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Box dimension
of generalized affine fractal interpolation functions

Lai Jiang and Huo-Jun Ruan

Abstract. Let f be a generalized affine fractal interpolation function with a vertical scaling
function S . In this paper, we study dimB�f , the box dimension of the graph of f , under the
assumption that S is a Lipschitz function. By introducing vertical scaling matrices, we estimate
the upper and the lower bounds of oscillations of f . As a result, we obtain an explicit formula
of dimB�f under certain constraint conditions.

1. Introduction

Let N � 2 be a positive integer. Given a data set ¹.xi ; yi /ºNiD0 � R2 with x0 <
x1 < : : : < xN , there are many classical methods to construct functions interpolat-
ing the data set, while interpolation functions are smooth or piecewise smooth. In
1986, Barnsley [3] introduced fractal functions to interpolate the data set.

Let Li W Œx0; xN �! Œxi�1; xi �, 1 � i � N be contractive homeomorphisms with

Li .x0/ D xi�1; Li .xN / D xi : (1.1)

Let Fi W Œx0; xN � �R! R, 1 � i � N be continuous maps satisfying

Fi .x0; y0/ D yi�1; Fi .xN ; yN / D yi ; (1.2)

and Fi is uniformly contractive with the second variable, i.e., there exists a constant
ˇi 2 .0; 1/, such that for all x 2 Œx0; xN �, and all y0; y00 2 R,

jFi .x; y
0/ � Fi .x; y

00/j � ˇi jy
0
� y00j: (1.3)

Then we can define maps Wi W Œx0; xN � �R! Œxi�1; xi � �R, 1 � i � N by

Wi .x; y/ D .Li .x/; Fi .x; y//: (1.4)
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From above conditions, it is easy to check that

Wi .x0; y0/ D .xi�1; yi�1/; Wi .xN ; yN / D .xi ; yi /

for each i .
Notice that for each 1 � i � N , Wi is continuous and it maps Œx0; xN � � R

into itself. Hence, ¹Wi W 1 � i � N º is an iterated function system (IFS for short)
on Œx0; xN � � R. Barnsley [3] proved that there exists a unique continuous function
f on Œx0; xN � such that its graph �f WD ¹.x; f .x//Wx 2 Œx0; xN �º is the invariant set
of the IFS ¹Wi W 1 � i � N º, i.e.,

�f D

N[
iD1

Wi .�f /: (1.5)

Furthermore, the function f always interpolates the data set, i.e., f .xi / D yi for all
0 � i � N . The function f is called the fractal interpolation function (FIF for short)
determined by the IFS ¹WiºNiD1.

Notice that box dimension is one of the most important dimensions in fractal
geometry and its applications. Thus, it is quite natural to study dimB�f , where f is
an FIF.

In the case that every Wi is an affine map, we call f an affine FIF. In this case,
for each i , there exist real numbers ai ; bi ; ci ; di and ei , such that

Wi .x; y/ D .aix C bi ; cix C diy C ei /:

We call di , 1 � i � N , vertical scaling factors of f . According to (1.3), jdi j < 1

for each i . In [5], Barnsley, Elton, Hardin and Massopust obtained the box dimension
formula of affine FIFs. They proved that if

PN
iD1jdi j > 1 and the interpolation points

¹.xi ; yi /º
N
iD0 are not collinear, then the box dimension of �f equals the unique real

number s satisfying the following equation:

NX
iD1

as�1i jdi j D 1I

and dimB�f D 1 otherwise. This formula can be generalized to recurrent affine FIFs,
see [4, 21], for example.

In [7], Bedford studied the box dimension of a class of FIFs determined by IFS
¹Wi W 1 � i � N º satisfying conditions (1.1)–(1.4) and the following conditions:

• There exists a constant ˛ > 0 such that Wi is C 1C˛ diffeomorphism for all 1 �
i � N ;

• 0 < L0i .x/ < .@Fi=@y/.x; y/ < 1 for all .x; y/ 2 Œx0; xN ��R and all 1 � i � N .
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Bedford obtained the box dimension of these FIFs by Bowen’s formula.
In this paper, we want to study another class of FIFs such that Li is affine and

@Fi=@y is a function of x for each i . It is easy to check that if f is an affine FIF, then
the corresponding Fi can be rewritten as

Fi .x; y/ D di .y � b.x//C h.Li .x//;

where

(A1) b is an affine function satisfying b.x0/ D y0 and b.xN / D yN ,

(A2) h is a piecewise affine function satisfying h.xi / D yi , 0 � i � N , and
hjŒxi�1;xi � is affine for each 1 � i � N ,

(A3) Li , 1 � i � N , are affine functions on Œx0; xN � satisfying (1.1).

It is natural to study FIFs such that Fi has the following more general style:

Fi .x; y/ D Si .x/.y � b.x//C h.Li .x//:

Actually, Barnsley and Massopust [6] studied such FIFs where the corresponding IFS
satisfies Si .xN / D SiC1.x0/ for all 1 � i � N � 1, and Si is affine on Œx0; xN � for
all 1 � i � N . They call such FIFs bilinear FIFs. Notice that in this case, we can
rewrite Si .x/ by S.Li .x//, where S.x/ is a piecewise affine function such that S is
affine on each Œxi�1; xi �. With some additional conditions, they obtain the box dimen-
sion formula of bilinear FIFs in the case of equally spaced data points. We remark
that essentially, the proof in [6] needs the following condition: S is nonnegative and
it has a uniform sum, that is, .x/ D

PN
iD1 S.Li .x// is constant on Œx0; xN �. See

Remark 3.7 and Remark 4.13 for more details. This work was generalized to bilinear
fractal interpolation surfaces on rectangular grids [15].

