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Abstract. We prove low frequency resolvent estimates and local energy decay for the Schrodinger
equation in an asymptotically Euclidean setting. More precisely, we go beyond the optimal esti-
mates by comparing the resolvent of the perturbed Schrodinger operator with the resolvent of the
free Laplacian. This gives the leading term for the development of this resolvent when the spectral
parameter is close to 0. For this, we show in particular how we can apply the usual commutators
method for generalized resolvents and simultaneously for different operators. Then we deduce sim-
ilar results for the large time asymptotics of the corresponding evolution problem. Even if we are
interested in this paper in the standard Schrodinger equation, we provide a method which can be
applied to more general non-selfadjoint (dissipative) operators.
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1. Introduction and statement of the main results

Let d > 2. We consider on R? the Schrodinger equation

—id;u+ Pu=20 0nR+XRd, (1
Uli=o = f onRY, '
where f € L? and P is a general Laplace operator. More precisely we set
1
P =- divG(x)V, (1.2)
w(x)

where w(x) and the symmetric matrix G (x) are smooth and uniformly positive functions:
there exists C > 1 such that for all x € R? and & € R? we have

CEP < (G(x)§. €)ga < CIE* and C7' < w(x) < C.

We assume that P is associated to a long range perturbation of the flat metric. This means
that G (x) and w(x) are long range perturbations of Id and 1, respectively, in the sense that
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for some pg € ]0, 1] there exist constants Co, > 0, @ € N4, such that for all x € R?,
|9%(G(x) 1) + 3% (w(x) = D] < Cafa) ™07, (13)

Here and everywhere below we use the standard notation (x) = (1 + |x|?)'/2.

This defines an operator P which is selfadjoint on L2 = L?*(w(x)dx) with
domain H?2. We also denote by Ag the Laplace operator in divergence form correspond-
ingto G:

Ag = divG(x)V.

This definition of P includes in particular the cases of the free Laplacian, a Laplacian
in divergence form, or a Laplace—Beltrami operator. We recall that the Laplace—Beltrami
operator associated to a metric g = (g k) 1<, k<d 1S given by

Py = - (XWZ |g<x>|l/21k<x)

where |g(x)| = |det(g(x))| and (g’ k(x))lgj,kgd = g(x)~!. Then Py is of the form (1.2)
with w = |g|"/? and G = |g|'/?g™

After a Fourier transform with respect to time, (1.1) can be rewritten as a frequency
dependent (stationary) problem. In this paper, we are mainly interested in the contribution
of low frequencies. More precisely, we study the behavior of the corresponding resolvent
and its powers when the spectral parameter approaches 0. Then, using the already known
results for the contribution of high frequencies, we will discuss the large time behavior of
the solution of (1.1).

The spectrum of P is the set R of non-negative real numbers. We are interested in
the properties of the resolvent (P — ¢)~! (and its powers) when ¢ is close to R. The
limiting absorption principle (limit of the resolvent when ¢ goes to some A > 0) is an
important topic in mathematical physics and is now well understood. In particular, it is
known that if K is a compact subset of C*, then forn € N* and § > n — 1/2 the operator

()P )™ (x)P

is uniformly bounded in £(L?) for ¢ € K \ R. From this result, we can deduce that the
contribution of a compact interval of positive frequencies for the time dependent problem
decays faster than any negative power of time in suitable weighted L2-spaces.

The contribution of high frequencies for (1.1) depends on the properties of the oper-
ator (P — ¢)™" for ¢ large (Re({) > 1 and 0 < Im({) < 1). These properties depend
themselves on the geometry of the problem, and more precisely on the classical trajecto-
ries of the corresponding Hamiltonian problem.

We always have as much decay for the solution of (1.1) as we wish if we allow a
loss of regularity for the initial data. This decay is in fact uniform in weighted L2-spaces
under the usual non-trapping condition. We denote by ¢ the geodesic flow corresponding
to the metric G~! on R2¢ ~ T*R4. For (xo, &) € R2? and t € R we set ¢’ (xq, &) =
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(x(t,x0,&0),£(t,x0,&0)). Then we have non-trapping if all the classical trajectories escape
to infinity:
¥(x0.60) € RY x (RY\ {0}).  [x(t. x0.0)| ~——— +o0. (14)

t—>+o0

We set
Ciy={eC:Im)>0}, D={ceC:|¢I<1}, Dy=DnNCy,.

Under the assumption (1.4), it is known that forn € N* and § > n — 1/2 there exists
¢ > O such that for ¢ € C \ (R4 U D) we have
- - _ ¢
1) PP =70 llewa) <

e (1.5)

The proof is based on semiclassical analysis. We refer for instance to [24] for a
Schrodinger operator with a potential, to [23] for second order perturbations of the free
Laplacian, to [9] for a general compactly supported perturbation of the Laplacian in an
exterior domain and to [4] for a long range perturbation of the flat metric.

The analysis of low frequencies is more recent. We first recall that given R > 0 the
behavior of the localized resolvent for the free Laplacian at { € C \ R is given by

. |é—|min(0,d/27n) if n 75 d/2,
1) (Po— &) " lpw)llewz S { llog ()| ifn=d/2. (1.6)

Estimates of the resolvent near 0 for a long range perturbation of the free Laplacien
were first proved in [5] (operator in divergence form), [2] (Laplace—Beltrami operator)
and [4] (estimates for the powers of the resolvent). Earlier papers also considered the
limiting absorption principle at zero energy in some particular settings (see for instance
[11,29] and references therein). For a similar result in a non-selfadjoint setting we also
refer to [20], and in a more general geometrical setting we mention [14—16] and [8].

The optimal estimates for these powers have finally been proved in the recent
paper [6]. More precisely, it is proved that the estimates for the resolvent of the
Schrodinger operator P are the same as for the free Laplacian in (1.6).

In this paper we go beyond this optimal estimate and give the asymptotic profile of
(P —¢)7! in the limit { — 0, in the sense that the difference between the resolvent and
the profile is smaller than the resolvent or the profile themselves.

Such asymptotic expansions of the resolvent in the low frequency limit have already
been studied for a Schrodinger operator with potential. We refer for instance to [18]. We
also mention the more recent papers [1,30] for complex-valued potentials. The difficulty
in these cases is that one might have an eigenvalue or a resonance at the bottom of the
spectrum, which gives a singularity for the resolvent. This is why these results require
much stronger decay assumptions on the potential.

We already know that the size of the powers of the resolvent for the Schrodinger
operator is the same as for the free Laplacian Pp = —A. We prove that, at the first order,
they are actually given by the powers of this model operator modified by the factor w.
More precisely, our main result is the following.
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Theorem 1.1. Let p; € [0, po[, » € N* and § > n + 1/2. There exists C > 0 such that
fort € D\ Ry we have

d+p)

[P =™ = (Po = " w){x) ™| 12y < ClE™OT277,
This proves that for ¢ close to O the difference between (P — ¢)™ and (Py — &)™ w
is smaller than (Py — ¢) ™ w (see (1.6)). We deduce in particular that (P — {)™" behaves

in weighted spaces exactly as (Py — {) ™" w in the low frequency limit. As a corollary, we
recover the optimal estimate for the resolvent as given in [6].

Corollary 1.2. Letn € N* and § > n + 1/2. There exists C > 0 such that for € D \ R
we have

s on s |é-|min(0,d/2—n) ifn;éd/z,
[{x)™° (P = )™ (x) IIx(L2)<C{|log(§)| Fn—d)o. (1.7)

As usual for this kind of resolvent estimates, the proof will rely in particular on the
Mourre commutators method. To prove our result we show that this method can be applied
with much more flexibility than usual.

We have to apply the result simultaneously for P and Py. One of the difficulties is
that P is selfadjoint on the weighted space L2 while Py is selfadjoint on the usual L?
space. Thus, unless w = 1, the operators P and Py are not selfadjoint on the same Hilbert
space.

For this reason, we do not estimate the resolvent of P in lev but in L2. Then P is no
longer selfadjoint, but we can rewrite its resolvent as

(P=07'=(-A¢ —tw)'w. (1.8)

Now the difficulty is that (—Ag — ¢w)~! is not a resolvent in the usual sense, and in
particular its derivatives are no longer given by its powers. We will see that it is not
necessary to apply the Mourre method to a resolvent. We will just see (—Ag — {w) ™! as
the inverse of a parameter-dependent dissipative operator.

In particular, our proof does not rely on the selfadjointness of the operator P and the
method is robust with respect to non-selfadjoint (dissipative) perturbations. This means
that we cannot use the tools available for selfadjoint operators, but the same method could
be applied to more general problems. A motivating example is the possibly damped wave
equation, for which the optimal estimates are not known yet (in odd dimension, the opti-
mal estimates for the wave equation are not known even in the undamped case).

Finally, we do not apply the Mourre method to a power of the resolvent of some
operator, but to the product of some different parameter-dependent operators. Some of the
factors will be of the form (—Ag — ¢w) ™! as discussed above, there will be resolvents
of Py, but we will also have the factor w which appears in (1.8), and factors coming from
the difference (—Ag — ¢w) — (—A = 0).

The smallness at infinity of the corresponding coefficients given by (1.3) will play a
crucial role in the proof of Theorem 1.1. In particular, it is usual to use decaying weights
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on both sides of the resolvent, but here we will also have to use weights which appear
between the resolvents.

Note that replacing (P — ¢)~! by (—=Ag — ¢w)~'w is not just a technical issue. It
is really (—Ag — {w)~! that we can compare with (—A — ¢)™!, and (1.8) explains the
additional factor w in the estimates of Theorem 1.1.

Now we discuss one of the important applications of the resolvent estimates, namely
the analysis of the large time behavior for the time dependent problem (1.1).

After Theorem 1.1, it is expected that for large times the solution of (1.1) should
behave in weighted spaces like a solution of the free Schrodinger equation, with a different
initial condition.

The model problem is

—idug—Aupg =0 onR4 x R4,
{ 10tUg 0 + (1.9)

uoli=0 = fo on RY,

where fy € L2. The L?-norm of the solution () is constant but, given R > 0, there
exists a constant C > 0 such that if fj is compactly supported in the ball B(R) then the
energy of the solution u¢ of the free Schrodinger equation satisfies

Vi >0, |[Lg@yuo(®)lz2 < Ct)™ 2 fol o

Moreover this estimate is optimal (see [6]). The local energy decay has been proved for
various perturbations of this model case; see for instance [22, 28]. For a long range per-
turbation of the metric and under the non-trapping condition, local energy decay has been
proved in [3,4] with a loss of size O(t¢). The optimal decay at rate O(r~%/2) has then
been proved in [6].

Again, our purpose is to go further and to give the large time asymptotic profile for
the solution u of (1.1). Since the contribution of high frequencies decays very fast under
the non-trapping condition, the large time behavior of u depends on the contribution of
low frequencies. Then, with Theorem 1.1 we will see that for large times the solution u
looks like a solution of the free Schrodinger equation (1.9):

Theorem 1.3. Assume that the non-trapping condition (1.4) holds. Let py € [0, po[ and
8 > d /2 + 2. There exists C > 0 such that for t > 0 we have

1(6) 72 (€714 — &7t P0w) (x) P g2y < Cfr)~4/21/2,

This statement says that for 7 large the solution u of (1.1) is close in weighted spaces
to the solution of (1.9) with fy = wf. In particular, since we know that e ~/*Poy decays
like r=4/2 in £(L2?%, L>%), we recover the optimal local energy decay for u.

