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On the error-sum function of Pierce expansions

Min Woong Ahn

Abstract. We introduce the error-sum function of Pierce expansions. Some basic properties of
the error-sum function are analyzed. We also examine the fractal property of the graph of it by
calculating the Hausdorff dimension, the box-counting dimension, and the covering dimension
of the graph.

1. Introduction

The notion of the error-sum function was first studied by Ridley and Petruska [21]
in the context of regular continued fraction expansion. For any real number x, the
error-sum function of the continued fraction expansion is defined by

P.x/ WD

1X
nD0

qn.x/

�
x �

pn.x/

qn.x/

�
;

where

pn.x/

qn.x/
WD Œa0.x/I a1.x/; a2.x/; : : : ; an.x/� WD a0.x/C

1

a1.x/C
1

a2.x/C
1

: : :C
1

an.x/

is the nth convergent (or approximant) of the continued fraction expansion, with
pn.x/, qn.x/ coprime, a0.x/ an integer, and a1.x/; : : : ; an.x/ positive integers. For
any rational number x, ak.x/ are undefined for some point and on, and hence P.x/ is
a series of finitely many terms. In such case, x D Œa0.x/I a1.x/; : : : ; an.x/� for some
n � 0 and if, further, n � 1 then an.x/ > 1. In fact, Petruska [18] used the error-sum
function to prove the existence of a q-series F.z/ D 1C

P1
nD1

�Qn
kD1.A � q

k/
�
zn
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with the radius of convergence R for arbitrary given R > 1. Here, A D e2�iP.ˇ/ and
q D e2�iˇ , where ˇ is some irrational number satisfying certain conditions in terms
of the qn.ˇ/. Moreover, there are a number of studies using error-sum functions to
obtain number-theoretical results. See, e.g., [1, 6–9] for further applications of error-
sum functions.

The continued fraction expansion, along with the decimal expansion, is one of
the most famous representations of a real number. Since there is, as is well known, a
wide range of representations of real numbers (see [13] and [22] for details), it was
natural for intrigued researchers to define the error-sum function for other types of
representations and investigate its basic properties. To name but a few, the error-sum
functions were defined and studied in the context of the tent map base series [4],
the classical Lüroth series [27], the alternating Lüroth series [26], and the ˛-Lüroth
series [2]. In the previous studies, the list of examined basic properties includes, but
is not limited to, boundedness, continuity, integrality, and intermediate value property
(or Darboux property) of the error-sum function, and the Hausdorff dimension of the
graph of the function.

The Pierece expansion is another classical representation of real numbers intro-
duced by Pierce [19] about a century ago. Since then, a number of studies were
conducted to study the arithmetic and metric properties of the Pierce expansions.
See, e.g., [5, 10, 12, 17, 20, 23–25, 28, 29]. It has proven useful in number theory,
and we mention two applications among others. Firstly, the Pierce expansion pro-
vides us with a simple irrationality proof of a real number (see [25, p. 24]). A real
number has an infinite Pierce expansion if and only if it is irrational. For instance,
the irrationalities of 1 � e�1, sin 1, and cos 1 follow, respectively, from their infinite
Pierce expansions which coincide with their usual series expansions obtained from the
Maclaurin series. As for the other application, Varona [28] constructed transcendental
numbers by means of Pierce expansions.

Although the Pierce expansion has a long history and is widely studied, different
from other representations mentioned above, its error-sum function has not yet been
studied. In this paper, we define the error-sum function of the Pierce expansion, and
analyze its basic properties and fractal properties of its graph.

The paper is organized as follows. In Section 2, we introduce some elemen-
tary notions of Pierce expansion and then define the error-sum function of Pierce
expansion. In Section 3, we investigate the basic properties, e.g., boundedness and
continuity, of the error-sum function. In Section 4, we determine the Hausdorff dimen-
sion, the box-counting dimension, and the covering dimension of the graph of the
error-sum function.

Throughout the paper, N denotes the set of positive integers, N0 the set of non-
negative integers, and N1 WD N [ ¹1º the set of extended positive integers. Follow-
ing the convention, we define 1C c WD 1 and c=1 WD 0 for any constant c 2 R.



On the error-sum function of Pierce expansions 391

We denote the Lebesgue measure on Œ0; 1� by �. For any subset A of a topological
space X , the closure of A is denoted by A. Given a function gWA! B , we write the
preimage of any singleton ¹bº � B under g simply as g�1.b/ instead of g�1.¹bº/.

2. Pierce expansion

This section is devoted to introducing some basic notions of the Pierce expansion. We
refer the reader to [5,10,12,17,19,20,23–25,28,29] or [22, Chapter 2] for arithmetic
and metric properties of the Pierce expansion.

The classical Pierce expansion is concerned with the numbers in the half-open
unit interval .0; 1�. In this paper, we extend our scope to the numbers in the closed
unit interval I WD Œ0; 1�. This extension is consistent with our use of N1 instead of N

in this paper.
To dynamically generate the Pierce expansion of x 2 I , we begin with two maps

d1W I ! N1 and T W I ! I given by

d1.x/ WD

´
b1=xc if x ¤ 0;

1 if x D 0;
and T .x/ WD

´
1 � d1.x/ � x if x ¤ 0;

0 if x D 0;

respectively, where byc denotes the largest integer not exceeding y 2 R. Observe that
by definition, for each n 2 N, we have d1.x/ D n if and only if x 2 I lies in the
interval .1=.nC 1/; 1=n� on which T is linear. For each n 2 N, we write T n for the
nth iterate of T , and T 0 WD idI . For notational convenience, we write T nx for T n.x/
whenever no confusion could arise.

Given x 2 I , we define the sequence of digits .dn.x//n2N by dn.x/ WD d1.T n�1x/
for each n 2 N. Then, for any n 2 N, by definitions of the map T and the digits, we
have

T n�1x D
1

d1.T n�1x/
�
T .T n�1x/

d1.T n�1x/
D

1

dn.x/
�
T nx

dn.x/
: (2.1)

We recall two well-known facts about the digits in the following proposition. In
particular, part (i) characterizes the digit sequence, and it is stated in any study of
Pierce expansions with or without proof. We include the proof to make it clear that
the replacement of .0; 1� and N by I and N1, respectively, does not violate the basic
properties.

Proposition 2.1 (See [25] and [12, Proposition 2.2]). Let x 2 I and n 2 N. Then the
following hold.

(i) dnC1.x/ � dn.x/C 1.

(ii) dn.x/ � n.
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Proof. (i) If dn.x/ D 1, then T n�1x D 0 and so T nx D 0, which implies that
dnC1.x/D1. Since1D1C1 by convention, we conclude that dnC1.x/Ddn.x/C1.

Assume dn.x/ 2 N. Then T n�1x ¤ 0 and T n�1x 2 .1=.k C 1/; 1=k� for some
k 2N. Hence, dn.x/D k, and by definition of T , it follows that T nx 2 Œ0;1=.kC 1//.
Now dnC1.x/ D 1 if T nx D 0, and k C 1 � dnC1.x/ <1 if T nx ¤ 0. In either
case, dnC1.x/ � dn.x/C 1.

(ii) Clearly, d1.x/ � 1 by definition of d1. If n � 2, using part (i) .n � 1/ times,
we obtain dn.x/ � dn�1.x/C 1 � � � � � d1.x/C .n � 1/, and thus dn.x/ � n.

We shall consider a symbolic space which is a subspace of NN
1 closely related to

Pierce expansions. Let †0 WD ¹.�k/k2N 2 ¹1º
Nº, and for each n 2 N, let

†n WD ¹.�k/k2N 2 Nn
� ¹1º

Nn¹1;:::;nº
W �1 < �2 < � � � < �nº:

For ease of notation, we will occasionally write .�k/k2N 2†n as .�1; : : : ; �n/ in place
of .�1; : : : ; �n;1;1; : : : /. We also define

†1 WD ¹.�k/k2N 2 NN
W �k < �kC1 for all k 2 Nº:

Then †n, n 2 N0, consists of sequences with strictly increasing n positive integer-
valued initial terms and 1 for the remaining terms, and †1 consists of strictly
increasing infinite sequences of positive integers. Finally, let

† WD
[
n2N0

†n [†1

in NN
1. Each element of † is said to be a Pierce sequence. In view of Proposi-

tion 2.1 (i), for any x 2 I , the digit sequence .dn.x//n2N is a Pierce sequence. We
say � WD .�k/k2N 2 † is realizable if there exists x 2 I such that dk.x/ D �k for all
k 2 N, and we denote by †re the collection of all realizable Pierce sequences. Note
that for any .�n/n2N 2 †, we have

�n � n (2.2)

for all n 2 N, which is analogous to Proposition 2.1 (ii).
It is well known that for each x 2 I , the iterations of T yield a unique expansion

x D

1X
nD1

.�1/nC1

d1.x/ � � � dn.x/
D

1 �

1 �
1 � � � �

d3.x/

d2.x/

d1.x/
; (2.3)
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where the digit sequence .dn.x//n2N is a realizable Pierce sequence. (See Proposi-
tion 2.4 below.) The expression (2.3) is called the Pierce expansion, Pierce (ascend-
ing) continued fraction, or alternating Engel expansion of x. We denote (2.3) by

x D Œd1.x/; d2.x/; : : : ; dn.x/; : : : �P :

For brevity, if the digit is1 at some point and on, i.e., if x D Œd1.x/; : : : ; dn.x/;1;
1; : : : �P with dn.x/ <1 for some n 2 N, then we write x D Œd1.x/; : : : ; dn.x/�P
and say that x has a finite Pierce expansion of length n. As mentioned in Section 1,
it is a classical result that the Pierce expansion of x 2 .0; 1� is finite if and only if x
is rational. Since 0 D Œ1;1; : : : �P , we may write the Pierce expansion of 0 as Œ �P ,
which is of length zero. Thus, x 2 I has a finite Pierce expansion if and only if x is
rational.