In this paper, we will adopt the condition that Si .x/ D S.Li .x// as in [6]. Here
S.x/ is a continuous function on Œx0; xN � with jS.x/j < 1 for all x 2 Œx0; xN �. For
each 1 � i � N , we define

Fi .x; y/ D S.Li .x//.y � b.x//C h.Li .x//; i D 1; 2; : : : ; N; (1.6)

where conditions (A1)–(A3) are satisfied. Then it is easy to see that Fi satisfies (1.2)
and (1.3). Thus, if we define Wi by (1.4), then ¹WiºNiD1 determines an FIF f . In this
case, we call f a generalized affine FIF, and call S the vertical scaling function of f .

In general, it is very challenging to obtain the box dimension of generalized affine
FIFs without any restrictions. Till now, as far as we know, there are few results in this
direction. In this paper, we study the box dimension of generalized affine FIFs under
the following conditions:

(A4) ¹xiºNiD0 are uniformly spaced on Œx0;xN �, that is, xi � xi�1D .xN � x0/=N
for all 1 � i � N ,
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(A5) S is a Lipschitz function, that is, there is a constant �S > 0, such that

jS.x0/ � S.x00/j � �S jx
0
� x00j

for all x0; x00 2 Œx0; xN �,

(A6) S is positive on I , that is, S.x/ > 0 for all x 2 Œx0; xN �.

We prove that if conditions (A1)–(A6) are satisfied, then dimB�f equals either 1 or
1C log.�S /= logN , where �S is a constant depending on the function S involving the
spectral radius of certain matrices (see Theorem 4.9). See Section 3 for the explicit
definition of �S .

We remark that there are many applications of FIFs, see [17, 22] for examples.
Also, there are many works on the box dimension and Hausdorff dimension of fractal
interpolation functions and fractal interpolation surfaces. We refer the reader to [2, 8,
12, 14, 16] and the references therein. Other properties of FIFs have been studied in
various papers. Please see [9, 18, 23] for examples.

The paper is organized as follows. In Section 2, we recall the definition of box
dimension, and present some properties of generalized affine FIFs. In Section 3, we
introduce two sequences of vertical scaling matrices, and prove that the limits of spec-
tral radii of these two sequences of matrices coincide under certain conditions. By
using this result, in Section 4, we estimate the upper bound and the lower bound
of oscillations of generalized affine FIFs, and obtain explicit formula of their box
dimension under certain conditions. In Section 5, we present an example to explain
our result. We also make some further remarks in this section.

2. Preliminaries

2.1. Definition of box dimension

For any k1; k2 2 Z and " > 0, we call Œk1"; .k1 C 1/"� � Œk2"; .k2 C 1/"� an "-coor-
dinate square in R2. Let E be a bounded set in R2 and NE ."/ the number of "-coor-
dinate squares intersecting E. We define

dimBE D lim
"!0C

log NE ."/

log 1="
and dimBE D lim

"!0C

log NE ."/

log 1="
; (2.1)

and call them the upper box dimension and the lower box dimension of E, respect-
ively. If dimBE D dimBE, then we use dimB E to denote the common value and call
it the box dimension of E. It is easy to see that in the definition of the upper and lower
box dimensions, we can only consider "k D 1=N k , where k 2 ZC. That is,

dimBE D lim
k!1

log NE ."k/

k logN
and dimBE D lim

k!1

log NE ."k/

k logN
: (2.2)
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It is also well known that dimBE � 1whenE is the graph of a continuous function
on a closed interval of R. Please see [10] for details.

2.2. Some properties of generalized affine FIFs

In this section, we assume that f is a generalized affine FIF satisfying conditions
(A1)–(A3) and (1.6). From (1.5), for each 1 � i � N ,

Wi
�
x; f .x/

�
D
�
Li .x/; f .Li .x//

�
so that f .Li .x// D Fi .x; f .x//. Combining this with (1.6),

f .Li .x// D S.Li .x//.f .x/ � b.x//C h.Li .x// (2.3)

for all x 2 Œx0; xN � and 1 � i � N .
Let g be the affine function on Œ0; 1� satisfying g.0/ D x0 and g.1/ D xN . Then

g�1 is an affine function on Œx0; xN �. Write ti D g�1.xi / for 0 � i � N . Define

f �.t/ D f .g.t// � b.g.t//; t 2 Œ0; 1�: (2.4)

The following result is well known. However, we have not seen the proof in other
papers. Hence, we present the proof for the reader’s convenience.

Lemma 2.1. For each 1 � i � N , let L�i be the affine function on Œ0; 1� satisfying
L�i .0/ D ti�1 and L�i .1/ D ti . Furthermore, we define

F �i .t; y/ D S
�.L�i .t//y C h

�.L�i .t//; t 2 Œ0; 1�; y 2 R; (2.5)

where S�.t/ D S.g.t// and h�.t/ D h.g.t// � b.g.t// for t 2 Œ0; 1�. Then f � is a
generalized affine FIF determined by the IFS ¹.L�i .t/; F

�
i .t; y//º

N
iD1.

Proof. Fix 1 � i � N . Notice that both g ı L�i and Li ı g are affine functions on
Œ0; 1�. Thus, from

g.L�i .0// D xi�1 D Li .g.0//; g.L�i .1// D xi D Li .g.1//;

we have g ı L�i D Li ı g on Œ0; 1�. Now, given t 2 Œ0; 1�, we write x D g.t/. Then
g.L�i .t// D Li .x/. By definitions of S� and h�,

S�.L�i .t//f
�.t/C h�.L�i .t//

D S
�
g.L�i .t//

��
f .g.t// � b.g.t//

�
C
�
h
�
g.L�i .t//

�
� b

�
g.L�i .t//

��
D S.Li .x//

�
f .x/ � b.x/

�
C h.Li .x// � b.Li .x//

D f .Li .x// � b.Li .x//;
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where the last equality follows from (2.3). Thus, from (2.4) and (2.5),

f �.L�i .t// D f
�
g.L�i .t//

�
� b

�
g.L�i .t//

�
D f .Li .x// � b.Li .x//

D S�.L�i .t//f
�.t/C h�.L�i .t// D F

�
i .t; f

�.t//;

which implies that �f � D ¹.t; f �.t//W t 2 Œ0; 1�º is the invariant set of ¹W �i º
N
iD1,

where W �i .t; y/ D .L
�
i .t/; F

�
i .t; y//. This completes the proof of the lemma.

