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Mordell–Weil groups and automorphism groups
of elliptic K3 surfaces

Ichiro Shimada

Abstract. We present a method to calculate the action of the Mordell–Weil group
of an elliptic K3 surface on the numerical Néron–Severi lattice of the K3 surface.
As an application, we compute a finite generating set of the automorphism group of
a K3 surface birational to the double plane branched along a 6-cuspidal sextic curve
of torus type.

1. Introduction

We work over an algebraically closed field k.
Let X be a projective K3 K3 surface. We denote by SX the numerical Néron–Severi

lattice of X , that is, the group of numerical equivalence classes of divisors of X with the
intersection pairing

h i W SX � SX ! Z:

Let O.SX / denote the group of isometries of the lattice SX . We investigate the automorph-
ism group Aut.X/ of X by means of the action

Aut.X/! O.SX /

of Aut.X/ on the lattice SX .
Let �WX ! P1 be an elliptic fibration with a distinguished section �WP1! X . In this

case, we say that .�; �/ is a Jacobian fibration. We denote by MW.X; �; �/ the Mordell–
Weil group of sections of � with � being the zero element. An element � 2 MW.X; �; �/

acts on the generic fiber of � by translation. SinceX is minimal, this birational automorph-
ism of X is an automorphism of X , and hence we have an embedding of MW.X; �; �/

into Aut.X/. In this paper, we investigate the composite homomorphism

(1.1) MW.X; �; �/ ! Aut.X/ ! O.SX /:

This homomorphism has been used in many situations in the study of automorphisms
of K3 surfaces (see, for example, [26]). The purpose of this paper is to present a general
algorithm to calculate (1.1) explicitly and to give applications.
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Borcherds’ method ([5,6]) is a method to calculate a finite generating set of the image
of Aut.X/! O.SX / by means of a certain decomposition of the nef-and-big cone of X
into a union of polyhedral cones. The first application of this method to the study of the
automorphism group of a K3 surface was given by KondNo [16]. See also [31]. Since
this method is based on lattice-theoretic computation, the geometric meaning of elements
in the generating set obtained by this method is not clear in general. The homomorph-
ism (1.1) helps us to express the generating set geometrically. See Remark 5.16.

As an application, we calculate the automorphism group of the complex K3 sur-
face Xf;g obtained as the minimal resolution of the double cover Xf;g of P2 defined by

(1.2) w2 D f .x; y; z/2 C g.x; y; z/3;

where f and g are very general homogeneous polynomials on P2 of degree 3 and 2,
respectively. Here, being very general means that there exist at most countably many
analytic subsets of H 0.P2;O.3// �H 0.P2;O.2// with codimension � 1 such that the
pair .f; g/ does not belong to any of them. We prove the following.

Theorem 1.1. The automorphism group Aut.Xf;g/ of Xf;g is generated by 463 involu-
tions associated with double coverings Xf;g ! P2 and 360 elements of infinite order in
Mordell–Weil groups of Jacobian fibrations of Xf;g .

Here, by a double covering, we mean a generically finite morphism of degree 2.

Theorem 1.2. The automorphism group Aut.Xf;g/ acts on the set of smooth rational
curves on Xf;g transitively.

The branch curve of the finite double cover Xf;g ! P2 is defined by the equation
f 2 C g3 D 0. This plane curve is called a 6-cuspidal plane sextic of torus type, and was
studied intensively from various points of view. See, for example, [23]. In fact, Zariski [38]
observed that there exists a 6-cuspidal plane sextic of non-torus type, and the seminal
notion of Zariski pairs emerged from this observation. See [1] and [2]. In [9] and [29],
this classical example of Zariski pairs was studied in relation to the theory ofK3 surfaces.
It would be an interesting problem to calculate the automorphism group of theK3 surface
obtained from the 6-cuspidal plane sextic of non-torus type.

The generating set in Theorem 1.1 is constructed in such a way that we can clearly
see the geometric meaning of each element. See Section 6 for more precise descriptions
of these automorphisms. Remark that this generating set is not minimal at all.