Proposition 2.2 (See [25, pp. 23–24]). For any x 2 I , if its Pierce expansion is of
length n � 2, then dn�1.x/C 1 < dn.x/.

Proof. The result follows from the definition of the digits. To see this, suppose oth-
erwise. Put M WD dn�1.x/ for some M 2 N, so that dn.x/ D M C 1 by Proposi-
tion 2.1 (i). Since dnC1.x/ D1, we have T nx D 0. By (2.1), we see that

T n�2x D
1

dn�1.x/
�

1

dn�1.x/

�
1

dn.x/
�
T nx

dn.x/

�
D

1

M
�

1

M.M C 1/
D

1

M C 1
;

and so T n�1x D 0. It follows that dn.x/ D1, which is a contradiction.

We denote by f W I ! † the map sending a number in I to its sequence of Pierce
expansion digits, that is, for each x 2 I , f is given by

f .x/ WD .dn.x//n2N D .d1.x/; d2.x/; d3.x/; : : : /:

Clearly, f is well defined. We also note that f .I / D †re by definition.
Conversely, we shall introduce a function mapping a Pierce sequence to a real

number in I by means of the formula modelled on (2.3). Define a map 'W†! I by

'.�/ WD

1X
nD1

.�1/nC1

�1 � � � �n
D

1

�1
�

1

�1�2
C � � � C

.�1/nC1

�1 � � � �n
C � � �

for each � WD .�n/n2N 2†. Observe that ' is well defined since
P1
nD1 1=.�1 � � ��n/�P1

nD1 1=nŠ <1, where the first inequality follows from (2.2).
We rephrase [12, Proposition 2.1] in terms of the maps f and ' in the following

proposition. According to Fang [12], the proposition is credited to Remez [20]. See
also [5, Section 4.1].

Let E WD I \Q and E 0 WD E n ¹0; 1º D .0; 1/ \Q.
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Proposition 2.3 ([12, Proposition 2.1]). Let x 2 I . Then the following hold.

(i) If x 2 E 0, then we have '�1.x/ D ¹�; � 0º, where

� WD .d1.x/; d2.x/; : : : ; dn�1.x/; dn.x// D f .x/ 2 †n \†re;

� 0 WD .d1.x/; d2.x/; : : : ; dn�1.x/; dn.x/ � 1; dn.x// 2 †nC1 \ .† n†re/;

for some n 2 N.

(ii) If x 2 I nE 0, then we have '�1.x/D ¹�º, where � WD f .x/. More precisely,
� 2†1 if x 2 I nE; � D .1;1; : : : / 2†0 if x D 0; � D .1;1;1; : : : / 2
†1 if x D 1.

The following proposition is a characterization of the set of realizable Pierce
sequences.

Proposition 2.4. Let � WD .�k/k2N 2†. Then � 62†re if and only if � 2†n for some
n � 2 with �n�1 C 1 D �n.

Proof. The reverse implication follows from Proposition 2.2, since there does not
exist x 2 I whose Pierce expansion is given by Œd1.x/; : : : ; dn.x/�P with dn�1.x/ D
�n�1 and dn.x/ D �n�1 C 1.

Now, for the forward implication, suppose � 2 † n†re. Put x WD '.�/ 2 I . Then
� ¤ f .x/ by definition of †re. The preimage '�1.x/ contains � and by Proposi-
tion 2.3, it is either a singleton or a doubleton. If '�1.x/ D ¹�º, then by Propo-
sition 2.3 (ii), we have � D f .x/, which is a contradiction. Hence, '�1.x/ is a
doubleton and by Proposition 2.3 (i), it follows that � 2 †n for some n � 2 with
�n�1 D dn�1.x/ � 1 and �n D dn�1.x/, in which case �n�1 C 1 D �n.

For each x 2 I and n 2 N, define the nth Pierce convergent or approximant,
snW I ! R by

sn.x/ WD Œd1.x/; : : : ; dn.x/�P D

nX
kD1

.�1/kC1

d1.x/ � � � dk.x/
:

Then sn.x/ is nothing but the nth partial sum of the Pierce expansion (2.3). Using (2.1)
repeatedly, we find that

x D
1

d1.x/
�

T x

d1.x/

D
1

d1.x/
�

1

d1.x/

�
1

d2.x/
�
T 2x

d2.x/

�
D

1

d1.x/
�

1

d1.x/d2.x/
C

T 2x

d1.x/d2.x/

D � � �

D

nX
kD1

.�1/kC1

d1.x/ � � � dk.x/
C

.�1/nT nx

d1.x/ � � � dn.x/
D sn.x/C

.�1/nT nx

d1.x/ � � � dn.x/
: (2.4)
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For every x 2 I , we define

E.x/ WD

1X
nD1

.x � sn.x//

and call EW I ! R the error-sum function of Pierce expansions on I . Note that for
any x 2 I , by (2.4), Proposition 2.1 (ii), and boundedness of T , we have

jx � sn.x/j D

ˇ̌̌̌
.�1/nT nx

d1.x/ � � � dn.x/

ˇ̌̌̌
�
1

nŠ
! 0

as n!1, with
P1
nD1 1=nŠ <1. It follows that E.x/ is well defined as an absolutely

and uniformly convergent series (or as a series with finitely many non-zero terms if
T nx D 0 for some n 2 N).

Defining an error-sum function on † is in order. For each n 2 N, define the nth
partial sum 'nW†! R by

'n.�/ WD

nX
kD1

.�1/kC1

�1 � � � �k
D

1

�1
�

1

�1�2
C � � � C

.�1/nC1

�1�2 � � � �n

for � WD .�k/k2N 2 †. For every � 2 †, we define

E�.�/ WD

1X
nD1

.'.�/ � 'n.�// (2.5)

and call E�W†! R the error-sum function of Pierce sequences on †. Notice that for
any � WD .�n/n2N 2 †, by (2.2), we have

j'.�/ � 'n.�/j D
1

�1 � � � �n

ˇ̌̌̌
1

�nC1
�

1X
jD1

�
1

�nC1 � � � �nC2j
�

1

�nC1 � � � �nC.2jC1/

�ˇ̌̌̌
�

1

�1 � � � �nC1
�

1

.nC 1/Š
! 0 (2.6)

as n!1, with
P1
nD1 1=.nC 1/Š <1. Hence, the series converges absolutely and

uniformly on †, and it follows that E�.�/ is well defined.

3. Some basic properties of E.x/

This section is devoted to investigating some basic properties of the error-sum func-
tion of Pierce expansions EW I !R. It will usually be done by the aid of the symbolic
space † and the error-sum function of Pierce sequences E�W†! R.
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3.1. Symbolic space †

We equip N with the discrete topology and consider .N1; T / as its one-point com-
pactification, so that a subset in .N1; T / is open if and only if it is either a subset of
N or a set whose complement with respect to N1 is a finite set in N.

For a metric space .X; d/, we denote by Bd .xI r/ the d -open ball centered at
x 2 X with radius r > 0, i.e., Bd .xI r/ WD ¹y 2 X W d.x; y/ < rº.

Lemma 3.1. Define �WN1 �N1 ! R by

�.x; y/ WD

8̂<̂
:
1

x
C
1

y
if x ¤ y;

0 if x D y;

for x; y 2 N1. Then � is a metric on N1 and induces T .

Proof. It is straightforward to check that � is a metric on N1, so we prove the second
assertion only.

Let O 2 T . We show that O is �-open. Suppose x 2 O . Then either x 2 N or
x D1. If x 2N, then x 2 ¹xº DB�.xI1=.2x//�O , and henceO is a neighborhood
of x in the �-topology. Now assume x D 1. Then N1 n O � N is finite. So we
can find a K 2 N such that every n � K is in O . Then x 2 ¹1º [ ¹K C 1; K C 2;
K C 3; : : : º D B�.1I 1=K/ � O . Thus, O is a neighborhood of x in the �-topology.
Since x 2 O is arbitrary, we conclude that O is �-open.

Conversely, let U � N1 be a �-open set. Suppose x 2 U . Then either x 2 N

or x D 1. Assume first x 2 N. But then ¹xº, which is open in .N1; T /, satisfies
x 2 ¹xº � U . Hence, U is a neighborhood of x in .N1; T /. Now assume x D 1.
Since U is �-open, we can find an r > 0 such that B�.1I r/ � U . Note that y 2
B�.1I r/ if and only if y D 1 or y > 1=r . Then B�.1I r/ is equal to ¹1º [
¹b1=rc C 1; b1=rc C 2; b1=rc C 3; : : : º which is an open set in .N1; T / contain-
ing x D 1. Thus U is a neighborhood of x in .N1; T /. Since x 2 U is arbitrary, it
follows that U is open in .N1; T /.

