 and jInj < jIN j1Cˆ.jIN j/. Choose N0 so that all
Moran intervals of level N0 � L have diameter at most c1. Choose x 2 C! , and sup-
pose R � AN0 and 0 < r < R1Cˆ.R/. Obtain n � N � N0 such that

jIN .x/j � R < jIN�1.x/j � jIN�L.x/j � c1 and jIn.x/j � r < jIn�1.x/j:

By Lemma 7, B.x; r/ � In.x/ and B.x;R/ \ C! � IN�L.x/.
As the function t1Cˆ.t/ is decreasing as t # 0, it follows that jIn.x/j � r <

R1Cˆ.R/ � jIN�Lj
1Cˆ.jIN�Lj/. Hence,

�.B.x;R//

�.B.x; r//
�
�.IN�L/

�.In/
� c2

�
jIN�Lj

jInj

��C"
� c2

�A�LjIN j
AjIn�1j

��C"
� C2

�R
r

��C"
for C2 D c2A�.LC1/.�C"/ and consequently, dimˆ� � �.

The opposite inequality is similar. LetD D dimˆ� and given " > 0 choose C1;C2
such that

�.B.x;R//

�.B.x; r//
� C2

�R
r

�DC"
whenever r < R1Cˆ.R/ �R � C1 and x 2 C! . Suppose that In � IN with jIN j � C1
and jInj < jIN j1Cˆ.jIN j/. Choose x 2 C! such that In D In.x/ and IN D IN .x/. Let
RD jIN .x/j � C1 and r D jIn.x/j.1�B/. As the distance from In.x/ to the nearest
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Moran interval of level n is at most r , B.x; r/ \ C! � In.x/. Clearly, B.x; R/ �
IN .x/ and r < R1Cˆ.R/. Thus,

�.IN /

�.In/
�
�.B.x;R//

�.B.x; r//
� C2

�R
r

�DC"
D C2.1 � B/

�.DC"/
�
jIN j

jInj

�DC"
;

which proves � � D.

Using this lemma it is simple to show that the ˆ-dimensions of �! are almost
surely constant.

Proposition 9. For any dimension functionˆ, the upper and lowerˆ-dimensions are
almost surely constant functions of !.

Proof. We show that ! 7! dimˆ�! is a permutable random variable (meaning that it
is invariant under any finite permutation of the levels) and thus is almost surely con-
stant by the Hewitt–Savage zero–one law [4]. To see this, let ! be fixed and � WN!N

be a permutation that fixes all but finitely many values. Suppose that N0 is the largest
such value. We use I to denote a Moran interval from the unpermuted construction
and J for a Moran interval from the permuted construction. Then for any n > N0 and
choice v1; v2; : : : ; vn 2 ¹0; 1º, it is clear from the description of the construction that
jIv1v2���vn j D jJv1v2:::vn j. Thus, the proposition follows from Lemma 8.

4. Dimension results for large ˆ

In this section we continue to use the notation and assumptions from Section 3.

4.1. Statement of the dimension theorem for large ˆ and preliminary results

When computing theˆ-dimension of � we need to compare ratios of lengths to ratios
of mass under � (as in equation (4.3)). The definitions of the random variables Y , Z,
andG (given next) can be understood using this, as will be clear from the work in this
section.

Notation 10. Given � � 0, we define the iid random variables Yn.�/,Zn.�/W�! R

by

Yn.�/.!/ D

8<: logpn.!/ if pn.!/ �
a�n.!/

a�n.!/Cb
�
n.!/

;

log.1 � pn.!// if pn.!/ >
a�n.!/

a�n.!/Cb
�
n.!/

and

Zn.�/.!/ D

8<: log an.!/ if pn �
a�n.!/

a�n.!/Cb
�
n.!/

;

log bn.!/ if pn >
a�n.!/

a�n.!/Cb
�
n.!/

:
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Random variables Y 0n; Z
0
n are defined similarly, but with the relationship between pn

and a�n=.a
�
n C b

�
n/ interchanged. Put

G.�/ D
E!.Y1.�/.!//

E!.Z1.�/.!//
and G0.�/ D

E!.Y 01.�/.!//

E!.Z01.�/.!//
: (4.1)

We have written E! to emphasise that the expectation is taken over the variable !.
The condition p � a�=.a� C b� / is relevant because it is equivalent to a�=p �

b�=.1 � p/, an inequality very important for computing these dimensions.
It would be interesting to explore the properties of the functions G.�/ and G0.�/,

and better understand them as objects in their own right. However, in this paper we
mainly view these functions as technical tools that we use in our proofs. We do provide
some discussion in Section 4.4.4 and plots for a few examples in Appendix A. We
have also explicitly computed G.�/ in a few of the examples in Section 4.4.

With this notation we can now state our main result for large dimension func-
tions ˆ.

Theorem 11. The following statements hold.

(i) Suppose G. / <  . There is a set � � �, of full measure in �, such that

dimˆ�! �  

for all large dimension functions ˆ and all ! 2 � .

(ii) Suppose G. / �  . There is a set � � �, of full measure in �, such that

dimˆ�! �  

for all large dimension functions ˆ and all ! 2 � .

(iii) Suppose G0. / >  . There is a set � ��, of full measure in�, such that

dimˆ�! �  

for all large dimension functions ˆ and all ! 2 � .

(iv) Suppose G0. / �  . There is a set � ��, of full measure in�, such that

dimˆ�! �  

for all large dimension functions ˆ and all ! 2 � .

An immediate corollary is as follows. Again, there is a corresponding statement
for G0 and the lower ˆ-dimensions.
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Corollary 12. Suppose there is a choice of ˛ such that G.˛/ D ˛ and G. / <  if
 > ˛. Then there is a set � � �, of full measure in �, such that

dimˆ�! D ˛

for all large dimension functions ˆ and all ! 2 � .

Proof. From part (i) of Theorem 11 for each rational q > ˛ we have a set �q of full
measure so that for all large dimension functionsˆ and ! 2 �q we have dimˆ�! � q.
From part (ii) of the same theorem there is a set �˛ of full measure so that for all large
dimension functions ˆ and ! 2 �˛ we have dimˆ�! � ˛. Let

� D �˛ \
\

q>˛;q rational

�q;

which is also a subset of � of full measure. Then for any large dimension function ˆ
and ! 2 � , we have

˛ � dimˆ�! � inf¹qW q > ˛; q rational º D ˛:

Of course, it is enough that G. k/ <  k for a sequence . k/ decreasing to ˛.

Corollary 13. Letˆ be a large dimension function. Then ˛ D dimˆ�! almost surely
if and only if G. / <  for all  > ˛ and G. / �  for all  < ˛.

Proof. Suppose that ˛ � 0 is the almost sure value for dimˆ�! (which we know
exists by Proposition 9). Take  > ˛ and suppose that G. / �  . Then by part (ii)
of the theorem, dimˆ�! �  > ˛ almost surely, which is a contradiction. Thus, in
fact G. / <  . Similarly, if  < ˛ but G. / <  , then dimˆ�! �  < ˛ almost
surely, which is another contradiction and so G. / �  in this case.

For the converse, suppose G. / <  for all  > ˛ and G. / �  for all  < ˛.
Then for all  > ˛ we have dimˆ�! �  almost surely and so dimˆ�! � ˛ almost
surely. Similarly, for all <˛ we have dimˆ�!� almost surely and so dimˆ�!�˛

almost surely.

What this last corollary shows, in particular, is that there must always be such a
value ˛ where G “crosses the diagonal” since for any given large ˆ it is clear that
dimˆ�! must have some almost sure value.