In fact, we give divisors ofXf;g whose classes generate SX . Hence we can calculate, in
principle, the equations of the double coverings and the Jacobian fibrations by the method
given in [30]. The actual computation of the equations, however, would be very hard.

Theorem 1.1 is proved in the following three steps.
(a) We find many automorphisms of Xf;g geometrically by the methods explained in

Section 3 (especially Section 3.7) and Section 4.
(b) We find a finite generating set of Aut.Xf;g/ by Borcherds’ method, which will be

explained in Section 5.
(c) We then show that the group generated by the automorphisms obtained in Step (a)

contains the generating set obtained in Step (b).
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See [18], [19] and [34] for general finiteness results of the automorphism group of
a K3 surface and its action on the nef-and-big cone.

This paper is organized as follows. After fixing some notions and notation about lat-
tices in Section 2, we summarize in Section 3 various computational tools that are useful
in the study of the geometry of K3 surfaces. These tools are based on an algorithm given
in [30] to calculate Sep.v1; v2/ of separating .�2/-vectors in a hyperbolic lattice. In
Section 4, we present an algorithm to calculate the homomorphism (1.1). In Section 5,
we review Borcherds’ method. We employ a graph-theoretic formulation of Borcherds’
method given in Section 4.1 of [7]. Sections 3–5 are intended to be summaries of com-
putational methods in the study of K3 surfaces for future reference. In Section 6, we
calculate Aut.Xf;g/ by means of all these algorithms, and prove Theorems 1.1 and 1.2.
We used GAP [11] for the actual computation. Detailed computation data about Aut.Xf;g/
can be found in the author’s webpage [28].

2. Notation and terminologies

By a lattice, we mean a free Z-module L of finite rank with a non-degenerate symmetric
bilinear form

h i W L � L! Z;

which we call the intersection form (or the intersection pairing) of L. The group of iso-
metries of a lattice L is denoted by O.L/, which we let act on L from the right.

Let L be a lattice. Then the dual lattice L_ of L is defined to be

¹x 2 L˝Q j hx; vi 2 Z for all v 2 Lº:

The finite abelian group A.L/ WD L_=L is called the discriminant group of L. We say
that L is unimodular if L D L_.

A lattice L is said to be even if hv; vi 2 2Z holds for all v 2 L. A root of an even
lattice L is a vector r 2 L such that hr; ri is either 2 or �2. A .�2/-vector of L is a root
r 2 L such that hr; ri D �2. Suppose that L is even and negative-definite. Then the set

Roots.L/ WD ¹r 2 L j hr; ri D �2º

is finite. An even negative-definite lattice L is called a root lattice if L is generated by
Roots.L/. A root lattice has a basis consisting of roots whose dual graph is a Dynkin
diagram of type ADE. See, for example, Section 1 in [10] for the definition of dual graphs,
Dynkin diagrams, and their ADE-types.

A lattice L of rank n > 1 is said to be hyperbolic if the signature of the real quadratic
space L˝R is .1; n� 1/. Let L be an even hyperbolic lattice. A positive cone of L is one
of the two connected components of the space

¹x 2 L˝R j hx; xi > 0º:

Let P be a positive cone of L. We put

O.L;P / WD ¹g 2 O.L/ j P g
D P º:
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We have O.L/ D O.L;P / � ¹˙1º. For v 2 L˝R, we put

v? WD ¹x 2 L˝R j hx; vi D 0º:

When v 2 P \ L, the intersection v? \ L is an even negative-definite sublattice of L,
and hence we can effectively calculate the finite set

Roots.v? \ L/ D ¹r 2 L j hr; vi D 0; hr; ri D �2º

of .�2/-vectors in L perpendicular to v.
For v 2 L˝R with hv; vi < 0, we put

.v/? WD v? \P D ¹x 2 P j hx; vi D 0º;

which is a real hyperplane of P . Let v1; v2 2 L˝Q be rational vectors in P . Then we
can calculate the finite set

Sep.v1; v2/ WD ¹r 2 L j hr; v1i > 0; hr; v2i < 0; hr; ri D �2º

of .�2/-vectors separating v1 and v2. See [30] for the algorithm. As will be explained in
Section 3, this algorithm is very useful in the study of K3 surfaces.