Corollary 1.4. Assume that the non-trapping condition (1.4) holds. Let § > d /2 + 2.
There exists C > 0 such that fort > 0 we have

[x) 2P () | g2y < C (1) 2.
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Organization of the paper

After this introduction, we give in Section 2 the main arguments for the proofs of The-
orem 1.1. The proofs of the intermediate results are then given in the following three
sections. In particular, we improve and apply the commutators method in Section 5.
Finally, we prove Theorem 1.3 in Section 6.

2. Strategy for low frequency asymptotics

In this section we explain how Theorem 1.1 is proved. We only give the main steps, and
the details will be postponed to the following three sections.

2.1. Difference of resolvents

We recall that the operator P was defined on L? by (1.2), with domain H?2. This is a
non-negative and selfadjoint operator on L2, and its resolvent (P — ¢)~! is well defined
for any ¢ € C \ R4 with norm equal to dist(¢, R4) ™! in £(L2).

As explained in the introduction, instead of working directly with the resolvent of P,
we will consider, for z € D,

R(z) = (P —z2)"'w™! = (=Ag — 22w) L.
We also set
Ro(z) = (A —z%)7L.
The resolvent identity between R(z) and Ry(z) reads
R(z) = Ro(2) = —R(2)(~=AG-ia — 2°(w — 1)) Ry (2). 2.1

The smallness of this difference will come in particular from the decay of the coefficients
G(x) —Id and w(x) — 1 (see (1.3)). We set Py(z) = —A —z% and P(z) = —Ag — z%w.

We actually have to compare the derivatives of R(z) and Ry(z), and it will be con-
venient to rescale the resolvents to have a spectral parameter of order 1. For n € N* and
z € D4 we set

P 2\7"
RUG)y =z =) "w ! = [ — — z w!
122 Iz

= |z]*"(R(z)w)" "' R(z) (2.2)

and 5 Y
A z%\
R = P RoCer = (=55 = 5 )

2P

Notice that w defines a bounded operator on the weighted space L2% = L2((x)?dx).
Thus, with this notation the estimate of Theorem 1.1 is equivalent, for a possibly different
constant C > 0, to

1)~ (RP(z) — RIV(2)) (x) 8l 12y < Cz|mn@ten2m, 2.3)
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It is usual in such contexts to estimate powers (in particular products) of resolvents.
The first step is to rewrite the difference R (z) — R([)"] (z) as a sum of products of R(z)
and Ry(z) factors. By (2.1), for any n € N* and z € D4 we have (see Appendix A)

n—1
R() = R () = - R 2)b0 (2 RE2)
k=1

=Y R0, () RY (=), (2.4)
k=1

where for z € D4 we have set

P(z) = Po(z)  —Ag-ia—z*(w— 1).

Oo(z) =w—1, 61(z) = BE = BE

(2.5)
(of course 6y(z) does not depend on z, but it will be convenient to have analogous notation
for these two operators). Then we have to estimate operators of the form

RF+9( )0, () RM(2), o efo. 1. 1<k<n—1+o0. (2.6)

These operators are now products of resolvents of the form R(z) or Ry(z), with inserted
factors w, 6y(z) or 61(z). The additional smallness in (2.3) compared to the estimates of
R"(z) or R([)”] (z) alone will come from the smallness (in a suitable sense) of the factors
Oo(z) and 6, (z).

The estimate (2.3) and hence Theorem 1.1 are then consequences of the following
result.

Proposition 2.1. Let p1 € [0, po[. Letny,n, e N*, 0 €{0,1} and§ >ny +n,—o + 1/2.
Then there exists C > 0 such that for z € D4+ we have

1(x) ™ R™11(2)805 (2) RI (2) (x) 7 |l 12y < C|z|mn@Hp12m42m2=20) (o 7

Remark 2.2. We have said that a term of the form (2.6) with 0 = 0 should be small
because w — 1 decays at infinity. On the other hand, we have also said that it is
important to replace the (rescaled) multiple resolvent |z|>*(P — z2)™ by RI"'l(z) =
|z|?"(P — z%)""w™!. This seems contradictory since the difference also contains a factor
(1 —w™!) = (w—1)w™!. However, it will be important for the estimate of (2.6) that the
factor Og(z) = w — 1 is not the first or last factor, but inserted between some resolvents.
See the discussion in Remark 4.4 below.

2.2. Estimates given by the commutators method

In Section 5 we will prove that we can apply the Mourre commutators method to operators
of the form (2.6).

For a Schrodinger operator, this method usually gives uniform estimates for the resol-
vent near a positive frequency. Near 0, the size of the weighted resolvent is as required
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uniform with respect to the imaginary part of the spectral parameter, but the estimate
blows up if its real part also goes to 0.
It is standard that an important role is played by the generator of dilations
x-iV+iV-x  id

Ay = =———x-iV. 2.8
0 5 5 (2.8)
Here we will not apply the commutators method directly with the operator Ag as
the conjugate operator. Since P(z) is a small perturbation of Py(z) only at infinity, we
will use, as in [6], a version of Ay localized at infinity. More precisely, for some y in

C° (R4, [0, 1]) equal to 1 on a neighborhood of 0, we consider the operator

(Q=px-iV+iV-x(1—y)

A, =
X 2

(2.9)

Its domain is the set of u € L2 such that (1 — y(x))(x - V)u € L? in the sense of distri-
butions. This is also a selfadjoint operator on L2 and for § € R, u € L? and x € R? we
have

(™" xu) (x) = det(dxy () u(@F (x)). (2.10)

where 6 — ¢>§ is the flow corresponding to the vector field (1 — y(x))x.
For r € Dy and x € R? we set x,(x) = y(rx). We will work with the operator
A, = Ay, .Forz e D weset y, = x|z and

A, = Ay @2.11)

With the rescaled versions of the resolvents, the estimates given by the commutators
method read as follows.

Theorem 2.3. (i) Letn € N* and § > n — 1/2. There exists C > 0 such that for z € D4
we have

{AZ) P RM(2)(A2) P |l g 12y < C. (2.12)

(ii) Let p € [0, po[. Let ny,n2 € N* and § > ny + np, — 1/2. Let 0 € {0, 1}. There exists
C > 0 such that for z € D4+ we have

1(42) "8 RU(2)8, (2) RI2V(2) (42) 8 | 12y < C 2P (2.13)

The proof of Theorem 2.3 is postponed to Section 5.

2.3. Elliptic regularity in low frequency Sobolev spaces

Theorem 2.3 is not enough to prove Proposition 2.1. As in [4,7,27], we use the gain of
regularity to get some smallness when z is close to 0.
For z € Dy we setr = |z| and Z = z/|z|. We have the resolvent identity

R(z) — R(ir) = (22 + r)R>Er)wR(z) = (22 + r>)R(z)wR(ir). (2.14)
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The factors R(ir) will give the required regularity. To have as much regularity as needed,
we can proceed with iterations of (2.14) and get, by induction on the number N € N* of
R(ir) factors (see Appendix A),

N

RV(z) = > Cpmi(1+ 23" " RM(ir) (2.15)
m=n
n
+ Y Cpra+ 2N RN wRM (2) (2.16)

v=max(1,n—N)

(with the usual convention that the first sum is 0 if N < n). The interest of this expression

is that in (2.15) we only have R(ir) factors instead of R(z), while in (2.16) we still have

R(z) factors but we also have as many R(ir) factors as we wish to get some regularity.
Similarly we have

N

RY(z) = > cptta + 22 Rl Gir) (2.17)
m=n
n
+ Y O+ YRV RM ). (2.18)

v=max(1,n—N)

The following two propositions will be proved in Section 4. In Proposition 2.4 we
estimate a term of the form (2.6) with R(z) and Ry (z) replaced by R(ir) and Ry(ir).

Proposition 2.4. Let p € [0, po[. Let ny,n, € N* and o € {0, 1}. Let 51,55 € [0,d /2],
81 > sy and 8, > s,. There exists C > 0 such that for z € Dy and r = |z| we have

||(x)_8‘R["l](ir)Qg(z)R([)"Z](ir)(x)_82||x(Lz) < C|Z|min(sl+32+p,2n1+2n2—20).

We observe that in Proposition 2.1 we work in weighted spaces, and the weight is
given by negative powers of x. But for the commutators method in Theorem 2.3 we need
negative powers of the generator of dilations A,, which also contain derivatives. Thus we
also have to use the regularity of the R(ir) factors to turn estimates with weights (4,)~%

into estimates with (x)~%.

Proposition 2.5. Letp € [0, po[ and o €{0,1}. Let s € [0,d/2[ and § > s. Let N,n € N*,
There exist Ng € N and C > 0 such that if N > Ny then for z € Dy and r = |z| we have

1) P RN G ryw(A2) | g z2) < Clz P, (2.19)

1(x) R 1), () REV(17)(A2) Nl 12y < C L2+, (2.20)
AP REM ) (x) Nl 1) < Cl2I, (2.21)

(A wR™ (i) 06 (2) Ry i 7) () 8l g 12 < Clz 7. (2.22)

To prove these two results, we will work in rescaled Sobolev spaces. We set |D| =
~/—A and, for r €]0, 1], we define |D,| = |D|/r. For s € R we denote by H; and Hrs
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the usual Sobolev spaces H* and H*, endowed respectively with the norms defined by

lulleg = [P u| o0 Ml g = 1D %0 2

In particular,
el s = rllull gy (2.23)

and for @ € N and s € R the operator D* = (—id,)* defines an operator from H? to
HE7 of size 19!, Finally, for r > 0 we denote by O, the dilation defined by

O,u(x) = rd/zu(rx). (2.24)

Then O, is a unitary operator from H* to H? and from H* to H?. For z € D we set
H=H | and O; = Oy

s
|z

2.4. Proof of Theorem 1.1

Assuming Theorem 2.3 and Propositions 2.4 and 2.5 we can now give a proof for Propo-
sition 2.1. We recall that Proposition 2.1 implies Theorem 1.1.

Proof of Proposition2.1. Letz € Dy. Wesetr = |z]and Z = z/r. Letn € N*. Assume
that in (2.7) we replace R"11(z) and R([)"z](z) by terms of the form (2.15) and (2.17),
respectively. Then it is enough to prove that for my > ny, my > ny and § > ny + npy —
o + 1/2 we have

1)~ R )06 (2) RG™ (i) x) 72| S [z min@ber2ntmazol o (2.05)
Given p € ]p1, po[, this is a consequence of Proposition 2.4 applied with §; = §, = § and

d+p1—p

2 ,n1+n2—0). (2.26)

S1 =52 = min(

Now assume that in (2.7) we replace R["11(z) and Rg"zl (z) by terms of the form

(2.16) and (2.18), where N can be chosen as large as we wish. By (2.13), (2.19) and
(2.21) applied with s as in (2.26) we have, for v; < ny1, vy < np and Ny, N» > Ny,

)7 RV rywRP (2)65 (2) RG> (2) R i) (x) 78| S [z |minerbon 20m Fnamo)),

Then we consider the case where R11(z) is replaced by a term of the form (2.16)
and R([)mZ] (z) is replaced by a term of the form (2.17). In this case we have to estimate an
operator of the form

()8 RNy wRM (2)0, (2) R (i) (x) 9,

where v; < ny, my > nj, and N; can be chosen arbitrarily large. If m, is too small,
we cannot apply (2.21) on the right of RIMI(z) (to which we apply Theorem 2.3).
Then we proceed with more resolvent identities. More precisely, we apply (2.15)—(2.16)
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to R[11(2), replacing RIV1(i r)wRM(2) by RM(2)wR¥(ir) in (2.16). Now we have to
estimate terms of the form (2.25) or

()7 RNy wRM (2)wRN (i )0, (2) RY™) (i) (x) 8,

with N, N; large, v < ny and m, > n,. For such a term, we apply Theorem 2.3 to the
factor R[] (z), and then (2.19) and (2.22) on each side.