Before proving the theorem, we introduce further notation and establish some
preliminary results. Given a large dimension function ˆ, assume H and t0 satisfy

ˆ.t/ �
H.t/ logjlog t j
jlog t j

for all 0 < t � t0;
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where H.t/ " 1 as t ! 0. Set

�HN D
H.BN / log.N jlogBj/

jlogAj
: (4.2)

Lemma 14. (i) If k < �HN , then for N sufficiently large there are no pairs of
Moran subsets IN .x/, INCk.x/ where

jINCk.x/j � jIN .x/j
1Cˆ.jIN .x/j/:

(ii) Fix c > 0. If H is sufficiently large near 0, then
P1
ND1 exp.�c�HN / <1.

Proof. (i) Choose N0 such that BN0 � t0. Assume N � N0 and for convenience put
r D jINCk.x/j and R D jIN .x/j � BN � t0. Then

ˆ.R/jlogRj � H.R/ logjlogRj � H.BN / logjN logBj

D �HN jlogAj > kjlogAj;

so Rˆ.R/ < Ak . As r=R � Ak > Rˆ.R/, this means r > R1Cˆ.R/, hence we cannot
have jINCk.x/j � jIN .x/j1Cˆ.jIN .x/j/.

(ii) A straightforward calculation shows that if H.BN / is suitably large for
N � N0, then exp.�c�HN / � N

�2 and hence
P
N�N0

exp.�c�HN / <1.

The next lemma is the key probabilistic result. It is based on the Chernov bounds
for iid random variables X1; X2; : : : ; Xn.

Theorem 15 (Chernov [24, Section 2.2]). LetXn be iid random variables and assume
that E

�
exp

�
t .Xi �E.Xi //

��
�ect

2=2 for some c>0 and t >0. Then for all 0<��nct
we have

P

�ˇ̌̌ nX
iD1

Xi � nE.Xi /
ˇ̌̌
� �

�
� 2e�

2=.2nc/:

Lemma 16 (Probabilistic Result). Fix any � � 0 and ı > 0. If the constant function
H is sufficiently large and �HN is defined as in (4.2), then

P

²
!W 9m � �HN with

ˇ̌̌̌ PNCm
nDNC1 Yn.�/.!/PNCm
nDNC1Zn.�/.!/

�
E.Y1.�//

E.Z1.�//

ˇ̌̌̌
> ı i.o.

³
D 0:

A similar statement holds for Y 0n, Z0n.

Proof. Since the function f .x; y/ D x=y is continuous at .E.Y1.�//;E.Z1.�///, for
the given ı > 0 there is some � D �.ı/ > 0 such that when both inequalitiesˇ̌̌̌
1

m

NCmX
nDNC1

Yn.�/.!/�E.Y1.�//

ˇ̌̌̌
� � and

ˇ̌̌̌
1

m

NCmX
nDNC1

Zn.�/.!/�E.Z1.�//

ˇ̌̌̌
� �
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hold, then ˇ̌̌̌ PNCm
nDNC1 YnPNCm
nDNC1Zn

�
E.Y1/

E.Z1/

ˇ̌̌̌
� ı:

Since we have assumed E.e�t logpn/;E.e�t log.1�pn// <1, Chernov’s inequality
implies there are constants C and c > 0 such that for all m,

P

²
!W

ˇ̌̌̌
1

m

NCmX
nDNC1

Yn � E.Y1/

ˇ̌̌̌
> �

³
� Ce�cm:

Applying Lemma 14 (ii), we know
P
N e
�c�H

N <1 if H is sufficiently large. Thus,
if we let

�N;� D

²
!W 9m � �HN with

ˇ̌̌̌
1

m

NCmX
nDNC1

Yn � E.Y1/

ˇ̌̌̌
> �

³
;

then for a new constant C1,

1X
ND1

P .�N;�/ �
X
N

1X
mD�H

N

Ce�cm �
X
N

C1e
�c�H

N <1:

By the Borel–Cantelli lemma this means P .�N;� i.o./ D 0.
Similarly, if we let � 0N;� D ¹!W 9m � �

H
N with j

PNCm
nDNC1Zn �E.Z1/j > �º, then

for a suitable choice of H we have P .� 0N;� i.o./ D 0.
Hence, there is a set �.�/, of full measure, with the property that for each ! 2

�.�/ there is some N� D N�.!/ such that for all N � N� and all m � �HN , we have
both ˇ̌̌̌

1

m

NCmX
nDNC1

Yn � E.Y1/

ˇ̌̌̌
� � and

ˇ̌̌̌
1

m

NCmX
nDNC1

Zn � E.Z1/

ˇ̌̌̌
� �:

Therefore, ˇ̌̌̌ PNCm
nDNC1 YnPNCm
nDNC1Zn

�
E.Y1/

E.Z1/

ˇ̌̌̌
� ı:

That completes the proof.

4.2. Proof of Theorem 11

Proof of Theorem 11. (i) For each positive integer j , let

ĵ .t/ D
j logjlog t j
jlog t j

and �
j
N D

j log.N jlogBj/
jlogAj

:
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Consider any N;m 2 N,  > 0, Moran interval IN .!/ and descendent interval
INCm.!/. If IN D Iv for v D v1 � � �vN with vi 2 ¹0; 1º and INCm D IvvNC1���vNCm ,
then

�!.IN /

�!.INCm/
D

 Y
vNCiD0;
iD1;:::;m

pNCi .!/ �
Y

vNCiD1;
iD1;:::;m

.1 � pNCi .!//

!�1
and

jIN j

jINCmj
D

 Y
vNCiD0;
iD1;:::;m

aNCi .!/ �
Y

vNCiD1;
iD1;:::;m

bNCi .!/

!�1
:

Thus, for any  ,

�!.IN /
�!.INCm/�
jIN j
jINCmj

� D
 Y
vNCiD0;
iD1;:::;m

a
 
NCi

pNCi

! Y
vNCiD1;
iD1;:::;m

b
 
NCi

1 � pNCi

!

�

NCmY
iDNC1

max
�
a
 
i .!/

pi .!/
;
b
 
i .!/

1 � pi .!/

�
: (4.3)

Now
a
 
i

pi
�

b
 
i

1 � pi
if and only if pi �

a
 
i

a
 
i C b

 
i

;

hence
�!.IN /

�!.INCm/
�

�
jIN j

jINCmj

� 
if  Y

iDNC1;:::;NCmI

pi�a
 

i
=.a

 

i
Cb

 

i
/

a
 
i

pi

! Y
iDNC1;:::;NCmI

pi>a
 

i
=.a

 

i
Cb

 

i
/

b
 
i

.1 � pi /

!
� 1: (4.4)

Taking logarithms, we see that (4.4) is equivalent to the statement

 �

PNCm
iDNC1 Yi . /.!/PNCm
iDNC1Zi . /.!/

:

Finally, assumeG. / <  , sayG. / �  � 2ı for some ı > 0. According to the
probabilistic result, Lemma 16, there is a set �j; , depending on both j and  and
of full measure in �, such that for each ! 2 �j; there is some integer Nj D Nj .!/
such that for all N � Nj and all m � �jN ,ˇ̌̌̌ PNCm

nDNC1 Yn. /.!/PNCm
nDNC1Zn. /.!/

�
E.Y1. //

E.Z1. //

ˇ̌̌̌
D

ˇ̌̌̌ PNCm
nDNC1 Yn. /.!/PNCm
nDNC1Zn. /.!/

�G. /

ˇ̌̌̌
� ı:
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Consequently, PNCm
nDNC1 Yn. /.!/PNCm
nDNC1Zn. /.!/

� G. /C ı �  � ı <  :

Thus, our previous observations imply that for each ! 2 �j; there is an integer Nj
such that for all N � Nj and all m � �jN ,

�!.IN /

�!.INCm/
�

�
jIN j

jINCmj

� 
: (4.5)

Next, suppose ! 2 �j; ; Nj D Nj .!/ is as above and x 2 C! . Choose N � Nj
andm so that jIN .x/j<ANjCL and jINCm.x/j � jIN .x/j1Cˆ.jIN .x/j/. Then Lemma
14 (i) implies m � �jN and so by (4.5) and Lemma 8 we know that dimˆ�! �  for
all ! 2 �j; .