Definition 2.1. By a chamber, we mean a closed subset D of P such that
• D contains a non-empty open subset of P , and
• D is defined by linear inequalities hx; vi i � 0 (i 2 I ), where vi (i 2 I ) are vectors of
L˝R with hvi ; vi i < 0 such that the family ¹.vi /? j i 2 I º of hyperplanes is locally
finite in P .

Definition 2.2. Let D be a chamber. A wall of D is a closed subset of D of the form
D \ .v/? such that the hyperplane .v/? is disjoint from the interior of D and such that
D \ .v/? contains a non-empty open subset of .v/?. We say that a vector v 2 L ˝ R
defines a wall w of D if w D D \ .v/? and hx; vi > 0 for an interior point x of D (and
hence hx; vi � 0 for all x 2 D). A defining vector of a wall of a chamber is unique up to
positive multiplicative constant.

Definition 2.3. Let F WD ¹.v˛/
? j ˛ 2 F º be a locally finite family of hyperplanes in P .

Then the closure in P of each connected component of

P n

[
˛2F

.v˛/
?

is a chamber. Let CF be the set of these chambers. In this situation, we say that P is
tessellated by the chambers in CF . If a subsetN of P is the union of chambers in a subset
of CF , we say that N is tessellated by chambers in CF .

Let w be a wall of a chamber D 2 CF . Then there exists a unique chamber D0 2 CF

such that D ¤ D0 and w � D0. This chamber D0 is called the chamber adjacent to D
across the wall w.
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A .�2/-vector r 2 L defines a reflection

sr W x 7! x C hx; rir

into the mirror .r/?. We have sr 2 O.L;P /. Let W.L/ denote the subgroup of O.L;P /
generated by all the reflections sr with respect to .�2/-vectors r . We call W.L/ the Weyl
group of L. Note that the family of hyperplanes .r/? defined by .�2/-vectors r is locally
finite in P .

Definition 2.4. A standard fundamental domain of W.L/ is the closure of a connected
component of

P n

[
.r/?;

where r runs through the set of .�2/-vectors.

Let D be a standard fundamental domain of W.L/. We put

O.L;D/ WD ¹g 2 O.L/ j Dg
D Dº:

Then we have O.L;P / D W.L/ Ì O.L;D/. The action of O.L;P / on P preserves the
tessellation of P by the standard fundamental domains of W.L/.

3. The numerical Néron–Severi lattice of a K3 surface

Let X be a K3 surface, and let SX be the lattice of numerical equivalence classes of
divisors of X , which we call the numerical Néron–Severi lattice of X . For a divisor D
of X , we denote by ŒD� 2 SX the class of D. Suppose that SX is of rank n > 1. Then SX
is an even hyperbolic lattice. Let PX be the positive cone of SX containing an ample class
of X , and let PX be the closure of PX in SX ˝R. We put

NX WD ¹x 2 PX j hx; ŒC �i � 0 for all curves C on X º;
N ıX WD the interior of NX ;

NX WD the closure of NX in PX :

The cone NX is called the nef-and-big cone of X . If C is a smooth rational curve on X ,
then its class ŒC � is a .�2/-vector of SX . We put

Rats.X/ WD ¹ŒC � 2 SX j C is a smooth rational curve on X º:

We have the following.

Theorem 3.1. The nef-and-big cone NX is a standard fundamental domain of the Weyl
group W.SX / of SX . A .�2/-vector r 2 SX belongs to Rats.X/ if and only if r defines a
wall of the chamber NX .