Notice that both g and b are affine functions. Thus, it is easy to check that

'
�
.t; f �.t//

�
D
�
g.t/; f .g.t//

�
; t 2 Œ0; 1�;

is a bi-Lipschitz map from �f � to �f . Hence,

dimB�f
�
D dimB�f; dimB�f � D dimB�f:

Since f �.0/ D f �.1/ D 0, in the sequel of this paper, we always assume that
x0 D 0, xN D 1 and y0 D yN D 0. From now on, we write I D Œ0; 1�, and Ii D
Œ.i � 1/=N; i=N � for all 1 � i � N . In this case, b.x/ � 0 on I . Hence, from (2.3),
we have the following useful property:

f .x/ D S.x/f .L�1i .x//C h.x/ (2.6)

for all x 2 Ii , where 1 � i � N .

3. Vertical scaling matrices

In this section, we assume that the vertical scaling function S satisfies the condi-
tion (A5), i.e., there exists a constant �S > 0, such that

jS.x0/ � S.x00/j � �S jx
0
� x00j; x0; x00 2 I: (3.1)

Given a closed interval E D Œa; b�, for each k 2 ZC and 1 � j � N k , we write

Ekj D
h
aC

j � 1

N k
.b � a/; aC

j

N k
.b � a/

i
:

It is clear that I kj D Œ.j � 1/=N k; j=N k�. For simplicity, for each 1 � i � N , we
write

I ki;j D .Ii /
k
j D

h i � 1
N
C
j � 1

N kC1
;
i � 1

N
C

j

N kC1

i
:
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3.1. Two sequences of vertical scaling matrices

Let k be a positive integer. Given 1 � i � N and 1 � j � N k , we define

ski;j D max
x2Ik

i;j

jS.x/j:

It is clear that ski;j D maxx2Ik
j
jS.Li .x//j. In order to calculate the box dimension of

FIF, we introduce an N k �N k matrix Mk as follows,0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

sk1;1 � � � sk1;N 0 � � � 0 � � � 0 � � � 0

0 � � � 0 sk1;NC1 � � � sk1;2N � � � 0 � � � 0
:::

:::
:::

:::
:::

:::
: : :

:::
:::

:::

0 � � � 0 0 � � � 0 � � � sk
1;Nk�NC1

� � � sk
1;Nk

sk2;1 � � � sk2;N 0 � � � 0 � � � 0 � � � 0

0 � � � 0 sk2;NC1 � � � sk2;2N � � � 0 � � � 0
:::

:::
:::

:::
:::

:::
: : :

:::
:::

:::

0 � � � 0 0 � � � 0 � � � sk
2;Nk�NC1

� � � sk
2;Nk

:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

skN;1 � � � skN;N 0 � � � 0 � � � 0 � � � 0

0 � � � 0 skN;NC1 � � � skN;2N � � � 0 � � � 0
:::

:::
:::

:::
:::

:::
: : :

:::
:::

:::

0 � � � 0 0 � � � 0 � � � sk
N;Nk�NC1

� � � sk
N;Nk

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

That is, for 1 � i � N , 1 � ` � N k�1 and 1 � j � N k ,

.Mk/.i�1/Nk�1C`;j D

´
ski;j if .` � 1/N < j � `N;

0 otherwise:
(3.2)

Similarly, we define ski;j D minx2Ik
i;j
jS.x/j and define another N k � N k matrix

M 0
k

by replacing ski;j with ski;j in (3.2). Both Mk and M 0
k

are called vertical scaling
matrices with level-k.

Now we recall some notation and definitions in matrix analysis [13]. Given a
matrix X D .Xij /n�n, we say X is nonnegative (resp. positive), denoted by X � 0
(resp. X > 0) if Xij � 0 (resp. Xij > 0) for all i and j . Let Y D .Yij /n�n be another
matrix. We write X � Y (resp. X > Y ) if Xij � Yij (resp. Xij > Yij ) for all i and j .
Similarly, given uD .u1; : : : ;un/, vD .v1; : : : ; vn/2Rn, we write u� v (resp. u> v)
if ui � vi (resp. ui > vi ) for all i .

A nonnegative matrixXD.Xij /n�n is called irreducible if for any i;j 2¹1; : : : ;nº,
there exists a finite sequence i0; : : : ; it 2 ¹1; : : : ; nº such that i0 D i , it D j , and
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Xi`�1;i` > 0 for all 1 � ` � t . X is called primitive if there exists k 2 ZC such that
Xk > 0. It is clear that a primitive matrix is irreducible.

The following lemma is well known. Please see [13, Chapter 8] for details.

Lemma 3.1 (Perron–Frobenius theorem). Let X D .Xij /n�n be an irreducible non-
negative matrix. Then

(1) �.X/, the spectral radius of X , is positive,

(2) �.X/ is an eigenvalue of X and has a positive eigenvector,

(3) �.X/ increases if any element of X increases.

Lemma 3.2. Assume that the vertical scaling function S is not identically zero on
every subinterval of I . Then .Mk/

k > 0 for all k 2 ZC. As a result, Mk is primitive
for all k 2 ZC.

Proof. Let k 2 ZC. By the assumption of the lemma, it is clear that ski;j > 0 for
all 1 � i � N and 1 � j � N k . Now, for any j; ` 2 ¹1; 2; : : : ; N kº, there exist
j1; : : : ; jk; `1; : : : ; `k 2 ¹1; : : : ; N º such that

j D .j1 � 1/N
k�1
C .j2 � 1/N

k�2
C � � � C .jk�1 � 1/N C jk;

` D .`1 � 1/N
k�1
C .`2 � 1/N

k�2
C � � � C .`k�1 � 1/N C `k :

Define t1 D j and

tpC1 D N
�
tp � .jp � 1/N

k�1
� 1

�
C p̀; 1 � p � k:

Then it is easy to see that tkC1 D `. From the definition of the matrix Mk , it is easy
to see that .Mk/tp ;tpC1

> 0 for all 1 � p � k. Thus,

�
.Mk/

k
�
j;`
�

kY
pD1

.Mk/tp ;tpC1
> 0:

By the arbitrariness of j and `, the lemma holds.