Now, let ˆ be any large dimension function and

! 2 � D

1\
jD1

�j; ;

again a set of full measure. There exists j such that ˆ.t/ � ĵ .t/ for t sufficiently
close to 0. As ! 2 �j; , dimˆ�! � dim

ĵ
�! �  . It follows that dimˆ�! �  for

all ! 2 � and all large dimension functions ˆ.
(ii) Given !, consider the Moran intervals which arise by choosing the left child

at step n if
a
 
n .!/

pn.!/
D max

�
a
 
n .!/

pn.!/
;
b
 
n .!/

1 � pn.!/

�
and the right child otherwise. Call the interval at step n which arises by this construc-
tion In D In. ; !/. These form a nested sequence of Moran intervals.

For n > N ,

�!.IN /

�!.In/
D

nY
iDNC1

pi�a
 

i
=.a

 

i
Cb

 

i
/

p�1i

nY
iDNC1

pi>a
 

i
=.a

 

i
Cb

 

i
/

.1 � pi /
�1

and
jIN j

jInj
D

Y
pi�a

 

i
=.a

 

i
Cb

 

i
/

a�1i

Y
pi>a

 

i
=.a

 

i
Cb

 

i
/

bi
�1:

Thus, for any ˇ > 0,
�!.I /

�!.In/
�

�
jIN j

jInj

�ˇ
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if and only if
nX

iDNC1

Yi . /.!/ � ˇ

nX
iDNC1

Zi . /.!/

if and only if (writing n D N Cm)PNCm
iDNC1 Yi . /.!/PNCm
iDNC1Zi . /.!/

� ˇ:

Fix ı > 0 and choose the constant function H D H.ı/ so large that Lemma 16
guarantees that there is a set �ı; , of full measure, such that for all ! 2 �ı; and N
sufficiently large,ˇ̌̌̌ PNCm

iDNC1 Yi . /.!/PNCm
iDNC1Zi . /.!/

�G. /

ˇ̌̌̌
� ı for all m � �HN ;

and hence PNCm
iDNC1 YiPNCm
iDNC1Zi

� G. / � ı �  � ı:

It follows that
�!.IN /

�!.INCm/
�

�
jIN j

jINCmj

� �ı
for all ! 2 �ı; , m � �HN and N sufficiently large.

Now, take ıj D 1=j , letH.ıj /DHj and�j D �ıj ; . Let � D
T
j �j , a set of

full measure. As ˆ is a large dimension function, for any j there exists tj > 0 such
that ˆ.t/ D H.t/ logjlog t j=jlog t j where H.t/ � Hj for t � tj . Consequently, for
large N , �HN � �

Hj
N . If ! 2 � , then ! 2 �j and therefore

�!.IN /

�!.INC�H
N
/
�

�
jIN j

jINC�H
N
j

� �1=j
for all N sufficiently large. It follows that for all ! 2 � , dimˆ�! �  � 1=j and
since this is true for all j , we must have dimˆ�! �  as claimed.

The arguments for the lower ˆ-dimension are very similar, but rather than con-
sidering max

®
a
 
n =pn; b

 
n =.1 � pn/

¯
, we study min

®
a
 
n =pn; b

 
n =.1 � pn/

¯
. Thus, the

functions Y 0n; Z
0
n and G0 arise in place of Yn; Zn and G. The details are left for the

reader.
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4.3. Consequences of Theorem 11

We continue to use the notation introduced earlier. In particular, G is as defined
in (4.1). Since positive constant functions are large dimension functions, the following
corollary follows directly from the theorem.

Corollary 17. (i) If G. / <  , then dimqA �! �  a.s.

(ii) If G. / �  , then dimqA �! �  a.s.

Similar statements hold for G0 and the quasi-lower Assouad dimension.
A useful fact, which we show below, is that continuous functions G (or G0) typ-

ically satisfy the hypotheses of Corollaries 12 and 13. This is often the situation,
cf. (4.7), where it is shown that G is even differentiable when an D a, bn D b and pn
is uniformly distributed over Œ0; 1�. More generally, G is continuous if pn has a dens-
ity distribution of the form f .t/dt , where f .t/ log t and f .t/ log.1� t / are integrable
over Œ0; 1�, such as when f is bounded.

Lemma 18. Assume jE.logp1/j, jE.log.1 � p1//j <1. If G.�/ is continuous, then
there is a unique choice of ˛ such that G.˛/ D ˛ and G. / <  if  > ˛.

Proof. We will assume that P .an D bn/D 0 and leave the contrary case to the reader.
Note that as � !1,

a�

a� C b�
!

´
0 if a < b

1 if a > b

and therefore

Y1.�/.!/!

´
log.1 � p1.!// if a1.!/ < b1.!/

logp1.!/ if a1.!/ > b1.!/
as � !1

and

Z1.�/.!/!

´
log b1.!/ if a1.!/ < b1.!/

log a1.!/ if a1.!/ > b1.!/
as � !1:

Hence,

G.�/!
P .a1 < b1/E.log.1 � p1//CP .a1 > b1/E.logp1/

P .a1 < b1/E.log b1/CP .a1 > b1/E.log a1/
as � !1:

In particular, G approaches a (finite) constant as � !1.
On the other hand,

G.0/ D
E.logp1jp1�1=2/C E.log.1 � p1/jp1>1=2/

P .p1 � 1=2/E.log a1/CP .p1 > 1=2/E.log b1/
0:

SinceG is continuous,G.0/ > 0 and eventuallyG.�/ < � , there must be a unique
choice of ˛ such that G.˛/ D ˛ and if  > ˛, then G. / <  .
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Corollary 19. Suppose jE.logp1/j, jE.log.1 � p1//j <1 and G.�/ is continuous.
Then dimˆ�! D ˛ a.s., where G.˛/ D ˛ and G. / <  for all  > ˛.

The upper ˆ-dimension of � is always an upper bound for the upper local dimen-
sion of � at any point x, where the latter is defined by

dimloc�.x/ D lim sup
r!0

log�.B.x; r//
log r

: (4.6)

Similarly, the lower ˆ-dimension of � is always a lower bound for the lower local
dimension (defined as in (4.6) but using a liminf). However, in general it is possible
for dimˆ� < infx dimloc�.x/ and supx dimloc�.x/ < dimˆ�. (See [16] for proofs
of these statements.) In the case of our random measures, there is no gap for either
inequality.

Proposition 20. Assume G. / <  for all  > � and G.�/ D � . Then for any large
dimension function ˆ and almost all ! we have that

sup
x

dimloc�!.x/ D � D dimˆ�! :

Similarly, if G0. / >  for all  < � 0 and G0.� 0/D � 0, then for any large dimension
function ˆ and almost all ! we have that

inf
x

dimloc�!.x/ D �
0
D dimˆ�! :

Proof. Put vj D 0 if a�j =pj D max.a�j =pj ; b
�
j =.1 � pj // and vj D 1 else. Let x 2T1

nD1 Iv1;:::;vn , so that In.x/ D Iv1:::;vn for each n. Given any small r > 0, choose n
such that jIn.x/j � r < jIn�1.x/j, so that In.x/ � B.x; r/ � In�L.x/.

