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Box dimension
of generalized affine fractal interpolation functions

Lai Jiang and Huo-Jun Ruan

Abstract. Let f be a generalized affine fractal interpolation function with a vertical scaling
function S. In this paper, we study dimpT'f, the box dimension of the graph of f, under the
assumption that S is a Lipschitz function. By introducing vertical scaling matrices, we estimate
the upper and the lower bounds of oscillations of f. As a result, we obtain an explicit formula
of dimp I'f under certain constraint conditions.

1. Introduction

Let N > 2 be a positive integer. Given a data set {(x;, yi)}zN=0 C R? with xo <
X1 < ... < Xxp, there are many classical methods to construct functions interpolat-
ing the data set, while interpolation functions are smooth or piecewise smooth. In
1986, Barnsley [3] introduced fractal functions to interpolate the data set.

Let L;: [x0,xn] = [xi—1,xi], 1 <i < N be contractive homeomorphisms with

Li(x0) = xi—1, Li(xn) = x;. (1.1)
Let Fj:[xo,xny] xR = R, 1 <i < N be continuous maps satisfying
Fi(x0,y0) = yi—1, Fi(xn,yNn) = yi, (1.2)

and F; is uniformly contractive with the second variable, i.e., there exists a constant
Bi € (0, 1), such that for all x € [xg, xy], and all y’, y” € R,

|Fi(x,y") = Fi(x, y")| < Bily" = y"|. (1.3)
Then we can define maps W;: [xo, xny] X R — [x;—1,x;] xR, 1 <i < N by

VVi(xvy):(Li(x)vFi(-x»y))' (14)
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From above conditions, it is easy to check that
Wi(x0.y0) = (Xi—1,¥i-1), Wi(xn,yn) = (xi,yi)

foreachi.

Notice that for each 1 <i < N, W; is continuous and it maps [xg, xy] X R
into itself. Hence, {W;: 1 <i < N} is an iterated function system (IFS for short)
on [xo, xy] X R. Barnsley [3] proved that there exists a unique continuous function
f on [xg, xy] such that its graph I'f := {(x, f(x)): x € [x0,xn]} is the invariant set
ofthe IFS {W;:1 <i < N}, i.e,

N
rf =Jwan. (1.5)

i=1

Furthermore, the function f always interpolates the data set, i.e., f(x;) = y; for all
0 <i < N.The function f is called the fractal interpolation function (FIF for short)
determined by the IFS {W; }1N=1-

Notice that box dimension is one of the most important dimensions in fractal
geometry and its applications. Thus, it is quite natural to study dimg["f, where f is
an FIF.

In the case that every W; is an affine map, we call f an affine FIF. In this case,
for each i, there exist real numbers a;, b;, ¢;, d; and e;, such that

Wi(x,y) = (a;x + b;,cix +d;y + ).

We call d;, 1 <i < N, vertical scaling factors of f. According to (1.3), |d;| < 1
for each i. In [5], Barnsley, Elton, Hardin and Massopust obtained the box dimension
formula of affine FIFs. They proved that if ZlN=1 |d;| > 1 and the interpolation points
{(x;, y,')}lN: o are not collinear, then the box dimension of I'f* equals the unique real
number s satisfying the following equation:

N
YoaiTtdi| = 1;

i=1

and dimp " = 1 otherwise. This formula can be generalized to recurrent affine FIFs,
see [4,21], for example.

In [7], Bedford studied the box dimension of a class of FIFs determined by IFS
{W;:1 <i < N} satisfying conditions (1.1)—(1.4) and the following conditions:
 There exists a constant & > 0 such that W; is C'*® diffeomorphism for all 1 <

I <N,;

* 0<Li(x)<(0F;/dy)(x,y) < 1forall (x,y) € [xo,xny] xRandall1 <i < N.
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Bedford obtained the box dimension of these FIFs by Bowen’s formula.

In this paper, we want to study another class of FIFs such that L; is affine and
dF;/0dy is a function of x for each i. It is easy to check that if f is an affine FIF, then
the corresponding F; can be rewritten as

Fi(x,y) = di(y = b(x)) + h(L;(x)),

where
(A1) b is an affine function satisfying b(xg) = yo and b(xn) = yn,

(A2) h is a piecewise affine function satisfying h(x;) = y;, 0 <i < N, and
hl|ix;_, x;1 is affine foreach 1 <7 < N,

(A3) L;, 1 <i < N, are affine functions on [xo, x| satisfying (1.1).

It is natural to study FIFs such that F; has the following more general style:
Fi(x,y) = Si(x)(y — b(x)) + h(Li(x)).

Actually, Barnsley and Massopust [6] studied such FIFs where the corresponding IFS
satisfies S;(xy) = Si+1(xg) forall 1 <i < N — 1, and S; is affine on [xg, x| for
all 1 <i < N. They call such FIFs bilinear FIFs. Notice that in this case, we can
rewrite S;(x) by S(L;(x)), where S(x) is a piecewise affine function such that S is
affine on each [x;_1, x;]. With some additional conditions, they obtain the box dimen-
sion formula of bilinear FIFs in the case of equally spaced data points. We remark
that essentially, the proof in [6] needs the following condition: S is nonnegative and
it has a uniform sum, that is, y(x) = ZIIV=1 S(L;(x)) is constant on [xg, xy]. See
Remark 3.7 and Remark 4.13 for more details. This work was generalized to bilinear
fractal interpolation surfaces on rectangular grids [15].