The Tychonoff’s theorem tells us that NN
1 is compact in the product topology, as

a (countable) product of the compact space .N1; T /. It is easy to see that any non-
empty open set in the product topology contains a non-Pierce sequence, so that † is
not open in NN

1. However, † is closed in the product topology.

Lemma 3.2. The subspace† is closed in the product space NN
1, and so† is compact

in the product topology.

Proof. We show that NN
1 n† is open, i.e., every point of NN

1 n† is an interior point.
Let � WD .�n/n2N 2 NN

1 n†. By definition of NN
1 n†, we can find an index K 2 N
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such that �K � �KC1¤1, sayM WD �KC1 2N. Consider a subsetO �NN
1 given by

O WD N¹1;:::;K�1º1 � .N1 n ¹1; 2; : : : ;M � 1º/ � ¹M º �NNn¹1;2;:::;KC1º
1 :

Then O is open in NN
1 by definition of the product topology, since N1 n ¹1; 2; : : : ;

M � 1º and ¹M º are open in .N1; T /. It is clear that � 2 O � NN
1 n†. Thus � is

an interior point of NN
1 n†, and this proves that † is closed in NN

1.
The second assertion follows immediately since NN

1 is compact in the product
topology by the Tychonoff’s theorem, so that its closed subspace † is compact.

Let � WD .�n/n2N and � WD .�n/n2N be any two elements in NN
1. We define

�N WNN
1 �NN

1 ! R by

�N.�; �/ WD

1X
nD1

�.�n; �n/

nŠ
;

where �WN1 �N1!R is defined as in Lemma 3.1. Notice that we have �.�n; �n/�
1=�n C 1=�n � 1=nC 1=n � 2 for each n 2 N by (2.2), and

P1
nD1 2=nŠ <1. We

deduce that �N is well defined.

Lemma 3.3. The function �N is a metric on NN
1 and the topology induced by �N is

equivalent to the product topology on NN
1.

Proof. It is straightforward to check that .NN
1; �

N/ is a metric space. The proof of
the second assertion is almost identical to the standard proof of the well-known fact
that any countable product of metric spaces is metrizable. So we omit the details.

Lemma 3.4. The metric space .†; �N/ is compact.

Proof. The lemma is immediate from Lemmas 3.2 and 3.3.

For a given � WD .�k/k2N 2†, we define � .n/ WD .�k/k2N 2† for each n 2N, by

�k WD

´
�k if 1 � k � n;

1 otherwise;

i.e., � .n/ D .�1; : : : ; �n;1;1; : : : /. It is worth pointing out that it is not always the
case that � .n/ 2 †n, since we might have �k D1 for some 1 � k � n.

Fix n 2 N and � 2 †n. Let ‡� be the collection of sequences in † defined as

‡� WD ¹� 2 †W �
.n/
D �º;

and we call ‡� the cylinder set of order n associated with � . Then ‡� consists of
all sequences in † whose initial n terms agree with those of � . By Lemma 3.2, it is
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clear that ‡� is compact in † as a closed set in a compact space. Since ‡� is open in
† as well, it follows that † n ‡� is compact by the same lemma. We also define the
fundamental interval of order n associated with � WD .�k/k2N by

I� WD ¹x 2 I W dk.x/ D �k for all 1 � k � nº D f �1.‡� /:

Then any number x 2 I� has its Pierce expansion beginning with .�k/nkD1, i.e.,

x D Œd1.x/; : : : ; dn.x/; dnC1.x/; dnC2.x/; : : : �P

D Œ�1; : : : ; �n; dnC1.x/; dnC2.x/; : : : �P :

In view of the following proposition, the reason for I� being called an interval should
be clear.

For each n 2N and � WD .�k/k2N 2†n, we write y� WD .y�k/k2N 2†n, where the
y�k are given by

y�k D

´
�n C 1 if k D n;

�k otherwise;

i.e., y� D .�1; : : : ; �n�1; �n C 1;1;1; : : : /.

Proposition 3.5 ([25, Theorem 1]). Let n 2 N and � WD .�k/k2N 2 †n. If � 2 †re,
then

I� D

´
.'.y�/; '.�/� if n is odd;

Œ'.�/; '.y�// if n is even:
(3.1)

If � 62 †re, we have instead that I� is an open interval with the same endpoints, i.e.,

I� D

´
.'.y�/; '.�// if n is odd;

.'.�/; '.y�// if n is even:
(3.10)

Consequently, the length of I� is

�.I� / D j'.�/ � '.y�/j D
1

�1 � � � �n�1�n.�n C 1/
: (3.2)

We illustrate the exclusion of the endpoint '.�/ in (3.10) by an example. Consider
two sequences � WD .2/ 2 †1 \†re and � 0 WD .1; 2/ 2 †2 \ .† n†re/. Then '.�/D
1=2 and '.� 0/ D 1=1 � 1=.1 � 2/ D 1=2 are equal, and so they have the same Pierce
expansion, namely, Œ2�P . It follows by the definition of fundamental intervals that I�
contains '.�/, whereas I� 0 fails to contain '.� 0/.

For later use, we record an upper bound for �.I� / derived from (3.2). For each
� WD .�k/k2N 2 †n, since �k � k for 1 � k � n by (2.2), we have that

�.I� / �
1

.1/.2/ � � � .n � 1/.n/.nC 1/
D

1

.nC 1/Š
: (3.3)
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3.2. Mappings 'W† ! I and f W I ! †

By definition, the following observation is immediate.

Observation. We have ' ı f D idI and f ı .'j†re/D id†re , where 'j†re is the restric-
tion of ' to †re, but f ı ' ¤ id† in general.

For a fixed � 2†n for some n2N, we can explicitly describe the relation between
the cylinder set ‡� � † and the fundamental interval I� � I in terms of the map
f W I ! †. We first observe the following from the definition I� D f �1.‡� /.

Observation. Let n 2 N and � 2 †n. Then f .I� / � ‡� .

The inclusion in the above observation is proper, i.e., f .I� / ¨ ‡� , and by Propo-
sition 2.4 we explicitly have

‡� n f .I� / D
[
m�n

¹� WD .�k/k2N 2 †mW �
.n/
D � and �m�1 C 1 D �mº

� † n f .I /:

(3.4)

But f .I� / is not significantly smaller than ‡� in the sense that f .I� / is dense in ‡� .

Lemma 3.6. Let n 2 N and � 2 †n. Then f .I� / D ‡� .

Proof. Put � WD .�k/k2N 2 †n. It is clear that ‡� is closed in †. Since f .I� / � ‡�
and ‡� is closed, it suffices to show that any point in ‡� n f .I� / is a limit point of
f .I� /. Let � WD .�k/k2N 2 ‡� n f .I� /. Then, by (3.4), � is of the form

.�1; : : : ; �n�1; �n; : : : ; �m�1; �m;1;1; : : : /;

where �m�1 C 1D �m, for somem � n. Consider a sequence .�k/k2N in† given by

�k WD .�1; : : : ; �n; : : : ; �m�1; �m; �m C .k C 1/;1;1; : : : /

for each k 2 N. Then �k 2 f .I� / for all k 2 N by Proposition 2.4, since �k 2 †mC1
and �mC 1<�mC .kC 1/. Clearly, �k! � as k!1. This completes the proof.

Similarly, any sequence in † can be approximated arbitrarily close by sequences
in f .I /.

Lemma 3.7. We have † D f .I /.

Proof. Since f .I / � †, it suffices to show that any point in † n f .I / is a limit point
of f .I /. Let � WD .�k/k2N 2 † n f .I /. Then � 2 † n †re, so by Proposition 2.4,
� 2 †n for some n � 2 with �n�1 C 1 D �n. Now, an argument similar to the one
in the proof of Lemma 3.6 shows that there is a sequence in f .I / converging to � .
Hence the result.
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We are now concerned with the continuity of two maps of interest. We first show
that 'W†! I is a Lipschitz mapping.

Lemma 3.8. For any �; � 2 †, we have j'.�/ � '.�/j � �N.�; �/.

Proof. Let � WD .�n/n2N ; � WD .�n/n2N 2 †. If � D � , there is nothing to prove, so
we suppose that � and � are distinct. If �1 ¤ �1, then

j'.�/ � '.�/j � j'.�/j C j'.�/j �
1

�1
C
1

�1
� �N.�; �/:

Assume that � and � share the initial block of length n 2 N, i.e., � .n/ D � .n/ and
�nC1 ¤ �nC1. Then

j'.�/ � '.�/j D j.'.�/ � '.� .n/// � .'.�/ � '.� .n///j

D j.'.�/ � 'n.�// � .'.�/ � 'n.�//j

� j'.�/ � 'n.�/j C j'.�/ � 'n.�/j

�
1

�1 � � � �n

�
1

�nC1
C

1

�nC1

�
�
1

nŠ

�
1

�nC1
C

1

�nC1

�
�
1

nŠ

�
1

�n
C
1

�n

�
� �N.�; �/;

where we used (2.6) and (2.2) for the second and third inequalities, respectively.

Now we prove that f W I ! † is continuous at every irrational number and at two
rational numbers 0 and 1.

Lemma 3.9. The mapping f W I ! † is continuous at every x 2 I nE 0.