We have

�!.B.x; r// � �!.In�L.x// D

n�LY
jD1IvjD0

pj

n�LY
jD1IvjD1

.1 � pj /;

so

jlog�!.B.x; r//j �
ˇ̌̌̌ n�LX
iD1

Yi .�/

ˇ̌̌̌
:

Similarly,

r �

nY
jD1I
vjD0

aj

nY
jD1I
vjD1

bj D

 
n�LY
jD1I
vjD0

aj

n�LY
jD1I
vjD1

bj

! 
nY

jDn�LC1I
vjD0

aj

nY
jDn�LC1I
vjD1

bj

!
:
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As aj ; bj are bounded away from 0 and L is fixed, there is some constant C > 0 such
that

jlog r j �
ˇ̌̌̌ n�LX
iD1

Zi .�/

ˇ̌̌̌
C C:

Hence,
jlog�!.B.x; r//j

jlog r j
�

ˇ̌Pn�L
iD1 Yi .�/

ˇ̌ˇ̌Pn�L
iD1 Zi .�/

ˇ̌
C C

:

Fix " > 0 and choose a set of full measure, �"; such thatPm
iD1 Yi .�/.!/Pm
iD1Zi .�/.!/

� G.�/ � "

for m � m! and each ! 2 �". Further, as j
Pm
iD1 Zi j ! 1 as m!1, given any

ı > 0 we can choose m0 sufficiently large so that we have C j
Pm
iD1Zi .�/j

�1 � ı for
all m � m0. Thus, for all ! 2 �" and all n � max.m0; m!/C L,ˇ̌Pn�L

iD1 Yi .�/.!/
ˇ̌ˇ̌Pn�L

iD1 Zi .�/.!/
ˇ̌
C C

�
G.�/ � "

1C C
ˇ̌Pn�L

iD1 Zi .�/.!/
ˇ̌�1 � � � "

1C ı
:

If we make the choice of ı sufficiently small, depending on � , then we can conclude
that

jlog�!.B.x; r//j
jlog r j

� � � 2"

for sufficiently small r . By choosing the sequence " D 1=k and putting �0 DT1
kD1�1=k , we deduce that for all ! 2 �0, a set of full measure

dimloc�!.x/ D lim sup
r!0

jlog�.B.x; r//j
jlog r j

� �:

The claim follows since it is always true that the supremum of the upper local
dimensions is dominated by dimˆ� for any dimension function ˆ (see [16]) which,
according to Corollary 12, is equal to � almost everywhere.

The statement about the lower local dimension and G0 is proved in an analogous
manner.

4.4. Example: The deterministic Moran set Cab

Consider the deterministic Moran set Cab , which can be viewed as a random Moran
set where .an; bn/ is chosen from the singleton ¹.a; b/º.
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4.4.1. Choosing pn uniformly over Œ0; 1�. Suppose pn has the uniform distribution
over Œ0; 1�. Then, we have

E.Y.�/.!// D

Z
pn.!/�a�=.a�Cb� /

logpn.!/dP .!/C

Z
pn.!/>a�=.a�Cb� /

log.1 � pn.!//dP .!/

D
a�

a� C b�
log
� a�

a� C b�

�
C

b�

a� C b�
log
� b�

a� C b�

�
� 1

and

E.Z.�/.!// D .log a/P
�
pn � a

�=.a� C b� /
�
C .log b/P

�
pn > a

�=.a� C b� /
�

D
a�

a� C b�
log aC

b�

a� C b�
log b:

Consequently,

G.�/ D
a� log

�
a�

a�Cb�

�
� a� C b� log

�
b�

a�Cb�

�
� b�

a� log aC b� log b
: (4.7)

One can clearly see thatG is a continuous function (even differentiable) and so Corol-
lary 19 applies.

Choose 
 so that a D b
 . Then G.�/ D � if and only if

�.b�
 C b� / log.1C b�.1�
// � .b�
 C b� /C �b� .1 � 
/ log b

D �.log b/.
b�
 C b� /

if and only if

�.b�
 C b� / log.1C b�.1�
// � .b�
 C b� / D �
.log b/.b�
 C b� /:

Dividing through by b�
 C b� , this is equivalent to the statement

log.1C b�.1�
//C 1 D �
� log b:

Taking the exponential of both sides, it follows that G.�/ D � if and only if

b� C b�
 � e�1 D 0:

Example 1. Suppose Cab is the deterministic Moran set with aD b2, pn is uniformly
distributed over Œ0; 1� and � is the corresponding random measure. The analysis above
shows that G.�/ D � if and only if

b2� C b� � e�1 D 0;
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equivalently, b� D
�
�1˙

p
1C 4e�1

�
=2. Hence, according to Corollary 19, for all

large ˆ,

dimˆ� D
log
�p

1C4e�1�1
2

�
log b

a.s.

For example, if b D 1=2 and a D 1=4, then dimˆ� � .1:25/= log 2.
It is interesting that the ratio of dimˆ� to dimH Cab is constant (and approxim-

ately 2:60) for these measures. We see this since

dimH Cab D
log.
p
5=2 � 1=2/

log b

is the non-negative solution to b2d C bd D 1. (We note that because of self-similarity
and the separation condition, all the “usual” dimensions of Cab agree with the simil-
arity dimension.)

Example 2. We continue with Cab as the deterministic Moran set with pn being
drawn uniformly from Œ0; 1� and with � as the corresponding random measure. In
Figure 1 (obtained by numerically solving G.�/ D � ) we show the almost sure upper
ˆ-dimension (for large ˆ) of � on Cab as a function of .a; b/ where, for this figure,
we draw .a; b/ from the set

ƒ D
®
.a; b/W 1=50 � min¹a; bº � aC b � 49=50

¯
:

It is notable that the dimension is a continuous function of .a; b/ 2 ƒ, and it appears
to increase as either a! 1 or b! 1 and vanish as a and b both tend to 0. In fact, that
is indeed the case as we now argue.

For our discussion, let Dab be the almost sure upper ˆ-dimension of the random
measure � for the large ˆ case. What we wish to show is that Dab ! 0 as a and b
tend to 0 and Dab !1 as a or b tend to 1.

Proof. From (4.7) we have

G.�/ D
a� log

�
a�

a�Cb�

�
� a� C b� log

�
b�

a�Cb�

�
� b�

a� log aC b� log b

and thus G.�/ � � if and only if

a� log
� a�

a� C b�

�
� a� C b� log

� b�

a� C b�

�
� b� � �

�
a� log aC b� log b

�
:

After some simplification, we see that this happens precisely when

.a� C b� /
�
1C log.a� C b� /

�
� 0
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5

10

15

20

dimension

0.1
0.3

0.5
0.7

0.9

𝑏0.10.20.30.40.50.60.70.80.9
𝑎

Figure 1. dimˆ� as a function of .a; b/ for � on Cab with p � U Œ0; 1�.

which, since a� C b� > 0, is equivalent to

a� C b� � e�1:

Suppose � <1. Then this inequality will clearly hold once either a or b is suffi-
ciently close to 1. Consequently, Theorem 11 (ii) implies Dab � � if either a or b is
sufficiently large. Since � was arbitrary, it follows that Dab tends to infinity as either
a or b tend to 1.

On the other hand, if � > 0 and a;b are both sufficiently small, then a� C b� <e�1

and hence G.�/ < � . Consequently, Theorem 11 (i) implies that Dab < � and hence
Dab ! 0 as both a; b ! 0.

4.4.2. Choosing pn from the two-element set ¹p;1�pº for fixed 0<p < 1=2. For
our next example, we consider the deterministic Moran set Cab , but with pn chosen
from a two-element set.