In this paper, we will adopt the condition that S; (x) = S(L;(x)) as in [6]. Here
S(x) is a continuous function on [xg, xx] with |S(x)| < 1 for all x € [xo, xn]. For
each 1 <i < N, we define

Fi(x,y) = S(Li(x))(y =b(x)) + h(Li(x)), i=12,....,N, (L6

where conditions (A1)—(A3) are satisfied. Then it is easy to see that F; satisfies (1.2)
and (1.3). Thus, if we define W; by (1.4), then {W; }1N=1 determines an FIF f. In this
case, we call f a generalized affine FIF, and call S the vertical scaling function of f.

In general, it is very challenging to obtain the box dimension of generalized affine
FIFs without any restrictions. Till now, as far as we know, there are few results in this
direction. In this paper, we study the box dimension of generalized affine FIFs under
the following conditions:

(A4) {x,-}f\’:0 are uniformly spaced on [xg, xn], thatis, x; — x;—1 = (xy — x0)/N
foralll <i <N,
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(AS5) S is a Lipschitz function, that is, there is a constant Ag > 0, such that
1S(x") = S(x")| < As|x" —x"|

for all x", x” € [x0, xn],
(A6) S is positive on I, that is, S(x) > 0 for all x € [x¢, xn].

We prove that if conditions (A1)—(A6) are satisfied, then dimgI"f equals either 1 or
1 + log(ps)/log N, where ps is a constant depending on the function S involving the
spectral radius of certain matrices (see Theorem 4.9). See Section 3 for the explicit
definition of pg.

We remark that there are many applications of FIFs, see [17,22] for examples.
Also, there are many works on the box dimension and Hausdorff dimension of fractal
interpolation functions and fractal interpolation surfaces. We refer the reader to [2, 8,
12,14, 16] and the references therein. Other properties of FIFs have been studied in
various papers. Please see [9, 18, 23] for examples.

The paper is organized as follows. In Section 2, we recall the definition of box
dimension, and present some properties of generalized affine FIFs. In Section 3, we
introduce two sequences of vertical scaling matrices, and prove that the limits of spec-
tral radii of these two sequences of matrices coincide under certain conditions. By
using this result, in Section 4, we estimate the upper bound and the lower bound
of oscillations of generalized affine FIFs, and obtain explicit formula of their box
dimension under certain conditions. In Section 5, we present an example to explain
our result. We also make some further remarks in this section.

2. Preliminaries

2.1. Definition of box dimension

For any k1,k, € Z and ¢ > 0, we call [k;¢, (k1 + 1)¢] x [kae, (ko 4+ 1)g] an e-coor-
dinate square in R2. Let E be a bounded set in R? and N (¢) the number of &-coor-
dinate squares intersecting £. We define

log NE (¢) . log Ng(e)

dimgE = lim and dimgpFE = lim

, 2.1
e—>0+ logl/e e>o0r logl/e @1

and call them the upper box dimension and the lower box dimension of E, respect-
ively. If dimp E = dim p E, then we use dimp E to denote the common value and call
it the box dimension of E. It is easy to see that in the definition of the upper and lower
box dimensions, we can only consider e = 1/N k where k € Z*. That is,
— log N (k) . log N (ex)

dimgE = lim and dimgE = lim

2.2
k—oo klogN kooo klogN 2.2
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Itis also well known that dimg £ > 1 when E is the graph of a continuous function
on a closed interval of R. Please see [10] for details.

2.2. Some properties of generalized affine FIFs

In this section, we assume that f is a generalized affine FIF satisfying conditions
(A1)—(A3) and (1.6). From (1.5), foreach 1 <i < N,

Wi(x, f(x)) = (Li(x), f(Li(x)))
so that f(L;(x)) = F;(x, f(x)). Combining this with (1.6),
S(Li(x)) = S(Li(x))(f(x) = b(x)) + h(Li(x)) (2.3)

forall x € [xg,xy]and 1 <i < N.

Let g be the affine function on [0, 1] satisfying g(0) = xo and g(1) = xn. Then

g~ ! is an affine function on [xg, xx]. Write t; = g~ (x;) for 0 < i < N. Define

fH@0) = f(g) —b(g(r)), 1e€0.1]. (2.4)

The following result is well known. However, we have not seen the proof in other
papers. Hence, we present the proof for the reader’s convenience.

Lemma 2.1. For each 1 <i < N, let L} be the affine function on [0, 1] satisfying
L} (0) = tj—y and L} (1) = t;. Furthermore, we define

Fr(t.y) = S*(L;(t))y + h*(L} (1)), te€[0.1].y eR, (2.5)

where S*(t) = S(g(t)) and h*(t) = h(g(t)) — b(g(t)) fort € [0,1]. Then f* isa
generalized affine FIF determined by the IFS {(L} (t), F;*(t, y))}lN=1.