Proof. By Proposition 2.3 (ii) it suffices to show that f is continuous at x 2 I for
which '�1.x/ is a singleton. Suppose otherwise. Put ¹�º WD '�1.x/ for some � 2 †.
Then f .x/D � by Proposition 2.3 (ii). Since f is not continuous at x, we can find an
" > 0 and a sequence .xn/n2N in I such that jx � xnj< 1=n but �N.�;f .xn//� " for
all n 2N. Since .�n/n2N WD .f .xn//n2N is a sequence in the compact metric space†
(Lemma 3.4), there is a subsequence .�nk /k2N converging to some � 2 †. Note that
xnk D '.f .xnk // D '.�nk / for each k 2 N. Now, by continuity of ' (Lemma 3.8),
we see that xnk ! '.�/ as k ! 1. Since x is the limit of .xn/n2N , it follows
that x D '.�/. Thus � D � by the singleton assumption. But then �N.�; f .xnk // D

�N.�; �nk / � " for all k 2 N, by our choice of " and .xn/n2N . This contradicts the
convergence of .�nk /k2N to � . Therefore, f is continuous at x 2 I for which '�1.x/
is a singleton, and hence at every x 2 I nE 0.

However, the continuity does not hold at any rational number in the open unit
interval .0; 1/. Notice in Proposition 2.3 (i) that � 62 ‡� 0 and � 0 62 ‡� .
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Lemma 3.10. Let x 2 E 0 and put '�1.x/D ¹�; �º. Then f is not continuous at x, in
particular, we have

lim
t!x
t2I�

f .t/ D � and lim
t!x
t 62I�

f .t/ D �:

Proof. The argument is similar to the proof of Lemma 3.9. The main difference in
this proof is the use of compactness of ‡� and † n ‡� .

Suppose to the contrary that the first convergence fails to hold. We can find an
" > 0 and a sequence .xn/n2N in I� such that jx � xnj < 1=n but �N.�; f .xn// � "

for all n 2 N. Since .�n/n2N WD .f .xn//n2N is a sequence in f .I� / � ‡� , and
‡� is a compact metric space, there is a subsequence .�nk /k2N converging to some
� 2 ‡� . Note that xnk D '.f .xnk //D '.�nk / for each k 2N. Now, by continuity of
' (Lemma 3.8), we see that xnk ! '.�/ as k !1. Since x is the limit of .xn/n2N ,
it follows that x D '.�/. Thus � D � or � D � by the doubleton assumption. Since
� 62 ‡� by Proposition 2.3 (i), it must be that � D � . But then �N.�; f .xnk // D

�N.�; �nk / � " for all k 2 N, by our choice of " and .xn/n2N . This contradicts the
convergence of .�nk /k2N to � . Therefore, limt!x

t2I�
f .t/ D � .

The proof for the second convergence is similar. First note that since ‡� n f .I� /
and f .I / are disjoint by (3.4), we have

f .I n I� / D f .I / n f .I� /

D Œf .I / [ .‡� n f .I� //� n Œf .I� / [ .‡� n f .I� //� � † n ‡� ;

where the first equality follows from the injectivity of f . Now, in the preceding para-
graph, by replacing I� and ‡� by I n I� and † n ‡� , respectively, and exchanging
the roles of � and � , we obtain the desired result.

Notice that in the preceding lemma there is no additional assumption for � and � .
Compare this with Proposition 2.3 (i). Hence, Lemma 3.10 holds for either the case
where � 2 †re with � 2 † n†re or where � 2 † n†re with � 2 †re.

3.3. The error-sum functions E and E�

Now we first establish the relation between two error-sum functions EW I ! R and
E�W†! R.

Lemma 3.11. We have E D E� ı f , i.e., the following diagram commutes:

I R

†

E

f E�
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Proof. Let x 2 I . Under the mapping f W I ! †, we obtain the sequence of Pierce
expansion digits, namely, if xD Œd1.x/; d2.x/; : : : �P , then we have that � WDf .x/ D
.d1.x/; d2.x/; : : : / 2 †. Now, by definition of ', we have

'.�/ D

1X
kD1

.�1/kC1

d1.x/ � � � dk.x/
D x;

and by definitions of 'n and sn, we have, for each n 2 N,

'n.�/ D

nX
kD1

.�1/kC1

d1.x/ � � � dk.x/
D sn.x/:

Thus .E� ı f /.x/ D E.x/ for all x 2 I .

However, the equality E ı ' D E� does not hold in general. For instance, consider
.2; 3/ 2 †2 \ .† n †re/. On one hand, '..2; 3// D 1=2 � 1=.2 � 3/ D 1=3 D Œ3�P ,
and so .E ı '/..2; 3// D E.Œ3�P / D 1=3� 1=3 D 0. On the other hand, E�..2; 3// D

.1=3 � 1=2/C .1=3 � .1=2 � 1=.2 � 3/// D �1=6.

Lemma 3.12. For any � WD .�n/n2N 2 †, the sequence .n=.�1 � � � �nC1//n2N is
monotonically decreasing to 0 and the series

P1
nD1 n=.�1 � � � �nC1/ is convergent.

Proof. Note that n > .nC 1/=.nC 2/� .nC 1/=�nC2 for each n 2N by (2.2). Then,
again by (2.2), we have

n

.nC 1/Š
�

n

�1 � � � �nC1
�

nC 1

�1 � � � �nC1�nC2
� 0

for every n 2 N, with
P1
nD1 n=.nC 1/Š <1. Hence the result.

We derive one simple formula for E�W†! R which will be used frequently in
the subsequent discussion.

Lemma 3.13. Let � WD .�n/n2N 2 †. Then

E�.�/ D

1X
nD1

.�1/nn

�1 � � � �nC1
: (3.5)

Proof. Write

E�.�/ D

1X
jD1

.'.�/ � 'j .�// D

1X
jD1

 
1X
kD1

.�1/kC1

�1 � � � �k
�

jX
kD1

.�1/kC1

�1 � � � �k

!

D

1X
jD1

1X
kDjC1

.�1/kC1

�1 � � � �k
:
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Notice that
1X
jD1

1X
kDjC1

ˇ̌̌̌
.�1/kC1

�1 � � � �k

ˇ̌̌̌
D

1X
nD1

n

�1 � � � �nC1
<1

by Lemma 3.12. Thus, we may change the order of the double series to obtain

E�.�/ D

1X
kD2

k�1X
jD1

.�1/kC1

�1 � � � �k
D

1X
kD2

.�1/kC1.k � 1/

�1 � � � �k
D

1X
nD1

.�1/nn

�1 � � � �nC1
;

as desired.

The boundedness of EW I ! R readily follows.

Theorem 3.14. For any � 2 †, we have �1=2 � E�.�/ � 0. Consequently, �1=2 <
E.x/ � 0 for all x 2 I .

Proof. We make use of (3.5) and Lemma 3.12 to obtain both the desired upper and
lower bounds. On one hand, for any � WD .�n/n2N 2 †, we have

E�.�/ D �
1

�1�2
C

1X
jD1

�
2j

�1 � � � �2jC1
�

2j C 1

�1 � � � �2jC2

�
� �

1

�1�2
� �

1

1 � 2
D �

1

2
;

where the last inequality follows from (2.2). Notice that the equalities hold if and only
if � D .1; 2/ 2 †2 \ .† n †re/. On the other hand, for any � WD .�n/n2N 2 †, we
have

E�.�/ D �

1X
jD1

�
2j � 1

�1 � � � �2j
�

2j

�1 � � � �2jC1

�
� 0:

The second assertion is immediate in view of Lemma 3.11 and .1; 2/ 62 f .I /.

Lemma 3.15. The error-sum function E�W†! R is continuous.

Proof. We showed that the series in (2.5) is uniformly convergent on †. But ' is
continuous by Lemma 3.8 and 'n is clearly continuous, and so each term in the series
of E� is continuous. Therefore, E� is continuous as a uniformly convergent series of
continuous functions.

The �-almost everywhere continuity theorem for E.x/ is now immediate.

Theorem 3.16. The error-sum function EW I ! R is continuous on I n E 0 and so E

is continuous �-almost everywhere.
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Proof. Let x 2 I n E 0. By Lemma 3.9, we know that f W I ! † is continuous at x.
Moreover, E�W†!R is continuous by Lemma 3.15. But EDE� ı f by Lemma 3.11,
and therefore, E is continuous at x.

For the second assertion, it is enough to recall that E 0 D Q \ .0; 1/ which has
zero �-measure. Thus I nE 0 is of full �-measure, and the result follows.

On the other hand, we will show that EW I ! R fails to be continuous at every
point of E 0 (Theorem 3.18). The following lemma plays a key role in the proof of the
theorem.

