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Mordell-Weil groups and automorphism groups
of elliptic K 3 surfaces

Ichiro Shimada

Abstract. We present a method to calculate the action of the Mordell-Weil group
of an elliptic K3 surface on the numerical Néron—Severi lattice of the K3 surface.
As an application, we compute a finite generating set of the automorphism group of
a K3 surface birational to the double plane branched along a 6-cuspidal sextic curve
of torus type.

1. Introduction

We work over an algebraically closed field k.

Let X be a projective K3 K3 surface. We denote by Sy the numerical Néron—Severi
lattice of X, that is, the group of numerical equivalence classes of divisors of X with the
intersection pairing

( ) : Sy x Sy — Z.

Let O(Sy) denote the group of isometries of the lattice Sy . We investigate the automorph-
ism group Aut(X) of X by means of the action

Aut(X) — O(Sx)

of Aut(X) on the lattice Sx.

Let ¢: X — P! be an elliptic fibration with a distinguished section ¢: P! — X . In this
case, we say that (¢, {) is a Jacobian fibration. We denote by MW (X, ¢, ¢) the Mordell—-
Weil group of sections of ¢ with ¢ being the zero element. An element 6 € MW (X, ¢, ¢)
acts on the generic fiber of ¢ by translation. Since X is minimal, this birational automorph-
ism of X is an automorphism of X, and hence we have an embedding of MW (X, ¢, ¢)
into Aut(X). In this paper, we investigate the composite homomorphism

(1.1) MW (X, $.l) — Aut(X) — O(Sy).

This homomorphism has been used in many situations in the study of automorphisms
of K3 surfaces (see, for example, [26]). The purpose of this paper is to present a general
algorithm to calculate (1.1) explicitly and to give applications.
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Borcherds” method ([5,6]) is a method to calculate a finite generating set of the image
of Aut(X) — O(Sx) by means of a certain decomposition of the nef-and-big cone of X
into a union of polyhedral cones. The first application of this method to the study of the
automorphism group of a K3 surface was given by Kondo [16]. See also [31]. Since
this method is based on lattice-theoretic computation, the geometric meaning of elements
in the generating set obtained by this method is not clear in general. The homomorph-
ism (1.1) helps us to express the generating set geometrically. See Remark 5.16.

As an application, we calculate the automorphism group of the complex K3 sur-
face X1, obtained as the minimal resolution of the double cover X 7., of P2 defined by

(1.2) w? = f(x,y.2)> + g(x.y.2)>,

where f and g are very general homogeneous polynomials on P2 of degree 3 and 2,
respectively. Here, being very general means that there exist at most countably many
analytic subsets of H%(PP2,9(3)) x H°(PP2, ©(2)) with codimension > 1 such that the
pair ( f, g) does not belong to any of them. We prove the following.

Theorem 1.1. The automorphism group Aut(Xyg) of Xy, is generated by 463 involu-
tions associated with double coverings Xf,, — P2 and 360 elements of infinite order in
Mordell-Weil groups of Jacobian fibrations of Xy,q.

Here, by a double covering, we mean a generically finite morphism of degree 2.

Theorem 1.2. The automorphism group Aut(Xyg) acts on the set of smooth rational
curves on Xy, transitively.

The branch curve of the finite double cover X fg = P2 is defined by the equation
f2 + g3 = 0. This plane curve is called a 6-cuspidal plane sextic of torus type, and was
studied intensively from various points of view. See, for example, [23]. In fact, Zariski [38]
observed that there exists a 6-cuspidal plane sextic of non-torus type, and the seminal
notion of Zariski pairs emerged from this observation. See [1] and [2]. In [9] and [29],
this classical example of Zariski pairs was studied in relation to the theory of K3 surfaces.
It would be an interesting problem to calculate the automorphism group of the K3 surface
obtained from the 6-cuspidal plane sextic of non-torus type.

The generating set in Theorem 1.1 is constructed in such a way that we can clearly
see the geometric meaning of each element. See Section 6 for more precise descriptions
of these automorphisms. Remark that this generating set is not minimal at all.

In fact, we give divisors of X, whose classes generate Sy . Hence we can calculate, in
principle, the equations of the double coverings and the Jacobian fibrations by the method
given in [30]. The actual computation of the equations, however, would be very hard.

Theorem 1.1 is proved in the following three steps.

(a) We find many automorphisms of Xr, geometrically by the methods explained in
Section 3 (especially Section 3.7) and Section 4.

(b) We find a finite generating set of Aut(Xy,,) by Borcherds’ method, which will be
explained in Section 5.

(c) We then show that the group generated by the automorphisms obtained in Step (a)
contains the generating set obtained in Step (b).
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See [18], [19] and [34] for general finiteness results of the automorphism group of
a K3 surface and its action on the nef-and-big cone.

This paper is organized as follows. After fixing some notions and notation about lat-
tices in Section 2, we summarize in Section 3 various computational tools that are useful
in the study of the geometry of K3 surfaces. These tools are based on an algorithm given
in [30] to calculate Sep(vy, v2) of separating (—2)-vectors in a hyperbolic lattice. In
Section 4, we present an algorithm to calculate the homomorphism (1.1). In Section 5,
we review Borcherds’ method. We employ a graph-theoretic formulation of Borcherds’
method given in Section 4.1 of [7]. Sections 3-5 are intended to be summaries of com-
putational methods in the study of K3 surfaces for future reference. In Section 6, we
calculate Aut(Xy,,) by means of all these algorithms, and prove Theorems 1.1 and 1.2.
We used GAP [11] for the actual computation. Detailed computation data about Aut(Xy,¢)
can be found in the author’s webpage [28].

2. Notation and terminologies

By a lattice, we mean a free Z-module L of finite rank with a non-degenerate symmetric
bilinear form
( ):LxL—1Z,

which we call the intersection form (or the intersection pairing) of L. The group of iso-
metries of a lattice L is denoted by O(L), which we let act on L from the right.
Let L be a lattice. Then the dual lattice LV of L is defined to be

{(xeL®Q|({x,v)eZforallv e L}.

The finite abelian group A(L) := LY /L is called the discriminant group of L. We say
that L is unimodular if L = L.

A lattice L is said to be even if (v, v) € 2Z holds for all v € L. A root of an even
lattice L is a vector r € L such that (r, r) is either 2 or —2. A (—2)-vector of L is a root
r € L such that (r, r) = —2. Suppose that L is even and negative-definite. Then the set

Roots(L) :={r e L | (r,r) = -2}

is finite. An even negative-definite lattice L is called a root lattice if L is generated by
Roots(L). A root lattice has a basis consisting of roots whose dual graph is a Dynkin
diagram of type ADE. See, for example, Section 1 in [10] for the definition of dual graphs,
Dynkin diagrams, and their ADE-types.

A lattice L of rank n > 1 is said to be hyperbolic if the signature of the real quadratic
space L ® Ris (1,n — 1). Let L be an even hyperbolic lattice. A positive cone of L is one
of the two connected components of the space

{xe LR | (x,x)>0}.
Let & be a positive cone of L. We put

O(L,P) :={g € O(L) | P& = P).
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We have O(L) = O(L, P) x {£1}. Forv € L ® R, we put
vii={x e LR | (x,v) =0}

When v € £ N L, the intersection v N L is an even negative-definite sublattice of L,
and hence we can effectively calculate the finite set

Roots(wv*NL)y={reL|(rv)=0, (rr)=-2}

of (—2)-vectors in L perpendicular to v.
Forv € L ® R with (v, v) < 0, we put

Wt i=vtNnP={xeP|(x,v)=0},

which is a real hyperplane of . Let vy, v, € L ® Q be rational vectors in J. Then we
can calculate the finite set

Sep(vy,vp) :={re L | (r,v1) >0, (r,v) <0, (r,r) =-2}

of (—2)-vectors separating v; and v,. See [30] for the algorithm. As will be explained in
Section 3, this algorithm is very useful in the study of K3 surfaces.

Definition 2.1. By a chamber, we mean a closed subset D of & such that
e D contains a non-empty open subset of J, and
¢ D is defined by linear inequalities (x,v;) > 0 (i € I), where v; (i € I') are vectors of

L ® R with (v;, v;) < 0 such that the family {(v;)* | i € I} of hyperplanes is locally
finite in P.

Definition 2.2. Let D be a chamber. A wall of D is a closed subset of D of the form
D N (v)* such that the hyperplane (v)= is disjoint from the interior of D and such that
D N (v)* contains a non-empty open subset of (v)L. We say that a vector v € L ® R
defines a wall w of D if w = D N (v)* and (x, v) > 0 for an interior point x of D (and
hence (x,v) > 0 for all x € D). A defining vector of a wall of a chamber is unique up to
positive multiplicative constant.

Definition 2.3. Let ¥ := {(vy)* | @ € F} be alocally finite family of hyperplanes in #.
Then the closure in & of each connected component of

P\ U )t

aEeF

is a chamber. Let € be the set of these chambers. In this situation, we say that J is
tessellated by the chambers in €g . If a subset N of & is the union of chambers in a subset
of €4, we say that N is tessellated by chambers in €¢ .

Let w be a wall of a chamber D € €g . Then there exists a unique chamber D’ € €
such that D # D’ and w C D’. This chamber D’ is called the chamber adjacent to D
across the wall w.
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A (—2)-vector r € L defines a reflection
SpiX > x4 {x,r)r

into the mirror (7). We have s, € O(L, 2). Let W(L) denote the subgroup of O(L, P)
generated by all the reflections s, with respect to (—2)-vectors r. We call W(L) the Weyl
group of L. Note that the family of hyperplanes (r)* defined by (—2)-vectors r is locally
finite in P.