Proof. Fix 1 <i < N. Notice that both g o L} and L; o g are affine functions on
[0, 1]. Thus, from

g(L7(0) = xi—1 = Li(g(0)), g(L{ (1) =x; = Li(g(1)).

we have g o LT = L; o g on [0, 1]. Now, given ¢ € [0, 1], we write x = g(¢). Then
g(L}(t)) = L;(x). By definitions of $* and h*,

S*E(LF (@) [ (@) + h*(L; (1))
= S(g(L;())(f(g() —b(g()) + (h(g(L} (1)) —b(g(L](2))))
= S(Li(x)(f(x) = b(x)) + ~(Li(x)) — b(L;(x))
= f(Li(x)) — b(Li(x)),
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where the last equality follows from (2.3). Thus, from (2.4) and (2.5),

FELF@0) = f(g(LF (@) —b(g(Ly (1) = f(Li(x)) —b(Li(x))
= S*(L7O) f*@) +h* (L] (1) = F (¢, f*(1)).

which implies that T'f™* = {(z, f*()):t € [0, 1]} is the invariant set of {Wi*}lNzl,
where W*(t,y) = (L} (t), Fj*(t, y)). This completes the proof of the lemma. [

Notice that both g and b are affine functions. Thus, it is easy to check that
o((t. f* (1) = (g(), f(g(®)). te[0.1],
is a bi-Lipschitz map from I'f* to I'f. Hence,
di_mBFf* = dimgl'f, di—mBFf* = di—mBFf-

Since f*(0) = f*(1) = 0, in the sequel of this paper, we always assume that
xo =0, xy =1and yg = yy = 0. From now on, we write / = [0, 1], and [; =
[@—1)/N,i/N]forall 1 <i < N.In this case, b(x) = 0 on /. Hence, from (2.3),
we have the following useful property:

f(x) = S@) f(L7(x)) + h(x) (2.6)

forallx € I;, where 1 <i < N.

3. Vertical scaling matrices

In this section, we assume that the vertical scaling function S satisfies the condi-
tion (A5), i.e., there exists a constant Ag > 0, such that

IS(x") — S| < Aslx' —x"|, x'.x" el 3.1

Given a closed interval E = [a,b], foreachk € ZT and1 < j < N*, we write

J

E’-‘:[a—i-

; —(b—a).a+ ﬁ(b—a)].

N

It is clear that I}‘ = [(j — 1)/N¥, j/N*]. For simplicity, for each 1 <i < N, we
write

i-1 j—1i-1 j ]

k _ 1Nk —
Ii,j—(lz)j—[ N +Nk+1’ N +Nk+1
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3.1. Two sequences of vertical scaling matrices

Let k be a positive integer. Given 1 <i < N and 1 < j < N*, we define

sk = max |S(x)].

1]
erl.J.

It is clear that Ef ; =max ;«|S(L;i(x))]. In order to calculate the box dimension of
’ j

FIE, we introduce an N¥ x N*¥ matrix M, r as follows,

—k —k
Sl,l SI,N kO e kO e 0 . 0
0 ST,N+1 S12N 0 0
—k k
0 0 0 0 SILNK—N+1 S1,Nk
55 G ) 0 ko 0 0
0 S n+1 522N 0 0
—k —k
0 0 0 0 Sy NK_N+1 S2, Nk
—k —k
SN.1 SN.N . 0 kO 0 0
0 0 SN,N+1 e SN,ZN e 0 e 0
—k —k
0 ces 0 0 e 0 e SN,Nk—N—I—l e SN,Nk

Thatis, for1 <i < N,1<£<N*¥'land1 < j < Nk,

(M) yni—140; =1 7 (3.2)

55 if((—1)N < j <IN,
0 otherwise.

k
Sij

M, by replacing Ef‘ ; with g{‘ ;in (3.2). Both My and M, are called vertical scaling
matrices with level-k.

Similarly, we define = min, _;« |S(x)| and define another N k x N* matrix
L.J

Now we recall some notation and definitions in matrix analysis [13]. Given a
matrix X = (X;j)uxn, We say X is nonnegative (resp. positive), denoted by X > 0
(resp. X > 0)if X;; > O (resp. X;; > 0) foralli and j. Let Y = (¥;j),xn be another
matrix. We write X > Y (resp. X > Y)if X;; > Y;; (resp. X;; > Y;;) foralli and j.
Similarly, given u = (u1,...,un), v = (v1,...,v,) € R”?, we write u > v (resp. u > v)
if u; > v; (resp. u; > v;) foralli.

A nonnegative matrix X =(Xj;)nxn is called irreducible if forany i, j €{1,...,n},
there exists a finite sequence igp,...,i; € {l,...,n} such that iy =i, i; = j, and
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Xi,_,i, >0forall 1 < <t. X is called primitive if there exists k € ZF such that
X% > 0.1t is clear that a primitive matrix is irreducible.
The following lemma is well known. Please see [13, Chapter 8] for details.

Lemma 3.1 (Perron—Frobenius theorem). Let X = (X;;)nxn be an irreducible non-
negative matrix. Then

(1) p(X), the spectral radius of X, is positive,

(2) p(X) is an eigenvalue of X and has a positive eigenvector,

(3) p(X) increases if any element of X increases.
Lemma 3.2. Assume that the vertical scaling function S is not identically zero on

every subinterval of I. Then (My)* > 0 for all k € ZF. As a result, My, is primitive
forallk € ZF.