Finally, if RI"11(z) is replaced by a term of the form (2.15) and R([)nZ] (z) by a term of
the form (2.18), we proceed as in the previous case. We omit the details. ]

3. Preliminary results

In this section we give some preliminary results which will be used in the next two sec-
tions. We fix p € [0, po[ and p € ]p, pol.

3.1. Decaying coefficients

The gain |z|? in all the estimates involving 8, (z) (see (2.13), (2.20), (2.22) and Proposi-
tion 2.4) is due to the decay of the coefficients given by the assumption (1.3). We recall
this property in this subsection.

We fix an integer dy greater than d /2. For k > 0 we denote by $ ™ the set of smooth
functions ¢ such that

Iplls— = sup sup [{x)T3%p(x)| < +oc. (3.1)
le|<do xeR4

After conjugation by O, (see (2.24)), the following statement is Proposition 7.2 in [7].

Proposition 3.1. Let s € |—d/2,d/2[ and k > 0 be such that s —k € |—d /2,d /2[. Let
n > 0. There exists C > 0 such that for ¢ € ST ", u € HS and r € ]0, 1] we have

pullps— < Criiiglls—se—nllullp.

Remark 3.2. In particular, if ¢ € $77 for some n > 0, then for any s € |-d/2,d /2|
multiplication by 1 + ¢ defines a bounded operator on A, uniformly in r € ]0, 1].

Remark 3.3. In [7], Proposition 3.1 was only given for x < d /2, butif k > d /2 we nec-
essarily have s — xk < 0 < s and in this case we simply write, by the Sobolev embeddings
and the Holder inequality,

pullas—r < Ndull gg—e = r*lipull gome S r ldull 20

SN, gl 2a S NBlls-enllul o S ¥ Igls—<-nlul

SN lls—e—nllull g (3.2)

Proposition 3.1 explains how the weights which appear in the resolvent estimates can
be used to convert some regularity into a power of the small spectral parameter z. As a
particular case of (3.2), we record the following estimates.
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Lemma 3.4. Let s € [0,d/2[ and § > s. There exists C > 0 such that for r €10, 1] we
have
1) P leqas,ry SCr*and () |lgq2,pms < Cr.
With Proposition 3.1 we also see that the decay of the coefficients in (1.3) gives small-

ness for the operators 0, (z) defined in (2.5).

Proposition 3.5. Let p’ € [0,plands €—d /2 + o', d/2[. There exists C > 0 which only
depends on s, p' and p such that for z € Dy we have

/
lw — 1] < Cllw —1]ls-5lz]°

£(HS HE™)

and
1P@) = Po@l gyt iy < CUZPPNG =55 + 122w = 1])5-5).
In particular, for any s € |—d /2, d /2] we have
1Pl gt gy < 1+ CPUIG —16l5-5 + w — 1]5-5).
Proof. The first estimate directly follows from Proposition 3.1 applied with k = p’ and
n=p—p >0.Thenfor j, k € {1,...,d} we have
”D./ (Gj,k - Sj,k)Dk”x(HZs-&-l’Hg—l—p’) < |Z|2”(Gj,k - 8j’k)”§€(H§,H§_p/)
S 2P N1(Gk = 810 152,
which gives the estimate on P(z) — Py(z). With p’ = 0 this gives the last property since
||P0(Z)||$(Hg+l,H§—l) =1 un

In Proposition 4.2 below, we will apply Proposition 3.5 with o’ = 0 because we can
only pay two derivatives. Because of this, 61 (z) is not small even for z close to 0, unless
|G — Id||g—5 is. Since we have not assumed that this is the case, we will write the per-
turbation G — Id as a sum of a small perturbation and a compactly supported contribution
which will be handled differently.

Lemma 3.6. Lety > 0. We can write G = Go 4+ Goo Where Go € Cg° and ||Goo — Id|| s—5
<Y

Proof. Let ¢ € Cg° be equal to 1 on a neighborhood of 0. For ¢ > 0 and x € R? we set
@e(x) = ¢(ex). Then (G — Id)¢. is always compactly supported, and on the other hand,
(G —1d)(1 — ¢p¢)|ls—5 < £°°~P. We conclude by choosing ¢ small enough and by setting
Go = (G — Id)¢pe and G, = Id + (G — Id)(1 — ¢,). m

3.2. Commutators with x and A,

All along the proofs of the following two sections we are going to use commutators of
different operators involving the operators of multiplication by the variables x; and the
generator of dilations localized at infinity, 4.
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Let T be a linear map on the Schwartz space §. For r € ]0, 1] and j € {1,...,d} we
setadyx, (T) =Trx; —rx;T :§ — §.Forz € D4 wesetad;, = ad|;|x;. Then for u =
(M1s--- nq) € N4 we set (notice that ad,x; and ad,, commute for j,k € {1,...,d})

no— I Ha
ad,, = ad; o---oad.y{ .

We fix y € Cg° equal to 1 on a neighborhood of 0 and we define 4, by (2.9) and
then A, by (2.11).

Wesetady ;(T) =ada.(T) =TA; — AT : § — S.Finally,for N e N wesetdy =
URN_o{0,....d}*, and for J = (j1,.... jx) € dn (withk €{0,...,N}and ji,..., jx €
{0,...,d}) we set

ad] (T) = (ad;, ; o --- o ad;, . )(T).

And if for some 51,52 € R the operator adZJ (T) defines a bounded operator from H;'
to H:? for all J € 4, then we set

J
1T e st sy = 2 127 (Dl gzt g2y
Jedn

We write ||T||€ZN(H§) for ||T||€ZN(H§’H2§). Notice that for 77, 7> : § — § we have

1727y ||€§V(H;1,st3) < T ”fg\/(HZSl’HZsZ)”T2||€§V(H;'2,HZS3)~ (3.3)
We can rewrite A, as

ix-V id
=S — (= px-iV+

ix-Vy
7

Ay = (1= x)A40 + (3.4)

Then the commutators of A, with multiplication operators and derivatives are given by
[V, Ayl =i(1 = p)x-VV, (3.5)

and

. . id i
[0j. Ax] = —i(1 = )0 +1(0; )(x - V) + =@ 0) + 5@ (x - V). (3.6)
By induction on k € N we get in particular
AR = x4y —i(1 = )k (3.7)
Lemma 3.7. Let N € N and s € R. Let ¢’ € [0, p]. There exists C > 0 such that the
Sfollowing assertions hold for all z € D.:

() Ifs € 1=d/2.d /2] then |G len (grs) < C and [wllen zs) < C.
(i) If s € 1=d/2+ p/. d /2] then

— , p/ _ , p/
”G Id”\eZN(Hg,Hg*D) < C|Z| and ||w 1||~€ZN(HEV’H%Y*D) < C|Z| .

(iii) For j €{l,...,d} we have ||aj||€éV(Hg’Hgfl) < Clz| and ||8J'”€§V(H§’+‘,Hg) <Clz|.
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Proof. For G — Id we observe that, by (3.5) and Proposition 3.1,

N
1G =1l ggs sy S 22 1= 220 - )G = 1) gy s

m=0
N
Sz ) G- V™G — 1)l 5.
m=0

This gives the estimate on G — Id. The estimates on w — 1, G and w are similar.
By (3.6) applied with y, (and (3.5)) we can check by induction on m € N that for
z € D4 we have

adyy_(0;) = (1 — x2)"0; + bjm(|z]x) - V + |z|c;m(|2]x), 3.8)

where b; ,, : R4 — C4 and Cim R? — C are smooth and compactly supported. Then
multiplications by (1 — x2)™, bj,»(|z|x) and ¢, (|z|x) define bounded operators on H
uniformly in z € D4 for any s € R. This is clear for s € N, and the general case follows
by interpolation and duality. This gives the last statement. ]

With Lemma 3.7 and (3.3) we deduce the following result.

Proposition 3.8. Lets € |—d/2,d/2[, N € N and p’ € [0, p]. There exists C > 0 such
that for z € D4 we have

”P(Z)||sz(H§+1,HZS_1) < Clz|%
Moreover, if s € |—d /2 + o', d /2| then for o € {0, 1} we also have
||90’(Z)||~€ZN(H;‘+1,H§'—1—;)/) < C|Z|p .

Finally, it is known that the commutators method that we will use to prove Theo-
rem 2.3 is based on the positivity of the commutator between the real part of the operator
under study and the conjugate operator (see Definition 5.1 (H5) below). In Section 5 we
will use the following result. For z € D4 we set

Pr(z) = —Ag — wRe(z?) (3.9)

and
K(z) = [Pa(2).i4:] — 2(1 — xz)(Pr(z) + Re(z?)). (3.10)

Proposition 3.9. (i) There exists C > 0 such that the commutator [Pr(z), A;] extends
to a bounded operator from H} to H;' and ||[Pr(z), Azl gcpr g1y < Clz|%

(ii) There exists C > 0 such that for z € D4 we have
1z2)? 2 K@) )2l g ey < Clal?.

Proof. The first statement follows from Lemma 3.7, like Proposition 3.8. We prove the
second property. We have

K(2) = [-Ag,i4:] + 2(1 = x2)Ag — Re(z%)[w, i4;] + 2(1 — xz)Re(z?)(w — 1).
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The contributions of the last two terms are estimated in &£(L?) with (3.5) and the decay
of w — 1 and x - Vw. For the terms involving Ag we write

[Ag.id:]=2(1—x2)A = Y (19j.i4:]— (1= x2)9;) G a0k
1<j,k<d

+ Z 0;[Gj k. iAz]0k

1<) k<d

+ Y 860k iAz] — (1— x2)3%)

1<j.k<d

- Z (0 x2)Gjx O (3.11)

1</,k<d

For j,k € {1,...,d} we have
1(z2) P20 (z2) 2| g a1 1.2y = 121 106) 2006 L aan 1) S 121,

so (using (3.8))

1(z2)P"2 (bj,1(1212) - V + 1211 (1210)) Gk g 42002 | g a1 )

S 12H1{zx)2 (B (z1x) - V + |zlejn (1210) (22) 2 g g2,y S 1217

This gives the estimate for the contribution of the first term on the right-hand side
of (3.11). The third term is estimated similarly. For the second term we write

(zx)?20; Gk i A)0k (2) 2 N g =1y S 127102 x)P2(Graer iA)zX) [ 212

Y

and finally we observe that ||0; yz|lco S || to prove that the last term in (3.11) is also of
size O(|z|?) in £(H}, H;!). The proof is complete. |

3.3. Additional commutator properties in an abstract setting

We finish this section with general considerations about commutators in an abstract set-
ting. This will be used for the abstract commutators method.

Let ¢ be a Hilbert space. We identify J with its dual. Let X be a Hilbert space,
densely and continuously embedded in # .

We denote by £ (K, KX*) the space of semilinear maps from X to its dual JK*. We
similarly define £(K*, X). In particular, £(#, #*) is identified with £ ().