Example 3. Consider the deterministic Moran set Cab with a < b, but in this case let
� be the random measure with probability pn chosen uniformly from the two values
p or 1� p, where 0 < p < 1=2 is fixed. Define ˇ and � by aˇ D b and .1� p/� D p,
so ˇ < 1 and � > 1. We claim

dimˆ�! D

8<: logpClog.1�p/
2 logb if �C 1C ˇ � 3�ˇ � 0;
logp

1
2 .logaClogb/

if �C 1C ˇ � 3�ˇ < 0
a.s: (4.8)
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Proof. Let c.�/D a�=.a� C b� /. Note that c.�/ is a decreasing function and for � �
0, c.�/ � 1=2. In particular, there is no non-negative solution to c.�/D 1� p > 1=2.
Let �0 satisfy c.�0/ D p, so

�0 D
log..1 � p/=p/

log.b=a/
D
.� � 1/ log.1 � p/
.1 � ˇ/ log a

:

If � � �0, then both p; 1 � p � c.�/, so Yn D log.1 � pn/ and Zn D log b.
If 0� � < �0, then p � c.�/ < 1� p, hence if pn D p, then Yn D logpn D logp

andZn D loga, while if pn D 1� p, then Yn D log.1� pn/D logp andZn D logb.
It is easy to see from these observations that

E.Y1/ D

´
1
2
.logp C log.1 � p// if � � �0;

logp if 0 � � < �0

and

E.Z1/ D

´
log b if � � �0;
1
2
.log aC log b/ if 0 � � < �0:

Hence,

G.�/ D

8<: logpClog.1�p/
2 logb if � � �0;
logp

1
2 .logaClogb/

if 0 � � < �0:

Replacing p by .1 � p/� and b by aˇ , this is the same as stating

G.�/ D

8<:
.�C1/ log.1�p/

2ˇ loga if � � .��1/ log.1�p/
.1�ˇ/ loga ;

� log.1�p/
1
2 .ˇC1/ loga

if 0 � � < .��1/ log.1�p/
.1�ˇ/ loga :

It is easy to check that if �C 1C ˇ � 3�ˇ < 0, then

� log.1 � p/
1
2
.1C ˇ/ log a

<
.� � 1/ log.1 � p/
.1 � ˇ/ log a

;

so G.˛/ D ˛ for

˛ D
� log.1 � p/
1
2
.ˇ C 1/ log a

D
logp

1
2
.log aC log b/

:

If ˛ <  < �0, then obviously G. / D ˛ <  . If  � �0 > ˛, then one can also
check that �C 1C ˇ � 3�ˇ < 0 implies

.�C 1/ log.1 � p/
2ˇ log a

<
� log.1 � p/
1
2
.ˇ C 1/ log a

;
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so again we have G. / < ˛ <  .
Similarly, if �C 1C ˇ � 3�ˇ � 0, then

.�C 1/ log.1 � p/
2ˇ log a

�
.� � 1/ log.1 � p/
.1 � ˇ/ log a

;

hence G.˛/ D ˛ for

˛ D
.�C 1/ log.1 � p/

2ˇ log a
D

logp C log.1 � p/
2 log b

;

and if  > ˛, then G. / D ˛ <  .
It follows from Theorem 11 that dimˆ� is as claimed in (4.8).

4.4.3. Taking pn deterministic and .a; b/ random. For our last two examples we
now take pn D 1=2 and choose the scalings an and bn randomly.

Example 4. Consider the random Moran set, C! , where an; bn are chosen independ-
ently from ¹A;Bº with equal likelihood and 0 < A < B < 1=2. Let �! be the random
measure supported on C! , where pn D 1=2 for all n. Obviously, Yn.�/ D log 1=2
for all n and all � . Note that the condition pn � a�n=.a

�
n C b

�
n/ simply reduces to the

inequality an � bn and this is true whenever an D A or an D bn D A. Thus, for all n
and � ,

E.Zn.�// D

Z
¹anDB;anDbnDAº

log an C
Z

¹anDA;bnDBº

log bn

D
1

2
logB C

1

4
logAC

1

4
logB D

3

4
logB C

1

4
logA:

It follows from Theorem 11 that for all large ˆ,

dimˆ�! D
4 log 1=2

3 logB C logA
a.s.

Example 5. Fix 0 < 2A < B < 1 and consider the random Moran set with .an; bn/
chosen uniformly over the set

ƒ D ¹.x; y/WA � min¹x; yº � x C y � Bº:

Let �! be the random measure, where pn D 1=2 for all n. Similarly to the previous
example, for all n and � , Yn.�/ D log 1=2 and

Zn.�/ D

´
log an if an � bn;

log bn if an < bn:
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Thus,

E.Zn/

D

Z
an�bn

log an C
Z
an<bn

log bn D 2
Z
an�bn

log an

D
4

.B � 2A/2

 Z B=2

A

�Z x

A

log x dy
�
dx C

Z B�A

B=2

�Z B�x

A

log x dy
�
dx

!
D

4

.B � 2A/2

�Z B=2

A

.x � A/ log x dx C
Z B�A

B=2

.B � A � x/ log x dx
�

D
2.B�A/2 log.B�A/C B2 log.2/C 2A2 log.A/�B2 log.B/�6.B=2�A/2

.B�a2A/2
:

Hence, for all large ˆ, almost surely we have

dimˆ�!

D
.B�2A/2 log.1=2/

2.B�A/2 log.B�A/C B2 log.2/C 2A2 log.A/�B2 log.B/�6.B=2�A/2
:

4.4.4. Further remarks on G.�/. For a fixed A;B with 0 < A < B < 1, set

ƒ D
®
.a; b; z/WA � min¹a; bº � aC b � B; 0 � z � 1

¯
as our parameter space. Then each point .a; b; p/ 2 ƒ defines an iterated function
system with probabilities (IFSP). If this configuration (scalings a, b and probabilities
p, 1 � p) is chosen at every level, the resulting (deterministic) Moran set and measure
are both self-similar. The associated function G.�/ is piecewise constant with at most
one discontinuity. It is possible to show that the location of the discontinuity cannot
be between the two values of G.�/. Using this it is not difficult to see that there is a
unique solution to G.�/ D � .

In terms of our random model we can identify this single IFSP with a probability
measure on ƒ which is a point-mass at the point .a; b; p/. If, instead, we take a
probability measure on ƒ which is a combination of N point masses, then this is
identified with a finite collection of different IFSPs from which we randomly choose
at each level, with the choice independent from level to level. This time the function
G.�/ has at most N points of discontinuity and hence at most a finite number of
solutions to G.�/ D � . It would be very interesting to know if it were possible to
construct an explicit example where G.�/ D � has no solutions; this would happen if
a point of discontinuity of G.�/ coincided with a jump in the value from G. / >  

to G. / <  . For a single IFSP this is not possible, but it is unclear if this might be
possible for a collection of IFSPs.
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On the other hand, if we begin with a probability measure � on ƒ which is
absolutely continuous with respect to Lebesgue measure, then G.�/ is a continuous
function of � and so Corollary 19 applies. It is worth pausing for a moment to con-
template why this is the case. For each fixed value of � > 0, the set ƒ is partitioned
into the two regions °

p �
a�

a� C b�

±
and

°
p >

a�

a� C b�

±
and the boundary between these regions is a smooth function of .a; b; p/ and also
of � . The values of Y.�/ and Z.�/ depend entirely on which of these two sets the
particular (random) choice of .a; b; p/ belongs to, and thus the expected values of
Y and Z are given by the distribution of � over these two sets. Since the boundary
is a smooth surface, if � is absolutely continuous, changing � moves the boundary
smoothly and thus changes G.�/ in a continuous way.