Proof. Let k € Z™. By the assumption of the lemma, it is clear that Ef‘ j > 0 for
all <i<Nadl <j < N*. Now, for any j,{ € {1,2,...,Nk}, there exist
Jiseeos i1, .. € € {1,..., N} such that

j =0 =DN 4 (2 = DN*2 oo (eor = DN + i

€=l — DN 4 (= DNF2 4o (g — DN + 4.
Define 11 = j and

try1 =Nty — (p— DN = 1) +¢,, 1<p<k.

Then it is easy to see that fx; = £. From the definition of the matrix My, it is easy

to see that (My)s,,,, > Oforall 1 < p < k. Thus,

k
(M), = [TMO1p1,1, > 0.
p=1

By the arbitrariness of j and £, the lemma holds. ]

Theorem 3.3. Assume that the vertical scaling function S is not identically zero on
every subinterval of I. Then for allk € 7%,

p(My 1) < p(Mp).

As a result, limy_, o p(My) exists, which we denote by p*.

Proof. In order to prove the theorem, we introduce another N¥*1 x N¥+1 matrix M k

as follows:
if (€ —1)N < j <{N,

—k

~ K

(M) g-vywire; =13 (33)
G=DNT+E 0 otherwise,

forl<i<N,l<{<N¥andl <, < Nkt1,
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Firstly, we will prove p(Mk) > p(Mk+1). Given1 <i < N and 1 < { < Nk,

(N (N
k _ rnk _ N k+1
the=ui= U = U I
j={U—1)N+1 j={-1)N+1
so that
Ef-‘e = max |[S(x)| = max max |S(x)| = max E;‘Jfl.
T xelk, (U=DN<j<EN cerf+! (-DN<j<tN "/

Thus, given 1 < j < N¥*1with (L~ 1)N < j <{N, wehave s}, > 5. Combining

this with the definitions of ]l7lk and My 1, it is easy to see that Mk > My 1. From
the Perron—Frobenius theorem, p(My) > p(Mk41).

Now we will prove p(My) = p(My). From the Perron—Frobenius theorem, the
spectral radius A = p(Mp) is positive. Furthermore, it has a positive eigenvector u =

(uq, .. .,uNk+1)T. From (3.3),for 1 <i < N and 1 < ¢ < Nk,
Nk+1 (N
v —k
AuG_yyNk e = Z (M) i—yynk e, i) = Sie Z uj. (34
Jj=1 j={—-1)N+1
Define a vector v = (vy,...,vyk)T by v, = Z}Z(t_l)NH uj,1 <t < N* Then

v is a positive vector. Notice thatfor | <i < Nand1 <{ <N k_l,

Nk LN

K
D Mo yne-tpe Ve = ) S

=1 t=(—1)N+1

{N tN
— <k
= Y (% W)
t=({—1)N+1 j=@—-1)N+1
LN

= Y Migpynky (by (3.4))
t={—1)N+1

= AV )Nk—1 4
Thus, M;v = Av so that A is an eigenvalue of M} with the positive eigenvector v.
From [13, Corollary 8.1.30], p(My) = A = p(Mp).

From the above arguments, p(My) = p(My) > p(My41). Since p(My) > 0 for
all k, we know that lim_, o, p(M}) exists. ]

Similarly, we can obtain the following result.
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Theorem 3.4. Assume that the vertical scaling function S is positive on I. Then for
allk e 7%,

p(Mp) < p(My ).
As a result, limg oo p(M ,2) exists, which we denote by px.
Proof. From the assumption of this theorem, we have g{‘ ;>0 for all k € Z7,

l<i<N,and1<j <Nk
Now, for each k € Z1, we define another N¥t! x N¥*+1 matrix M . as follows:

k . .
~ K if({ —1)N < j <{N,
(M) —1yNEte,j = {_l’Z ( ) /=

0 otherwise,
forl <i <N,l1<{<NFandl<j <Nkt
By using arguments similar to the proof of Theorem 3.3, we have
p(My 1) = p(My) = p(My) > 0.
Since p(M}) < p(My) < p(M) for all k, we know that limy_, o, p(M}) exists. =

Proposition 3.5. Assume that the vertical scaling function S is positive on I. Then
0« = p*. We denote the common value by ps.

Proof. Write C = (min{S(x):x € I})"'. Then 0 < C < oo.
From the definitions of My and M/, we have

0<3F —sF = sup |S(x)| - inf 1S < AslIf;| = AgNTF!

ij S,
xelk; x€l; ;

so that .
k <k < (] + ASN—

Sij =91, = I
=i,j

Thus, M] < My < (1 4+ CAgN*=1)M/. Hence,

);{{j < (14 CAsNTFTysk .

p(M}) < p(My) < (1 + CrsN~*1)p(M)),

which implies that p* = limg 00 p(Mg) = limg 00 p(M}) = px. [

3.2. The sum function

Now, we define a function y on / by

N

y(x) =Y _[S(Li(x))].

i=1
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We call y the sum function with respect to S and {L; }lN: 1- Write
y* = max y(x), Y« = min y(x).
xel xel

For any k € Z*, we define
N
: k
= max Zs Y min S5
1=j<nk =T Lk ™ 1<j=Nk i

Lemma 3.6. We have limg_, o0 ¥, = y* and limy Vi = Vs

Proof. Fixk € Z*.Forany X € I, thereexists | < j < N such that X € Ijk. Thus,

N
Y5, Zmaxw(L ()] = Z S(Li ()] = y(®).
i=1 i=1% i=1
which implies that ¥, > y(X). By the arbitrariness of X, we have y, > y*.
On the other hand, given 1 < j < N k for any x’ € | jk and 1 <i < N it follows
from (3.1) that
|S(L;(x"))| > max |S(x)] —As - |I | = s j—AsN™ k=1
xEIl»lfj