We consider a selfadjoint operator A on # with domain Dy C H (endowed with the
graph norm). Then A can also be seen as an operator Ay € £(Dy, H). Moreover, for
¢ € J we have ¢ € Dy if and only if A%, € H and in this case Ap = A%, . We set

Dx ={p e X NDy: Ap e X\ (3.12)
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By restriction, A defines an operator A x on K with domain Dy . Then Dx is endowed
with the graph norm of 4 5. We can see 4 x as an operator in £(Dy, K), and A% maps
K* to Dy We set

Dyr ={p € K™ : A%p € K™}, ol = l0lies + 11450150

and for ¢ € Dy we set Ax=p = Aj.0. We have Dx C Dy C Dyc+. Moreover, for
Ko € {K,H, J*} we have

Dy, =1{p € Ko: A}gw € Ko},

and for ¢ € Dy, we have A;(gw = Ax, .

Let K1, K € (K., H. K*}. We set €0(K1 . Kz) = £(K1. K) and for § € L(Ky. Ka)
we setad(S)=S. Then, by induction, we say that S € €4 (K1, K>) if S€ €771 (K1, K2)
and the commutator ad’y ™! (S) A 5, — A:;c; ad}~!(S) € £(Dx, J);c;) extends to an oper-
ator ad’y (S) in £(Ky, K3). Then we set

n
k
RSP SED B AN PP
k=0

We write €" (K1) for € (K, K1). We also write ‘ég (K1, K>) instead of €} (K1, K>)
for semilinear operators.
The general properties which will be used are the following.

Proposition 3.10. Let K, K>, K3 € {K, H, K*}.
(i) For S € €}(X1.,K2) we have S* € €1(K5, KT) and adq(S*) = —ad4(S)*.
(i) Let S € 'C’j (K1, K2). Then S maps Dy, to D, and on Dy, we have

Ag,S = SAx, —ada(S). (3.13)
(iii) For Sy € ‘C’j(JCl, JK>)and S, € ‘C’/}(JCZ, K3) we have S, 81 € ‘C’j(JCl, K3) and
ad4(S251) = S2ad4(S1) + ada(S2)S1. (3.14)
Proof. The first statement is clear. Let ¢ € Dgx,. We have S¢ € K> and
AGesSp = SAgy, ¢ —ada(S)g € K3,
so S¢ belongs to Dy, and (3.13) follows. Then, applying S, to (3.13) gives
S$2S1Ax, 9 — Sahx,S19 = S2ada(S1)e.
Since S1¢ € Dy, we similarly have $>S1¢ € Dx, and
S A g, S19p — Ag, 52819 = adg(S2)S10.

This proves that S, 51 € €4 (K1, K3) with ad4(S>S1) given by (3.14). n
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We finally recall from [7] the following result.

Proposition 3.11. Let N € N.
(i) Let 5 € [—N, N]. There exists C > 0 such that for S € ‘6[11\/ (H#) we have

(A S{A) N2y < CUS ey ey
(ii) Let 6—,84+ = 0 be such that 6— + 8+ < N. There exists C > 0 such that for S €
el (J) we have
1{4)>~ 1r_ () S TR, (A)(A)* ley < ClISllen ey-

Proof. The first statement is [7, Proposition 5.12] and the second follows easily from
[7, Proposition 5.13]. [

4. Elliptic regularity

In this section we prove Propositions 2.4 and 2.5. The parameter p € [0, po| is fixed by
these statements. We also fix p € |p, pol.

Proposition 2.4 will be given by (4.4) while Proposition 2.5 will follow from Propo-
sitions 4.3 (ii) and 4.5.

Let s € R. For r €]0, 1] the resolvent Ry(ir) = r~2(|D,|?> + 1)~! defines a bounded
operator from HS™! to HST! with norm r~2. More generally, if we set

Dy ={z €Dy :arg(z) € [7/6,57/6]},

then there exists co > 0 such that for s € R and z € D, we have
Co
”RO(Z)”;';(Hg—leZX‘f‘l) < W 4.1
Then, for k € N* and s, s’ € R such that s’ — s < 2k we have

k
IRV g aas. sty = 12PN R0 N g ggs sty < b 42)

Our first purpose is to prove a similar property for R(z). By the usual elliptic regularity
this holds for any fixed z € D ; the difficulty is to get uniform estimates for z close to 0.
We cannot extend (4.1) to R(z) in full generality. We begin with the case s = 0.
Proposition 4.1. There exists ¢ > 0 such that for all z € D, we have
c
IR g1 m1y < EE
More generally, for N € N there exists cy > 0 such that for z € D, we have

CN
”R(Z)”‘CZN(HZ_',HZ‘) < W
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Proof. Letz € D, and ¥, € [—n/3, m/3] be such that arg(z) = 7 /2 + ¥,. The operator
e~1%z P(z) defines an operator in £(H}, H; ') uniformly in z € D;. Moreover, for u € H}
we have

Re (e_"ﬁfP(z)u,u)Hz_l’Hzl = cos(¥;)((G(x)Vu, Vu) 2 + |z|* (wu,u) 2) > |z|2||u||§{zl.

The Lax—Milgram Theorem gives the first estimate.
Now let N € N. For J € J, we can write adZJ (R(z)) as a sum of terms of the form

R(z)ad!! (P(2))R(z)...ad K (P(2))R(z),

where k € N and J1,..., J; € dn. The general statement follows from (3.3) and Propo-
sition 3.8. -

On the other hand, we have a result similar to (4.1) if G is a small perturbation of the
flat metric and s is not too large:

Proposition 4.2. Let s € |—d /2,d /2[. There exist y,c¢ > 0 such that if |G —1d||g-5 < y

then for z € D, we have
c

”R(Z)“;g(HZS*l,stJrl) < W

More generally, for N € N there exists cy > 0 such that for z € D, we have

CN
IRG)len (gs—1 gs+1y < BB

Proof. Let cp > 0 be given by (4.1). If |G — Id| g—5 is small enough, then by Proposi-
tion 3.5 applied with p’ = 0 there exists r¢ € ]0, 1] such that for z € D, with |z| < ro we

have
j2 P P
1PE) = o)l st sty < 5o
Then

1 2c
IR g g1 sty = H(l + Ro(2)(P(z) — Po(2))) Ro(2) ”x(Hg—‘,H‘z”“‘) < #.

For z € D, with |z]| > ro we use the standard elliptic estimates, and the first estimate is
proved. The second estimate follows as in the proof of Proposition 4.1. ]

The first part of the following result with z/ = i |z| gives Proposition 2.4. With z = z’
and 51 = s, = 0 it also gives Theorem 2.3 for z € D, (without any weight). The second
part of the result gives Proposition 2.5 with (zx)® instead of (A)%.

Proposition 4.3. Let 51,55,5 € [0,d/2[, 81 > s1, 62 > sp and § > s. Let o € {0, 1}. Let
ny,nay,n € N*,

(i) There exists C > 0 such that for z € D4 and z' € D, with |z| = |z’| we have

1) 8 R () (x) 702 | g 2y < C |z |minGsts2.2m) (4.3)
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and

”(x)—b'] R[nl](Z/)OO(Z)R([)nz](Z/Nx)—Sz||£(L2) < C|Z|min(s1+sz+p,2n|+2n2—20)‘
4.4)

(ii) There exists C > O such that for z € D4 and r = |z| we have
1) R i ryw <

160) 7 R Gir)b () RG ) rx) a2y <

1rx) RV @) ) Nz <
<

(
1rx) S wRY (i) 6, (2) RE2V i) (x) Pl g2

() L2y < Crmnen, “3
( Cpmin(s+p.2n1+2n2-20) (4 6

Crmin(s,Zn)’ 4.7
Cpmin(s+p2mi+2m2-20) (4 g)

Remark 4.4. Before proceeding with the proof of Proposition 4.3, we make a few pre-
liminary comments.

We recall that decaying coefficients give smallness if we can ensure some regularity,
in the sense of Proposition 3.1, and that we will use the resolvents R(ir) to get this
regularity. However, because of the restriction in the Sobolev indices in Proposition 3.1,
we cannot gain a lot of regularity and then get a lot of powers of r = |z| with a strongly
decaying coefficient. This explains why the local energy decay is not improved if we
choose stronger (for instance compactly supported) weights in Corollary 1.2.

Thus, the order of the factors is important in the analysis. Roughly, an alternation of
gains and losses of regularity is better than a lot of regularizing factors followed by a lot
of derivatives (or decaying coefficients).

Notice also that we cannot simply commute the factors involved in the proofs. Com-
pared to what happens for high frequencies in semiclassical analysis, the commutator of
two operators is usually no better than their composition. This is the main reason why we
had preliminary discussions about commutators above.

A typical example of this problem is the discussion around (4.11) below. Withn; =1
and 0 = 1 we have an operator 0 (z) of order 2 + p only followed by one resolvent, so
we cannot end up in H51+1! if 5, is close to d /2 and || = 1.

Similarly, the factor 6p(z) = w — 1 does not give extra smallness if it is the first or last
factor. This is why we need the extra factor w in Theorem 1.1 (see Remark 2.2 above).

Proof of Proposition 4.3. e Let y > 0 to be chosen small enough. Let Gy and G, be
given by Lemma 3.6. Let Roo(z’) and RL’Z,] (z') be defined like R(z") and R} (z) with G
replaced by Goo. Then Proposition 4.2 applies to Roo(z').

o Letay, o € N with |y, |ora| < 1. We prove

||(X)_81 DYt R["](Z/)Daz (X)_SZH.:ﬁ(LZ) < C|Z|min(S1+S2+\¢¥1|+|¢12|,2n). (4.9)

With o = ap = 0 this will give (4.3). Since we can choose 51 and s, smaller, it is enough
to consider the case 51 + 5 < 21 — |aq | — |ora|. We first prove (4.9) with RP1(z') replaced
by R([;’,] (z). By Remark 3.2, multiplication by w defines a bounded operator on H uni-
formly in z for any s € |—d /2, d/2[. With Proposition 4.2, we find that the operator
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RZ(z') is uniformly bounded in £(H;*27%2! g51H1*1ly if , > 0 was chosen small
enough, and then D% R%(z') D% is of size O(|z|*11+1%2]) in £(H; 2, HE'). Then (4.9)
for RYY (z’) follows from Lemma 3.4.

e Similarly, we prove (4.4) for RZ1(2’) with an additional derivative. Let o € N9
with |a| < 1. We consider the case 51 + 52 < 211 + 2ny — 20 — |o| — p. Assume that
a=0o0orc =0o0rn; >1ors; <d/2— p. Then there exists s € |—d /2 + p, d/2[ such
that

s1+la| =2n1 +04+p <5< =524+ 2n3—0. (4.10)
Then R([)”zl () is uniformly bounded in £ (H; *2, HS*9), by Proposition 3.5 applied with
p' = pthe operator 04 (z) is of size O(|z|°) in £(H:°, H ") and finally D* R%1(2")
is of size O(|z]'®) in £(HS °7°, H3") if y > 0 is small enough. With Lemma 3.4 this
gives

” (x)—é'l D¢ R[o'é)l](Z/)GG(Z)R([)nZ](Z/NX)_SZ ” 5 |Z|min(s1+sz+p+|(x\,2n1+2n2—20). (4‘1 1)
Notice that this does not apply if |¢| = 1,0 = 1,n; = 1 and 57 > d/2 — p, since then no

s smaller than d /2 satisfies (4.10).
e Now we finish the proof of (4.9). Using the resolvent identity