Definition 2.4. A standard fundamental domain of W(L) is the closure of a connected
component of
2\ o
where r runs through the set of (—2)-vectors.
Let D be a standard fundamental domain of W(L). We put
O(L,D):={ge€O(L)| D¢ = D}.

Then we have O(L, ) = W(L) x O(L, D). The action of O(L, &) on P preserves the
tessellation of & by the standard fundamental domains of W(L).

3. The numerical Néron—-Severi lattice of a K 3 surface

Let X be a K3 surface, and let Sy be the lattice of numerical equivalence classes of
divisors of X, which we call the numerical Néron—Severi lattice of X. For a divisor D
of X, we denote by [D] € Sx the class of D. Suppose that Sy is of rank n > 1. Then Sy
is an even hyperbolic lattice. Let $x be the positive cone of Sy containing an ample class
of X, and let J_’X be the closure of Py in Sy ® R. We put

Ny :={x € Px | (x,[C]) > 0 for all curves C on X},
Ny := the interior of Ny,
Nx := the closure of Ny in fl_)X.

The cone Ny is called the nef-and-big cone of X. If C is a smooth rational curve on X,
then its class [C] is a (—2)-vector of Sy. We put

Rats(X) := {[C] € Sx | C is a smooth rational curve on X }.
We have the following.

Theorem 3.1. The nef-and-big cone Nx is a standard fundamental domain of the Weyl
group W(Sx) of Sx. A (=2)-vector r € Sx belongs to Rats(X) if and only if r defines a
wall of the chamber Nx.

Suppose that we have an ample class @ € Ng N Sx. Then Vinberg’s algorithm [36]
enables us to enumerate, for a given positive integer m, all the walls Ny N (r)* of Ny
defined by r € Rats(X) with (r,a) < m. (See (3.2) below.) Our algorithm [30] of calculat-
ing the set Sep(vy, va) of separating (—2)-vectors provides us with an alternative method
to investigate the nef-and-big cone Nx. Below are some examples.
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3.1. Finding an ample class

It is well known that a class v € Sx is ample if and only if v € Ny. Let X be a normal sur-
face birational to X, and let & € Sx be the pull-back of an ample class of X by the minimal
resolution X — X . Then we have h € Ny. It is known [3] that X has only rational double
points as its singularities, and hence the exceptional locus of the desingularization X — X
is a union of smooth rational curves whose dual graph is a Dynkin diagram of type ADE.
Letrq, ..., ry be the classes of smooth rational curves contracted by X — X . Then, loc-
ally around h, the chamber Ny is defined by (x,r;) > 0 fori = 1,..., . Therefore a
vector v € Px N Sy is ample if and only if

Sep(h,v) =@, Roots(wtNSx)=@ and (v,r;)>O0fori=1,...,0.
If a’ € Sy satisfies (a’,r;) > O0fori = 1,..., i, then
a:=mh+d

is ample for sufficiently large integers m.

3.2. Nefness and ampleness

Suppose that we have an ample class @ € Sx. We can characterize Ny as the unique stand-
ard fundamental domain of W(Sx) containing a. Let v € Sy be a vector with (v, v) > 0.
Then we have

vePy < (a,v)>0.

When v € Py is the case, we have
ve Ny <= Sep(a,v)=20.
When v € Ny is the case, we have

veNy <= Roots(vt N Sy)=0.

3.3. The group O(Sx, Nx)

Recall that O(Sy, Ny) is the subgroup of O(Sy, x) consisting of all isometries g such
that N)‘? = Nx. Suppose again that we have an ample class a € Sxy. Let g be an element
of O(Sx). Then we have

g€0(Sx.Px) <<= (a.a®)>0.
When g € O(Sx, Px) is the case, we have
3.1 g €0(Sx,Ny) <= Sep(a,a®) =90,

because, for g € O(Sx, #x), the chamber N§ is also a standard fundamental domain
of W(Sx).
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3.4. The set Rats(X)

Again we assume that we have an ample class @ € Sy. Let r € Sy be a (—2)-vector such
that (a, r) > 0. Then there exists an effective divisor D of X such that r = [D]. We have
r € Rats(X) if and only if D is irreducible.

Since D contains a smooth rational curve C such that ([C], [D]) < 0 as an irredu-
cible component, we have the following criterion, which is a geometric interpretation of
Vinberg’s algorithm [36] applied to (—2)-vectors:

(32) reRats(X) <« (r,r')>0forallr’ € Rats(X) with (r',a) < (r,a)

Thanks to the algorithm to calculate Sep(vq, v2), we obtain another criterion.

Proposition 3.2. Let r € Sy be a (—2)-vector with (a,r) > 0. We put

(a,r)
a, =a+ >
Then r € Rats(X) if and only if
(3.3) Roots(a't N Sx) = {r,—r} and Sep(a..a) = 0.

Proof. Since {a.,r) = 0 and (a,,a.) > 0, we have a, € (r)* C Py, and hence the set
Sep(a.,., @) makes sense. In fact, the point a; € (r)* is the image of a by the orthogonal
projection to the hyperplane (r)* in #. In particular, we have {r, —r} C Roots(a’ N Sx).
Then Proposition 3.2 follows from Proposition 2.2 in [37]. We present a proof for the
convenience of readers.

If (3.3) holds, then a. € Nx and a small neighborhood of a’. in (r)* is contained
in Ny. In particular, r is a defining (—2)-vector of a wall of Nx and hence r € Rats(X).
Conversely, suppose that r € Rats(X). Then for any r’ € Rats(X) with r’ # r, we have
(r,r’) > 0and {(a,r’) > 0, and hence

(ap.r') = (a.r') +

Therefore (3.3) holds. [

3.5. Nefness of a vector of norm 0
Suppose again that we have @ € Ny N Sy.

Proposition 3.3. Let f be a non-zero vectorin Px N Sx with (f, f) = 0. Then f € Nx
if and only if Sep(a},a) = @, where a} =a+{a, f)f.

Proof. First note that, since f € Px \ {0}, we have (a, f) > 0, aj’, € Px, and hence
Sep(a’;, @) makes sense.
Suppose that f € Ny. Since a € Ny, we have a} € Ny and hence Sep(a/f,a) = 0.

Suppose that f ¢ N x. Then there exists a smooth rational curve C such that ( f,[C]) < 0.
We put r := [C]. Then we have ( f,r) < —1. Since (f, f) = 0 and ( f,a) > 0, there exists
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an effective divisor ' on X such that f = [F]. Then C is an irreducible component of F’
such that C # F, and hence (a,r) < (a, f). The intersection point of () and the open
line segment

(a.f):={pt)=a+1f |t €Rso} C Px

is equal to p(tp), where

~

fo := _ar) (a.r) < (a, f).

{(for

Since aj/, = p({a, f)), the intersection point p(fg) is located on the open line segment

~

(a, a’f) C (a, f). Therefore r is a (—2)-vector separating a} and a. [

3.6. Singularities of a normal surface birational to X

Suppose again that we have @ € Ny N Sx. Let & be a vector in Ny N Sy, and let £ be a
line bundle whose class is /. Then, for some large positive integer m, the complete linear
system |£®™”| gives a birational morphism X — X to a normal surface X. See Saint-
Donat [25]. The surface X is smooth if and only if / € Ny. Suppose that 4 ¢ Ny. Then
the singularities of X consist of rational double points (see Artin [3]), and the set of classes
of smooth rational curves contracted by the birational morphism X — X is equal to

{r e Rats(X) | (r,h) = 0} = Rats(X) N Roots(h* N Sx).

3.7. Finding automorphisms from nef vectors of norm 2

Let a € Sy be an ample class of X. Let & be a vector in Ny N Sy with (h,h) =2.Bya
double covering, we mean a generically finite morphism of degree 2. By abuse of notation,
we write || for the complete linear system of a line bundle whose class is /. Then either
one of the following holds (see Saint-Donat [25] or Nikulin [22]):
(h1) The complete linear system |/| is base-point free and defines a double covering
a(h): X — P2, or
(h2) |h| has a fixed component Z, which is a smooth rational curve, and every member

of |h| is of the form Z 4+ E; 4+ E,, where E; and E, are members of a pencil | E |
of elliptic curves such that ([E], [Z]) = 1.

These two cases can be distinguished by the following criterion. We put
&:={eecSx|(ee)=0,(e h)=1}

Since the quadratic part of the intersection form { ) restricted to the affine hyperplane of
Sy ® R defined by (x, h) = 1 is negative-definite, the set & is finite and can be calculated
effectively.

Case (61).1f & = @, then |&] is base-point free. In this case, we say that % is a polariz-
ation of degree 2, and denote by i (h) € Aut(X) the involution associated with the double
covering 7(h): X — P2 given by |h|. Let

X - X —» P?
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be the Stein factorization of 7(h), and let B(h) C P2 be the branch curve of the finite
double covering X — P2. We can calculate the set

Rats(X) N Roots(h N Syx)

of classes of smooth rational curves contracted by (/). Hence we obtain the ADE-type
of Sing(B(h)), and the invariant part

{veSy Q| vV =y}

of the action of i (1) on Sy ® Q. Indeed, applying to X the theory of canonical resolutions
of rational double points due to Horikawa [12], we have a successive blowing up ¥ — P2
of P2 such that X — P2 factors through a finite double covering X — Y, and the invariant
part is equal to the pull-back of the space Sy ® Q of the numerical equivalence classes of
curves on the rational surface Y. See [32] for detail. From this subspace, we can calculate
the action of the involution 7 (7) on Sy, because i (k) acts on the orthogonal complement
of the invariant subspace as the scalar multiplication by —1.