Thus,

N N
y* = y(x) =Y IS = D 55 —AsN T,
i=1 i=1
Since this inequality holds for all 1 < j < N*, we obtain that y* >y, — AgN k.
Combining this with 7, > y*, we obtain that 7, > y* >y, —AsN ¥ forallk € Z ™.
Thus, limg 00 ¥ = ¥*.
Similarly, we have Yy <y < Yy + ASN_k for all k so that limy _, oo Vp=V+ ®

Notice that M and M, are nonnegative matrices for every k € 7. Thus, from
[13, Theorem 8.1.22],

Nk Nk
M;) < max M, =Y, M;) > min M =y .
:0( k) L<j <N Z( k)l,] )’k ;0( k) 1<j<N Z( k)l,] —k
Hence, if S is not identically zero on every subinterval of I, then p* < y*; and if S is
positive on I, then p, > .. From Proposition 3.5, if S is positive, then y. < pg < p*.
In particular, if S is positive and y is constant on 7, then y(x) = pgs forall x € I.

Remark 3.7. In [6], Barnsley and Massopust study the box dimension of the graph
of bilinear FIFs. In their setting, the vertical scaling function S is nonnegative and
affine on I; = [(i — 1)/N,i/N] for each 1 <i < N. Furthermore, they assume that
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S(0) = S(1). Denote by s; = S(i/N) forall 0 <i < N. From the above two condi-
tions, it is easy to check that for all x € I,

N N N
y(x) =Y [SLi()) =Y (A= x)siy +x8:) = Y _s:.
i=1 i=1 i=1

4. Calculation of box dimension of generalized affine FIFs

In this section, we always assume that f is a generalized affine FIF on / = [0, 1]
satisfying conditions (A1)—(AS5). We will estimate the lower box dimension of ' f
under another condition (A6), and estimate the upper box dimension of I"f under the
following weaker condition:

(A6’) The vertical scaling function S is not identically zero on every subset of /.

Combining these two results, we obtain the formula of dimgI'f under conditions
(A1)—(A6). As explained in Section 2, we may assume without loss of generality that
yo = yn =0sothatbh(x) =0on[.

4.1. Box dimension of the graph of functions

Let g be a continuous function on I = [0, 1]. Given k € Z* and a closed interval

E C I, we define
N

k
Ok(g. E) =) _ O(g, E}),
j=1

where we use O(g, U) to denote the oscillation of g on U C I, that is,

0(g.U)= sup [g(x')—g(x")].
x/,x"eU
It is clear that { Ok (g, E)}32, is increasing with respect to k.
The following lemma presents a method to estimate the upper and lower box
dimensions of the graph of a function by its oscillation. Similar results can be found
in [10,15,20].

Lemma 4.1. Let g be a continuous function on I. Then

log(Ok(g. 1)+ 1)

dimg(I'g) > 1+ lim , 4.1)
B k—o0 k log N
and ( )
S — log(Or(g, 1)+ 1
di I'g) <1+ 1l 4.2
imp(l'g) < +ki>n;o klog N (4.2)
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Proof. Define g = N~¥ forall k € Z% as in Section 2.1. It is clear that
1
Nrg(er) > max{e,:l,e,:1 Z O(g, Ijk)} > ENk(l + Ok (g, I))
1<j<N¥k

so that (4.1) holds. On the other hand, we note that Ng (¢) and NE (&) can be replaced
by NEg(e) and NEg(ex) in (2.1) and (2.2), respectively, where Ng (¢) is the smallest
number of cubes of side ¢ that cover E (see [10] for details). In our case,

Nre(er) < D (61 0(. IF) +1) = N¥(Oc(g. 1) + 1),
1<j<N¥

Thus, (4.2) holds. ]

4.2. Upper box dimension estimate

In this subsection, we will estimate the upper bound of O (f, I) and the upper box
dimension of T'f".

Lemma 4.2. There exists a constant 8 > 0 such that forany 1 <i < N, D C I;, and
anyt € D,

[0(£,D) = IS®)]- O£, L7 (D))| < BIDI,
where |D| = sup{|x’ — x"|:x’, x"" € D} is the diameter of D.
Proof. Given D C I; and t € D, from (2.6),
O(f.D) = sup [h(x) —h(x") +S&)f (L7 () = S f (LT ()]

x',x"€D
Write My = maxyez|f(x)|. Notice that for any x’, x”" € D,
[A() = h(<")] = 13" =x"] - [N(vi = yi-)| < |D] - max [N(ve = ye-1)l.
and o
ISCD SULTHE)) = S FLTH )] < [SG) = SO - | f (L7 )
+[S(") = SO - [ (L7 (")
HISO- [ fL7HED) = FLTHE)
< 2MgAs|D|+[S(®)]- O(f. L7 (D).
Let B =2M¢As + max;<¢<n|N(y¢ — y¢—1)|. Then B > 0 and
O(f.D) < [S(®)|- O(f. L7 (D)) + B|D|.
Similarly, it is easy to see that
O(f.D) = |S®)|- O(f. L' (D)) = BID|.