Theorem 3.3. Assume that the vertical scaling function S is not identically zero on
every subinterval of I . Then for all k 2 ZC,

�.MkC1/ � �.Mk/:

As a result, limk!1 �.Mk/ exists, which we denote by ��.

Proof. In order to prove the theorem, we introduce anotherN kC1 �N kC1 matrix zMk

as follows:

. zMk/.i�1/NkC`;j D

´
ski;` if .` � 1/N < j � `N;

0 otherwise;
(3.3)

for 1 � i � N , 1 � ` � N k , and 1 � j � N kC1.
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Firstly, we will prove �
�
zMk

�
� �

�
MkC1

�
. Given 1 � i � N and 1 � ` � N k ,

I ki;` D .Ii /
k
` D

`N[
jD.`�1/NC1

.Ii /
kC1
j D

`N[
jD.`�1/NC1

I kC1i;j

so that

ski;` D max
x2Ik

i;`

jS.x/j D max
.`�1/N<j�`N

max
x2I

kC1
i;j

jS.x/j D max
.`�1/N<j�`N

skC1i;j :

Thus, given 1� j �N kC1 with .`� 1/N < j � `N , we have ski;`� s
kC1
i;j . Combining

this with the definitions of zMk and MkC1, it is easy to see that zMk � MkC1. From
the Perron–Frobenius theorem, �

�
zMk

�
� �

�
MkC1

�
.

Now we will prove �
�
Mk

�
D �

�
zMk

�
. From the Perron–Frobenius theorem, the

spectral radius � D �. zMk/ is positive. Furthermore, it has a positive eigenvector u D
.u1; : : : ; uNkC1/T . From (3.3), for 1 � i � N and 1 � ` � N k ,

�u.i�1/NkC` D

NkC1X
jD1

. zMk/.i�1/NkC`;juj D s
k
i;`

`NX
jD.`�1/NC1

uj : (3.4)

Define a vector v D .v1; : : : ; vNk /T by vt D
PtN
jD.t�1/NC1 uj ; 1 � t �N

k . Then
v is a positive vector. Notice that for 1 � i � N and 1 � ` � N k�1,

NkX
tD1

.Mk/.i�1/Nk�1C`;tvt D

`NX
tD.`�1/NC1

ski;tvt

D

`NX
tD.`�1/NC1

�
ski;t

tNX
jD.t�1/NC1

uj

�

D

`NX
tD.`�1/NC1

�u.i�1/NkCt .by (3.4)/

D �v.i�1/Nk�1C`:

Thus, Mkv D �v so that � is an eigenvalue of Mk with the positive eigenvector v.
From [13, Corollary 8.1.30], �.Mk/ D � D �. zMk/.

From the above arguments, �.Mk/ D �. zMk/ � �.MkC1/. Since �.Mk/ > 0 for
all k, we know that limk!1 �.Mk/ exists.

Similarly, we can obtain the following result.
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Theorem 3.4. Assume that the vertical scaling function S is positive on I . Then for
all k 2 ZC,

�.M 0k/ � �.M
0
kC1/:

As a result, limk!1 �.M
0
k
/ exists, which we denote by ��.

Proof. From the assumption of this theorem, we have ski;j > 0 for all k 2 ZC,
1 � i � N , and 1 � j � N k .

Now, for each k 2 ZC, we define another N kC1 �N kC1 matrix zM 0
k

as follows:

. zM 0k/.i�1/NkC`;j D

´
sk
i;`

if .` � 1/N < j � `N;

0 otherwise;

for 1 � i � N , 1 � ` � N k , and 1 � j � N kC1.
By using arguments similar to the proof of Theorem 3.3, we have

�.M 0kC1/ � �.
zM 0k/ D �.M

0
k/ > 0:

Since �.M 0
k
/ � �.Mk/ � �.M1/ for all k, we know that limk!1 �.M

0
k
/ exists.

Proposition 3.5. Assume that the vertical scaling function S is positive on I . Then
�� D �

�. We denote the common value by �S .

Proof. Write C D .min¹S.x/W x 2 I º/�1. Then 0 < C <1.
From the definitions of Mk and M 0

k
, we have

0 � ski;j � s
k
i;j D sup

x2Ik
i;j

jS.x/j � inf
x2Ik

i;j

jS.x/j � �S jI
k
i;j j D �SN

�k�1

so that

ski;j � s
k
i;j �

�
1C

�SN
�k�1

ski;j

�
ski;j � .1C C�SN

�k�1/ski;j :

Thus, M 0
k
�Mk � .1C C�SN

�k�1/M 0
k

. Hence,

�.M 0k/ � �.Mk/ � .1C C�SN
�k�1/�.M 0k/;

which implies that �� D limk!1 �.Mk/ D limk!1 �.M
0
k
/ D ��.

3.2. The sum function

Now, we define a function  on I by

.x/ D

NX
iD1

jS.Li .x//j:



Box dimension of generalized affine FIFs 289

We call  the sum function with respect to S and ¹LiºNiD1. Write

� D max
x2I

.x/; � D min
x2I

.x/:

For any k 2 ZC, we define

k D max
1�j�Nk

NX
iD1

ski;j ; 
k
D min
1�j�Nk

NX
iD1

ski;j :

Lemma 3.6. We have limk!1 k D 
� and limk!1 k

D �.

Proof. Fix k 2 ZC. For any zx 2 I , there exists 1 � j � N k such that zx 2 I kj . Thus,

NX
iD1

ski;j D

NX
iD1

max
x2Ik

j

jS.Li .x//j �

NX
iD1

jS.Li .zx//j D .zx/;

which implies that k � .zx/. By the arbitrariness of zx, we have k � 
�.