Remark 3.4. The equality i (h) = i (k') of involutions does not imply 2 = &’ in general.
See Remark 6.11, for example. The set of polarizations / of degree 2 that induce the same
involution i (k) is in one-to-one correspondence with the set of blowing-downs of Y to P2.

Case (§2). Suppose that & # @. Then we have a unique element f € & such that
feNx and z:=h—2f e Rats(X).

We can find this f by the methods in Sections 3.5 and 3.4. Then f is the class of a fiber
of a Jacobian fibration ¢: X — P!, with z being the class of the zero section ¢: P! — X.
From these vectors f and z, we can calculate the Mordell-Weil group MW (X, ¢, ) and
its action on Sx by the algorithm explained in Section 4.

4. The action of a Mordell-Weil group on Sy

In this section, we assume that the characteristic of the base field k is # 2, 3 for simplicity.
Let X be a K3 surface, and let @ € Sy be an ample class.

Let ¢: X — P! be a fibration whose general fiber is a curve of genus 1. Suppose that ¢
has a distinguished section ¢: P! — X, that is, the pair (¢, ¢) is a Jacobian fibration. We
denote by n = Spec k(IP') the generic point of the base curve P!. Then the generic fiber
Ey :=¢~1(n) of ¢ is an elliptic curve defined over k(P!) with the zero element being the
k(P1)-rational point corresponding to ¢, and the set

MW := MW(X, ¢, )

of sections of ¢ has a structure of the abelian group with { = 0. This group MWy is called
the Mordell-Weil group. The group MWy acts on E; via the translation x — x+go
on E,, where 0 € MWy is a section and + g denotes the addition in the elliptic curve E.
Since X is minimal, this automorphism of E; gives an automorphism of X. Hence MW
embeds in Aut(X), and acts on the lattice Sy:

@.1) MW — Aut(X) — O(Sx. Px).
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Let f € Sy be the class of a fiber of ¢, and let z = [¢] € Sy be the class of the image
of ¢. Since the Jacobian fibration (¢, ¢) is uniquely determined by the classes f and z, we
sometimes write MW (X, f, z) for MW (X, ¢, {). The purpose of this section is to show
that we can calculate the homomorphism (4.1) from the classes f, z and an ample class a.

We review the theory of elliptic K3 surfaces, and fix some notation. Since { f, f) = 0,
(f,z) = 1and (z,z) = —2, the classes f and z generate a unimodular hyperbolic sublat-
tice Uy in Sy of rank 2. Let Wy denote the orthogonal complement of Uy in Sy . Since Uy
is unimodular, we have an orthogonal direct-sum decomposition

Sx = Uy & Wy.
Since Wy is negative-definite, we can calculate the set
Roots(Wy) = {r € Wy | (r,r) = =2}.
Hence we can compute
4.2) ©4 = Roots(Wy) N Rats(X)

by Proposition 3.2. Let 34 denote the sublattice of Wy generated by Roots(Wy), and 74
the ADE-type of the root lattice X4. Here an ADE-type is a finite formal sum of the
symbols Ay, Dy, and Ey. See, for example, Section 1 in [10] for the definition of ADE-
types of root lattices. Then we have the following proposition. The first part follows from
the definition of Rats(X'), and the second part follows from the classification of singular
fibers of elliptic surfaces due to Kodaira and Néron. See Chapters 5 and 6 in [27].

Proposition 4.1. The set Oy defined by (4.2) is equal to the set of classes of smooth
rational curves that are contracted to points by ¢ and are disjoint from the zero section C.
The vectors in Oy form a basis of the root lattice X4, and their dual graph is the Dynkin
diagram of type t.

Definition 4.2. The sublattice Uy @ X4 of Sy is called the trivial sublattice of the Jac-
obian fibration (¢, ¢).

The following is of fundamental importance in the theory of Mordell-Weil groups of
elliptic surfaces. This holds, not only for K3 surfaces, but for elliptic surfaces in general.
See Chapter 6 in [27].

Theorem 4.3. Let [ |: MWy — Rats(X) denote the mapping that associates to each sec-
tion 0 € MWy the class [0] € Rats(X) of the image of . Then the composite

4.3) MW, —5 Rats(X) < Sy —> Sx/(Us & I¢)

is an isomorphism of abelian groups.

Remark 4.4. By the isomorphism (4.3), Shioda [33] (see also [27]) introduced a structure
of the positive-definite lattice (with a Q-valued intersection form) on the free Z-module
MW/ (torsion). This lattice is called the Mordell-Weil lattice. The norm of the Mordell—
Weil lattice is very useful, for example, in finding good generators of MW. See Sec-
tion 6.6.
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For a vector v € Sy, we denote by s(v) € MWy the section that corresponds to the
class v mod (Up @ Xg) € Sx/(Up @ X ) by the isomorphism (4.3). First, we will explain
a method to calculate [s(v)] € Rats(X) for a given v € Sy.

We review the Kodaira—Néron theory of singular fibers of an elliptic surface in more
detail. See Chapters 5 and 6 in [27], [14, 15], [20], and Table in page 46 of [35]. Recall
that ® is the set of classes of smooth rational curves in fibers of ¢ that is disjoint from
the zero section ¢, and that the dual graph of © is the Dynkin diagram of type 7. Let

(4.4) Op = O UL O,

be the decomposition according to the decomposition of the Dynkin diagram into connec-
ted components. Then two elements r = [C] and r’ = [C'] of ©g, where C and C’ are
smooth rational curves on X, belong to the same ®,, if and only if ¢ maps C and C’ to
the same point. Hence the set {®1, ..., ®,} is in one-to-one correspondence with the set

{peP!| ¢~ (p)isreducible} = {p1...., pu}
in such a way that p, € P! is the point ¢(C) for [C] € ©,. We put
p(v) := Card(®,) and 1, := the ADE-type of ®,,.

In particular, each 7, is either A¢, Dy, or Ey, and we have 1y = 71 + --- + 7. Recall
that X4 is the root lattice generated by ®4. Let X, be the sublattice of X4 generated by
the elements of ®,. We have an orthogonal direct-sum decomposition

The fiber ¢! (p,,) consists of p(v) + 1 smooth rational curves
Cv,Oa Cv,ly ey Cv,p(v)

such that ®, = {[C,1],...,[C,,p)]} and that C, ¢ intersects the zero section {. The dual
graph of 5
O, = {[Cy,0]} UB,

is the affine Dynkin diagram of type 7,,. We number the smooth rational curves in 0, as
in Figure 4.1.
The divisor ¢*(p,) is written as

o(v)

¢*(pv) = va,jcv,j (mv,j € Z>0)»
=0

where the coefficients m,, ; are given in Table 4.1. We put
Jy i ={j|my,;j =1}
We have 0 € J,, and the class [C, o] is calculated by

p(v)
(4.5) [Cool = f =) mu;[Cujl.

J=1
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® CV,O
A fiber of type Ay
—O—06 ... 00—
Cv1 GCup CV’Z_I Cu,é
Cv,l ® ® Cv,O
§ . . 5 A fiber of type Dy
C C C —
Cy2 © »3 v Vi1 © Coy
Cv,O
Cya A fiber of type E¢
© ©
CU,Z C])’3 Cv,4 CV,S CV’G
Cv,l
A fiber of type E7
® ©

Cho Cvp Gz Gy Cys Cye Cyg

Cv,l
T A fiber of type Eg

o ®
Cv,2 Cv,3 Cv,4 Cv,S Cv,6 Cv,7 Cv,8 Cv,O

Cy,0 is indicated by @, and C,, ; for j € J, — {0} is indicated by ©.

Figure 4.1. Reducible fibers.

(It is well known that m,, ; with j > 0 are the coefficients of the highest root of the root
system ©,,.) Let ¢*(p,)* denote the smooth part of the divisor ¢*(p,):

¢*(pv)# = U C;,j,
Jjedy

where C7 ; is Cy, ; minus the intersection points of C,, ; with other irreducible components

of $~'(py). By Kodaira—Néron theory, we can equip ¢*(p,)# with the structure of an
abelian Lie group. See Section 5.6.1 in [27]. (When we work over C, this group structure
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o | j= 0,1,2,...,p(v)

Ay L1111

Dy 1,1,1,2,...,2,1
Eg 1,2,1,2,3,2,1

E7 1,2,2,3,4,3,2,1
Eg 1,3,2,4,6,5,4,3,2

Table 4.1. Coefficients m,, ;.

is obtained as the limit of the group structures of general fibers of ¢.) Then the set J,,,
which is regarded as the set of connected components C ‘f ; of $*(py)*, also has a natural

structure of an abelian group as a quotient group of ¢*(p,)*. The element 0 € J, is the
zero element. See Table 4.2, which is copied from Table in page 46 of [35], for the precise
description of the group structure of J,.

Ty Jy Group structure

Ay {0,1,...,¢£} | cyclic group Z/({ + 1)Z: the sum of a,b € J,
isc € Jysuchthata +b = c mod (£ + 1)
Dy (£:even) | {0,1,2,¢} Z]27 x Z.]27

Dy (£L:odd) |{0,1,2,¢} 7 /47 generated by 1 € J,, with £ € J,,

being of order 2
E¢ {0,2,6} Z/3Z
E7 {0,7} 7]27Z
Eg {0} trivial

Table 4.2. Group structure of Jy, (see Table in page 46 of [35]).