Lemma 3.17. Let x 2 E 0 and put '�1.x/ D ¹�; � 0º, where � 2 †re \ †n and � 0 2
.† n†re/ \†nC1 for some n 2 N. Then

lim
t!x
t 62I�

E.t/ D E�.� 0/ D E.x/C
.�1/n

d1.x/ � � � dn�1.x/.dn.x/ � 1/dn.x/
:

Proof. By Lemma 3.11, the continuity of E� (Lemma 3.15), and Lemma 3.10, we
obtain the first equality as follows:

lim
t!x
t 62I�

E.t/ D lim
t!x
t 62I�

.E� ı f /.t/ D E�
�

lim
t!x
t 62I�

f .t/
�
D E�.� 0/:

Since x 2E 0, by Proposition 2.3 (i), x has a finite Pierce expansion of positive length,
say x D Œd1.x/; d2.x/; : : : ; dn.x/�P for some n 2N. Then, since '.� 0/D x, we have

E�.� 0/ D

n�1X
kD1

.x � 'k.�
0//C .x � 'n.�

0//C

1X
kDnC1

.x � 'k.�
0//:

Note that � 0 D .d1.x/; : : : ; dn�1.x/;dn.x/� 1;dn.x// 2†nC1 by Proposition 2.3 (i).
Hence, sk.x/ D 'k.� 0/ for 1 � k � n � 1 and x D 'kC1.� 0/ D sk.x/ for all k � n.
In particular, we have

x � 'n.�
0/ D 'nC1.�

0/ � 'n.�
0/ D

.�1/n

d1.x/ � � � dn�1.x/.dn.x/ � 1/dn.x/
:

Thus

E�.� 0/ D

n�1X
kD1

.x � sk.x//C .x � 'n.�
0//

D E.x/C
.�1/n

d1.x/ : : : dn�1.x/.dn.x/ � 1/dn.x/
:

Now we are ready to prove that E is discontinuous at every point of the dense
subset E 0 � I .



On the error-sum function of Pierce expansions 405

Theorem 3.18. Let x 2 E 0 and put '�1.x/ D ¹�; � 0º, where � 2 †re \†n and � 0 2
.† n†re/ \†nC1 for some n 2 N. Write x D Œd1.x/; d2.x/; : : : ; dn.x/�P . Then the
following hold.

(i) If n is odd, then E is left-continuous but has a right jump discontinuity at x;
more precisely,

lim
t!x�

E.t/ D E�.�/ D E.x/;

lim
t!xC

E.t/ D E�.� 0/ D E.x/�
1

d1.x/ : : : dn�1.x/.dn.x/�1/dn.x/
: (3.6)

(ii) If n is even, then E is right-continuous but has a left jump discontinuity at
x; more precisely,

lim
t!xC

E.t/ D E�.�/ D E.x/;

lim
t!x�

E.t/ D E�.� 0/ D E.x/C
1

d1.x/ : : : dn�1.x/.dn.x/�1/dn.x/
: (3.7)

Proof. By Proposition 2.3 (i), we have

� D .d1.x/; : : : ; dn�1.x/; dn.x// 2 †n \†re;

� 0 D .d1.x/; : : : ; dn�1.x/; dn.x/ � 1; dn.x// 2 †nC1 \ .† n†re/:

Then '.�/ D '.� 0/ D x and � D f .x/, but � 0 62 f .I /.
(i) Assume n is odd. Since I� D .'.y�/;'.�/� by (3.1) and x D '.�/, we have that

t ! xC if and only if t ! x with t 62 I� . For the right-hand limit, apply Lemma 3.17
to obtain (3.6). For the left-hand limit, note that t ! x� if and only if t ! x with t 2
I� n ¹xº. Then, by Lemma 3.11, the continuity of E� (Lemma 3.15), and Lemma 3.10,
we deduce that

lim
t!x�

E.t/ D lim
t!x�

.E� ı f /.t/ D E�
�

lim
t!x

t2I�n¹xº

f .t/
�
D E�.�/:

But E.x/ D .E� ı f /.x/ D E�.�/ by Lemma 3.11 and therefore, we conclude that
E is left-continuous at x.

(ii) The proof is similar to that of part (i), so we omit the details.

Note that for every point x 2 E 0, we have that limt!x� E.t/ is strictly greater
than limt!xC E.t/, regardless of left or right discontinuity.

The following lemma provides us with the maximum and minimum of E�W†!R

on each cylinder set ‡� . Recall that given � WD .�1; : : : ; �n�1; �n/ 2 †n for some
n 2 N, the sequence y� is defined as .�1; : : : ; �n�1; �n C 1/ 2 †n.
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Lemma 3.19. Let n 2 N and � 2 †n. Then the following hold.

(i) If n is odd, we have

max
�2‡�

E�.�/ D E�.�/ and min
�2‡�

E�.�/ D E�.�/ � n � �.I� /:

(ii) If n is even, we have

max
�2‡�

E�.�/ D E�.�/C n � �.I� / and min
�2‡�

E�.�/ D E�.�/:

Proof. Put � WD .�k/k2N 2†n. Let y� 0 WD .y� 0
k
/k2N , where y� 0nC1D �nC 1 and y� 0

k
D �k

for all k 2 N n ¹nC 1º, i.e.,

y� 0 D .�1; : : : ; �n�1; �n; �n C 1;1;1; : : : / 2 ‡� :

Then y� 2 †re and y� 0 2 † n†re with '.y�/ D '.y� 0/.
(i) Assume n is odd. For any � WD .�k/k2N 2 ‡� , we have � .n/ D � by definition

of the cylinder set, so by using (3.5) and Lemma 3.12, we obtain

E�.�/ D

n�1X
kD1

.�1/kk

�1 � � � �kC1
C

1X
kDn

.�1/kk

�1 � � � �n�nC1 � � � �kC1

D E�.�/ �
1

�1�2 � � � �n

1X
jD1

�
nC .2j � 2/

�nC1 � � � �nC.2j�1/
�
nC .2j � 1/

�nC1 � � � �nC2j

�
� E�.�/:

This shows that E�.�/ � E�.�/ for any � 2 ‡� , and that E�.�/ attains the maximum
when � D � 2 ‡� .

Again by (3.5) and Lemma 3.12, for any � WD .�k/k2N 2 ‡� , we have

E�.�/ D E�.�/ �
n

�1�2 � � � �n�nC1

C
1

�1�2 � � � �n

1X
jD1

�
nC .2j � 1/

�nC1 � � � �nC2j
�

nC 2j

�nC1 � � � �nC.2jC1/

�
� E�.�/ �

n

�1�2 � � � �n�nC1

� E�.�/ �
n

�1�2 � � � �n.�n C 1/
D E�.�/ � n � �.I� /;

where we used �nC1 > �n for the second inequality and (3.2) for the last equality.
Notice that the equalities hold if and only if �nC1 D �n C 1 and �k D 1 for all
k � nC 2, i.e., if and only if � D y� 0 2 ‡� . Therefore, E�.�/ � E�.�/� n � �.I� / for
any � 2 ‡� , and the minimum is attained when � D y� 0 2 ‡� .

(ii) The proof is similar to that of part (i), so we omit the details.
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Using the preceding lemma, we can describe the supremum and the infimum of
EW I ! R on each fundamental interval I� . We show that approaching the left end-
point from the right yields the infimum, while approaching the right endpoint from
the left yields the supremum. (See Proposition 3.5 for the left and right endpoints of
the fundamental intervals.)

Lemma 3.20. Let n 2 N and � 2 †n. Then the following hold.

(i) If n is odd, we have

sup
t2I�

E.t/ D lim
t!.'.�//�

E.t/ and inf
t2I�

E.t/ D lim
t!.'.y�//C

E.t/:

(ii) If n is even, we have

sup
t2I�

E.t/ D lim
t!.'.y�//�

E.t/ and inf
t2I�

E.t/ D lim
t!.'.�//C

E.t/:

Proof. (i) Assume n is odd. Put � WD.�k/k2N2†n. Then y�D.�1; : : : ; �n�1;�nC 1/ 2
†n, and by Proposition 2.3 (i), we have '.y�/D '.y� 0/, where y� 0 WD .�1; : : : ; �n�1; �n;
�n C 1/ 2 †nC1 with y� 2 †re and y� 0 2 † n†re.

By using E D E� ı f (Lemma 3.11), f .I� / D ‡� (Lemma 3.6), and the conti-
nuity of E� (Lemma 3.15), we find that

sup
t2I�

E.t/ D sup
f .t/2f .I� /

E�.f .t// D sup
�2‡�

E�.�/ D max
�2‡�

E�.�/ D E�.�/; (3.8)

inf
t2I�

E.t/ D inf
f .t/2f .I� /

E�.f .t// D inf
�2‡�

E�.�/ D min
�2‡�

E�.�/ D E�.y� 0/; (3.9)

where the last two equalities for both (3.8) and (3.9) follow from Lemma 3.19 and its
proof.

For the supremum, notice that, by Proposition 3.5, t ! .'.�//� if and only if
t ! '.�/ with t 2 I� n ¹'.�/º. Then by Lemma 3.11, the continuity of E� (Lem-
ma 3.15), and Lemma 3.10, we obtain

lim
t!.'.�//�

E.t/ D lim
t!'.�/

t2I�n¹'.�/º

E.t/ D E�
�

lim
t!'.�/

t2I�n¹'.�/º

f .t/
�
D E�.�/:

Combining this with (3.8) gives the result.
For the infimum, notice that, by Proposition 3.5, t ! .'.y�//C if and only if

t ! '.y�/ with t 62 Iy� . Hence Lemma 3.17 tells us that

lim
t!.'.y�//C

E.t/ D lim
t!'.y�/
t 62Iy�

E.t/ D E�.y� 0/:

Combining this with (3.9) gives the result.
(ii) The proof is similar to that of part (i), so we omit the details.
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The following lemma is an analogue of [27, Lemma 2.6], where the error-sum
function of Lüroth series is discussed. This lemma will serve as the key ingredient in
finding a suitable covering for the graph of E.x/ in Section 4.