On the other hand, given 1 � j � N k , for any x0 2 I kj and 1 � i � N it follows
from (3.1) that

jS.Li .x
0//j � max

x2Ik
i;j

jS.x/j � �S � jI
k
i;j j D s

k
i;j � �SN

�k�1:

Thus,

� � .x0/ D

NX
iD1

jS.Li .x
0//j �

NX
iD1

ski;j � �SN
�k :

Since this inequality holds for all 1 � j � N k , we obtain that � � k � �SN
�k .

Combining this with k � 
�, we obtain that k � 

� � k � �SN
�k for all k 2ZC.

Thus, limk!1 k D 
�.

Similarly, we have 
k
� � � k

C �SN
�k for all k so that limk!1 k

D �.

Notice that Mk and M 0
k

are nonnegative matrices for every k 2 ZC. Thus, from
[13, Theorem 8.1.22],

�.Mk/ � max
1�j�Nk

NkX
iD1

.Mk/i;j D k; �.M 0k/ � min
1�j�Nk

NkX
iD1

.M 0k/i;j D k
:

Hence, if S is not identically zero on every subinterval of I , then �� � �; and if S is
positive on I , then �� � �. From Proposition 3.5, if S is positive, then � � �S � �.
In particular, if S is positive and  is constant on I , then .x/ D �S for all x 2 I .

Remark 3.7. In [6], Barnsley and Massopust study the box dimension of the graph
of bilinear FIFs. In their setting, the vertical scaling function S is nonnegative and
affine on Ii D Œ.i � 1/=N; i=N � for each 1 � i � N . Furthermore, they assume that
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S.0/ D S.1/. Denote by si D S.i=N / for all 0 � i � N . From the above two condi-
tions, it is easy to check that for all x 2 I ,

.x/ D

NX
iD1

jS.Li .x//j D

NX
iD1

..1 � x/si�1 C xsi / D

NX
iD1

si :

4. Calculation of box dimension of generalized affine FIFs

In this section, we always assume that f is a generalized affine FIF on I D Œ0; 1�

satisfying conditions (A1)–(A5). We will estimate the lower box dimension of �f
under another condition (A6), and estimate the upper box dimension of �f under the
following weaker condition:

(A6’) The vertical scaling function S is not identically zero on every subset of I .

Combining these two results, we obtain the formula of dimB�f under conditions
(A1)–(A6). As explained in Section 2, we may assume without loss of generality that
y0 D yN D 0 so that b.x/ � 0 on I .

4.1. Box dimension of the graph of functions

Let g be a continuous function on I D Œ0; 1�. Given k 2 ZC and a closed interval
E � I , we define

Ok.g;E/ D

NkX
jD1

O.g;Ekj /;

where we use O.g;U / to denote the oscillation of g on U � I , that is,

O.g;U / D sup
x0;x002U

jg.x0/ � g.x00/j:

It is clear that ¹Ok.g;E/º1kD1 is increasing with respect to k.
The following lemma presents a method to estimate the upper and lower box

dimensions of the graph of a function by its oscillation. Similar results can be found
in [10, 15, 20].

Lemma 4.1. Let g be a continuous function on I . Then

dimB.�g/ � 1C lim
k!1

log
�
Ok.g; I /C 1

�
k logN

; (4.1)

and

dimB.�g/ � 1C lim
k!1

log
�
Ok.g; I /C 1

�
k logN

: (4.2)
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Proof. Define "k D N�k for all k 2 ZC as in Section 2.1. It is clear that

N�g."k/ � max
²
"�1k ; "

�1
k

X
1�j�Nk

O.g; I kj /

³
�
1

2
N k

�
1COk.g; I /

�
so that (4.1) holds. On the other hand, we note that NE ."/ and NE ."k/ can be replaced
by zNE ."/ and zNE ."k/ in (2.1) and (2.2), respectively, where zNE ."/ is the smallest
number of cubes of side " that cover E (see [10] for details). In our case,

zN�g."k/ �
X

1�j�Nk

."�1k O.g; I
k
j /C 1/ D N

k
�
Ok.g; I /C 1

�
:

Thus, (4.2) holds.

4.2. Upper box dimension estimate

In this subsection, we will estimate the upper bound of Ok.f; I / and the upper box
dimension of �f .

Lemma 4.2. There exists a constant ˇ � 0 such that for any 1 � i � N ,D � Ii , and
any t 2 D, ˇ̌

O.f;D/ � jS.t/j �O.f;L�1i .D//
ˇ̌
� ˇjDj;

where jDj D sup
®
jx0 � x00jW x0; x00 2 D

¯
is the diameter of D.

Proof. Given D � Ii and t 2 D, from (2.6),

O.f;D/ D sup
x0;x002D

ˇ̌
h.x0/ � h.x00/C S.x0/f

�
L�1i .x

0/
�
� S.x00/f

�
L�1i .x

00/
�ˇ̌
:

Write Mf D maxx2I jf .x/j. Notice that for any x0; x00 2 D,

jh.x0/ � h.x00/j D jx0 � x00j � jN.yi � yi�1/j � jDj � max
1�`�N

jN.y` � y`�1/j;

and

jS.x0/f .L�1i .x
0// � S.x00/f .L�1i .x

00//j � jS.x0/ � S.t/j � jf .L�1i .x
0//j

C jS.x00/ � S.t/j � jf .L�1i .x
00//j

C jS.t/j � jf .L�1i .x
0// � f .L�1i .x

00//j

� 2Mf �S jDj C jS.t/j �O.f;L
�1
i .D//:

Let ˇ D 2Mf �S Cmax1�`�N jN.y` � y`�1/j. Then ˇ � 0 and

O.f;D/ � jS.t/j �O.f;L�1i .D//C ˇjDj:

Similarly, it is easy to see that

O.f;D/ � jS.t/j �O.f;L�1i .D// � ˇjDj:

Thus, the lemma holds.
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Corollary 4.3. Let ˇ � 0 be the constant in Lemma 4.2. Then for any 1 � i � N ,
k 2 ZC, 1 � j � N k , and any t 2 I ki;j ,ˇ̌