R(z') = Reo(z) + Roo(Z/)AGoRoo(Z/) + Roo(Z/)AGoR(Z/)AGORoo(Z/)»
we check by induction on n € N* that we can write R (2') as a sum of terms of the form
T(2') = RN Bi(REN) Ba(2)) .. R B (2RI (),

where k € N, nyg,...,ny € N*¥aresuchthatng+---+nx =n+k,andfor j € {1,...,k}
the operator B;(z’) is equal to |z'| 2 Ag, or |z'| 2 Ag, R(z') Ag,. By Proposition 4.1, an
operator of the form Dy, R(z")Dy,, 1 < £1, £, < d, extends to a bounded operator on L2
uniformly in z" € . Using (4.9) proved for R, the compactness of the support of Gy
and the derivatives given by the operator Ag,, we obtain

d
)P DU T YD (x) 2 (e S D Moyt
L yeeey lop=1

Ney,..otor
1
~ |Z|2k

k

I{x) =51 D RO () Dy (x) %2
—1

x [T 1)1 Doy, R Dey ()52 1) ™81 Dy RESE) D22 (x) 72|
j=1

k—1
< |Z|—2k|Z|min(s1+s2+\a1|+1,2n0) l_[ |Z|min(51+52+2,2n/‘)|zlmin(51+S2+1+|‘x2|72nk)_

j=1
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We can check that this gives (4.9) if one of the minima is equal to the first argument.
Otherwise the sum of the powers of |z| is equal to —2k + Z?:o 2nj = 2n. Then we also
have (4.9) and hence (4.3).

e For (4.4) we replace R"11(z’) by the following expression, also given by the resol-
vent identity:

1 &
R = R + ER 3 R Ag, R TFHI(), 4.12)
k=1

The contribution of the term RC[,'Q] (z’) in (4.4) is already estimated by (4.11) applied with
o = 0. We set s§ = max(s; — 1,0) < d/2— p and consider 87 > s{.Letk € {1,...,n1}.
By (4.9) and (4.11) we have

1

WHW‘”R“‘]@')AG R0, () RE () (x) 2 1)
d

1 _
STE, Z x) 7RI Dy, ()72
x ||<x>— 51 Dy, RUVF+U (g, () R () (x) 752
< |Z|—2|Z|min(sl+52+1,2k)|Z|min(Si +s2+1+p,2(n1—k+1)+2n2—20)

< |Z |min(S1 +s52+p,2n1+2n2—20)
S .

This concludes the proof of (4.4).

e We turn to the proofs of (4.5)—(4.8). We can forget the factor w in (4.5) and (4.8)
since it commutes with (rx)‘g and defines a bounded operator on L2. As above, for (4.5),
(4.6) and (4.8) we first give a proof for R, (ir) with an additional derivative, and then we
deduce the general case with (4.12) and (4.9). We begin with (4.5). Letk e N and 8 € N4
with |B] < 2k. Let « € N9 with |o| < 1. We can write (rx)_sz"‘Rgé](ir)(rx)ﬂ as a
sum of terms of the form

(rx) 7  (rx)P1ad (DRI (i),

where 8; + ,32 = B. Assume that s < 2n — |«|. By Lemma 3.7, Proposition 4.2 and (3.3),
the operator ad?2(D®RI(ir)) is of size O(r'?l) in £(L2, H?). Since (rx)~2k(rx)h1
is uniformly bounded in £(H}), this proves that (rx)~ 2k peR O'Z)] (ir)(rx)? is of size
O™y in £(L?, H?) for any k € N. By interpolation we get

Irx) = DRI G ) (rx)8 |l 2y S 7.

)N

On the other hand, by Lemma 3.4,

1) 7 ) e a2y S N+ X)) ™ N ey 1)
S P leqay.z2y + P 1P ()7 1)
<r’.
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These estimates together prove
1) DRIV i r) (rx) || g g2y S PG Hleh2m), (4.13)
Ifny #1lora=00rs <d/2— poro =0, we similarly prove

1(x) " DEREN (i) 0, () RY2V i) (rx)? | g2y S pinetotlal2m+2m2=20) (4 14

Finally, we also have (4.8) with R[*11(i ) replaced by RC[,Z'](i r).
eletk €{l,...,n}. By (4.9) and (4.13) we have

1 _ . _ .
S 1) 3D REN i) Agy REFFU i) (rx)d |

r2
1 d
S5 2 D RWGr) Dy, | () Dey R ) (rx)?|
l1,0r=1

5 r—2rmin(s+|ozH-1,2k)rmin(s+l,2(n—k+l)) 5 rmin(s+|ot\,2n)'
With (4.12) and (4.13) this proves
1) 2 DRI r) (rx)? || g g2y < rminHb2m), (4.15)
This gives (4.5). Similarly,
| (r)? R r) D (x) 72| g2y < rmineHIek2m, (4.16)

This gives (4.7) as a particular case.
e We finish the proof of (4.6) as we did for (4.4). We set s’ = max(s — p, 0) and for
ke{l,...,n1} weuse (4.9) and (4.14) to write

1
— ) PRV r) Ay R T+ (ir) 0, (2) R (i) (rx) |

72
1 d
S5 Y I RMGN D (x)77
L1,4>=1

x [(x) 78 Dy REY K41 (i) 6, (2) R i ) (r) |

=2 pmin(s+p+1,2k) . min(s’+1+p,2(n1 —k+1)+2n2-20)

rmin(s+p,2n1 +2n,—20)

IZANRZA

Finally, the proof of (4.8) similarly follows from (4.12), the fact that it is already proved
for Ry and, fork € {1,...,n1}, (4.16) and (4.11) applied with s; = 0 and 5, = s. [

To finish the proof of Proposition 2.5 we have to replace (rx)® by (4,)% in (4.5)~(4.8).
For this we use again elliptic regularity to compensate for the derivatives which appear
in (A;)%.
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Proposition 4.5. Let § > 0 and let n > § be an even integer. Then there exists C > 0 such
that all v €10, 1] we have

) P RPNy w(An) gy < €0 1A wRMGr) (rx) g2y < C
Moreover, the same estimates hold with R"(ir) and w replaced by R([)n](i r) and 1.

Proof. We prove the first estimate; the second is similar. We start by proving by induction
onk € N thatforn > k and u € N9 we have

I(rx) % ad (R i ryw) A¥ | g2y S 1. (4.17)

The case k = 0 is given by Proposition 4.1 (we use the convention that RIN(i r)w = Id).
Letk € N*, n > k and u € N?. We can write adty (R} (ir)w) as a sum of terms of the
form adiy (R"~U(ir)w)adtZ (R(ir)w) where 11 + ps = . For such a term we have

(rx)~*ad“! (R (iryw)ad"2 (R(ir)w) A
k
=) "(rx)*adt (R (iryw) Alady 7 (adi2 (R(ir)w)).
j=0

For the contribution of j € {0, ...,k — 1} we apply the induction assumption, Proposition
4.1 and (3.5) to get a uniform bound in £(L?). Now we consider the term corresponding
to j = k. By (3.4) we have

iV, —id(1—x;)

k k—
Ak = 4k >

d
+ Alf_l(l - Xr) ZVXE -r7IDy.
=1

The contribution of the first term is estimated as before (note that x - V x, is uniformly
bounded). Now let £ € {1,...,d}. By Proposition 4.1 again, r ! Dsady2(R(ir)w) is a
uniformly bounded operator in £(L?). On the other hand, by (3.7) we have
(rx)_kadi‘)} (R["_I](ir)w)Alr‘_lrx(
= (rx) ™ adft (R Gryw)raxg(4r =i (1= ) ™!
= rag{ra)aditt (RM @ ryw) Ay — i (1= ) 7!
+ (rx) ™ adyx, (adyd (RM ) (Ar =i (1= )Y

Both terms are estimated with the induction assumption, and (4.17) is proved. With u = 0
this gives the first estimate of the proposition when § is an even integer. The general case
follows by interpolation. ]

5. The commutators method

In this section we prove Theorem 2.3. The proof relies on the abstract positive commu-
tators method. Compared to the already known versions, we show that we can apply the
result to operators like R(z) even though they are not exactly resolvents, and that the
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estimates for the powers of the resolvent can in fact be applied to a product of different
operators. Notice that we will not use the selfadjointness of the original operator P. The
method can be naturally adapted to dissipative operators.

5.1. Abstract uniform estimates

Let # and K be as at the beginning of Section 3.3.

For Q € £(X,X*) we have 0* € £(KX, K*). We set Re(Q) = (Q + 0*)/2 and
Im(Q) = (Q — Q*)/2i. We define the real and imaginary parts of R € £(K*, X) sim-
ilarly. We say that Q € £(XK, KX*) is non-negative if (Q¢, Q) x5 = Oforall ¢ € K,
and that R € £(KX*, X) is non-negative if (1, RYr) x+ 3 > 0 for all y € K*. Finally,
we say that Q is dissipative if Im(Q) < 0.

We consider Q € £(X, K*) with negative imaginary part: there exists ¢ > 0 such
that

O+ == —Im(Q) = cod.
where J € £ (K. X *) is the natural embedding. By the Lax-Milgram Theorem, Q has
an inverse in £(K*, K).
Let A be a selfadjoint operator on J. We use the notation of Section 3.2.
Definition 5.1. Let N € N* and Y > 1. We say that 4 is Y-conjugate to Q up to order N
if the following conditions are satisfied:
(H1) Forg € K we have [lg|lse < Yl¢]lx-

(H2) For all § € [—1, 1] the propagator e :%4 € £(JH) defines by restriction a bounded
operator on K.

(H3) Q belongs to €Y1 (X, X*) with 1Qlley-+1 (5,500 < Y and O € (K, K*)
with ||Q+||8A(J<,J<*) < T

(H4) There exist Q) € (X, K*) dissipative, 07 € £(X, X*) non-negative and IT €
‘61‘}(3(, K) such that, with IT; = Idgx — IT € £(XK),
@ Q0 =0,-i0].
(b) ||QI||£(J<,J<*) <7, ||H||*e/ll(3{,]() < Y,and [Tlp|x < Y[[Te| 5 forp € X,

(¢c) Q1 has an inverse R, € £(X*, KX) which satisfies LR gogen 50) < T

(H5) There exists 8 € [0, Y] such that if we set
M =iads(Q) + BQ+ € L(K. K™),
then in the sense of quadratic forms on # we have
M*Re(M)IT > Y IT*411.

The main assumption in this definition is (H5). The uniform estimates given by the
commutators method are the following. We give a proof adapted to this setting in Sec-
tion 5.4.
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Theorem 5.2. Let N € N* and Y > 1. Assume that A is Y -conjugate to Q up to order N.
(1) Let § > 1/2. There exists C > 0 which only depends on Y\ and § such that

AP 07(A) || 25y < C. (5.1)

(ii) Assume that N > 2 and let 81,8, > 0 be such that 51 + 6, < N — 1. There exists
C > 0 which only depends on N, Y, §1 and &, such that

{AY IR _ (D) Q™ r (A)(A)*2 ]| 2y < C. (52)

(iii) Assume that N > 2 and let § € 11/2, N|[. There exists C > 0 which only depends

on N, Y and § such that

(A O™ r (A e < C. (5.3)

1{AY " R (D Q™HA) ey < C. (54

We explain the notation of Definition 5.1 on the model case of the free Laplacian

with the generator of dilations (2.8) as the commutator. To get estimates on # = L2 for

the resolvent (—A — &)~ with Im(¢) > 0 and Re(¢) close to some E > 0, we choose

QO = —A — ¢ (seen as a bounded operator from K = H' to H~! ~ K*, this last

identification being semilinear) and in particular we have Q4 = Im({). Then we set
I = 1{g/236/2/(=A) = L—g/2,6/2(-A — E), 01 = 0, 0T =0and = 0. Since

M[-A,iAl = =2A1L_g/2,E/2)(—A — E) > —EA,
the commutators method gives in particular a uniform bound in L? for
(A=A =07,

from which we can deduce an estimate for the resolvent in £ (L2, L27%). Our proof in
the next subsection is a perturbation of this model case with ¢ = z2 and E of order |z|?.