4.5. Relating dimˆ � to dimˆ C!

It is known that dimˆ� � dimˆ supp� for any measure � and if � is doubling, then
we also have dimˆ� � dimˆ supp� (see [16, Prop 2.9]). This leads us to ask if we
can arrange for an almost sure equality, that is, can we choose the pn.!/ in such a
way that dimˆ�! D dimˆC! for ! in a set of full measure.

There is a standard, and “natural”, way of doing this for a single IFS with probab-
ilities. Given scaling factors a and b, we set p D ad and 1� p D bd , where d > 0 is
the solution to the Moran equation ax C bx D 1. This choice of p will “balance” the
scaling of the lengths with the redistribution of the mass to ensure that dim�D dimC ,
with all the large ˆ-dimensions coinciding with the Hausdorff dimension. In fact, in
this particular case it is easy to see that G0.�/ D G.�/ D d for all � .

However, even in the next simplest case of randomly choosing between two IFSPs,
this “natural” choice of probabilities does not typically give dimˆ�! D dimˆC!

almost surely. As an example, take the IFSP ¹x=3; x=9 C 8=9º with probabilities
p; 1 � p and a second IFSP ¹x=4; x=16C 15=16º with corresponding probabilities
q; 1 � q. To get our random C! and �! we will choose equally likely between these
two IFSs at each level.

The Moran equation for the first IFS is 3�x C 3�2x D 1, whose solution is

d1 D
ln
�p

5�1
2

�
� ln.3/

; with corresponding p D 3�d1 D

p
5 � 1

2
:

Similarly, the Moran equation for the second is 4�x C 4�2x D 1, with solution

d2 D
ln
�p

5�1
2

�
� ln.4/

; and corresponding q D 4�d2 D

p
5 � 1

2
:
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Using these choices for p and q, elementary computations show that

G.�/ D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

2 ln
�p

5�1
2

�
ln
�
1
4

�
Cln
�
1
3

� if � �
ln
�p

5�1
2

�
ln
�
1
4

� ;

3 ln
�p

5�1
2

�
ln
�
1
4

�
Cln. 19 /

if
ln
�p

5�1
2

�
ln
�
1
4

� < � �
ln
�p

5�1
2

�
ln
�
1
3

� ;

2 ln
�p

5�1
2

�
ln
�
1
4

�
Cln
�
1
3

� if � >
ln
�p

5�1
2

�
ln
�
1
3

� :

From this we can deduce that

dimˆ�! D
3 ln

�p
5�1
2

�
ln
�
1
4

�
C ln

�
1
9

� � 0:402 almost surely.

The almost sure Hausdorff dimension of C! is given by the solution D > 0 to
.3�x C 3�2x/1=2.4�x C 4�2x/1=2 D 1 (see [15]). It is conjectured in [25] that for all
large ˆ we also have

dimˆC! D D � 0:388 almost surely.

On the other hand, if there is a d > 0 so that an.!/d C bn.!/d D 1 for all ! and
n (i.e., for all possible IFS in the given model), then choosing pn.!/ D an.!/d will
result in d D dimˆ�! D dimˆC! almost surely. This is because in this very special
situation we will haveG.�/D d for all � . We conjecture that, other than in this special
case, generically the “natural” choice of pn will result in dimˆ�! > dimˆC! almost
surely. Verifying this by explicit computations seems to be exceedingly complicated.

4.6. Comments on a more general construction

In this short subsection we briefly indicate how we can modify our construction so that
it works in RD and with the possibility of more than two children per parent. We can
also allow the number of children at each level to be random and change from level to
level. None of these significantly change anything as long as the number of children
is uniformly bounded. To describe the generalization, we first need to establish some
notation and definitions.

For I � Rd , we denote by diam.I / the diameter of I . Given r > 0, we say
J � I is an r-similarity of I if there is a similarity S such that J D S.I / and
diam.J / D r � diam.I /. A collection of rj -similarities, J1; J2; : : : ; Jk , (possibly of
distinct contraction factors) is � -separated if d.Ji ; Jj / � � � diam.I / for all i ¤ j . If
such a collection exists, we say that I has the .k; �/-separation property.

In the event that the interior of I is non-empty, then for a given k and small enough
� > 0, it is easy to see that I will have the .k; �/-separation property for any rj � �k ,
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j D 1; 2; : : : ; k, for a suitably small �k > 0. For example, if I D Œ0; 1� and �k < 1,
then �k D .1 � .k � 1/�/=k will work. We can view the .k; �/-separation condition
as a uniform strong separation condition.

Lemma 7, which relates balls with level n sets and thus contains the essential
geometric result, is changed very little in the more general setup. We redefine L by
the condition that

2BL�1 � �

and replace 1 � B with � in the proof and everything else is the same.
Let I0 be a fixed compact subset of RD with non-empty interior and diameter one.

Fix � 2 .0; 1/,K � 2 and let Bi 2 .0; 1/, i D 2; : : : ;K, be such that I0 has the .i; �/-
separation property for all rj �Bi . We again letA 2 .0;mini Bi /. For each ! and step
n in the construction, we take the random variables Kn D kn.!/ 2 ¹2; 3; : : : ;Kº and
a
.1/
n .!/; : : : ; a

.Kn/
n .!/ where a.j /n D a

.j /
n .!/ � A for each j D 1; 2; : : : ;Kn and also

a
.1/
n C a

.2/
n C � � � C a

.Kn/
n � BKn ; these determine the relative sizes of the children at

step n. Specifically, the children Jj .!/ of the parent In.!/ D In are a.j /n -similarities
of In, for j D 1; 2; : : : ;Kn, which are � -separated. The random Moran set C! is then
defined (as usual) to be

C! D

1\
nD1

Mn.!/;

where Mn.!/ is the union of the step n children.
Define a random measure �! supported on this Moran set C! by the rule that if

the children of In are labelled I .j /n , j D 1; : : : ; Kn, then �!.I
.j /
n / D p

.j /
n �!.In/,

where the random variables p.j /n .!/ � 0 satisfy
PKn
jD1 p

.j /
n D 1 for all n. We assume

that E..a.j /n /�t / <1 and E..p.j /n /�t / <1 for some t > 0 and all j D 1; : : : ; Kn
and n.

Define

Yn.�/.!/ D logp.m/n .!/

Zn.�/.!/ D log a.m/n .!/
where

a
.m/�
n

p
.m/
n

D max
²
a
.k/�
n

p
.k/
n

W k D 1; : : : ; Kn

³
and, as before, define

G.�/ D
E!.Y1.�/.!//

E!.Z1.�/.!//
:

Essentially the same arguments as before show that Theorem 11 holds in this case
as well.

Example 6. Suppose Kn D 3 (the same for all n) and the ratios are a.1/n D 1=4,
a
.2/
n D a

.3/
n D 1=16 for all !. Assume the probabilities p.j /n are 1=2; 1=4; 1=4 with

1=2 assigned to position j with equal likelihood. Note that if p.1/n D 1=2, then
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max.a.k/�n =p
.k/
n / D a

.1/�
n =p

.1/
n if � � 1=2 and a.2/�n =p

.2/
n otherwise. If p.j /n D 1=2

for j D 2; 3, then max.a.k/�n =p
.k/
n / D a

.1/�
n =p

.1/
n for all � � 0. One can check that

E.Y1.�// D

´
log.1=4/ if � < 1=2;
5
3

log.1=2/ if � � 1=2

and

E.Z1.�// D

´
4
3

log.1=4/ if � < 1=2;

log.1=4/ if � � 1=2:

Thus,

G.�/ D

´
3=4 if � < 1=2;

5=6 if � � 1=2

and consequently, for all large dimension functions ˆ, dimˆ� D 5=6 a.s.