Thus, the lemma holds. [
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Corollary 4.3. Let B > 0 be the constant in Lemma 4.2. Then for any 1 <i < N,
kezt, 1<j < N¥, andanytellj,

O k < —k—1

O£ 1F) = 1SOI0(f. 1| < BN
Corollary 4.4. Let B > 0 be the constant in Lemma 4.2. Then for any 1 <i < N,
keZ* 1<j <Nk andany D C 11‘.,

- O(f, L7 (D)) = BID| < O(f. D) <57 ;- O(f. L7 (D)) + B|D.
Given k,q € Z*, we define

V(fik.q) = (0g(f:15). Og(f.15)..... O (f.15))" € RN,
and
V(fk) = (O£ 1), O 1F), ... O(f 1§,))" e RN,
It is obvious that forall k € Z* and g € ZT,
Ok+q(S 1) = V(L k+ )l = V(£ kDl
where ||v||; := Y_7_,|vi| forany v = (v1,...,v,) € R".

Lemma 4.5. Assume that the function S is not identically zero on every subinterval
of 1. Then for every k € ZF, there exists a constant ¢ > 0, such that for all ¢ € 7.F,

ck(p(Mg))?  for p(My) > 1,

Orsa (£ 1) <
eralf 1) = {ckq for p(My) < 1.

Proof. Let B > 0 be the constant in Lemma 4.2. Given ¢q € ZT,1<i <N, and
1<j< N*=1 from Corollary 4.4,

0q4(f. 1] )—ZOf(I a)

N4

Z SELOCL LT UF)D)) + BIUE)E)

=i Z O(f: (L)) + B | =57 00 (f 1) + BN,

m=1
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Thus, for 1 <i < N and 1 < £ < N¥1 from

(N
k _ pk—1 _ k
I(i—l)Nk—1+e - Ii,é = U Ii,j
j=(—1)N+1
we have
LN
k k
Og+1(/. I(i—1)1vk—l+e) = > 04f1F5)
j=(—1)N+1
LN
- <k
<BNF+ > 5E04(L1)).
j=(—1)N+1
Denote the vector (BN %, ..., BN~*)T in R¥ g by u. From the above inequality,

V(fk,g+ 1) <u+ MV(fk,q)),
which implies that
V(fik,q) <u+ Mu+ -+ (M) 2u + (M) V(£ k, 1)

forall ¢ € Z*. By Lemma 3.1, we can choose a strictly positive eigenvector v of My
such that v > V(f,k, 1) and v > u. Thus,

(M) V(fik, 1) < (M) v = (p(My))? o,

and
(Mp)"u < (Mp)"v = (p(My))"v, neN.

Hence,

q—1
Ok+q(f D) = V(£ k. @)1 < vl Z(P(Mk))n-
n=0
Let ¢k = [[vl1 if p(Mk) < 1, and ¢, = [[v[l1/(p(My) — 1) if p(My) > 1. Then
the lemma holds. n

Theorem 4.6. Assume that the function S is not identically zero on every subinterval
of 1. Then

*

log p
log N

dimpTf §max{1,1+ } 4.3)

Proof. From Lemma 4.1, for every fixed k € Z™,
dim — log(O D)+ 1
dimpl'f <1+ lim 08(Ok+q(f. 1) + 1)
gq—>00 q lOgN

(4.4)

Assume that p(My) < 1 for some k € Z*. From Lemma 4.5, there exists a con-
stant ¢ > 0, such that

Ok+q(f. 1) < ckq
for all ¢ € Z™*. Combining this with (4.4), we have dimp I'f < 1. Thus, (4.3) holds.
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Assume that p(My) > 1 for all k € Z+. From Lemma 4.5, for each k € Z™, there
exists a constant ¢ > 0, such that

Ok4q(f. 1) < ckp(My)?

for all ¢ € ZT. Combining this with (4.4), we have dimgT'f < 1 4 log p(My)/log N.
By the arbitrariness of k, we know from Theorem 3.3 that

_ log p(M log p*
Gmplf <1+ lim 02PMD _ | logp”
k—oo logN log N

Thus, (4.3) holds again. ]

4.3. Lower box dimension estimate

In this subsection, we will estimate the lower bound of Og(f, I) and the lower box
dimension of T'f.

Lemma 4.7. Assume that the function S is positive. If limp,_, oo Op(f, 1) = o0, then
for any k € ZF and any positive vector v e RN k, there exists p € ZF satisfying

V(f.k.p)=v.

Proof. Let B > 0 be the constant defined in Lemma 4.2. Fix k € Z*. Givenq € Z™,
1<i<N,and1<{< Nk1, using similar arguments in Lemma 4.5, we have

LN
k k k —k
Og1(f 1 G_pynr-14g) = Z 5i.;0q(f.I}) — BN
J=(—=1N+1
so that
V(fik,q+1) = MyV(fk,q)—u, (4.5)
whereu = (BN7*,... . BN8)T ¢ RN, By induction,
k—1
V(fik.q+k) =MD V(fik.q) =Y (M) u. (4.6)
£=0

Let o be the minimal entry of the matrix (M,é)k. Then oy > 0 since (M ]é)k > 0.
Notice that the maximal element of V( f, k, q) is at least N % || V(f. k. q)||1. Thus,