5.2. Application to the Schrodinger operator

In this subsection we apply the abstract commutators method to prove uniform estimates
for R(z). For z € I, Theorem 2.3 follows from Proposition 4.3 applied with z’ = z and
s1 = s = 0. Thus, it is enough to prove Theorem 2.3 for z in

Dg = D; UDg, where [D)Fj{E ={z e Dy : +2Re(z?) > |z|?}.

We prove all the intermediate estimates for z € ]D)é|r and, in the end, we will deduce Theo-
rem 2.3 for z € Dy by a duality argument. We begin with estimates for a single resolvent.

Proposition 5.3. Let § > 1/2 and §,,8, € R. There exists C > 0 such that for z € D
we have
c

I{AZ) P R(2)(A2) Ml g2y < FE (5.5)
C

{AZ) M IR _(A2)R(2) 1R, (A2)(A2)2 | g2y < F (5.6)
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c

(A2) P R 1R, (A) (A g2y < P (5.7)
(A5 R (A R(2)(A2) Pl < # (5.8)

To prove Proposition 5.3, we apply Theorem 5.2 to |z| 72 P(z) (seen as an operator
in £(H}, H') uniformly in z € D7) and for any N € N*. Then Proposition 5.3 is a
consequence of Theorem 5.2 and Proposition 5.4 below.

In the proof of Proposition 5.4 we will use the Helffer—Sjostrand formula. Let A be
a selfadjoint operator on a Hilbert space #, m > 2 and let ¢ € C*°(R) be such that
|p® (1) <k (r)** for some k > 0 and for all k € {0,...,m + 1}. Then we have

b4 = —g(z)m O dAQ). (5.9)

where A is the Lebesgue measure on C and for some ¢ € C§°(R, [0, 1]) supported on
[—2,2] and equal to 1 on [—1, 1] we define the almost analytic extension ¢ of ¢ by

T A S SN N D
¢(r+m)—w(<f>);)¢ (01
In particular,

—1—k—m

¢ . .
’8_5(T + l,u)’ S Lngui<a@ (1) 77 4 Lo lul™ (1)

See for instance [12, Section 8] or [10].

Proposition 5.4. Let N € N. There exist y € C§° and Y > 1 such that for all z € ]D)FJ‘r the
operator A, defined by (2.11) is Y-conjugate to |z| 2 P(z) € £(H}, H; 1) up to order N.

Proof. e Assumption (H1) is clear in our setting and (H2) follows from (2.10). For any
x € C, the fact that |z|? P(z) is uniformly in ‘(f’fli“(HZl, H;') is given by Propo-
sition 3.8. Finally, Q4+ = —Im(P(z)) = Im(z?)w, so Q4 belongs to ‘Cjz (HY, H )
uniformly in z by Lemma 3.7. This gives (H3).

o Now we construct the operator I1, which appears in (H4) and (H5). For z € ]D,;|r we
have already set Pr(z) = —Ag — wRe(z?). We similarly define P?(z) = —A — Re(z?).
These two operators can be seen as selfadjoint operators on L? with domain H? or as
bounded operators from H} to H'. Let ¢ € C°(R, [0, 1]) be equal to 1 on [—1, 1] and
supported in |—2, 2[. For 5 € ]0, 1] we set

Pr(z PO(z
M- =o( ) e b= (30
By the Helffer—Sjostrand formula (5.9) (applied with m > 3) and the resolvent identity,

the difference I1, , — Hg’ . can be rewritten as

! re) )" O rge) (7))
/Caf(;)( 2|z|? é') n?|z|? (772|Z|2 ¢ dA ().
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We can check that for z € Dy and ¢ € 5D \ R4 we have

o) (5 -o)
H(zmz et T I\pER ¢

On the other hand, as in the proof of Proposition 3.5 we can check that

H Pr(z) — PR(z)

n?|z|?

1

ew2,m2)  Im@)]

(5.10)

< l2”

2
eIt -y TN

This proves

H (PR(z) )‘1 PR(z)—PQ(z)(PF?(z)_ )‘1

n?|z|? n?|z|? n?|z|?

|z]°

e2mh " nPIm@?

Since d Eq; is supported in 51 and decays faster than |Im(¢)|? near the real axis, we deduce

|z|°
[Ty, — H?,,z”x(LZ,HZl) S ? (5.1
There also exists C > 0 such that for all z € Dy and 5 € ]0, 1] we have
Mzl gm1,m1) < C- (5.12)

o Let y € C§° be equal to 1 on a neighborhood of 0. For x € R? and n € N* we set
#n(x) = ¥(nx). Since j defines a compact operator from H! to L2 and j, goes strongly
to0in L? asn — 00, yjn goes to 0in £(H', L?) as n — oo. For some n large enough
we set y = x¥» and we have

1
IXzllecmr 12y = Ixllgcar L2y < Tec?
where C > 0 is as in (5.12). Then for all z € D4 and 7 € ]0, 1] we have
1
12Ty eas) < 3¢ (5.13)

e We have defined K(z) in (3.10). By (5.12) and Proposition 3.9 there exists C; > 0
such that

Ty, K@) (X)) Nl i 12y S 1K@ EX) P g1 g1y < Calz]. (5.14)

Let 79 € [1/+/2, 1]. Since (x)™P/2¢(—A — 72) is compact as an operator from L? to H'!

A2
and ¢ ( 1A6n§0 ) goes weakly to 0 as 1g goes to 0, there exists 1y € ]0, 1/8] such that

I e AW e El
|z|2 16n3|z|? 1
0 £(L2%,HY})

(x) /2 (= — >¢>( % )
16n3

fﬁ(Lz,Hl) 8C1
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If |Re(z _ 2|

|22 0

< 87]% we have

—A —2|z)? —A —12|z)?
0o _ 0 0 0
M = #( =2 )o( St ) Mo

We also have Il ; = I3y, ;117,50 (5.14) and (5.15) give

|z|?
ITapg,- K()T,, . ll 22y < = (5.16)

Since [1/+/2, 1] is compact, we can choose 7o so small that (5.16) holds for any z € DY .
By (5.16), (5.11) and (5.14) there exists r¢ € ]0, 1] such that for z € Dg with |z]| < ro we

have
|z|?
[ Ml2ng,z K(2)M2ny 2|l g (22) < a (5.17)
We set

Dp = {z € DF :|z| = ro}.

Let zo € Dj. The operator I1; ;, K(z¢)I1; 2, is compact on L2. Since 0 is not an eigen-
value of Pg(zp), the operator II, ;, goes weakly to 0 as 1 goes to 0, so there exists
Nz, € ]0, 1] such that

|Zo|2
8

M27.,.20 K(z0) 2y, 20 | £(22) <

By continuity with respect to z and compactness of D7, there exists ng € ]0, 1] such that
(5.17) holds for all z € Df, and hence for all z € Dg. We can also assume that g is so

small that
IZI2
2[|Pr(z) Mapg .z le(r2y < S

e Now that 7 is fixed, we prove that (H4) and (H5) are satisfied. We begin with (H5).
We choose B = 0. Let z € D7 . By definition of K(z) we have

(5.18)

Mon. [ Pr(2). iAz]T2y, - = 2Re(z)T13, , + S(2).
where

S(z) = _ZRG(ZZ)HZnO,zXzHZnO,z + 2Map,,z (1 — x2) Pr(2) 24,2
+ H2n(),zK(Z)H2n0,z-

By (5.13), (5.18) and (5.17) have

IS lews < —-

o |

and hence
Mapo.z[Pa(z).iA;] 2y, . = 2Re(z*)105, , — ——.
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Since 2Re(z2) > |z|?, after composition with I1,,,- on both sides we get
|2

|z E 2

Iy, z[Pr(2), 4]y, . > 5 no.z

This gives (HS5) with I1,; = Iy, ;.
o By the Helffer—Sjostrand formula as above and Proposition 3.9 we have

-1
”[HZJAZ]”Ji(H LHEDH S / ‘ (C)‘ ”|:(PR|(Z|Z —C) ,iAzi|

Szl | ||[PR(Z),lAz]||$(HZI,HZ—1)
<1

dA(8)

L(H- ', H})

We set
PR(Z) - ilm(zz)wmin

01(z) = € L(H} HY,
|z|2

where Wy, = minyer w(x) > 0. Then

01 (2) =i(P(z) = Q1(2)) = Im(z%)(w — Winin)

is non-negative, Q| (z) is invertible and by the functional calculus we have

- _ 1

10 =T 01 () Mlgway = 10L() ™ (1 =)l g2 < 7z

0
As in the case of (5.10), we obtain similar estimates in £(H; !, H}). Finally, since I, =
Mon,,- 11z we have [[TLu|l g1 < [Tapg,zllgcr2, g1y ITzullL, forallu € L?. With (5.12)
this gives (H4) and the proof is complete. ]

5.3. Multiple resolvent estimates

In this subsection we generalize the uniform estimates for powers of a resolvent. Com-
pared to the usual setting, we also consider a product of different resolvents. In fact, we
can consider the product of any finite sequence of operators having a suitable behav-
ior with respect to the conjugate operator. Everything is based on the following abstract
lemma.

Lemma 5.5. Let # be a Hilbert space. Let n € N*, Ty, ..., T, € £(H#) and T =
Ty... Ty Let N € N*,

For j €{0,...,n} we consider on J a (possibly unbounded) selfadjoint operator
0; > 1, and Hj_, l'I]‘-Ir € £(H) such that Hj_ + Hj-' =Idg. For j € {1,...,n} we assume
that there exist v; > 0, o; € [0, v;] and a collection €; = {C;; (C; 3, s,); (Cjs)} of con-
stants such that for 61,8, > 0 with 8§; + 6, < N —vj and § € [0}, N] we have

19,70, || 2 < C;» (5.19)
||®j_1nj_17}n,-+®j2||x(ﬂ) < GCjsy 805 (5.20)
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8

18 T, 7507 || 256y < Ciis (5.21)

8

1072, 10, L2y < Cjs (5.22)

Let
n n—1 n
V= E vj, 04 = E v; + 0, 0- =01+ E V).
j=1 j=1 Jj=2

Assume that N > v. Set TI_ = Iy and T14 = II;}. There exists a collection € =
{C; (Cs_5,); (Cy)s (C5+)} of constants which only depend on the constants €;, 1 <
J < n, and are such that

186" 76,7 [l 2e) < C; (5.23)

foré_,84+ > 0suchthat §— + 6+ < N — v we have
_ §
105 TI_T T 0, [l ewe) < Cs_s.: (5.24)
foré € [o—, N[ we have
1O 1T ;| ¢c) < Cy (5.25)
and finally, for § € [o4, N[ we have
106° TTL, O) || 25y < Cy- (5.26)

Proof. The result is proved by induction on n € N*, the case n = 1 being the assumption.
Forn>2wesetT' =T;...T,—, I, = I ., 0=0,_1,vV =vi + -+ Vp_1,

n—1>
o) =vi+-+ v+ 0p—1and o’ =0y + vy + -+ + vy—1. To prove (5.23)~(5.26)
we insert the sum I1” 4 IT/, between 7’ and T}, and for each term we insert a factor
OO for a suitable y € R (on the left of IT”_ and on the right of I1’, ). More precisely,
for (5.23) we write
10,77 70, || < 18,°F 7’0~ ||| ©°~ 17,8, |
+ 10,7 T, 0% |0~ T,,0,° .
Then we apply (5.21) and (5.19) for Ty, and (5.23) and (5.26) for T". Similarly, for (5.24)
we write
105 M-TT46,"|| < [|0) M-T'e~¢-+)| |e*+'T_T, 1,6, |
_ — 8
+ 10 M-T'T, @+ H | @~ ¢+ + 7, I, 0,7,
and we apply (5.20) and (5.22) for T}, and (5.25) and (5.24) for T’. Finally, for § € [o_, N]
we have
185" -7©,°| < |05 "I-T'e~ ™| |e’ " N_T,6,|
+ 0§ T, 07 |07 T,0,”|
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and, for § € [o4, N],

10° TTIL @57 < 05° T'0~ | @7~ T, 105
+leyd T eV eI, e

We deduce (5.25) and (5.26), and the result follows by induction. [ ]

It is important that the constants in the conclusion of the lemma only depend on the
constants in the assumptions. Thus if for some operators 7;(z), 1 < j < n, the estimates
(5.19)—(5.21) are independent of the parameter z, then so are the estimates (5.23)—(5.26).