5. Dimension results for small ˆ

We now move to a discussion of the “small” dimension functions ˆ. Recall that this
means that ˆ� logjlog t j=jlog t j. We again restrict our discussion to the case of two
children per parent interval for the sake of clarity. The modifications necessary for the
more general case are straightforward.

5.1. The dimension theorem for small ˆ

Put

˛ D max
²

ess sup
� logp1.!/

log a1.!/

�
; ess sup

� log.1 � p1.!//
log b1.!/

�³
;

ˇ D min
²

ess inf
� logp1.!/

log a1.!/

�
; ess inf

� log.1 � p1.!//
log b1.!/

�³
:

Theorem 21. There is a set � of full measure, such that dimˆ�!D˛ and dimˆ�!Dˇ

for all ! 2 � and for all small dimension functions ˆ.

Proof. We will begin by verifying that dimˆ� � ˛ a.s. (and this will hold for all
choices of ˆ, not just small ˆ). Of course, this is obvious if ˛ D 1. Otherwise,
consider the Moran interval Iv.!/D Iv1:::vN and descendent interval Iu.!/D Iv1:::vn
where jIuj � jIvj1Cˆ.jIv j/. Then

�!.Iv/

�!.Iu/
D

nY
jDNC1
vjD0

p�1j

nY
jDNC1
vjD1

.1 � pj /
�1
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and
jIvj

jIuj
D

nY
jDNC1
vjD0

a�1j

nY
jDNC1
vjD1

b�1j ;

so
�!.Iv/
�!.Iu/�
jIv j
jIuj

�˛ D nY
jDNC1
vjD0

p�1j

a�˛j

nY
jDNC1
vjD1

.1 � pj /
�1

b�˛j
:

Almost surely, ˛ � log pj = log aj and ˛ � log.1 � pj /= log bj for all j , hence
a�˛j � p�1j and b�˛j � .1 � pj /

�1 a.s. Thus,

�!.Iv/

�!.Iu/
�

�
jIvj

jIuj

�˛
a.s.

and consequently, dimˆ� � ˛ a.s.
For the reverse inequality, first suppose ˛ <1. Fix i 2 N. Without loss of gen-

erality, we will assume

˛ D ess sup
� logp1

log a1

�
D ess sup

� logp�11
log a�11

�
:

From the definition of the essential supremum, there must be some 0 < ıi < 1 such
that

P
�
!W

logp�11
log a�11

� ˛ �
1

2i

�
� ıi :

Let

Ji D
jlogBj
2jlog ıi j

and ˆi .t/ D
Ji logjlog t j
jlog t j

:

For each positive integer N , let

�N;i D
Ji log.N jlogAj/
jlogBj

:

Clearly, �N;i !1 as N !1 and the definitions ensure that ı�N;ii � 1=N for large
enough N . Set

�N;i D
°
!W

logp�1j
log a�1j

� ˛ �
1

2i
for j D N C 1; : : : ; N C �N;i

±
:

As the tuples .pn; an; bn/ are independent,

P .�N;i / D

NC�N;iY
jDNC1

P
�
!W

logp�1j
log a�1j

� ˛ �
1

2i

�
D ı

�N;i
i �

1

N
:
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Thus, if we let Nk D k log k, then for some suitably large K0,X
k

P .�Nk ;i / �
X
k�K0

1

k log k
D1:

As we can replace ıi with any smaller, strictly positive number, there is no loss of
generality in assuming it is so small thatNkC1 >Nk C�Nk ;i . Hence, the events �Nk ;i
are independent and thus the Borel–Cantelli lemma implies that P .�Nk ;i i.o./D 1 for
each (fixed) i . Let �i be this set of full measure.

Take any ! 2 �i and consider any Moran interval, IN .!/, of step N . Let In.!/
be the left-most descendent of IN at level n D N C �N;i (where we make the choice
of the left descendent since ˛ D ess sup.logp1= log a1/). Since jIN j � AN and the
function tˆi .t/ decreases as t decreases to 0, the choice of �N;i ensures

jIN j
ˆi .jIN j/ � ANˆi .A

N /
D A

Ji log.N jlogAj/
jlogAj � B�N;i �

jInj

jIN j
:

Hence, jInj � jIN j1Cˆi .jIN j/. As ! 2 �i , it follows that for infinitely many N ,

logp�1j � .log a�1j /
�
˛ �

1

2i

�
for j D N C 1; : : : ; N C �N;i ;

equivalently,
p�1j � a

�.˛�1=.2i//
j :

Thus,

p�1j

a
�.˛�1=i/
j

� a
�1=.2i/
j � B�.1=.2i// for j D N C 1; : : : ; N C �N;i :

Consequently, for each fixed i ,

�!.IN /
�!.In/�
jIN j
jInj

�˛�1=i D NC�
N;iY

jDNC1

p�1j

a
�.˛�1=i/
j

� .B�1=.2i//�N;i

and since .B�1=.2i//�N;i as N !1 it follows that there can be no constant C such
that

�!.IN /

�!.In/
� C

�
jIN j

jInj

�˛�1=i
for all such N; n. By Lemma 8 that implies dimˆi�! � ˛ � 1=i for all ! 2 �i .

Let � D
T1
iD1 �i , a set of full measure, and assume ˆ is any small dimension

function. Then there is some function H.t/! 0 as t ! 0 so that

ˆ.t/ �
H.t/ logjlog t j
jlog t j

for all t � t0:
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Consequently, for each i there is some ti > 0 such thatˆ.t/ �ˆi .t/ for all t � ti .
This property and our observations above ensure that dimˆ�! � dimˆi�! � ˛ � 1=i

for all i and all ! 2 � . We conclude that dimˆ�! � ˛ for all ! 2 � , as we desired to
show.

If ˛ D1, replacing ‘˛ � 1=.2i/’ in the arguments with ‘2i ’, in the same manner
we deduce that for every i 2 N and infinitely many N ,

�!.IN /
�!.In/�
jIN j
jInj

�i � B�i�N;i
and, of course, this tends to infinity as N !1. It follows that dimˆi�! � i for all
! 2 �i , a set of full measure and with similar reasoning to above, we deduce that
dimˆ�! D1 a.s.

If, instead, ˛D ess sup.log.1�p1/= logb1/, we consider a Moran interval of level
N and its rightmost descendent at level N C �N;i , and argue in a similar fashion.

The arguments to establish dimˆ� D ˇ a.s. are analogous and left to the reader.

Corollary 22. Almost surely, dimA �! D ˛ and dimL �! D ˇ.

Proof. This is immediate from Theorem 21 as the constant function ˆ D 0 is a small
dimension function.

Let

a0 D ess inf a1.!/; b0 D ess inf b1.!/;

A0 D ess sup a1.!/; B0 D ess sup b1.!/;

p0 D ess supp1.!/; q0 D ess sup.1 � p1.!//;

P0 D ess infp1.!/; Q0 D ess inf.1 � p1.!//

and put

˛0 D max
²

logP0
logA0

;
logQ0
logB0

³
; ˇ0 D min

²
logp0
log a0

;
log q0
log b0

³
:

Notice that if pn is chosen independently of .an; bn/ for all n, then ˛0D ˛ and ˇ0D ˇ.
Consequently, there is another immediate consequence of Theorem 21.