Let X be the dual lattice of X,, and let yy 1, ..., ¥y p(v) be the basis of X} dual to
the basis [Cy,1], ..., [Cy,p)] of . We also put
Yv,0 ‘= (S 21\)/
For j =0,1,..., p(v), we denote by y,_ ; the element y, ; (mod X,) of the discriminant

group A(Xy) = £)/ %, of Z,. The following is the key observation for our method.

2

Lemma 4.5. The map j +— ¥, ; gives an isomorphism J, = X/ 3, of abelian groups.

Proof. We compare Table 4.2 calculated in the Kodaira—Néron theory with the discrim-
inant groups XY /%, of root lattices of type A¢, Dy, and Ey. The order of £)/%, is
classically known, and coincides with |J,,|. We equip the vector space R” with the stand-
ard basis e, . .., e, and with the negative-definite intersection form (e;, e;) := —§;;.
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(1) The case t, = Ay.
We embed X, into R**! by [C, ;] - e; — €41 so that

2, ={(x1,....,x¢41) € Zt! | X1 4+ xp41 = 0}.
Then we have
1 7 41
VU,]=—€+1(_Z(€+1_1)ek+ Z jek)ezv@)(@'
k=1 k=j+1

It is easy to check that jy, 1 — y.,; € X,. Hence j — ¥, ; gives an isomorphism from
Z/+1DZtoX)/%,.

(2) The case t, = Dy.
We embed T, into R¢ by
[Coal > —e1—ea2, [Cip]lt>e1—ez, [Cjlej1—e; (j=3,....0),
so that we have
Sy ={(x1,....x¢) € Z | x1 + -+ + x¢ € 27},

The vectors y,,; € X, ® Q are given by

¢ ¢ ¢
1 1 1 .
yv,1=§;ek, yv,z=—§el+§;§ek’ yv,,~=;ek (j=3,....0.
= = =J

It is easy to see that ¥, 0 = 0, Yv.1, Vv,2, ¥ v,¢ form the group isomorphic, via y, ; = J,
to the group J,, = {0, 1,2, £} described in Table 4.2. Note that, for j = 3,...,£ — 1, the
element y, ; is either equal to ¥, o = 0 or equal to ¥, 4.

(3) The case t, = Eg.

Using the basis [Cy 1], ..., [Cy,¢] of Xy, we can write

1 1
Yo = ~3 (3,4,5,6,4,2) and y,¢ = ~3 (3,2,4,6,5,4) = 2y,, (mod X,).

Hence we have X /Xy, = {¥y.0, Yv,2, Vv,6} = Z/3Z. Note that we have 7,5 = .2,
Yv,3 = Vu,6, Vv,1 = Vva = Vvoin XY/ 5,

(4) The case t, = E7.

Using the basis [Cy 1], ..., [Cy,7] of Xy, we can write

1
Y =-3 (3,2,4,6,5,4,3).
Hence we have X/ Xy, = {V,,0. Vv,7} = Z/2Z. Note that we have ¥, 1 = Yy 5 = Vv 7

and ¥y2 = ¥Yv,3 = Yv,4 = Yv,6 = Vv,0 10 21\;//211-
(5) The case 1, = Eg. Trivial. [ ]
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A section 0 € MW intersects ¢! (p,) at a single point sp, (0), and the intersection
is transverse. Hence the intersection point sp,, (o) is a smooth point of the fiber, that is, we
have sp,, (o) € ¢*( pv)* . Thus we have the specialization map

spy : MWy — ¢*(py)F.

By the definition of the group structure on ¢*(p,)¥, the map sp,, is a group homomorph-
ism. (See Section 5.6.1 in [27].) The inclusion X, < Sy gives rise to the restriction
homomorphism Sy — Z;’, which we write as

vy,

For 0 € MW, we have
[UHV = Wv,jlo]>
where j[o] € J, is the index of the connected component of ¢*(p,)* intersecting o,
or equivalently, containing the point sp, (¢). The kernel of the composite of Sy — X
and XY — X/ X, contains the trivial sublattice Uy @ 4. Hence, by Theorem 4.3, the
natural mapping
[1] v

(4.6) MWy, — Sy — XY —> XJ/%,
is a group homomorphism. By definition, the following diagram is commutative:
(4.6)
MW¢ — Zl\)// 2,
4.7 SPy \L i, ! byLemma4.5

‘lﬁ*(PV)ti —>> Jv,

where the lower horizontal arrow is the natural quotient homomorphism.
Suppose that a vector v € Sy is given. Then the class [s(v)] € Sy of the section s(v) €
MW corresponding to v mod (Up @ X¢) by (4.3) satisfies the following:
@ {[s()],[s(v)]) = =2 and ([s(v)], f) = 1. Hence, by the orthogonal direct-sum
decomposition Sy = Uy @ Wy, we have [s(v)] = tf + z + w, where w € Wy
andt = —(w, w)/2.

(ii) [s(v)] = v mod Uy @ Xy. In particular, foreach v = 1, ..., n, we have

([s()] —v)|y € Z).

(iii) For each v = 1,..., n, there exists a unique index j(v) € J, such that [s(v)]|, =
Yv,j(v)- This j(v) is the index j of the connected component C)7 ; that contains the
intersection point sp, (s(v)) of s(v) and ¢~!(p,), and hence j(v) is the image of v
by Sx — J, in the diagrams (4.6) and (4.7).

Therefore the following calculations compute the class [s(v)].
Step 1. Let v' € W, be the image of v by the projection to Wy under the orthogonal
direct-sum decomposition Sy = Uy @& Wp.

Step 2. Foreach v = 1,.. ., n, calculate the element 6, (v') := v’|, mod X, of the dis-
criminant group X'/ X,, and find the index j(v) € J, such that §, (v') is equal to ¥, ;).
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Then the element v'|, — y,_jw) of X/ belongs to X,. We calculate the integers «,, ¢ such
that

o(v)
vllv — W, j) = Zav,k [Cv,k]'
k=1
Step 3. We put
n p(v)
v =" — Z Z ok [Cokl.
v=1k=1

Then we have
[s]=tf +z+V",
where t := —(v",v")/2.

Next, we explain how to calculate, for a given vector v € Sy, the isometry
g(s(v)) € O(Sx, Px)

induced by the translation x = x4 gs(v) on Ej, by the section s(v) € MWy, where + g
is the addition on the elliptic curve E; over k(P'). Let m be the Mordell-Weil rank of ¢:

n
m = dim(MWy4 ® Q) = rank Sy —2 — Zp(v),
v=1
where the second equality follows from Theorem 4.3. We choose vectors Uy, . .., U, € Sy
such that their images by

Sx = (Sx/(Up & 3g)) ® Q
form a basis of MWy ® Q. Then Sy ® Q is spanned by

[ z=1[s(0)], [s(1)],....[s(um)], andthe vectors[C, 1],...,[Cy pu)]in O,
forv=1,...,n.

(4.8)

Therefore, to calculate g(s(v)), it is enough to calculate the images of vectors in (4.8) by
g(s(v)). It is obvious that

fg(S(v)) =/
Z8() — [s(v)],
[s)ECY) = [s(uy +v)] for p=1,....m.

Hence it remains only to calculate the image by g(s(v)) of the classes in ©,. Note
that g(s(v)) induces a permutation on the set ©, = {[Cy ]} U ®, that preserves the
subset J, of classes of reduced irreducible components. By the method described in
Step 2 above, we calculate the index j(v) € J,, which is the image of s(v) € MWy by
the composite of sp,: MWy — ¢*(py)¥ and ¢*(p,)* — J,. The translation of ¢*(p,)*
by sp, (s(v)) induces the translation of J, by j(v). Checking each Dynkin diagram of
type A¢, Dy and Ey, we see that this permutation of J,, extends uniquely to a permuta-
tion of @, that preserves the dual graph. See Table 4.3, in which we abbreviate 0, =
{[Cvol, ... [Cyv o]} as {0, 1,..., p(v)}. Hence the image of each element of O, by
g(s(v)) is computed. Using (4.5), we can calculate the action of g(s(v)) on the classes
of ®,.
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T Jy j(v) | Permutation of @)V
Ay Z/+DZ | a |i>(G@+a)mod(+1)
Dy (Z.)22,)* 0 |id
(€ : even) 1 0«1, 2, ktl+2—k (2<k<?
2 02, 1ot kol+2-k 2<k<?
l 0<tl, 12, ksk Q2<k<?
Dy 7JAL 0 |id
(€ : odd) 1 0> 1>l 20, kol+2—-k Q2<k<?
2 02410, k<l+2-k Q2<k<?
{ 0t 1«2 kok Q2<k<?
E¢ Z7/37Z 0 id
2 O—>2+—6+—~0, 1351, 414
6 O—6+—2—0, 1>5—~3+—~1, 414
E7 727 0 |id
7 0«7 1«1, 44 2«6, 35
Eg 0 0 id

Table 4.3. Permutations of G)v.