O.f; I ki;j / � jS.t/jO.f; I
k
j /
ˇ̌
� ˇN�k�1:

Corollary 4.4. Let ˇ � 0 be the constant in Lemma 4.2. Then for any 1 � i � N ,
k 2 ZC, 1 � j � N k , and any D � I ki;j ,

ski;j �O.f;L
�1
i .D// � ˇjDj � O.f;D/ � s

k
i;j �O.f;L

�1
i .D//C ˇjDj:

Given k; q 2 ZC, we define

V.f; k; q/ D
�
Oq.f; I

k
1 /; Oq.f; I

k
2 /; : : : ; Oq.f; I

k
Nk /

�T
2 RN

k

;

and
V.f; k/ D

�
O.f; I k1 /; O.f; I

k
2 /; : : : ; O.f; I

k
Nk /

�T
2 RN

k

:

It is obvious that for all k 2 ZC and q 2 ZC,

OkCq.f; I / D kV.f; k C q/k1 D kV.f; k; q/k1;

where kvk1 WD
Pn
iD1jvi j for any v D .v1; : : : ; vn/ 2 Rn.

Lemma 4.5. Assume that the function S is not identically zero on every subinterval
of I . Then for every k 2 ZC, there exists a constant ck > 0, such that for all q 2 ZC,

OkCq.f; I / �

´
ck.�.Mk//

q for �.Mk/ > 1;

ckq for �.Mk/ � 1:

Proof. Let ˇ � 0 be the constant in Lemma 4.2. Given q 2 ZC, 1 � i � N , and
1 � j � N k�1, from Corollary 4.4,

Oq.f; I
k
i;j / D

NqX
mD1

O
�
f; .I ki;j /

q
m

�
�

NqX
mD1

�
ski;jO.f;L

�1
i ..I

k
i;j /

q
m//C ˇj.I

k
i;j /

q
mj
�

D ski;j

NqX
mD1

O
�
f; .I kj /

q
m

�
C ˇjI ki;j j D s

k
i;jOq.f; I

k
j /C ˇN

�k�1:
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Thus, for 1 � i � N and 1 � ` � N k�1, from

I k
.i�1/Nk�1C`

D I k�1i;` D

`N[
jD.`�1/NC1

I ki;j

we have

OqC1
�
f; I k�

i�1
�
Nk�1C`

�
D

`NX
jD.`�1/NC1

Oq
�
f; I ki;j

�
� ˇN�k C

`NX
jD.`�1/NC1

ski;jOq
�
f; I kj

�
:

Denote the vector .ˇN�k; : : : ; ˇN�k/T in RN
k

by u. From the above inequality,

V.f; k; q C 1/ � uCMkV.f; k; q/;

which implies that

V.f; k; q/ � uCMkuC � � � C .Mk/
q�2uC .Mk/

q�1V.f; k; 1/

for all q 2 ZC. By Lemma 3.1, we can choose a strictly positive eigenvector v of Mk

such that v � V.f; k; 1/ and v � u. Thus,

.Mk/
q�1V.f; k; 1/ � .Mk/

q�1v D
�
�.Mk/

�q�1
v;

and
.Mk/

nu � .Mk/
nv D

�
�.Mk/

�n
v; n 2 N:

Hence,

OkCq.f; I / D kV.f; k; q/k1 � kvk1

q�1X
nD0

�
�.Mk/

�n
:

Let ck D kvk1 if �.Mk/ � 1, and ck D kvk1=.�.Mk/ � 1/ if �.Mk/ > 1. Then
the lemma holds.

Theorem 4.6. Assume that the function S is not identically zero on every subinterval
of I . Then

dimB�f � max
°
1; 1C

log ��

logN

±
: (4.3)

Proof. From Lemma 4.1, for every fixed k 2 ZC,

dimB�f � 1C lim
q!1

log.OkCq.f; I /C 1/
q logN

: (4.4)

Assume that �.Mk/ � 1 for some k 2 ZC. From Lemma 4.5, there exists a con-
stant ck > 0, such that

OkCq.f; I / � ckq

for all q 2 ZC. Combining this with (4.4), we have dimB�f � 1. Thus, (4.3) holds.
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Assume that �.Mk/ > 1 for all k 2 ZC. From Lemma 4.5, for each k 2 ZC, there
exists a constant ck > 0, such that

OkCq.f; I / � ck�.Mk/
q

for all q 2ZC. Combining this with (4.4), we have dimB�f � 1C log�.Mk/= logN .
By the arbitrariness of k, we know from Theorem 3.3 that

dimB�f � 1C lim
k!1

log �.Mk/

logN
D 1C

log ��

logN
:

Thus, (4.3) holds again.

4.3. Lower box dimension estimate

In this subsection, we will estimate the lower bound of Ok.f; I / and the lower box
dimension of �f .

Lemma 4.7. Assume that the function S is positive. If limp!1Op.f; I / D 1, then
for any k 2 ZC and any positive vector v 2 RN

k
, there exists p 2 ZC satisfying

V.f; k; p/ � v:

Proof. Let ˇ � 0 be the constant defined in Lemma 4.2. Fix k 2 ZC. Given q 2 ZC,
1 � i � N , and 1 � ` � N k�1, using similar arguments in Lemma 4.5, we have

OqC1
�
f; I k

.i�1/Nk�1C`

�
�

`NX
jD.`�1/NC1

ski;jOq
�
f; I kj

�
� ˇN�k

so that
V.f; k; q C 1/ �M 0kV.f; k; q/ � u; (4.5)

where u D .ˇN�k; : : : ; ˇN�k/T 2 RN
k

. By induction,

V.f; k; q C k/ � .M 0k/
kV.f; k; q/ �

k�1X
`D0

.M 0k/
`u: (4.6)

Let ˛k be the minimal entry of the matrix .M 0
k
/k . Then ˛k > 0 since .M 0

k
/k > 0.