Corollary 23. Suppose pn is chosen independently of .an; bn/ for all n. There is a
set � of full measure, such that dimˆ�! D ˛

0 and dimˆ�! D ˇ
0 for all ! 2 � and

for all small dimension functions ˆ.
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Example 7. Consider, again, the Moran set Cab and random measure �! with prob-
abilities chosen with equal likelihood from ¹p; 1 � pº with a < b and p < 1 � p, as
in Example 3. Then dimˆ�! D logp= logb and dimˆ�! D log.1� p/= loga almost
surely.

Example 8. In both Examples 4 and 5, it is trivial to compute the ˆ-dimensions for
smallˆ. In both cases a0 D b0 D A, A0 D B0 D B and p0 D q0 D P0 DQ0 D 1=2.
Thus, dimˆ�! D

log1=2
logB and dimˆ�! D

log1=2
logA almost surely.

Remark 2. As in Section 4.6, suppose that each parent interval in the Moran set
construction has K � 2 children and define a random Moran set C! and measure �!
as was done there (with the same assumptions). With the notation of that subsection,
for j D 1; : : : ; K put

˛ D max
jD1;:::;K

ess sup
�

logpj .!/
log aj .!/

�
; ˇ D min

jD1;:::;K
ess inf

�
logpj .!/
log aj .!/

�
:

The same reasoning as in the proof of Theorem 21 shows that dimˆ�! D ˛ and
dimˆ�! D ˇ for almost all ! and for all small dimension functions ˆ.

5.2. Relating dimˆ � to dimˆ C!

As in the case of the large dimension functions, it is natural to ask if one could obtain
the almost sure ˆ-dimensions of these random Moran sets as the almost sure ˆ-
dimensions of the random measures arising from some choice of probabilities, as is
the case when an.!/ D bn.!/ for all n and ! (see [18]). The following example
shows that this need not be the case for the small dimension functions ˆ when the
random set is not generated by equicontractive similarities.

Example 9. Choose 0<a2<a1<1=2, 0< b1<b2<1=2 and consider the family of
random Moran sets C! where we choose .an; bn/ independently and with equal like-
lihood from ¹.a1; b1/; .a2; b2/º. We will let C1;C2 denote the (deterministic) Moran
sets generated by .a1; b1/ and .a2; b2/, respectively. It is known [8, Thm. 2.6] that

dimA C! D max
®
dimA C1; dimA C2

¯
a.s.

and that dimA Cj is the value of dj satisfying adjj C b
dj
j D 1 for j D 1; 2.

Let 0 � p � q � 1 and for convenience let

�.p; q/ D max
²

logp
log a1

;
log.1 � q/

log b2

³
:

Theorem 21 shows that if we denote by �! D �!.p; q/ the random measures suppor-
ted on the Moran sets C! where we choose probabilities pn independently and with
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equal likelihood from ¹p; qº, then for each p; q

dimA �!.p; q/ D �.p; q/ a.s.

Notice that a compactness argument ensures that inf0�p�q�1 �.p; q/ D �.p0; q0/ for
a suitable choice of p0; q0.

We will see that
dimA C! < �.p0; q0/ a.s. (5.1)

To prove this, we first note that at the minimal value of �.p; q/ we must have
logp0= loga1D log.1� q0/= logb2. Moreover, as the function logp= loga1 decreases
as p increases and the function log.1 � q/= log b2 decreases as q decreases, the min-
imum value occurs when p0 D q0, hence at a choice of p0, where

logp0
log a1

D
log.1 � p0/

log b2
:

If we suppose 
 is chosen so that b2 D a


1 , solving the equation above gives that p0

satisfies p
0 C p0 D 1 or, equivalently, p0 D .1 � p0/1=
 . To summarize,

�.p0; p0/ D
logp0
log a1

D
log.1 � p0/

log b2
; where p
0 C p0 D 1:

Now assume � is chosen so that b1 D a�1 . As b1 < b2, we must have � > 
 .
Furthermore, d1 D dimA C1 is defined by the rule 1 D ad11 C .a

d1
1 /

� . Since � > 
 , if
a
d1
1 � p0 we obtain the contradiction

1 D a
d1
1 C .a

d1
1 /

�
� p0 C p

�
0 < p0 C p



0 D 1:

Hence, ad11 > p0 and thus

dimA C1 D d1 <
logp0
log a1

:

Likewise, if we assume a�2 D b2, then as a1 > a2 we must have 1=� > 1=
 . And
as d2 is defined by the rule 1D

�
b
d2
2

�1=�
C b

d2
2 , it similarly follows that bd22 > 1�p0,

that is
dimA C2 D d2 <

log.1 � p0/
log b2

:

These observations prove (5.1).
Since dimA�! D dimˆ�! a.s. for all small ˆ, and dimA C! � dimˆC! for all !

and ˆ, this also proves that for all small dimension functions ˆ and for each p; q

dimˆ C! <
logp0
log a1

� dimˆ�!.p; q/ a.s.;

where p0 is given by the rule p0 C p


0 D 1 and 
 D log b2= log a1.
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For an explicit example, suppose a1 D 1=2, b1 D 1=4, a2 D 1=3 D b2. Then

dimA C1 D
log..
p
5 � 1/=2/

log 1=2
� 0:69 and dimA C2 D

log 2
log 3

� 0:63

so
dimA C! D dimA C1 � 0:69 a.s.

We have b2 D a


1 for 
 D log 3= log 2 and Maple gives the approximate solution to

p


0 C p0 D 1 as p0 � 0:58. Hence for each choice of p; q,

dimA �!.p; q/ �
logp0
log 1=2

� 0:78 a.s.

A. Appendix: Examples of G.�/

Even though the functionG.�/ is only used as a technical tool for proving our results,
it is helpful to see a few plots of some examples. Referring to Figure 2, we present
our four examples starting with the first row and going left to right. We comment that
we used Maple for both the computations and for the plots.

0 2 4 6 8 10
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1.5

2

0 2 4 6 8 10
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1
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2

0 2 4 6 8 10
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0.8

1
1.2
1.4
1.6
1.8

2

0 2 4 6 8 10
0

0.5

1

1.5

2

Figure 2. Four different examples of G.�/, described in the appendix.
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For the first example, we set b D 2a and choose a uniformly from the interval�
1=10; 3=10

�
. In addition, p is chosen uniformly from Œ0; 1�. The resulting function

G.�/ is clearly smooth, but not monotone.
In the second, we now set b D 50a and choose a uniformly in the range 1=100 �

a � .1 � 1=100/=51. Again p is chosen uniformly from Œ0; 1�. This time G.�/ is
monotone increasing, and still smooth.

For the third, we again set bD2a and choose a uniformly from Œ1=10;3=10�. How-
ever, this time p is chosen uniformly from the set Œ0; 1=10� [ Œ1=5; 2=5� [ Œ7=10; 1�.
The function is continuous, but only piecewise smooth and not monotone. Note that
the vertical axis is different than in the other plots. This was done in order to more
clearly show the shape of the graph.

Finally, for our fourth example we take the 9 triples .a; b; p/� 2
25
;
18

25
;
1

18

�
;
� 4
25
;
16

25
;
1

8

�
;
� 6
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;
14

25
;
3

14

�
;
� 8
25
;
12

25
;
1

3

�
;
�10
25
;
10

25
;
1

2

�
;�12

25
;
8

25
;
5

6

�
;
�14
25
;
6

25
;
5

7

�
;
�16
25
;
4

25
;
5

8

�
;
�18
25
;
2

25
;
5

9

�
;

which each define an IFS with probabilities. For our random model, at each level we
choose one of these IFSPs equally likely. As is clear from the plot, in this case G.�/
is discontinuous, piecewise constant, and non-monotone. The discontinuities occur at
� D log.p=.1 � p//= log.a=b/ for the various choices of a, b and p.
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