Lemma 3.21. Let n 2 N and � 2 †n. Then

sup
t;u2I�

jE.t/ � E.u/j D n � �.I� /:

Proof. By Lemmas 3.11, 3.6, and 3.15, we have, as in (3.8) and (3.9),

sup
t;u2I�

jE.t/ � E.u/j D sup
t2I�

E.t/ � inf
t2I�

E.t/ D max
�2‡�

E�.�/ � min
�2‡�

E�.�/:

Notice that the last term equals n � �.I� / by Lemma 3.19. This proves the lemma.

One might be tempted to say that EW I ! R is fairly regular in the sense of �-
almost everywhere continuity (Theorem 3.16). However, the following theorem tells
us that E is not well behaved in the bounded variation sense.

Theorem 3.22. The error-sum function EW I ! R is not of bounded variation.

Proof. Let VI .E/ denote the total variation of E on I . Let n 2N. We consider the col-
lection 	 WD ¹I� W � 2 †nº, i.e., the collection of all fundamental intervals of order n.
Note that

P
�2†n

�.I� / D 1. Then, by Lemma 3.21, we have

n D n
X
�2†n

�.I� / D
X
�2†n

sup
t;u2I�

jE.t/ � E.u/j � VI .E/;

where the inequality follows from the fact that the I� 2 	 are mutually disjoint inter-
vals. Since n 2 N is arbitrary, it follows that VI .E/ is not finite. This completes the
proof.

We prove that EW I ! R enjoys an intermediate value property in some sense,
which is an analogue of [21, Theorem 4.3]. A similar result can also be found in [26,
Theorem 2.5]. In fact, every result aforementioned is a consequence of the following
theorem.

Theorem 3.23. Suppose that gWJ ! R is a function on an interval J � R satisfying
the following conditions.

(i) There exists a subset D of the interior of J such that g is continuous on
J nD.

(ii) For any x 2 D, g is either left-continuous or right-continuous at x with
limt!x� g.t/ > limt!xC g.t/.
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Let a; b 2 J with a < b. If g.a/ < y < g.b/, then there exists an x 2 .a; b/ nD such
that g.x/ D y.

Proof. Consider the set
S WD ¹t 2 Œa; b�Wg.t/ < yº;

and let t0 WD sup S . Since g.a/ < y by assumption, we have a 2 S , and hence S is
non-empty. So t0 ¤ �1 and t0 2 Œa; b�. Our aim is to show that t0 is a desired root,
that is, g.t0/ D y and t0 2 .a; b/ nD.

We claim that t0 > a. We consider three cases depending on the continuity at a.

Case I. Assume a 2 J nD, so that g is continuous at a by condition (i). Then, since
g.a/< y, there is an �1 2 .0;b� a/ such that g.t/ < y for all t 2 .a� �1;aC �1/\ J .
So t0 � aC �1 and hence t0 > a.

Case II. Assume that a 2 D and g is left-continuous at a. Then limt!aC g.t/ <

limt!a� g.t/D g.a/ < y by condition (ii) and assumption. By definition of the right-
hand limit, there exists an �2 2 .0; b � a/ such that g.t/ < y for all t 2 .a; aC �2/.
So t0 � aC �2 and hence t0 > a.

Case III. Assume that a 2 D and g is right-continuous at a. Then limt!aC g.t/ D

g.a/ < y by assumption. By definition of the right-hand limit, there exists an �3 2
.0; b � a/ such that g.t/ < y for all t 2 .a; aC �3/. So t0 � aC �3 and hence t0 > a.

By a similar argument, which we omit here, we can show that t0 < b.
We have shown above that t0 2 .a; b/. It remains to prove that g.t0/ D y with

t0 62 D. We show first that t0 62 D. Suppose t0 2 D to argue by contradiction. Since
t0 D supS we can find a sequence .an/n2N in S such that an � t0 for each n 2N and
an ! t0 as n!1. (We can choose an 2 S such that t0 � 1=n < an � t0 for each
n 2 N.) Similarly, we can find a sequence .bn/n2N in Œa; b� n S such that bn � t0
for each n 2 N and bn ! t0 as n ! 1. Then, by our choice of two sequences,
g.an/ < y and g.bn/ � y for all n 2 N. Now note that since t0 2 D, g is either left-
continuous or right-continuous at t0 by condition (ii). If g is left-continuous at t0, then
by condition (ii), we have

y � lim
n!1

g.an/ D g.t0/ > lim
n!1

g.bn/ � y;

which is a contradiction. If g is right-continuous at t0, then by condition (ii), we have

y � lim
n!1

g.an/ > g.t0/ D lim
n!1

g.bn/ � y;

which is a contradiction. This proves that t0 62 D, as desired.
Since t0 2 J nD, we know from condition (i) that g is continuous at t0. Hence,

g.t0/ D y by definitions of S and t0. For, if not, say g.t0/ < y, we can find a ı 2
.0;min¹t0 � a; b � t0º/ such that g.t/ < y on the interval .t0 � ı; t0 C ı/, which
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contradicts t0 D supS . Similarly, g.t0/ > y gives a contradiction. This completes the
proof that t0 2 .a; b/ nD is a root of g.x/ D y we were seeking.

Remark 3.24. In Theorem 3.23, the assumption g.a/ < y < g.b/ for a < b is stricter
than that of the standard Intermediate Value Theorem in R. This additional assump-
tion is necessary because at every discontinuity, g has a sudden drop therein. To be
precise, for every x 2D, we have limt!x� g.t/ > limt!xC g.t/ by condition (ii). For
the same phenomenon for EW I ! R, see Theorem 3.18 and equations (3.6) and (3.7)
therein.

Corollary 3.25. Let a; b 2 I with a < b. If E.a/ < y < E.b/, then there exists an
x 2 .a; b/ nE such that E.x/ D y.

Proof. By Theorems 3.16 and 3.18, E satisfies the two conditions of Theorem 3.23
with J WD I and D WD E 0. Since .a; b/ n E D .a; b/ n E 0, the result follows from
Theorem 3.23.

Using Theorem 3.23, we can prove the intermediate value property of P WR! R,
the error-sum function of the regular continued fraction expansion, defined as in Sec-
tion 1. Compare the following corollary with [21, Theorem 4.3], where the authors
considered P jI , the restriction of P to I .

Corollary 3.26. Let a; b 2 R with a < b. If P.a/ < y < P.b/, then there exists an
x 2 .a; b/ nQ such that P.x/ D y.

Proof. Let x be rational. Then the regular continued fraction expansion of x is of
finite length, say x D Œa0.x/Ia1.x/; : : : ; an.x/� for some n 2N0. By [21, Lemma 1.1]
and [21, Theorem 2.3], the following hold.

(i) If n is odd, then P is left-continuous but has a right jump discontinuity at x
with the right-hand limit limt!xC P.t/ D P.x/ � 1=qn.x/.

(ii) If n is even, then P is right-continuous but has a left jump discontinuity at
x with the left-hand limit limt!x� P.t/ D P.x/C 1=qn.x/.

Since qn.x/ > 0 by definition (see [21, p. 274]), we deduce that limt!x� P.x/ >

limt!xC P.x/ for every x 2 Q. Moreover, by [21, Theorem 2.3], P is continuous at
every irrational point. Therefore, by taking J WD R andD WDQ in Theorem 3.23, the
result follows.

We showed that E is bounded on I (Theorem 3.14) and it is continuous �-almost
everywhere (Theorem 3.16). Hence, E is Riemann integrable on I . Before calculating
the integral, we first find a useful formula for E .
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Lemma 3.27. For every x 2 I and for each n 2 N, we have

E.x/ D

nX
kD1

.x � sk.x//C
.�1/n

d1.x/ � � � dn.x/
E.T nx/: (3.10)

Proof. Let x 2 I and n 2 N. From the definition of digits, we have dnCj .x/ D
dj .T

nx/ for any j 2 N. Then by making use of (2.4), we obtain

E.x/ �

nX
kD1

.x � sk.x// D

1X
kDnC1

.x � sk.x//

D

1X
kDnC1

.�1/kT kx

d1.x/ � � � dn.x/dnC1.x/ � � � dk.x/

D
.�1/n

d1.x/ � � � dn.x/

1X
jD1

.�1/jT nCjx

dnC1.x/ � � � dnCj .x/

D
.�1/n

d1.x/ � � � dn.x/

1X
jD1

.�1/jT j .T nx/

d1.T nx/ � � � dj .T nx/

D
.�1/n

d1.x/ � � � dn.x/

1X
jD1

.T nx � sj .T
nx//

D
.�1/n

d1.x/ � � � dn.x/
E.T nx/;

as desired.