5. Borcherds’ method

5.1. An algorithm on a graph

We recall an algorithm introduced in [7]. Let (V, E) be a simple non-oriented connected
graph, where V is the set of vertices and E is the set of edges, which is a set of non-ordered
pairs of distinct elements of V:
V
EC .
()

We say that v, v’ € V are adjacent if {v, v’} € E. The set V may be infinite. The assump-
tion that (V, E') be connected is important. Suppose that a group G acts on (V, E) from
the right. For vertices v, v’ € V, we put

Te(,v) :={g e G|vE =1},
and define the G-equivalence relation ~ on V by

v~V = Tg,v) #0.
Thus we have two relations on V', the adjacency relation and the G-equivalence relation.
Suppose that Vj is a non-empty subset of IV with the following properties.

(a) If v, v’ € Vp are distinct, then v and v’ are not G-equivalent.

(b) If a vertex v € V is adjacent to a vertex in Vj, then v is G-equivalent to a vertex
in Vo.
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We put
Vo :={v € V | v is adjacent to a vertex in Vp}.

Then, for each v € Vp, there exists a vertex ug(v) € Vp such that Tg (v, ug(v)) # @.
Note that u¢(v) € Vp is unique by assumption (a). We choose an element 4(v) from
T (v, ug(v)) for each v € Vp, and put

(5.1) K= {h(v)|veT

Proposition 5.1 (Proposition 4.1 of [7]). The subset Vo C V is a complete set of repres-
entatives of the orbit decomposition of V by G, and the group G is generated by the union
of H and the stabilizer subgroup Stabg (vo) = TG (vo, Vo) of a vertex vy € V.

In Section 4.1 of [7], we presented an algorithm to obtain V and # under the assump-
tion that (V, E) and G have certain local effectiveness properties.

5.2. Period condition

In this subsection, we assume that the base field k is the complex number field C, and
introduce period condition on elements of O(Sy). The period condition is, however,
also defined when X is a supersingular K3 surface in positive characteristic. See, for
example, [17].
Let L be an even lattice, and let A(L) = LY /L be the discriminant group of L. We
define a quadratic form
q(L): A(L) —> Q/2Z

by ¢(x mod L) := (x, x) mod 27Z. This finite quadratic form is called the discriminant
form of L, which was introduced by Nikulin [21]. Let M be a primitive sublattice of L,
and N the orthogonal complement of M in L. Then we have natural embeddings

Me&NCLCL CMY®N.
Suppose that L is unimodular, that is, LY = L. Then the submodule
L/(M & N) C A(M)x A(N)
is a graph of an isomorphism A(M) = A(N), which induces an isomorphism
t:q(M) = —q(N).

Nikulin [21] proved the following.

Proposition 5.2. Suppose that L is unimodular. Let Gy be a subgroup of O(N), and
let q(Gy) C Aut(q(N)) denote the image of Gy C O(N) by the natural homomorph-
ism O(N) — Aut(q(N)). Then an isometry gpr of M extends to an isometry gj, of L
such that its restriction gr|N to N is an element of Gy if and only if the action of gy
on qg(M) belongs to q(Gy) via the isomorphism Aut(q(M)) = Aut(q(N)) induced by
t:q(M) = —q(N).
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We apply this result to the primitive embedding of Sy into the even unimodular lattice
H?(X,Z) of rank 22 defined by the cup product. Let Tx denote the orthogonal comple-
ment of Sy in H2(X, Z), which we call the transcendental lattice of X. Then H?(X,Z)
induces an isomorphism

th +q(Sx) = —q(Tx).

Note that Ty is the minimal primitive submodule of H?(X, Z) such that Ty ® C contains
the period H?>%(X) = Cwy C H?*(X,C) of X, where wy is a non-zero holomorphic
2-form on X.

Definition 5.3. We put
O(Tx,wx) :={gr € O(Tx) | g7 ® C preserves H*°(X)}.

Then we say that gs € O(Sy) satisfies the period condition if the action of gg on g(Sx)
is equal to the action on ¢(Ty) of some of g7 € O(Tx, wyx) via the isomorphism of the
finite quadratic forms tg: q(Sy) = —q(Tx) induced by H?(X,Z).

By Proposition 5.2, we see that an isometry gs € O(Sy) extends to an isometry
of H?(X, Z) preserving the period H?:°(X) if and only if gg satisfies the period con-
dition. By Torelli theorem [24] (see also Chapter VIII of [4]), we obtain the following.

Theorem 5.4. We put
G := Im(Aut(X) — O(Sx, Px)).

Then g € O(Sx, Px) belongs to G if and only if g preserves Nx and satisfies the period
condition.

Example 5.5. Suppose that rank Ty > 3 and assume that wy is very general in the period
domain @ in P.(Txy ® C). (See Chapter VIII of [4] for the definition of the period
domain.) Then we have

(5.2) O(Tx,wx) = {1},

and hence gg € O(Sy) satisfies the period condition if and only if the action of gg on the
discriminant group A(Sy) is 1 or —1.

We give a proof of (5.2). The period domain @ is an open subset (in the classical
topology) of a smooth quadratic hypersurface in P, (Ty ® C), and hence we have

dim@ =rank Ty —2 > 0.

For y € O(Tx), let V, ; C Ty ® C denote the eigenspace of y with eigenvalue A € C. If
y ¢ {£1}, thendim V), < rank Tx and hence P«(V, 1) N @ is a proper analytic subspace
of @ for any A. Since a countable union of proper analytic subspaces of a positive-
dimensional connected complex manifold cannot cover the total space, we have (5.2)
for wy very general in @.

Suppose moreover that —1 € O(Tx, wy) acts on A(Ty) non-trivially (that is, the
abelian group A(7Tx) = A(Sx) is not 2-elementary). By Proposition 5.2, there exists
no isometry gy of the overlattice H?(X,Z) of Sy @ Tx such that gg|Sxy = 1 and
gu|Tx = —1. Since Aut(X) acts on H?(X, Z) faithfully, the natural homomorphism
Aut(X) — O(Sx, Px) is injective.
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Remark 5.6. For supersingular K3 surfaces, we have to prove (5.2) in a different method,
because the period domain is a subvariety of codimension > 1 in a Grassmannian variety.
See [17].

5.3. Tessellation by L 6/Sx-chambers

Let L,6 denote an even unimodular hyperbolic lattice of rank 26, which is unique up to
isomorphism. We choose a positive cone a6 of Lye. A standard fundamental domain
of W(L,e) was determined by Conway [8] by means of Vinberg’s algorithm [36].

Definition 5.7. A vector w € L is called a Weyl vector if w is a non-zero primitive vector
of L,¢ contained in 0,6 (in particular, we have (w, w) = 0 and hence Zw C (Zw)1)
such that (Zw)'/Zw is isomorphic to the negative-definite Leech lattice.

Definition 5.8. Let w be a Weyl vector. A (—2)-vector r € Ly is said to be a Leech root
with respect to w if (w, ) = 1. We then put

C(w) :={x € P26 | (x,r) = 0 for all Leech roots r with respect to w}.

Theorem 5.9 (Conway [8]). (1) The mapping w +— C(w) gives a bijection from the set of
Weyl vectors to the set of standard fundamental domains of W(Le).

(2) Let w be a Weyl vector. Then the mapping r — C(w) N (r)* gives a bijection from
the set of Leech roots with respect to W to the set of walls of the chamber C(w).

Definition 5.10. We call a standard fundamental domain of W(L,e) a Conway chamber.
Hence P, is tessellated by the Conway chambers.

Suppose that we have a primitive embedding
t: Sy = L.

Replacing ¢ by — if necessary, we assume that ¢ maps Py into S,¢, and regard Py as a
subspace of Po¢:

Px =11 (Pa) = (Sxy ®R) N
Definition 5.11. An L,¢/Sx-chamber is a chamber D of
section Px N C(w) of Px with a Conway chamber C(w).

26-

> %

NS

’y that is obtained as the inter-

The tessellation of $,¢ by the Conway chambers induces a tessellation of Py by
the L,¢/Sx-chambers. By definition, the nef-and-big cone Ny, which is a standard fun-
damental domain of W(Sx), is tessellated by L;¢/Sx-chambers. In other words, the
tessellation of Py by the L,g/Sx-chambers is a refinement of the tessellation by the
standard fundamental domains of W(Sx).

Definition 5.12. We define a graph (V, E) by the following: the set V' of vertices is the
set of L,¢/Sx-chambers contained in Ny, and the set E of edges is the set of pairs of
adjacent L,¢/Sx-chambers.

Let G be the image of the natural homomorphism Aut(X) — O(Sx, £x). Suppose
that

the period condition for g € O(Sy) is that the action of g on the dis-

(3-3) criminant group A(Sy) be 1 or —1.



Mordell-Weil groups and automorphism groups of elliptic K3 surfaces 21

See Example 5.5 for a case where this assumption is satisfied. Then, by Proposition 5.2,
every element g € G extends to an isometry of L,¢. In particular, the action of G preserves
the tessellation of Py by the L,¢/Sx-chambers. Since the action of G preserves Ny, we
obtain the following.

Proposition 5.13. If (5.3) holds, then G acts on the graph (V, E).

Definition 5.14. Let D = Px N C(w) be an L,¢/Sx-chamber. For each wall w of D,
there exists a unique defining vector v of w in the dual lattice Sy that is primitive in Sy.
(See Definition 2.2.) We call this vector v € Sy the primitive defining vector of the wall w.

Note that a Conway chamber has infinitely many walls. For the graph (V, E) to have
local effectiveness properties in [7], it needs that each L,¢/Sy-chamber has only a finite
number of walls. We consider the following assumption:

The orthogonal complement of Sy in L,¢ cannot be embedded in the

G4 negative-definite Leech lattice.