(MO*V(fk,q) = IV(f k@)l wk. 4.7)

where wy = (x N7%,...,ax N7F) € RV*
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On the other hand, it follows from lim, o, O, (f, I) = oo that
Jim [V k )l = Jim Oy (fi1) = o0

Hence, we can choose ¢q large enough, such that
k—1
IV(fik.qo)lhwe = v+ > (M) u.
{=0

Combining this with (4.6) and (4.7), we have V(f, k, p) > v,where p =qo + k. =

Theorem 4.8. Assume that the function S is positive and limy_,o Op(f, 1) = o0

Then
log ps

logN "~

dimpl'f > 1+ 4.8)

Proof. Fix k € Z*. Let B > 0 be the constant defined in Lemma 4.2 and
u=(BN*, .. BNT e RN

Given 0 < 7 < p(M,é), from the Perron—Frobenius theorem, we can choose
a positive eigenvector v of M, associated with the eigenvalue p(M;), such that
v >u/(p(My) — 1). Since limy00 Op(f, 1) = 0o, from Lemma 4.7, there exists

g € Z* such that
1

V(fik.q) = (M)t )—r
Hence, from (4.5),

V(fik,q+1) = p(Mpv—u > p(Mp)v— (p(My) — T)v = tv.
Notice that foralln € ZT,

p(M)T"v —u = p(Mp) (" — 1)v + p(M{)v —u
>t(t" = 1)v+1v = "y,
Thus, by induction, forall n € Z™,
V(fik,q+n)>1t"v.

Hence, Ok g4 (f. 1) = |V(f.k,q + n)|1 = "||v||1, which implies that

M0g(0a(£ D) +1) | 108(Okrgen(£D) 4 1)
=00 nlog N nooo (k+q+n)logN

n
_— log(z"[[v]l, + 1) o logz
n—o0 nlog N log N
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From the arbitrariness of t,

. log(On(f: 1) +1) _ log(p(My))
00 nlog N ~ logN

By letting k — co, we know from Theorem 3.4 and Proposition 3.5 that

o log(On(£ D) +1) _ logps
00 nlog N “logN "’

Combining this with Lemma 4.1, (4.8) holds. ]

4.4. The box dimension formula

Notice that dimgI'g > 1 for every continuous function g on /. Thus, from Theor-
ems 4.6 and 4.8, the following result holds.

Theorem 4.9. Assume that the function S is positive on I. Then in the case that
ps > land limp_.oc Op(f, 1) = 00,

log ps
logN

dimgl'f =1+ 4.9)

Otherwise, dimp'f = 1.

Proof. Since S is positive on I, we know from Proposition 3.5 that p* = p. = ps.

Notice that the sequence {Op(f, I)}72 is increasing with respect to p. Thus, the
limit lim, oo O, (f, I) exists.

In case limy_oo Op(f, I) < 0o, we know from Lemma 4.1 that dimpT'f < 1.
In case ps < 1, we know from Theorem 4.6 that di_mBFf < 1. Since dimgI'f > 1
always holds, dimgI'f = 1 if lim,_,o0 Op(f. 1) < 00 0r ps < 1.

In the case that lim,_. Op(f.I) = co and ps > 1, we know from Theorems 4.6
and 4.8 that (4.9) holds. ]

The following theorem gives us an easy-checking sufficient condition for (4.9)
holding true.

Theorem 4.10. Assume that y« > 1 and the function S is positive on I. Further-
more, assume that there exists ko € Z™ satisfying O, (f. 1) > As My /(y« — 1), where
My = maxyer| f(x)|. Then (4.9) holds.

Proof. Since the function S is positive, y(x) = ZlNzl S(L;(x)). It is easy to see that

for any x',x" € I,

N
() =y (") < As Y ILi(x") = LiGx")| = As|x' = x"].

i=1
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From (2.3) and noticing that b(x) = 0on /,
N

N
D FLi(x) =D (S(Li(x)) f(x) + h(Li(x)))
i=1

i=1
= 7(0)./(x) +Z (1= X)yict +x31) = (1) f(x) +Zy,.
i=1

Hence,
ZO< iy =Z Bt (f(Li(x") = f(Li(x")))
i=1%% el

> max ((X)f(X)—V(X”)f(X”))

x/, x”eI

max (y(x)(f(x") = f(x") + (r(x") =y (")) f(x7))

x/, x”EI
>y O(f. 1F) — AsN ™" M.
Thus,
Nk
k —k _
Ok1(f: 1) = D (v O(f If) = AsN™*My) = yu Ok (f. 1) — As My,
j=1

which implies that
O (f 1) —c = yu(Ok(fi 1) —¢),  keZ¥,

where ¢ = As My /(y« — 1). Thus, limg_, oo O (f. I) = oo since Ok, (f, I) > ¢ and
¥x > 1. Combining this with ps > yx > 1, we know from Theorem 4.9 that (4.9)
holds. "

Remark 4.11. Let A’ be a Lipschitz constant of y, i.e., A’ is a positive constant satis-
fying

//|

ly(x") —y(xX")| < V|x' = x"|, x',x" el

From the proof of the above theorem, if we replace the constant Ag by A’, then the
theorem still holds.

As we mentioned in Section 3, in the case that y is positive and constant on 7, we
have y(x) = ps for all x € I. Thus, from the above remark, we have the following
result.