Notice that the maximal element of V.f; k; q/ is at least N�kkV.f; k; q/k1. Thus,

.M 0k/
kV.f; k; q/ � kV.f; k; q/k1wk; (4.7)

where wk D .˛kN�k; : : : ; ˛kN�k/ 2 RN
k

.
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On the other hand, it follows from limp!1Op.f; I / D1 that

lim
q!1
kV.f; k; q/k1 D lim

q!1
OkCq.f; I / D1:

Hence, we can choose q0 large enough, such that

kV.f; k; q0/k1wk � v C

k�1X
`D0

.M 0k/
`u:

Combining this with (4.6) and (4.7), we have V.f; k; p/ � v, where p D q0 C k.

Theorem 4.8. Assume that the function S is positive and limp!1 Op.f; I / D 1.
Then

dimB�f � 1C
log �S
logN

: (4.8)

Proof. Fix k 2 ZC. Let ˇ � 0 be the constant defined in Lemma 4.2 and

u D .ˇN�k; : : : ; ˇN�k/T 2 RN
k

:

Given 0 < � < �.M 0
k
/, from the Perron–Frobenius theorem, we can choose

a positive eigenvector v of M 0
k

associated with the eigenvalue �.M 0
k
/, such that

v � u=.�.M 0
k
/ � �/. Since limp!1 Op.f; I / D 1, from Lemma 4.7, there exists

q 2 ZC such that

V.f; k; q/ � v �
1

�.M 0
k
/ � �

u:

Hence, from (4.5),

V.f; k; q C 1/ � �.M 0k/v � u � �.M
0
k/v � .�.M

0
k/ � �/v D �v:

Notice that for all n 2 ZC,

�.M 0k/�
nv � u D �.M 0k/

�
�n � 1

�
v C �.M 0k/v � u

� �
�
�n � 1

�
v C �v D �nC1v:

Thus, by induction, for all n 2 ZC,

V.f; k; q C n/ � �nv:

Hence, OkCqCn.f; I / D kV.f; k; q C n/k1 � �nkvk1, which implies that

lim
n!1

log
�
On.f; I /C 1

�
n logN

D lim
n!1

log
�
OkCqCn.f; I /C 1

�
.k C q C n/ logN

� lim
n!1

log
�
�nkvk1 C 1

�
n logN

�
log �
logN

:
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From the arbitrariness of � ,

lim
n!1

log
�
On.f; I /C 1

�
n logN

�
log
�
�.M 0

k
/
�

logN
:

By letting k !1, we know from Theorem 3.4 and Proposition 3.5 that

lim
n!1

log
�
On.f; I /C 1

�
n logN

�
log �S
logN

:

Combining this with Lemma 4.1, (4.8) holds.

4.4. The box dimension formula

Notice that dimB�g � 1 for every continuous function g on I . Thus, from Theor-
ems 4.6 and 4.8, the following result holds.

Theorem 4.9. Assume that the function S is positive on I . Then in the case that
�S > 1 and limp!1Op.f; I / D1 ,

dimB�f D 1C
log �S
logN

: (4.9)

Otherwise, dimB�f D 1.

Proof. Since S is positive on I , we know from Proposition 3.5 that �� D �� D �S .
Notice that the sequence ¹Op.f; I /º1pD1 is increasing with respect to p. Thus, the

limit limp!1Op.f; I / exists.
In case limp!1 Op.f; I / < 1, we know from Lemma 4.1 that dimB�f � 1.

In case �S � 1, we know from Theorem 4.6 that dimB�f � 1. Since dimB�f � 1
always holds, dimB�f D 1 if limp!1Op.f; I / <1 or �S � 1.

In the case that limp!1Op.f; I /D1 and �S > 1, we know from Theorems 4.6
and 4.8 that (4.9) holds.

The following theorem gives us an easy-checking sufficient condition for (4.9)
holding true.

Theorem 4.10. Assume that � > 1 and the function S is positive on I . Further-
more, assume that there exists k0 2ZC satisfyingOk0

.f;I / > �SMf =.� � 1/, where
Mf D maxx2I jf .x/j. Then (4.9) holds.

Proof. Since the function S is positive, .x/ D
PN
iD1 S.Li .x//. It is easy to see that

for any x0; x00 2 I ,

j.x0/ � .x00/j � �S

NX
iD1

jLi .x
0/ � Li .x

00/j D �S jx
0
� x00j:
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From (2.3) and noticing that b.x/ � 0 on I ,

NX
iD1

f .Li .x// D

NX
iD1

�
S.Li .x//f .x/C h.Li .x//

�
D .x/f .x/C

NX
iD1

�
.1 � x/yi�1 C xyi

�
D .x/f .x/C

NX
iD1

yi :

Hence,
NX
iD1

O.f; I ki;j / D

NX
iD1

max
x0;x002Ik

j

�
f .Li .x

0// � f .Li .x
00//
�

� max
x0;x002Ik

j

�
.x0/f .x0/ � .x00/f .x00/

�
D max
x0;x002Ik

j

�
.x0/.f .x0/ � f .x00//C ..x0/ � .x00//f .x00/

�
� �O.f; I

k
j / � �SN

�kMf :

Thus,

OkC1.f; I / �

NkX
jD1

�
�O.f; I

k
j / � �SN

�kMf
�
D �Ok.f; I / � �SMf ;

which implies that

OkC1.f; I / � c � �.Ok.f; I / � c/; k 2 ZC;

where c D �SMf =.� � 1/. Thus, limk!1Ok.f; I / D 1 since Ok0
.f; I / > c and

� > 1. Combining this with �S � � > 1, we know from Theorem 4.9 that (4.9)
holds.

Remark 4.11. Let �0 be a Lipschitz constant of  , i.e., �0 is a positive constant satis-
fying

j.x0/ � .x00/j � �0jx0 � x00j; x0; x00 2 I:

From the proof of the above theorem, if we replace the constant �S by �0, then the
theorem still holds.

As we mentioned in Section 3, in the case that  is positive and constant on I , we
have .x/ D �S for all x 2 I . Thus, from the above remark, we have the following
result.