This holds, for example, if the orthogonal complement contains at least one (—2)-vector.

Proposition 5.15 ([31]). Suppose that (5.4) holds. Then each L,/ Sx -chamber has only
a finite number of walls. If D = Px N C(W) is an Log/Sx -chamber obtained by the Con-
way chamber C(w) associated with a Weyl vector w, then we can calculate the primitive
defining vectors of walls of D from w. Moreover, for each wall w of D, we can calculate a
Weyl vector w' such that D' = Px N C(W') is the Lyg/Sx -chamber adjacent to D across
the wall w.

Thus, under assumptions (5.3) and (5.4), the local effectiveness properties in [7] hold
for (V, E) and G, and we can apply the algorithm in Section 4.1 of [7] to (V, E) and G.

Remark 5.16. The amount of the computation of this method is estimated by |V,| =
|V/G]|, that is, the number of the orbits of the action of Aut(X) on the set of L,g/Sx-
chambers contained in Ny.

In practice, it seems that Borcherds” method carried out without using computer (for
example, [16]) can only deal with the case where | V| = 1. Some cases with | V| > 1 were
treated in [31], where 1} is of size about 10® ~ 10*. However, the geometric description
of the generators of Aut(X) was not given for these cases. We also have observed some
cases where |Vp| is too large for Borcherds’ method to terminate in a reasonable time (for
example, [13]).

In the case of the present article (see Section 6), we have |Vp| = 7. Since this is not so
large, we have managed to obtain geometric generators.

Remark 5.17. It has been empirically observed that |Vp| is small when the orthogonal
complement of i: Sy < L,¢ contains a root lattice as a sublattice of finite index.

6. Computation of Aut(Xy,,)

In this section, we prove Theorems 1.1 and 1.2. For simplicity, we write X for the K3
surface X .. Recall that the polynomials f and g in the defining equation (1.2) of X 7,
are assumed to be very general. We use this assumption throughout this section.
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6.1. The lattice Sx

First, we describe the lattice Sy and the nef-and-big cone Nx. Let H C X denote the
pull-back of a line of P2, and let us put

h = [H] € Sx.

The singular locus of the branch curve B(h) = { /2 + g> = 0} C P? of the finite double
covering X fg = P2 consists of six ordinary cusps pi, ..., ps, which are located at the
locus defined by f = g = 0. Hence the singularities of X #.g consist of six rational double
points pyp, ..., pe of type A,, where p; is located over p;. Let El.(+) and El.(_) denote the
exceptional curves that are contracted to the point p; € Sing(X #.g) by the desingulariza-
tion X — )_(f’g. We put

e§+) = [Ei(+)] € Sy and el(_) = [Ei(_)] € Sx.

Let T’ C P2 be the conic defined by g = 0. Then T passes through the six cusps p1,.. ., js
of B(h). Hence the strict transform of T" in X is a disjoint union of two smooth rational
curves ') and ). We put

y(+) = [F(+)] € Sy and y(_) =[] e Sx.

Foreachi € {1,..., 6}, the curve '™ intersects one of El.(+) or £ i(_) and is disjoint from
the other. Interchanging E l-(+) and Ei(_) if necessary, we can assume that

) =)
(y(+)’el’ ) = 1 and (y(+)’el’ ) :O
hold fori = 1,..., 6. Then we have the following (see also [29]).

Proposition 6.1 (Degtyarev [9]). The Q-vector space Sx @ Q is of dimension 13, and is
generated by the classes

6.1) h,e(1+),e(l_),...,eg+),eg_).

The sublattice Sx,0 of Sx generated by the classes in (6.1) is of index 3 in Sx. The lat-
tice Sy is generated by Sx o and the class y.

By Proposition 6.1, a vector v of Sy ® Q is uniquely determined by the list of inter-
section numbers

(. k), (v.elP), W el . (w.elP) el

Moreover, an isometry g of Sy is specified by the images of the classes in (6.1) by g. For
example, the involution i (k) associated with the double covering (h): X — P? defined
by || is given by
i(h) _ (Hhith) _ () i) _ ,(H)
W =h, (i)™ = (ef7)® =eiP (i=1,...,6).

The vector a € Sy ® Q defined by

6.2) (@ h) =8, (a,eP)y=1 (a,e)=1 (=1,...,6)
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is a vector of Py N Sy, and satisfies
(a,a) =20, Roots(atNSy)=40, Sep(h,a)=9.

Hence a is ample (see Section 3.1). By this ample class a, we can specify the nef-and-big
cone Ny in Px.

Next, we investigate the period condition of X. We consider the moduli space M
of lattice-polarized K3 surfaces (X', '), where X’ is a K3 surface and 7’ is an isometry
H?(X,Z) =~ H?(X',Z) that induces an embedding Sy <> Sx'. Then /M is covered by the
period domain @ C P, (Tx ® C).If (X', ') is very general in M, then we have Sy = Sx-.
Looking at the lattice Sy = Sy, we obtain the following.

Proposition 6.2 (Degtyarev [9]). If (X', 1) is very general in M, then there exist homo-
geneous polynomials ' and g’ of degree 3 and 2, respectively, such that X' is birational
to the double plane defined by w? = f'* + g’3.

Remark 6.3. The following naive dimension count may help in understanding Proposi-
tion 6.2: the dimension of the parameter space of pairs (f’, g’) of homogeneous polyno-
mials of degree 3 and 2 modulo linear transformation is equal to

dim H°(P?, 9(3)) + dim H°(P?,9(2)) —dimGL(3,C) = 7 = rank Ty — 2 = dim Q.

See also [29] for the proof of Proposition 6.2.

Since f and g are very general, we see that X is very general in M, and hence
we can assume that wy is very general in the period domain @. Therefore, by (5.2) in
Example 5.5, we have

(6.3) O(Tx, wy) = {£1}.

The discriminant group A(Sx) of Sy is isomorphic to Z/27Z x (Z/3Z)*. Hence, using
Example 5.5, we obtain the following.

Proposition 6.4. The natural representation of Aut(X) on Sx is faithful.

We will consider Aut(X) as a subgroup of O(Sx, $x) from now on. By Theorem 5.4
and (3.1), we have the following.

Proposition 6.5. An element g € O(Sx, Px) belongs to Aut(X) if and only if g acts on
A(Sx) as 1 or —1, and Sep(a, a®) = @ holds.

We introduce an auxiliary group M, which makes the descriptions of Nx and Aut(X)
much easier. Let M be the subgroup of O(Sx, $x) consisting of elements g satisfying
h® = h and

ey

(€ eO e g — (¢ (O O

Then M is isomorphic to Z /27 x Sg, generated by the involution i (h) and permutations
o € Sg given by

R=h, e =eP D7 =¢ ).
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For each g € M, we have a = a¥, and hence M C O(Sx, Nx). The discriminant form
q(Sx) of Sx is isomorphic to

(z)2r2) @ (5)2r2)" e (5] 22)

Here ([a], Z/mZ) denotes a cyclic group A = (y) of order m generated by y equipped
with the quadratic form g: A — Q/2Z such that ¢(y) = «. The natural homomorphism
O(Sx) — Aut(q(Sxy)) maps M to Aut(q(Sx)) isomorphically. Note that ¢(k) acts on
A(Sx) as —1. Hence we have

M N Auw(X) = {1,i(h)}.

Remark 6.6. By means of the methods in Section 3.4, we can make the list of classes of
smooth rational curves C on X with ([C], k) = m for each non-negative integer m. The
size v(m) of this list is as follows: when m is odd, we have v(m) = 0, whereas for m even,
we have

m |0 2 4 6 8 10 12 14

vOn)‘ 12 17 0 492 720 492 8292 8730

Fori,j with1<i <6,1<j<6,andi # j,let{; C P2 denote the line passing
through the singular points p; and p; of the branch curve B(h), and let l; ;i C X be the
strict transform of £;;. The v(2) = 17 smooth rational curves on X of degree 2 with respect
to h are the lifts &) of the conic ' € P2 and the curves £; -

6.2. Automorphisms of X

By the method in Section 3.7, we find many automorphisms of X from nef vectors of
norm 2. Among them, we have the following automorphisms:

type (a): the involution i (h),

type (b): 90 involutions i (/7 ) associated with polarizations /iy of degree 2 such that
(hrs,h) = 6 and that Sing(B(hyy)) is of type A3 + As,

type (c): 12 involutions i (hX) associated with polarizations i of degree 2 such that
(h;‘, h) = 4 and that Sing(B(hoﬂf)) is of type A, + 544,

type (d): 360 involutions i (k4 s) associated with polarizations &4y of degree 2 such
that (hyy,h) = 14, and that Sing(B(h+ts)) is of type D4 + As, and

type (e): 360 translations associated with sections e](.i) of infinite order of 120 Jac-

obian fibrations ¢: X — P! defined by (fy,24) = (fﬂ,efi)) with ( fa7,h)
= 4 such that MWy is torsion-free of rank 4 and that the reducible fibers of ¢
are of type D4 + As.

See subsections below for more precise descriptions of these automorphisms. We will
show, by Borcherds’ method, that these automorphisms generate Aut(X).
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6.3. Primitive embedding Sy < L¢

To apply Borcherds’ method, we embed Sy into L,e primitively. Let Ry be a negative-
definite root lattice of type A; + 6A, with a basis

(6.4) a, B BO. gD gD

consisting of roots that form the dual graph as in Figure 6.1.

o o——=oO0 o——oO s o——oO
o /3§+) ﬂg_) ﬂé‘i’) ,Bé_) ﬂé‘i’) ﬂé—)

Figure 6.1. Basis of Rg.