We will usually apply Lemma 5.5 with ©; = (4), I} = 1g= (4) and I"[]‘.|r =1r, (A),
where A is the conjugate operator.

With Proposition 5.3 and Lemma 5.5 we can prove Theorem 2.3. Notice that we have
used all the assumptions of Definition 5.1 to prove Proposition 5.3, but for the rest of
the proof we no longer need a conjugate operator and only use the estimates of Proposi-
tion 5.3.

Proof of Theorem 2.3. For z € ]D);' we apply Lemma 5.5 with factors 7} of the form w
or |z|?R(z) and constants independent of z. For factors 7; = w we take v; = 0; = 0
by Lemma 3.7 and Proposition 3.11, while for factors 7; = |z|*R(z) we can choose
v; = 1 and any o; € |1/2, 1] by Proposition 5.3. Then the assumptions of Lemma 5.5
hold uniformly in z € ]D),;|r . In particular, (5.23) gives (2.12) for z € DF}" .

We turn to (2.13). If ny,n, > 2 we use the resolvent identity (see (2.14) for R['”](Z))
to write

RMI(z)05 () RE) (2)
= (R™7U(z) + (1 + 2R (2)) 6, () (RY> 7 (2) + (1 + 22)RY (2))
with éo(z) = wR[l](ir)GU(z)R([)l](ir) (r = |z]). Since |Z|_pég(z) belongs to ‘C’Ifli (L?
with a norm uniform in z € Dg, we deduce (2.13) for z € ]D);' . The proof is similar if

ny = 1or ny = 1.
We similarly prove, for z € DI,

1(A2) 8 RIN(2)8, () R (2)(A2) Pl 12y S 1217 (5.27)

Taking the adjoint in (2.12) and (5.27), we get (2.12) and (2.13) for z € Dy, and the proof
of Theorem 2.3 is complete. ]

5.4. Proof of the abstract resolvent estimates

In this subsection we prove Theorem 5.2. The strategy is inspired by the original papers
[17,19,21] and the earlier dissipative versions [7,25,26], but we need a proof adapted to
our setting. For the reader’s convenience we provide a self-contained proof. We use the
notation introduced in Section 5.1.
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For ¢ € [0, 1] we set
Qs =0 —iell*MTI € (K, K*).

By (H5), Q. has a negative imaginary part. We set R, = Q! € L(X*, X). We prove
estimates on R for & € ]0, 1]. In the limit & — 0 this will give estimates for R = Q1.
Note that by assumptions (H3)—(H4) and Proposition 3.10 we have Q. € ‘éj (K, XK*).In
the following proposition, we check that R, also has a nice behavior with respect to A.

Proposition 5.6. (i) Dx is dense in K.
(ii) Fore €10, 1] we have R, € €}(K*, K) with ada(R:) = —R:ad4(Q¢) R
(iii) Re maps Dy to Dy and Dy to D3, for all & €10, 1].

Proof. e Assumption (H2) holds for any # € R and the restriction of e %4 defines a one-
parameter group (7Tx (0))ger on K. Taking the adjoint also gives a one-parameter group
(T3 (8))per on K*, and for all 6 € R the restriction of 74 (6) to J is ¢4, Since H is
dense in K*, we can check that (T4 (6)) is strongly continuous on K*. Then (7% (6))
is weakly continuous, and hence strongly continuous (see [13, Theorem 1.5.8]). Finally,
we check that the generator of (Tx (6)) is Ax, defined on the domain Dy . This gives in
particular the first statement by [13, Theorem II1.1.4].

e There exist C > 1 and @ > 0 such that || Tx (0)| ex) < Ce®®l for all 6 € R
(see [13, Proposition 1.5.5]). Then (by [13, Theorem II.1.10]) for [Im(1)| > @ we have
A€ p(Ax) and c

-1
[(Ax —A) " llew) < ) — o
In particular, Ag (Ag —ip)~ " and —ipu(Agx —ipn)~" go strongly to O and Id g, respec-
tively, as © — Fo00.
e For it > w weset Ay () = —ipAx(Ax —ipn)~! € £(XK). In £(K*, K) we have

ReAg(—p)* — Axc(WRe = RE(AJ((_/’L)*QS - QEAJC(M))RSv (5.28)
and in £(X, K*),
Ax (=1)* Qe — QeAgc(p) = ip(A% — i) " (A% Qe — QeAx)im(Ax —ip) ™"
— (A — i) T A Qe (ip(Ax —ip) ™ + 1)
+ (A — i)™+ 1) QeAxcip(Ag — i)'

This goes strongly to —adq(Q¢) as u — 4o00. Then, taking the strong limit in (5.28)
gives, in L(Dg+, Dyc+),

R:A% — A% Re = —R.ad4(Q:)R: € £(K*, X).

This proves the second statement. By Proposition 3.10, R, maps Dg+ (and in particu-
lar Dyge) to Dy . We similarly prove that R; maps Dy to Dy, so R, also maps D
0 Dy,. L]
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The Mourre method relies on the so-called quadratic estimates. Here we will use the
following version.

Proposition 5.7. Let Q € £(K, K*) be dissipative. Assume that Q has an inverse R in
E(K*, K). Let Q4+ € L(K, K*) be such that 0 < Q4+ < —Im(Q). Then

R*O,R <Im(R) and RQO,R* <Im(R).

Proof. We simply observe that
RO~ QR _R-F°
2i o 2i

The second estimate is similar. [

R*O,R < = Im(R).

Remark 5.8. Given two Hilbert spaces J; and K5, Ty € £(K1, K) and T € £(K>2, K),
by the Cauchy—Schwarz inequality applied to the quadratic form ¢ — (Q 1+ ¢, @) x* x We
have

* _ * 1/2 * 1/2

With assumption (H5) we can apply the quadratic estimates to R.. This gives the
following properties.

Proposition 5.9. Let Ko € {K,H, K*}. Let ® € L£(K, Kyp). There exists C > 0 which
only depends on Y and such that for all ¢ € )0, 1] we have

C 1/2
||HR£®*||§E(J<§,JC)+ ||®R8H*”:E(J<*,Jf0) < ﬁ”®Re®*”.§E(K6‘,J€0)’ (5.29)

_ _ 1/2
”HLRS®*”$(J{8‘,J<)+ ||®R8Hj_||x(gc*,,7c0) < C(”@”I(K,J{o) + ”®R£®*”§E(JC(’)‘,JCO))’
(5.30)
*1/2
(5.31)

1

* - -
1R s 10+ IOR e 0y <C(||®||:£(J<,Jco)+ —

Proof. e By (H5) we have ¢I[1*I1 < eYRe(IT*M IT) < —YIm(Q;), so we can apply
Proposition 5.7 with Q = TQ, and Q4+ = ¢IT*II. This gives

eOR*TI*TIR,0* < OIm(R,)O*.
With (H4) we obtain, for ¢ € K,
IMR:0%¢|% < ITIR:O ¢35 = (OR;TT*TIR.0"p. 9) s, 55
S é'm@Re@*%(ﬂ)J(o,x;;-
This gives the first part of (5.29). Similarly,
IR gscs 300 < €72 IORO [ g o

Taking the adjoint concludes the proof of (5.29).
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e We have O, = Q1 — iQI — ieIT* M T1. With the resolvent identity we have, in
(K5, X),

I, R,O* =11, R, O* + iHJ_RJ_QIR8®* +iell | R\ II*MTIR,®%. (5.32)

By Remark 5.8, (H4) and Proposition 5.7 applied with O = Qj_' < —Im(Q,) we have

ITLRLOT RO || gz 5)

1/2 1/2
<UL RLQT (LR | f e o IORE QT RO Lo

1/2
< |OR.0| ;,{(xg,xo).

On the other hand, by (H4), (H3) and (5.29),

1/2
8||HJ_RJ_H*MHRs®*||;E(J<g,J<) < 8||HR3®*||;E(J<8<,J<) < Ve ||®Rs®*”£/(xaﬂ,xo)~

The first term in (5.32) is estimated by (H4), and the first part of (5.30) follows. As above,
we prove the same estimate for R} and get the second part by taking the adjoint. Finally,
(5.30) and (5.29) give (5.31). [

Now we can prove the first part of Theorem 5.2:

Proof of estimate (5.1). Without loss of generality, we can assume that § € ]1/2, 1].
e Fore € [0, 1] we set O = (4)~3(¢4)5~1. This defines a bounded selfadjoint oper-
ator on J and by the functional calculus we have

1@clleey < 1. 14@cllgwe) + 1O Allzey S &1 10Lllewe S 1 (5.33)

where the prime denotes the derivative with respect to . We set F; = ©,R,0,. By (5.33)
and Proposition 5.9 applied with ® = ©, we get, for ¢ € 0, 1],

1 Fell ey
[ Fellzcey < [ReOellzae.x) S 1+ 7
and hence
1
IFellecr < - (5.34)
The derivative of F is given by
F!=0O,R;0, 4+ O,R, 0, +iO,R,IT*MTIR,O,.