Corollary 4.12. Assume that the vertical scaling function S is positive on I , and
.x/� 0 for all x 2 I . Then in the case that 0 > 1 and the interpolation points are
not collinear, dimB�f D 1C log 0= logN . Otherwise, dimB�f D 1.
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Remark 4.13. In [6], Barnsley and Massopust obtain the above result under a weaker
condition: the condition “S is positive” was replaced by “S is nonnegative”.

In [15], a so-called steady condition was introduced in order to obtain the box
dimension of bilinear fractal interpolation surfaces. In one dimensional case, we can
define it similarly. The vertical scaling function S is called steady on I if for each
1 � i � N , either S.x/ � 0 holds for all x 2 Ii or S.x/ � 0 holds for x 2 Ii . Assume
that .x/ � 0 for all x 2 I . By using the method in [15], if we replace the condition
“S is positive on I ” by “S is steady on I ”, the above corollary still holds.

5. An example and further remarks

5.1. An example

Example 5.1. LetN D 3, xi D i=3 for i 2 ¹0;1;2;3º, y0D y3D 0, and y1D y2D 1.
Define

S.x/ D

8̂̂<̂
:̂
4
9
; 0 � x � 1

3
;

x2 C 1
3
; 1

3
� x � 2

3
;

13
9
� x; 2

3
� x � 1:

(5.1)

By the definition of b.x/ and noticing that y0 D y3 D 0, we have b.x/ D 0 on I .
Thus, from (1.6),

Fi .x; y/ D S.Li .x//y C h.Li .x//; .x; y/ 2 I �R;

for i D 1; 2; 3. More precisely, we have

F1.x; y/ D
4

9
y C x;

F2.x; y/ D
.x2 C 2x C 4/y

9
C 1;

F3.x; y/ D
�7
9
�
x

3

�
y � x C 1:

Let f be the corresponding generalized affine FIF. See Figure 1 for the graph of f .
Notice that for each x 2 I , there exists a sequence ¹inº1nD1 with in 2 ¹1; : : : ; N º

for each n such that x 2
T1
nD1Li1 ı Li2 ı � � � ı Lin.I /. Thus, from (2.6),

f .x/ D h.x/C S.x/f .L�1i1 .x//

D h.x/C S.x/h.L�1i1 .x//C S.x/S.L
�1
i1
.x//f

�
L�1i2 ı L

�1
i1
.x/
�

D h.x/C

1X
nD1

� n�1Y
tD0

S
�
L�1it ı L

�1
it�1
ı � � � ı L�1i1 .x/

��
h
�
L�1in ı � � � ı L

�1
i1
.x/
�
:
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Figure 1. The FIF in Example 5.1

It is easy to see that jh.x/j � 1 and jS.x/j � 7=9 for all x 2 I . Thus,

Mf D max¹jf .x/j W x 2 I º � 1C
1X
nD1

�7
9

�n
D
9

2
:

From (5.1),

.x/ D

3X
iD1

jS.Li .x//j D
x2

9
�
x

9
C
5

3
:

Hence, � D 59=36, � D 5=3 and �0 D 1=9 is a Lipschitz constant of  . Thus,
O1.f; I / D 2 > �

0Mf =.� � 1/. From Remark 4.11, (4.9) holds.
By definition,

M1 D

0BB@
4
9

4
9

4
9

43
81

52
81

7
9

7
9

2
3

5
9

1CCA and M 01 D

0BB@
4
9

4
9

4
9

4
9

43
81

52
81

2
3

5
9

4
9

1CCA
In general, by calculation, we obtain the spectral radii of vertical scaling matrices

�.Mk/ and �.M 0
k
/, k D 1; 2; 4; 5; 7; 8 as in Table 1. Thus,

dimB �f D 1C
log �S
logN

� 1C
log 1:647

log 3
� 1:454:

k 1 2 4 5 7 8

�.Mk/ 1.7622 1.6852 1.6515 1.6488 1.6475 1.6474
�.M 0

k
/ 1.5380 1.6102 1.6432 1.6460 1.6472 1.6473

Table 1. �.Mk/ and �.M 0
k
/ in Example 5.1
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Remark 5.1. Assume that the vertical scaling function S is positive on I . Notice that

�.M 0k/ � �.Mk/ � max
1�j�Nk

NkX
iD1

.Mk/i;j < N:

Hence, from the proof of Proposition 3.5,

�.M 0k/ � �.Mk/ �
�
1C C�SN

�k�1
�
�.M 0k/ < �.M

0
k/C C�SN

�k;

where C D .min¹S.x/W x 2 I º/�1. Thus,

0 � �.Mk/ � �.M
0
k/ < C�SN

�k :

If for any k � 1, 1 � i � N , and 1 � j � N k , we arbitrarily pick xki;j 2 I
k
i;j , and

define an N k �N k matrix Tk by replacing ski;j with S.xki;j / in (3.2). Then

j�S � �.Tk/j � �.Mk/ � �.M
0
k/ < C�SN

�k :

For example, we can define xki;j to be the left endpoint (or right endpoint) of I ki;j .
This gives us an effective method to estimate �S .

5.2. Further remarks

Recently, there are many deep works on Hausdorff dimension of self-affine sets and
the graphs of classical fractal functions, see [1, 11, 19] and the references therein.
In particular, Bárány, Rams and Simon [2] proved that under certain conditions, the
Hausdorff dimension and the box dimension of recurrent FIFs coincide. Thus, it is
quite natural to see whether the methods in these papers are applicable to our setting.

In the end of this paper, we pose some questions and conjectures related with our
work.

Conjecture 5.1. Assume that the vertical scaling function S is not identically zero on
every subinterval of I D Œ0; 1�. Then limk!1 �.Mk/ D limk!1 �.M

0
k
/.

Conjecture 5.2. Theorem 4.9 holds if we replace the condition (A6) by (A6’).

Question 5.1. Can we obtain the box dimension of generalized affine FIFs under
conditions (A1)–(A3) and (A5)?
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