Let

ocv, §+)v’ 5—)v

be the basis of the dual lattice Ry that is dual to the basis (6.4). Then

v gV
6 ~Ps

y e ey

is an even lattice whose discriminant form is isomorphic to —g (Sx ). Recall that the natural
homomorphism O(Sx) — Aut(¢(Sx)) maps M to Aut(q(Sx)) isomorphically, and hence
is surjective. Therefore, by Nikulin [21], there exists a unique (up to the action of O(Sx))
even unimodular overlattice of Sy @ R in which Sy and R are both primitive. Taking this
unimodular overlattice as Lyg, we find a primitive embedding

LISX L)Lzé.

We consider the tessellation of Ny C Py by the L,¢/Sx-chambers associated with this
primitive embedding. Let (V, E) be the graph of L,¢/Sx-chambers contained in Ny
(see Definition 5.12). By (6.3) and Propositions 5.13 and 5.15, we see that the group
G = Aut(X) C O(Sx, Px) acts on the graph (V, E), and we can apply the algorithm in
Section 4.1 of [7].

Remark 6.7. Primitive embeddings of Sy into L,¢ are not unique. In fact, the genus
of negative-definite even lattices containing the isomorphism class of R consists of 26
isomorphism classes.

The image t(a) € P»6 N Lye of the ample class a € Sy defined by (6.2) satisfies
(6.5) Roots(([t(a)] = Lae)") = Roots((:: Sy <> Lag)™) = Roots(R),

where [t(a)] is the sublattice of L,¢ generated by ¢(a). Hence a is an interior point of an
L6/ Sx-chamber, which we denote by Dy. Moreover, we have

Sepyg(t(a),t(h)) = 9,

where we denote by Sep,¢ the set of separating (—2)-vectors in Ly¢. Hence the class & is
a point of Dy. We choose a vector a € $r N Lyg that satisfies

Roots(([@] < Ls)*) =@ and Sep,g(t(a), a) = 0.
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Then a is an interior point of a Conway chamber Cg such that 171(Cy) = Dgy. We can
calculate a subset of the set of roots 7 of L,g such that Cy N (f)J- is a wall of Cy, either
by Vinberg’s algorithm [36], or by calculating Sep,(@, v), where v € a6 N Log are ran-
domly chosen vectors. If this subset is large enough, these roots 7 span L;¢ ® Q and
hence the Weyl vector wg of the Conway chamber Cj is calculated by solving the equa-
tions (wo, 7) = 1.

Remark 6.8. The ADE-type of the roots in (6.5) is A7 + 6A4,. Hence the hyperplanes
perpendicular to these roots decompose R ® R into 2 x 6° regions. Therefore there exist
exactly 2 x 6° Conway chambers C such that (! (C) = D,.

Thus we prepared all the data necessary to start the algorithm of Section 4.1 in [7] to
calculate a complete set Vj of the representatives of /G and a finite generating set of
G = Aut(X). We executed this algorithm. The computation terminated and yielded the
following.

Proposition 6.9. The set Vy consists of the following seven L,/ Sx -chambers:
Do, DV, P, DP D DY, D®.

We will describe each of these L,g/Sx-chambers in Vj, and during the description,
we present automorphisms in the set # defined by (5.1).

We use the following convention. Let D be an L,¢/Sy-chamber, and let C be a Con-
way chamber such that ;7! (C) = D. Let w be the Weyl vector of C. For a wall w of D,
let v € Sy be the primitive defining vector of w (see Definition 5.14), and we put

n(w) := (v,v), a(w):=(w,t(v)), hw):= (h,v).

These rational numbers are useful in classifying walls.

6.4. The L,¢/Sx-chamber Dy

The initial L,¢/Sx-chamber D contains the ample class & in its interior. The stabilizer
subgroup of D¢ in G is {1,i(h)}. The group M leaves Dy invariant. The chamber Dy
has 110 walls, and the action of M decomposes the walls of Dy into four orbits 01, 02, 03
and o4 of sizes 2, 12, 6 and 90, respectively. The data of these orbits are given in Table 6.1.

‘Size‘ n a h‘
o1 ] 2 -2 1 2| y®
| 12| =2 1 ofe®
1
2

l
03| 6 |=3/2 3/2 1| isomwith D®
os | 90 | —2/3 3

isom with D

Table 6.1. Walls of Dy.

The orbit 01 of size 2 consists of (™))~ N Dy. The orbit 0, of size 12 consists of

(el(i))L N Dy. Hence the L,6/Sx-chamber adjacent to D¢ across a wall in 0; or 05 is not
contained in Ny.
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The orbit 03 of size 6 consists of the walls (va)J- N Dy whose primitive defining
vectors v, are given by

_ )y _ Oy )l ifi=a
(va, h) =1, (vg,e;"") = (vq,e; )—{0 ifi#a.

Let Dia) be the L,¢/Sx -chamber adjacent to Dy across the wall (vg)™ N Dg. Then Dga)
is contained in Ny, but is not G-equivalent to Dy, and any two of Dgl) v DgG) are not
G-equivalent to each other. Hence these chambers Di“) (¢ =1,...,6)are added to V} as
new representatives of V/G.

The walls wyy in the orbit 04 of size 90 are indexed by ordered pairs (/, J), where /
and J are subsets of {1, ..., 6} satisfying |/| = |J| =2 and I N J = @. The primitive
defining vector vy ; € S}\(’ of wry € 04 is given by

(vrg, h) =2,

(s eP) =0, (vs.e)y=0  ifigIuJ,
(s ey =1, (us.e)=0, ifiel,
(s ey =0, (s, ey =1, ifiel.

The Lg/Sx-chamber Dy adjacent to D¢ across the wall wy; is G-equivalent to Dy. An
automorphism g;; € G that maps Dy to Dy isomorphically is given as follows. Let iy
be a vector of Sy ® Q defined by

higePy=0, (hy;.eD) =0, ifi¢IUJ,
higePy=1, (h;.e7) =1, ifi el,
hige )y =0, (hyy,e) =3, ifiel.

Then hyy € Sy and (hys,h;;) = 2. We confirm Sep(h;s,a) = @, and hence h;; € Nx.
The complete linear system |/ | is proved to be fixed-component free by the criterion in
Section 3.7. The involution i (i ;) associated with the double covering (h;s): X — P2
given by |hys| maps Dg to Dyy isomorphically. Therefore

i(hry) ™t =i(h1s) € Tg(D1y,uo(Dry))

in the notation of Section 5.1, where uog(Dyy) = Dy. These involutions i (k) are the
involutions of type (b) in Section 6.2.

Remark 6.10. Suppose that I = {iy, i}, J = {j1, j2}, and
{L,...,6} — (I UJ) = {ky, ka}.

Then the smooth rational curves on X contracted by the double covering 7w (h7y): X — P2
are as in Figure 6.2, where £, ;, is the curve given in Remark 6.6. In particular, the singular
locus of the branch curve B(hyy) is of type A3 + As.

Remark 6.11. We have vy =y, h[_]i(h) = h 1, and can confirm that the involution
i(hiy'®Y = i(h)i(h1y)i(h)is equal to i (hyy).
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O——0o0—=O0 O O

GO I S €5 C ) .- e ®
€ b e, hi re ¢k, ks

Figure 6.2. Exceptional curves of (hyy).

6.5. The L36/Sx-chamber D{®

The stabilizer subgroup of Dia) in G is {1,i(h)}. On the other hand, the group M acts
on the set {D(l), e DgG)} transitively. Let M, be the stabilizer subgroup of Dga) in M.
Then My, is isomorphic to Z /27 x Ss5. The chamber Dia) has 110 walls, and the action

of M, decomposes the walls of Dg“) into seven orbits 0’1, ol 0’7. The data of these orbits
are given in Table 6.2.

size n a h
oy | 1 [ =3/2 3/2 =1 backto Do
ol 2| =2 1 2 |y®
oh 5| =2 1 2 |l (B#w
|10 2 1 0|l Bro
o5 | 2 | =3/2 3/2 1 | isomwith D\
oy | 30 | —1/6 7/2 3 | isomwith D (8 # a)
of| 60 | —2/3 3 2 |isomwith D) (8% a)

Table 6.2. Walls of D'*.

The orbit 0} consists of a single wall, and the adjacent L,¢/Sx -chamber across this
wall is Do, which means that this wall is a wall in the orbit 03 of walls of D viewed from
the opposite side.

The orbit o), of size 2 consists of y®tn Di“), the orbit o} of size 5 consists of
(Lap)t N D'® with B # a, and the orbit 0/, of size 10 consists of (e/(gjt))l N D'® with
B # «. The adjacent L6/Sx-chambers across these walls are therefore not contained
in Nx.