Theorem 3.28. We have Z 1

0

E.x/ dx D �
1

8
:

Proof. Note that on the interval .1=2;1�, we have d1.x/D 1 and s1.x/D 1, and hence
E.x/ D x � 1� E.T x/ by (3.10). By letting T x D u D 1� x so that du D �dx on
the interval .1=2; 1�, we obtainZ 1

0

E.x/ dx D

Z 1=2

0

E.x/ dx C

Z 1

1=2

.x � 1 � E.T x// dx

D

Z 1=2

0

E.x/ dx C

Z 1

1=2

.x � 1/ dx �

Z 1=2

0

E.u/ du D �
1

8
:

Before we move on to the next section, we prove one lemma which will be used
in Section 4.
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Lemma 3.29. Let � WD .�k/k2N 2 †. For any n 2 N, we have

j'.�/ � '.� .n//j �
1

�1 � � � �n�nC1
and jE�.�/ � E�.� .n//j �

n

�1 � � � �n�nC1
:

Proof. Let n 2N. The first inequality is immediate from the definitions of ' and � .n/.
Indeed, since � and � .n/ share the initial block of length n, by (2.6), we have

j'.�/ � '.� .n//j D j'.�/ � 'n.�/j �
1

�1 � � � �n�nC1
:

The second inequality follows from Lemma 3.13. For E�.� .n//, we just need to
take �k D1 for all k � nC 1 in the formula (3.5) to obtain

E�.� .n// D

n�1X
kD1

.�1/kk

�1 � � � �kC1
:

Thus, by Lemma 3.12, we find that

jE�.�/ � E�.� .n//j D

ˇ̌̌̌
ˇ 1X
kDn

.�1/kk

�1 � � � �kC1

ˇ̌̌̌
ˇ

D

ˇ̌̌̌
ˇ n

�1 � � � �nC1
�

1X
jD1

�
nC .2j � 1/

�1 � � � �nC2j
�

nC 2j

�1 � � � �nC.2jC1/

�ˇ̌̌̌
ˇ

�
n

�1 � � � �nC1
:

4. The dimension of the graph of E.x/

In this section, we determine three widely used and well-known dimensions, namely,
the Hausdorff dimension, the box-counting dimension, and the covering dimension, of
the graph of the error-sum function EW I ! R. In fact, although E is discontinuous on
a dense subset of I (Theorem 3.18) and is not of bounded variation (Theorem 3.22), it
is not sufficiently irregular to have a graph of any dimension strictly greater than one.
Nevertheless, we show that the Hausdorff dimension of the graph is strictly greater
than its covering dimension. This will lead to the conclusion that the graph is indeed
a fractal according to Mandelbrot’s definition in his prominent book [16], where he
coined the term fractal in a Euclidean space and defined it as a set whose covering
dimension is strictly less than its Hausdorff dimension.

Throughout this section, for a subset F of R or of R2, we denote by H s.F /

the s-dimensional Hausdorff measure of F and by dimH F the Hausdorff dimension
of F . In addition, we denote by dimBF and dimBF the lower and upper box-counting
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dimension of F , respectively. If dimB F D dimB F , we call this common value the
box-counting dimension of F and denote the value by dimB F . Lastly, the covering
dimension of F is denoted by dimcov F .

We refer the reader to [11, Chapters 2–4, 6] for details on the Hausdorff measure,
the Hausdorff dimension, and the box-counting dimension, and [3, Chapters 1–2] for
the covering dimension which is called the topological dimension in the book.

4.1. The Hausdorff dimension of the graph of E.x/

DefineGWI! I �R byG.x/ WD .x;E.x// for x 2 I . ThenG.I /D¹.x;E.x//Wx 2 I º
is the graph of E .

It should be mentioned that the proof idea of the following theorem is borrowed
from earlier studies, e.g., [2, 21, 26, 27].

Theorem 4.1. The graph of the error-sum function EW I ! R has the Hausdorff
dimension one, i.e., dimHG.I / D 1.

Proof. For the lower bound, we use the projection map onto the first coordinate
ProjWR2 ! R2 given by Proj..x; y// D .x; 0/ for each .x; y/ 2 R2. Recall the for-
mula (6.1) in [11] which tells us that for any subset F of R2 we have dimH Proj.F / �
min¹dimH F; 1º. It follows that

1 D dimH I D dimH.Proj.G.I /// � dimHG.I /:

For the upper bound, we find a suitable covering for G.I /. For any n 2 N and
� 2 †n, we define a closed interval J� � R by

J� WD
h

inf
t2I�

E.t/; sup
t2I�

E.t/
i
:

Then I��E.I� /� I�� J� . We claim that, for any n2N, we have I nE �
S
�2†n

I� ,
whereE D I \Q. Indeed, if x 2 I nE, then � WD f .x/ 2†1 by Proposition 2.3 (ii).
Clearly, f .x/ 2 ‡�.n/ with � .n/ 2 †n. Hence, x 2 f �1.‡�.n// D I�.n/ �

S
�2†n

I� ,
and this proves the claim. It follows that, for any n 2N, the collection J WD ¹I� � J� W

� 2 †nº is a covering of F WD G.I / nG.E/. Here, we have
P
�2†n

�.I� / D 1 from
the first coordinate since

P
�2†n

�.I� / D �
�S

�2†n
I�
�
� �.I n E/ D 1. Due to

Lemma 3.21, we have �.J� / D n � �.I� /. So we can cover each I� � J� 2 J by a
rectangle of base �.I� / and height n � �.I� /. Note that such rectangles have diameter
p
n2 C 1 � �.I� /. Let " > 0 be given. Recall from (3.3) that �.I� /� 1=.nC 1/Š. Then

H1C".F / � lim inf
n!1

� X
�2†n

.
p
n2 C 1 � �.I� //

1C"

�
� lim inf

n!1

�
.
p
n2 C 1/1C"

� 1

.nC 1/Š

�" X
�2†n

�.I� /

�
D 0:
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The above calculation shows that dimHF � 1C ". Since " > 0was arbitrary, it follows
that dimHF � 1. Now note that the setG.E/D

S
x2E ¹G.x/º is countable as a union

of singletons over the countable set E D I \ Q. Therefore, by countable stability
of the Hausdorff dimension (the third property in [11, pp. 48–49]), we deduce that
dimHG.I / D supx2E ¹dimH F; dimH¹G.x/ºº � 1, and this completes the proof.

4.2. The box-counting dimension of the graph of E.x/

We shall establish the following theorem.

Theorem 4.2. The graph of the error-sum function EW I ! R has the box-counting
dimension one, i.e., dimBG.I / D 1.

We define �W†! I �R by �.�/ WD .'.�/;E�.�// for � 2 †.

Lemma 4.3. The following two properties hold for �:

(i) �W†! �.†/ is a homeomorphism.

(ii) �.†/ is compact.

Proof. (i) It is enough to show that � is a continuous injection, since † is compact
(Lemma 3.2) and �.†/ � R2 is Hausdorff. Since 'W† ! I and E�W† ! R are
continuous by Lemmas 3.8 and 3.15, respectively, it follows that � is continuous.

To prove injectivity, suppose �.�/ D �.�/. Then '.�/ D '.�/ from the first
coordinate. Assume � ¤ � . Then, by Proposition 2.3 (i), we have either � 2 †re

with � 62 †re or � 2 †re with � 62 †re. In either case, Theorem 3.18 tells us that
E�.�/ ¤ E�.�/, which is a contradiction. Thus � D � .

(ii) Since † is compact by Lemma 3.2, the result follows from part (i).

Lemma 4.4. We have �.†/ D G.I /.

Proof. First note that since ' ı f D idI and E� ı f D E (Lemma 3.11), we have

.� ı f /.x/ D .'.f .x//;E�.f .x/// D .x;E.x//

for any x 2 I , and hence .� ı f /.I / D G.I /. Since † is compact (Lemma 3.2),
the continuity of � (Lemma 4.3 (i)) tells us that �.f .I //D�.f .I //. Then, by
Lemma 3.7, we have

�.†/ D �.f .I // D �.f .I // D G.I /:

The following proposition gives us a general relation among dimH, dimB, and dimB

for certain subsets of R2.
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Proposition 4.5 ([11, Proposition 3.4]). If F � R2 is non-empty and bounded, then

dimH F � dimB F � dimB F:

To prove Theorem 4.2, we first find a lower bound for the lower box-counting
dimension.

Lemma 4.6. We have dimBG.I / � 1.

Proof. By Proposition 4.5, we have dimB G.I / � dimH G.I /. By monotonicity
of the Hausdorff dimension and by Theorem 4.1, we further have dimH G.I / �

dimHG.I / D 1. Combining the inequalities, the result follows.

We need the following proposition to find an upper bound for the upper box-
counting dimension. The lemma provides an upper bound for the number of finite
sequences whose length and the product of all terms are dominated, respectively, by
prescribed numbers. The logarithm without base, denoted log, will always mean the
natural logarithm.

Proposition 4.7 ([15, Claim 3]). Let p, m 2 N. Denote by S.p; m/ the set of se-
quences .�j /kjD1 2 Nk of finite length k such that 1 � k � m and

Qk
jD1 �j � p, i.e.,

S.p;m/ WD

²
.�j /

k
jD1 2 Nk

W 1 � k � m and
kY

jD1

�j � p

³
:

Then
jS.p;m/j � p.2C logp/m�1:

We use Proposition 4.7 to obtain an upper bound for the number of all strictly
increasing finite sequences of fixed length whose product of digits is bounded from
above by a given number.