By (5.31) and (5.33) we have

1O, RO + Oc RO, [l 2y < e (1 + &7V 2| Fell p)- (5.35)

For the last term we write, in £(X, K ™),

MMO=M-TI"MIT, —IT] M.
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By Proposition 5.9 and (H3)-(H4) for M we have

”@sRsH*MHJ_Rs@E“éC(Jf) + ||®€R€HIMRS®€“$(J€)

1/2
< ||Fs||$(,;€) | Fell £ 0)
~ + + :
Je Ve

It remains to estimate ®, R, M R,®,. By Proposition 5.6 we can write

O R:ad4(Q)R:O; = O,R(QAx — A% Q)R O,
= 0,4AR.0, — O, R, AO, +isO.Rads(TT*"MII)R.0O,.
With (5.33) and Proposition 5.9 we get

19 Reada (Q) RO | ey S €1 + 22| Fell 3y + | Fell zcoe)-

On the other hand, by Remark 5.8 and Proposition 5.7,

1/2 * 1/2
||®aReQ+Ra®a||$(J€) < ||®8R8Q+R:®s||;(j/(gg)||®ng Q+Ra®s||§¢3/(gg) < "Fe”é‘l(ﬂ’)'

All these estimates together give

- - - 1
I Fllecey S €70 + €7 21 Fell ey + €832 I Fell {2

It is classical (see for instance [19, Lemma 3.3]) that this implies
[ Fellee) S 1 (5.36)
Taking the limit ¢ — 0 gives (5.1). ]

We continue with the proofs of estimates (5.2) to (5.4). Fore € [0,1] and N € N* we
set

N .
8] . _
One = ) —adj(Q) € £(X, K*).
— jl
Jj=0
Proposition 5.10. Let N € N*, There exist ey €]0,1] and ¢ > 0 which only depend on N
and Y such that for all ¢ € |0, en] the operator Q N has an inverse Ry, € L(K*, K)
and c c
Ryellgerso < = IRNe(A)! <—. 5.37
” N,s”;g(g( LK) s || N,e( ) ”:C(JE,JC) \/E ( )
Moreover, the function & — Ry ¢ is differentiable in £(Dg, D},) and
eV N+1
Ry, = Ry.cAye = Aje Ry.c + < Rn.eady " (Q)Rue.

Proof. e By Proposition 5.9 applied with Ky = K and ® = Idx we have

1 1
||Rs||£(x*,,]c) 5 ;’ ”HJ_R&‘”:E(J(*,J() + ||Rsnj_||g€(,7(*,,]c) 5 ﬁ (5.38)
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With (5.36) and Proposition 5.9 applied with Ko = # and ® = (A4)~! we also get

IRAA) e cse,50) S (5.39)

Sl-

e Wehave Oy = Qg + Pe + f’s where
N
Py =iefII*Q T + ell*ads(Q)TTL + ) Fadj(Q), P, = eI1% ady (Q).
j=27"
We have || Pe || 25 5c+) < € and, by (5.38),
I PeRelle(ace) S el O+ TRl (s + ellTTL Rellexex,56) + &2 [ Rell x50
S el Q4 Rellgxr) + el O+ TIL Rl (xc+) + Ve

By Remark 5.8 and Proposition 5.7 for the first term, and (5.38) for the second, we get

I PeRe [l 25y S Ve

In particular, the operator ld+ + Py R, is invertible in & (K *) for & small enough. Then
the operator Q. = Q. + P, is invertible and its inverse R, is given by

Ry = R, — R:(dgc+ + PeR:) ™' PR,.

With this expression we can check that Iée satisfies the same estimates (5.38)—(5.39)
as R,. Similarly, we have || P || ¢(x,x+) S € and

[Re Pell ey S el ReTTY || £ e, 50) S e

Thus for & small enough the operator Oy, = Q ¢ + Pg is invertible and its inverse Ry .
is given by

Rye = Re — Re Pe(ldyc + RePe) ™' Re.
We deduce (5.37).

o For the last statement we observe that in £ (K, K*) we have

N
Ol = ada(Qn,e) — —adN“(Q).
As in Proposition 5.6 we can check that Ry . € ‘C_’/} (K*, K) with

ads(Rn,s) = —Rn,cad4(On,e)Rive.

We deduce that, in f(JC, K,

N
R?Vs = RNEQNgRNs _adA(RN8)+ RNsadA +1(Q)RN5 |

Now we can finish the proof of Theorem 5.2.
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Proof of estimate (5.2). Let ex be given by Proposition 5.10. For ¢ € ]0, ey] we set,
in £(H),
Fye = (A e* g _(A) Ry 1r, (A)e 4 (4)%2.

Then in the strong sense we have

N
3 —
Fe = 5 (A" e r_(A)Ry cad) " (Q) RN ek, (A)e ™ (4)%.

By Proposition 5.10 and the functional calculus we deduce
| Fy ey < €70 727

Since N — §; — 82 — 2 > —1, this proves that Fi . is bounded in £(#) uniformly in
e €]0,en]. L]

Proof of estimates (5.3) and (5.4). @ Let n > 1. Let &1 € ]0, 1] be given by Proposi-
tion 5.10. For ¢ € ]0, 1] we set

Fre = Ir_(A)e** Ry (A)7".
By Proposition 5.10 we have || Fi ¢|l ) S £1/2_ On the other hand
Fl,=1r_ (A)ef 4Ry cA(A)™ + elr_(A)e® Ry cadi(Q)Ry (A)7". (5.40)
By interpolation we have

[LR_(A)e* A Ry (A)' 7 ey < ILR_(A)e Ry ||V TR (A)et4 Ry o (A) 7)1/
<

e M Fy ] .
For the second term in (5.40) we use (H3) and Proposition 5.10. Finally,
IF{ ey < e/ + eV Frg ',

so F1 ¢ is bounded. In the limit ¢ — 0 we get

[Tr_(A)R(A) ey S 1. (5.41)
We similarly get a uniform bound for g, (A) R*(A)~". Taking the adjoint gives

[(A) " RIR L (D)) S 1. (5.42)

e For I C R we write Ay for 17 (A). We prove that, uniformly in n,m € N,
At n+11RAm m+11llee) S 1. (5.43)

We observe that for any A € R the operator A — A is also Y-conjugate to Q up to
order N, so the estimates (5.1) and (5.2) hold with A replaced by A — A uniformly in A. In
particular, with (5.1) applied to A — n we get (5.43) when n = m. This also holds with R
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replaced by R*. For the general case we write

A1 [ RApm m+11 = Annt11A1=0o,m RApm m+11 + Apnn41141m 4+ 0ol R Apm,m+11
+ A[n,n+1[A]m,+oo[(R - R*)A[m,m+l[-
The first two terms are estimated by (5.41) and (5.42) applied with A — m instead of A.

For the third term we observe that R — R* =2R* Q1 R is non-negative, so by Remark 5.8
we have

[Apn+11(R = R*) A m+11ll 23e)
< ||A[n,n+1[(R - R*)A[n,n+1[||¥3ﬂ)||A[m,m+1[(R - R*)A[m,m+1[||§ﬁ/(2}g)'

We can apply (5.43) already proved when n = m to R and R*, which concludes the proof
of (5.43) when n # m.
e From (5.43) we deduce

n
I Ap 1R A+ 1((A) " Wllge S D (m + 15| Appmsr ¥l e

m=0

uniformly in n € N and ¢ € J. Then, for ¢, ¥ € J,

Z |((A>_8A[n,n—l—l[RA[O,n—i-l[(A)S_lwv (p>;,1€|
neN
n

SY ) N Al Y m+ D A min¥llae S lellellvle.  (5.44)

neN m=0

For the last step we have used the Cauchy—Schwarz inequality, Lemma 3.4 of [17] and
the fact that the families (A[, n+1[@)neN and (App,m+1[¥)ogm<n are orthogonal in F.
e Now we prove

D IAY P A (R At 14001 (A) T 0 0) 4| Sl 11 - (5.45)
neN
If § < 1 this is a consequence of (5.2) appliedto A — (n + 1). If 1 < § < N we observe
that [[{(A — (n + 1))'73(4)5 1| £ 5y < 81, s0 again by (5.2) applied to 4 — (n + 1),

D A P Ap st RAp 4 1.4000{A) T 0 0) 5| Y 0 [ Apnragellaen® 1 1.
neN neN

and (5.45) follows. With (5.44) we obtain

14A4)° Ao +oo[ R Afo, oo {(A)° | 2aey < 1.
With (5.2) we finally get (5.3). The proof of (5.4) is similar. ]

6. Local energy decay

In this section we show how the local energy decay of Theorem 1.3 can be deduced from
the resolvent estimates given by Theorem 1.1.
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Proof of Theorem 1.3. e Let f € § and u € ]0, 1]. All along the proof we use the nota-
tion ¢ for T + ip, where 7 is a variable in R. For # > 0 we have

—it _L —itg o\
e Pf—zl,N/Re (P=0)7'fdr

We consider y4+ € C*°(R, [0, 1]) equal to 0 on |—o0, 1] and equal to 1 on [2, +o0[. For
T e Rweset y_(t) = y+(—1) and yow = 1 — y—(7) — x+ (7). Then for x € {—, low, +}
we set

1 .
(1) = A 1= EP -7 fdr.

We similarly define ug’ . With P replaced by Py and f replaced by fo = wf.
e Let m > 2 be such that

We have § > m + 1/2. After integrations by parts and using the uniform estimates for the
resolvent of P far from its spectrum, we see that

|
GO™u— 2 < 5~ /_oo |e 07 (x—@)(P =O)7") f| dT S eI f L2

where the constant in < is independent of . Similarly, using (1.5) to estimate the deriva-
tives of (P — ¢)~! near the positive real axis, we obtain

1GO™(x) s w2 S e 114x)P £l

We have similar estimates for uo_, (7) and ug_ u ().
e By integrations by parts we have

. m— 1 _; _
(10" tn0) = toso) = 51— [ 50D
where we have set

0u(0) = Xow(D)((P =)™ = (Po — )™ w) f.

By Theorem 1.1 we have, uniformly in u > 0,

_ _ d+p1 _
)20 D @)l S el 2 1) £l o

For ¢t > 1 we have, on the one hand,

t71
H/ e (x) PV () dt
1

L2
! d+o d+o
</ et () flladT STV | f s
1

~
—t—
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On the other hand, with another integration by parts,

t / e (x) P9V (1) d
lr|>r—1 L2
< - o) e [ i@l de
AN
d+

ST () e

Finally,
-5 < =4t 8
[1{x)™° iow (1) = w01 () |2 < €™ ()™ 27 [[{(x)° [l L2

All the estimates being uniform in p > 0, we can let u go to 0 to conclude. ]

Appendix A. Additional proofs

Equalities (2.4) and (2.15)—(2.16) are proved by iterating resolvent identities. We provide
some details in this appendix.

Proof of (2.4). The resolvent identity (2.1) gives the case n = 1. Then
R(z)w — Ro(2) = R(z)(w — 1) — R(2)(P(2) = Po(2)) Ro(2).
Since for n € N* we have
RUHI() — REFIGE) = |2 PRE)w(RY (2) - RY ()
+ 127 (R2)w = Ro(2)) Ry (2).
(2.4) follows by induction. [

Proof of (2.15)—(2.16). With notation (2.2), the resolvent identity (2.14) can be rewritten
as
RM () = RMUGr) + (1 + 22)RUG r)wRM(2). (A.1)

After composition with RI¥1(ir)w on the left we get, for N € N*,
RWMGirywRM(z) = RN TUGr) + (1 + 22 RV ywRM (7). (A.2)
For v > 2 we compose these two equalities with wR~11(z) on the right. This gives
RM(z) = RUGr)wRP N (2) + (1 + 22 RN (i r)wRM(z2) (A3)
and
RMGirywRM (z) = RV UG ywRM 1 (2) + (1 + 22) RV rywRP (). (A4)

Now we can prove (2.15)—(2.16) by induction on N. The case N = 1 is given by (A.1)
if n = 1 and by (A.3) applied with v = n if n > 2. Now assume that (2.15)—(2.16) hold
for some N € N*,
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If N < n — 2 then (2.15) vanishes and we can apply (A.4) to each term of (2.16).

Reordering the resulting sum gives (2.16) for N + 1 instead of N.

Now assume that N > n — 1. For the terms corresponding to v > 2 we apply (A.4) as

before. For the term corresponding to v = 1 we apply (A.2). The term without any factor
R(z) goes into the sum (2.15). All the other terms give (2.16) for N + 1. [ ]
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