The orbit of is of size 2. One of the walls in of is defined by a vector v} € Sy
satisfying

(vF.h) =1,
(v eg) =2, (7€
+ —
(vgep”) =0, (vf.ef)=0 (B#a),
and the other wall in of is defined by the vector

vy 1= (0g)' ™.
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The adjacent Lys/Sx-chamber D} across the wall (v})+ N Dga) is G-equivalent to

DEO’). Indeed, the following automorphism i (k) € G maps Dga) to D} isomorphically.
Let i} be the vector defined by

(ht h) =4,
(hi,ePy =2, (h}, ey =0,
(hie?) =0, (hfef)=1 (B#0)

Then we have i} € Sy and (h}', h)}) =2. We confirm Sep(h;}', @) =@ and hence 1} € Nx.
The complete linear system |h]} | is proved to be fixed-component free by the criterion in

Section 3.7. Then we can confirm by direct computation that the involution i (h}) asso-
ciated with the double covering 7(h}): X — P2 given by |h}| induces Dga) ~ D}

It is obvious that the automorphism i (hy) := i(h)i(h} )i (h) maps D(a)
)J_

to the adjacent

L6/ Sx-chamber D, across the wall (v, DEO’). Therefore we have

i(hf) =i(h)™ € To(DE, uo(DE))

in the notation of Section 5.1. These involutions i (hgf) are the involutions of type (c) in
Section 6.2.

Remark 6.12. The branch curve B(/}) of the double covering 7 (/}) has the singularit-
ies of type A, + 5A;. The exceptional curves over the singular point of type A, are y ™)

and eé_), whereas the exceptional curves over the singular points of type A; are e;;') for

B # a. In particular, the involution i (2.}) interchanges ¥ and e( )

The description of the orbit o is rather complicated, and hence is postponed to the
next subsection.

We describe the orbit 0/, of size 60. Suppose that § € {1,...,6} and F = {iy,i»} C
{1,...,6} satisfy i1 # iz, B # o and {&, B} N {i1,i2} = 0. Let vé}) € Sy be the vector
defined by

(v h) =2,

(i ey =1, (5 ef”) =0 ifi e{e.p),
Wik ey =0, (5l eV)y=1 ifieF,
(Wi ey =0, S e7) =0 otherwise.

We then put

( ). ( (+))l(h)

Vgr = (Vg
The orbit o, consists of walls (vé;))l N D%a) and (vé}))l N Di“). The adjacent Lo/ Sx -
chamber D;(;IE’) across the wall (vl(giF))J- N Dga) is G-equivalent to Dgﬂ ). We put A :=
{a, B}, and consider the polarization hyr of degree 2 defined by (6.6) with I = A and
J = F. The involution i (h4F), which is an involution of type (b) in Section 6.2, maps
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Diﬂ ) to DHI;) isomorphically, whereas the involution i(hf4) maps Dgﬂ ) to Dé}) iso-

morphically. (See Remark 6.11.) Therefore we have

i(har) = i(har) ™" € Tg(DSR uo (D).
i(hra) = i(hpa)™" € Ta(DyZ uo(DS)).

in the notation of Section 5.1.

6.6. The orbit o;

In the following, for a sign o € {+, —}, let & denote the opposite sign: {o,5} = {+, —}.
First, we define automorphisms g/, ; and g,
Let 4 be the set of ordered triples

I = (i} iz, i3, i}, {is. i6})

such that {iy,...,ig} ={1,...,6}. We have |{| = 60. Forapairof o € {+,—}and [ € d,
we have the configuration of smooth rational curves as in Figure 6.3.

(o)
e

©)

16

Figure 6.3. Configuration for a Jacobian fibration.

Then

Jo = for = eff) + eg) + eg’) + el(f) +2y@ = y©@ 4 eg) + el(:) + ligie
is the class of a fiber of an elliptic fibration ¢: X — P! with

Zp = Zgl 1= eg’)
being the class of a section.
Thus we obtain a Jacobian fibration ¢ with the zero section zg, and its Mordell-Weil

group
MWy := MW(X, f3,24) C G = Aut(X).
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Calculating the set ®4 = Roots(Wy) N Rats(X), we see that the ADE-type of the redu-
cible fibers of ¢: X — P! is D, + A3. Hence the rank of MW, is 4. Since the trivial
sublattice of ¢, which is of rank 9 generated by the classes of the ten curves in Figure 6.3,
is primitive in Sy, we see that MW is torsion free. A Gram matrix of the Mordell-Weil
lattice MWy, (see Remark 4.4) is

3 -1 -1 -1
3[-1 3 -1 -1
40-1 =1 3 1

-1 -1 1 3

The numbers 7n(s) of elements with small Mordell-Weil norms s in MWy are given as

follows:
s |9/4 3 21/4 6

n(s)| 12 14 16 30

Among these, we have the following sections of ¢:

 The six smooth rational curves £;, j,, where j; € {i2,i3,i4} and j, € {is, ic}, satisfy

(¢}, j», f) = 1, and hence they are sections of ¢. Their Mordell-Weil norms are 9/4.
¢ The three smooth rational curves ej(-c), where j € {is,i3,i4}, also satisfy (ej(.o), =1,
and hence they are sections of ¢. Their Mordell-Weil norms are equal to 3.
These 6 + 3 sections £ i1j» and ej(.o) generate MW .
Definition 6.13. For j € {i>.i3,i4}, we denote by g/, ; the automorphism of X obtained

as the translation by the section ej(-o) € MW. This is the automorphism of type (e) in
Section 6.2.

Let ¢ be the set of ordered 4-tuples
J = (i} iz i3} {ia, is} {is))

such that {iy,...,is} = {1,...,6}. We have |#| = 180. For a pair of 0 € {+, —} and
J € ¢, let hyy be the vector of Sy ® Q defined by

(hoy. h) = 14,

(hos.e,”) =1 and (hes.e”) =0,

(hos,e) =4 and (hgs,e®) =0 fori =irandi = is,
(hos,e) =0 and (hos,e”) =5 fori =iqandi = is,
(haJ,el(:)) =5 and <hgj,e§§)) = 4.

Then hyy € Sy and (hgy,hyy) = 2. We confirm Sep(hqy,a) = @, and hence hqoy € Ny.
The complete linear system |hyy| is proved to be fixed-component free by the criterion
in Section 3.7.

Definition 6.14. We denote by g ; the involution i (k). This is the involution of type (d)
in Section 6.2.
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Remark 6.15. The smooth rational curves on X contracted by the double covering 7 (i)
associated with |h4 | are as in Figure 6.4. In particular, Sing(B(hsy)) is of type D4 + As.

~ Zi4i5 ez(f)
o

y(o)
o O o
@ ¥ %) e l(;r) 7

iz

(o)
56 eis

Figure 6.4. Exceptional curves of (hsy).

We now describe the orbit of of walls of Dga) . The size of oy is 30. Suppose that
Be{l,...,6}and F ={iy,ip} C{l,...,6}satisfyi; # i, B #Zaand {a, B} N{i1,ir} =0.
Letu := ugp € Sy be the vector defined by

(u,h) =3,

(u,e((;r)) =1, (u,efx_)) =1,

(u,el(;)) =0, (u,eﬁ_)) =0,

(u,el&)) =0, (u,el(_)) =1 ifi ekF,
ey =1, (w.e)=0 ifi ¢{a.fUF.

The orbit of consists of walls (up F)t N Di“). The Ly6/Sx-chamber Dygr adjacent to
D across the wall (ugr)* N D is G-equivalent to D, An automorphism gor € G
that maps Dgﬂ ) to Dygr isomorphically is given as follows. We put

K:={1,...,6}\ ({a,B} U F).
Then we have
(6.7) 8apF = g/+1/3 'gz—J = gi[/ﬂ 'gz‘]u
where
I'={a}, KU{BLF)ed, J=({BLK F.la})€g,
I'=({a}, FU{B},K)ed, J =B} F K {a})€d.

Therefore we have
Saupr € T6(Dapr, uo(Dapr))

in the notation of Section 5.1.

Remark 6.16. The equality (6.7) was found by trying small combinations of the auto-
morphisms of type (a)—(e).
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6.7. Proof of Theorem 1.1

Any two distinct elements of V, are not G-equivalent. Any L¢/Sy-chamber that is con-
tained in Ny and is adjacent to an element of Vj is G-equivalent to an element of Vj.
Hence, by Proposition 5.1, the set 1} is a complete set of representatives of V/G.

As the set J¢ defined by (5.1), we can take the set consisting of the identity element 1,
all involutions of type (b) and (c), and the automorphisms g;lF, where gqgF is given
by (6.7) and is a product of automorphisms of type (d) and (e). The stabilizer subgroup
Stabg (Dyg) of the initial element Dy € Vy is {1, i(h)}. Hence, by Proposition 5.1, the
group G = Aut(X) is generated by the automorphisms of type (a)—(e). ]

Remark 6.17. This generating set is very redundant.

6.8. Proof of Theorem 1.2

We prove that G = Aut(X) acts on Rats(X) transitively. Let r be an arbitrary element
of Rats(X). Since r defines a wall of Ny, there exists an L,¢/Sx-chamber D contained
in Ny such that r defines a wall of D. We have an automorphism g € G such that D¢ € V.
By the description of walls of the representative L,¢/Sy-chambers in Vp, we see that &
is one of the 12 + 2 + 15 smooth rational curves et(xi), y(i), and Zij. The action of i (h)
gives e((f) <~ e((x_) and ") < ). By Remark 6.10, the involution i (h7;) of type (b)
interchanges ej(.fr) and e](.j) (see Figure 6.2). By Remark 6.12, the involution i (h}) of

type (c) interchanges y ™) and e‘(x_) . As was shown in Section 6.6, the elliptic fibration
X — P! given by f,; has sections ej(-a) and ¢;, j,, and hence they belong to the same
G-orbit. Therefore these 12 + 2 + 15 smooth rational curves are in the same G-orbit. m
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