Corollary 4.12. Assume that the vertical scaling function S is positive on I, and
y(x) = yo for all x € I. Then in the case that yy > 1 and the interpolation points are
not collinear, dimg'f = 1 + log yo/log N. Otherwise, dimg'f = 1.
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Remark 4.13. In [6], Barnsley and Massopust obtain the above result under a weaker
condition: the condition “S is positive” was replaced by “S' is nonnegative”.

In [15], a so-called steady condition was introduced in order to obtain the box
dimension of bilinear fractal interpolation surfaces. In one dimensional case, we can
define it similarly. The vertical scaling function S is called steady on I if for each
1 <i < N, either S(x) > 0 holds for all x € I; or S(x) < 0 holds for x € I;. Assume
that y(x) = yp for all x € 1. By using the method in [15], if we replace the condition
“S is positive on I by “S is steady on I, the above corollary still holds.

5. An example and further remarks

5.1. An example

Example 5.1. Let N =3, x; =i/3fori €{0,1,2,3}, yo=y3=0,and y; = y, = 1.
Define

4 1
§7 O§x§§7
_ 1 1 2
Sx) =4 x4+ 1, 3<x=<3%, (5.1
13 2
13 _ 2 <x<
5 — X, 3_x_1.

By the definition of b(x) and noticing that y,
Thus, from (1.6),

y3 = 0, we have b(x) =0 on [I.

Fi(x,y) = S(Li(x))y + h(Li(x)), (x.y) €l xR,

fori = 1,2, 3. More precisely, we have

4
x2+2x+4
( )y+

F(x,y) = 9 1,
F3(x,y) = (z - f)y —-x+ 1.
9 3
Let f be the corresponding generalized affine FIF. See Figure 1 for the graph of f.
Notice that for each x € I, there exists a sequence {i,}5~, withi, € {1,..., N}

for each n such that x € ﬂ,o;l LjoLjo0---0L;, (I). Thus, from (2.6),

f(x) = h(x) + S(x) f(L;;' (x))
= h(x) + S)h(L;" (x)) + S(X)S(L;; ' (x) f (L' o Li,' (x))

] n—1
= h(x) + Z (]_[ S(L; o L;il 0---0 Li_ll(x)))h(Li_nl 0.+ 0 Li_ll(x)).
n=1 t=0
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2.5

2.0

1.5 1

1.0 1

0.5 A

0.0

00 02 04 06 08 10

Figure 1. The FIF in Example 5.1

It is easy to see that |h(x)| < 1 and |S(x)| < 7/9 for all x € I. Thus,

7\t 9
Mf=max{|f(x)|:xe1}51+2(§) ==
n=1
From (5.1),
0 = SISL) = = 43
= =9 "9y

i=1
Hence, y« = 59/36, y* = 5/3 and A’ = 1/9 is a Lipschitz constant of y. Thus,
O1(f,1) =2 > MMy /(ys« —1). From Remark 4.11, (4.9) holds.
By definition,

M, = and M, =

e}
—_

|& ols

winv 2[S ols
[o2]
=

Oln O Ol
WIN Ol Ol
[o2]
ol BB ol
n
NRCIES

N=1RN]

In general, by calculation, we obtain the spectral radii of vertical scaling matrices
o(My) and p(M,;), k=1,2,4,5,7,8 as in Table 1. Thus,
logps log1.647
log N - log 3

dimpTf =1+

k 1 2 4 5 7 8

p(My) 1.7622 1.6852 1.6515 1.6488 1.6475 1.6474
p(M;) 1.5380 1.6102 1.6432 1.6460 1.6472 1.6473

Table 1. p(My) and p(M; ) in Example 5.1
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Remark 5.1. Assume that the vertical scaling function S is positive on /. Notice that
Nk
P(Mp) < p(My) < | max Z(Mk)z j <N.
Hence, from the proof of Proposition 3.5,
p(M}) < p(My) < (1+ CAsN*Np(M]) < p(M]) + CAsN ¥,
where C = (min{S(x):x € I})~!. Thus,
0 < p(My) — p(M;) < CAsN~F.

If foranyk > 1,1 <i <N,and1<j < Nk we arbitrarily pickx € Ilkj, and

define an N*¥ x N* matrix Ty by replacing § s ; with § (x ) in (3.2). Then

lps — p(Ti)| < p(My) — p(M}) < CAs N .

For example, we can define x ;o be the left endpoint (or right endpoint) of I
This gives us an effective method to estimate pg.

5.2. Further remarks

Recently, there are many deep works on Hausdorff dimension of self-affine sets and
the graphs of classical fractal functions, see [1, 11, 19] and the references therein.
In particular, Bardny, Rams and Simon [2] proved that under certain conditions, the
Hausdorff dimension and the box dimension of recurrent FIFs coincide. Thus, it is
quite natural to see whether the methods in these papers are applicable to our setting.

In the end of this paper, we pose some questions and conjectures related with our
work.

Conjecture 5.1. Assume that the vertical scaling function S is not identically zero on
every subinterval of 1 = [0, 1]. Then limy_oo p(My) = limg oo p(M}).

Conjecture 5.2. Theorem 4.9 holds if we replace the condition (A6) by (A6’).
Question 5.1. Can we obtain the box dimension of generalized affine FIFs under

conditions (A1)—(A3) and (A5)?
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