Lemma 4.8. Let p;m 2 N. Let I.p;m/ be defined by

I.p;m/ WD

²
.�j /

m
jD1 2 Nm

W �1 < �2 < � � � < �m and
mY
jD1

�j � p

³
;

i.e., the set I.p; m/ consists of all finite sequences of positive integers of length m
whose terms are strictly increasing and the product of all terms is at most p. Then,
we have

jI.p;m/j �
p.2C logp/m�1

mŠ
:



M. W. Ahn 416

Proof. Let S.p;m/ be as in Proposition 4.7. Obviously, I.p;m/ � S.p;m/. For any
.�j /

m
jD1 2 I.p;m/, all the terms �j , 1 � j �m, are distinct, so that there aremŠ ways

to form a sequence of length m with the same terms. It is clear that all the sequences
formed so are members of S.p; m/. Thus mŠjI.p; m/j � jS.p; m/j. Therefore, the
desired upper bound for jI.p;m/j follows from Proposition 4.7.

The following inequalities are well-known lower and upper bounds for the fac-
torial function. These bounds are rougher than the famous Stirling’s formula, but the
proof is elementary and they are satisfactory enough in our argument.

Proposition 4.9 ([14, Lemma 10.1]). For every n 2 N, we have

nn

en�1
� nŠ �

nnC1

en�1
:

Proof. The core idea of the proof is the fact that the map x 7! log x is increasing on
.0;1/. We refer the interested readers to [14] in which the detailed proof is given.

Now we are in a position to establish the upper bound by considering a suitable
covering of �.†/.

Lemma 4.10. We have dimBG.I / � 1.

Proof. Let " WD 2e�M with M > 0 large enough. Take n D n.M/ 2 N such that
.n � 1/Š � eM � nŠ. Clearly, n ! 1 as M ! 1 and vice versa. Then for any
.�k/k2N 2 †, by (2.2), we have

�1�2 � � � �n�nC1 � .nC 1/Š � .nC 1/e
M : (4.1)

We obtain lower and upper bounds for M by means of Proposition 4.9 as follows:

.n � 1/ log.n � 1/ � .n � 2/ �M � .nC 1/ logn � .n � 1/: (4.2)

Since .n � 1/Š=en !1 as n!1 but .n � 1/Š=eM � 1 by our choice of n, it must
be that n < M .

We first write † as a union of finitely many sets. Define

ƒ1 WD ¹.�j /j2N 2 †W �1 � e
M
º;

and for k � 2, define

ƒk WD

²
.�j /j2N 2 †W

k�1Y
jD1

�j < .k � 1/e
M and

kY
jD1

�j � ke
M

³
:

We claim that†D
SnC1
kD1ƒk . To prove the claim, we need to show that†�

SnC1
kD1ƒk

since the reverse inclusion is obvious. Let � WD .�j /j2N 2 † and assume � 2 † n
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kD1ƒk . Then �1 < eM since � 62 ƒ1, �1�2 < 2eM since � 62 ƒ2, : : : ,

Qn�1
jD1 �j <

.n � 1/eM since � 62 ƒn�1, and
Qn
jD1 �j < neM since � 62 ƒn. Since we haveQnC1

jD1 �j � .nC 1/e
M by (4.1), it must be that � 2 ƒnC1. Therefore, � 2

SnC1
kD1ƒk

and this proves the claim.
For each 1 � k � n C 1, our aim is to find a covering of �.ƒk/ consisting of

squares of side length " D 2e�M and to determine an upper bound, which we will
denote by ak , of the number of required squares.

Let � WD .�j /j2N 2 ƒ1. Then '.�/ � 1=�1 by definition of ', and so '.�/ 2
Œ0; e�M � by definition of ƒ1. We know that �1=.�1�2/ � E�.�/ � 0 from Theo-
rem 3.14 and its proof. Since �1 � eM and �2 > �1, it follows that

jE�.�/j �
1

�1�2
�

1

eM .eM C 1/
< e�M < ":

Hence, �.ƒ1/ can be covered by a1 WD 1 square of side length " D 2e�M .
Let k 2 ¹2; : : : ; nC 1º. For every � WD .�j /j2N 2ƒk , since

Qk
jD1 �j � ke

M , we
have by Lemma 3.29 that

j'.�/ � '.� .k�1//j �
1

�1�2 � � � �k
� e�M

and

jE�.�/ � E�.� .k�1//j �
k � 1

�1�2 � � � �k
� e�M :

This shows that for a fixed � WD .�j /j2N 2 †k�1, we can cover �.ƒk \ ‡� / by one
square of side length 2e�M D ". Since

Qk�1
jD1 �j < .k � 1/e

M by definition of ƒk ,
using Lemma 4.8, we see that at most

ak WD
1

.k � 1/Š
.k � 1/eM .2CM C log.k � 1//k�2

squares of side length 2e�M D " are needed to cover �.ƒk/.
Denote by N" the smallest number of squares of side length " needed to cover

�.†/. Clearly, �.†/ D
SnC1
kD1 �.ƒk/. Then, by the discussion so far,

N" �

nC1X
kD1

ak D 1C

nC1X
kD2

.k � 1/eM .2CM C log.k � 1//k�2

.k � 1/Š
:

Now note that a1 < a2 D eM , and for 2 � k � n,

akC1

ak
D

k

k � 1

�
2CMClog k

2CMClog.k � 1/

�k�1
2CMClog.k � 1/

k
> 1 � 1k�1 �

M

n
> 1;
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where the last inequality holds true since M > n. So anC1 > an > � � � > a1, and it
follows that

N" �

nC1X
kD1

anC1 D .nC 1/
neM .2CM C logn/n�1

nŠ
:

Recall that by our choice of n, we have eM � nŠ and n < M , and so

N" � .nC 1/n.2CM C logn/n�1 < .M C 1/2.2CM C logM/n�1:

Now

logN"
log.1="/

�
2 log.M C 1/C .n � 1/ log.2CM C logM/

M � log 2

D
2 log.M C 1/
M � log 2

C
.n � 1/ logM
M � log 2

C
.n � 1/ log..2C logM/=M C 1/

M � log 2
;

and we will estimate the upper limit of each of the three terms in the second line above.
Clearly, the limit of the first term is 0 as M !1. For the second term, using (4.2),
we have

.n � 1/ logM
M � log 2

�
.n � 1/ log.nC 1/C .n � 1/ log.logn/
.n � 1/ log.n � 1/ � .n � 2/ � log 2

! 1

as n!1. For the last term, notice that log..2C logM/=M C 1/! 0 as M !1
and n � 1 < M � log 2, to deduce that the limit is 0. Thus, since G.I / D �.†/ by
Lemma 4.4, we finally obtain

dimBG.I / D dimB �.†/ D lim sup
"!0

logN"
log.1="/

� 1:

Proof of Theorem 4.2. In view of Proposition 4.5, combining Lemmas 4.6 and 4.10
gives dimB G.I / D dimB G.I / D 1. Since taking closure of a set does not alter the
upper and lower box-counting dimensions by [11, Proposition 2.6], it follows that
dimBG.I / D dimBG.I / D 1 and therefore, we conclude that dimBG.I / D 1.

Remark 4.11. We point out that Lemma 4.10 gives an alternative proof of the upper
bound part in Theorem 4.1. In fact, due to Proposition 4.5, we have dimH G.I / �

dimBG.I / � dimBG.I / and, furthermore, dimBG.I / � 1 by Lemma 4.10. But then
monotonicity of the Hausdorff dimension implies that dimH G.I / � 1, which is the
upper bound in Theorem 4.1.
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4.3. The covering dimension of the graph of E.x/

The graph of EW I ! R has the same Hausdorff dimension and box-counting dimen-
sion, both equaling one. In this subsection, we show that the covering dimension of
the graph of E is zero, so that it is strictly smaller than the Hausdorff dimension.

Theorem 4.12. The graph of the error-sum function EW I ! R has the covering
dimension zero, i.e., dimcovG.I / D 0.

We say that a topological space X is totally separated if for every pair of distinct
points x; y 2 X , there are disjoint open sets U and V such that x 2 U , y 2 V , and
X D U [ V . The following propositions will be used for the proof of the theorem.

Proposition 4.13 ([3, Theorem 2.7.1]). Let X be a non-empty compact Hausdorff
space. Then X is totally separated if and only if dimcovX D 0.

Proposition 4.14 ([3, Theorem 1.8.3]). If X is a metrizable space and Y � X , then
dimcov Y � dimcovX .

The theorem is a consequence of the following lemma.

Lemma 4.15. We have dimcov �.†/ D 0.

Proof. Obviously, �.†/ � R2 is non-empty and Hausdorff, and, furthermore, it is
compact by Lemma 4.3 (ii). By Proposition 4.13, it is sufficient to show that �.†/
is totally separated. To see this, first recall from Lemma 4.3 (i) that �W†! �.†/ is
a homeomorphism. It is clear that N1 is totally separated, and so is its (countable)
product NN

1. It follows that † � NN
1 is also totally separated. Hence its homeomor-

phic image �.†/ is totally separated. This proves the result.

Proof of Theorem 4.12. On one hand, since G.I / ¤ ;, we have dimcov G.I / � 0

by [3, Example 1.1.9]. On the other hand, since G.I / is a subset of the metrizable
space �.†/ � R2, Proposition 4.14 and Lemma 4.15 tell us that dimcov G.I / � 0.
This completes the proof.
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