Suppose that we have an ample class a 2 N ıX \ SX . Then Vinberg’s algorithm [36]
enables us to enumerate, for a given positive integer m, all the walls NX \ .r/? of NX
defined by r 2 Rats.X/ with hr;ai �m. (See (3.2) below.) Our algorithm [30] of calculat-
ing the set Sep.v1; v2/ of separating .�2/-vectors provides us with an alternative method
to investigate the nef-and-big cone NX . Below are some examples.
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3.1. Finding an ample class

It is well known that a class v 2 SX is ample if and only if v 2N ıX . LetX be a normal sur-
face birational toX , and let h 2 SX be the pull-back of an ample class ofX by the minimal
resolution X ! X . Then we have h 2 NX . It is known [3] that X has only rational double
points as its singularities, and hence the exceptional locus of the desingularizationX!X

is a union of smooth rational curves whose dual graph is a Dynkin diagram of type ADE.
Let r1; : : : ; r� be the classes of smooth rational curves contracted by X ! X . Then, loc-
ally around h, the chamber NX is defined by hx; ri i � 0 for i D 1; : : : ; �. Therefore a
vector v 2 PX \ SX is ample if and only if

Sep.h; v/ D ;; Roots.v? \ SX / D ; and hv; ri i > 0 for i D 1; : : : ; �:

If a0 2 SX satisfies ha0; ri i > 0 for i D 1; : : : ; �, then

a WD mhC a0

is ample for sufficiently large integers m.

3.2. Nefness and ampleness

Suppose that we have an ample class a 2 SX . We can characterizeNX as the unique stand-
ard fundamental domain of W.SX / containing a. Let v 2 SX be a vector with hv; vi > 0.
Then we have

v 2 PX ” ha; vi > 0:

When v 2 PX is the case, we have

v 2 NX ” Sep.a; v/ D ;:

When v 2 NX is the case, we have

v 2 N ıX ” Roots.v? \ SX / D ;:

3.3. The group O.SX ;NX /

Recall that O.SX ; NX / is the subgroup of O.SX ;PX / consisting of all isometries g such
that N g

X D NX . Suppose again that we have an ample class a 2 SX . Let g be an element
of O.SX /. Then we have

g 2 O.SX ;PX / ” ha; agi > 0:

When g 2 O.SX ;PX / is the case, we have

(3.1) g 2 O.SX ; NX / ” Sep.a; ag/ D ;;

because, for g 2 O.SX ;PX /, the chamber N g
X is also a standard fundamental domain

of W.SX /.



Mordell–Weil groups and automorphism groups of elliptic K3 surfaces 7

3.4. The set Rats.X/

Again we assume that we have an ample class a 2 SX . Let r 2 SX be a .�2/-vector such
that ha; ri > 0. Then there exists an effective divisor D of X such that r D ŒD�. We have
r 2 Rats.X/ if and only if D is irreducible.

Since D contains a smooth rational curve C such that hŒC �; ŒD�i < 0 as an irredu-
cible component, we have the following criterion, which is a geometric interpretation of
Vinberg’s algorithm [36] applied to .�2/-vectors:

(3.2) r 2 Rats.X/ ” hr; r 0i � 0 for all r 0 2 Rats.X/ with hr 0; ai < hr; ai

Thanks to the algorithm to calculate Sep.v1; v2/, we obtain another criterion.

Proposition 3.2. Let r 2 SX be a .�2/-vector with ha; ri > 0. We put

a0r WD aC
ha; ri

2
r:

Then r 2 Rats.X/ if and only if

(3.3) Roots.a0?r \ SX / D ¹r;�rº and Sep.a0r ; a/ D ;:

Proof. Since ha0r ; ri D 0 and ha0r ; a
0
ri > 0, we have a0r 2 .r/

? � PX , and hence the set
Sep.a0r ; a/ makes sense. In fact, the point a0r 2 .r/

? is the image of a by the orthogonal
projection to the hyperplane .r/? in P . In particular, we have ¹r;�rº � Roots.a0?r \ SX /.
Then Proposition 3.2 follows from Proposition 2.2 in [37]. We present a proof for the
convenience of readers.

If (3.3) holds, then a0r 2 NX and a small neighborhood of a0r in .r/? is contained
in NX . In particular, r is a defining .�2/-vector of a wall of NX and hence r 2 Rats.X/.
Conversely, suppose that r 2 Rats.X/. Then for any r 0 2 Rats.X/ with r 0 ¤ r , we have
hr; r 0i � 0 and ha; r 0i > 0, and hence

ha0r ; r
0
i D ha; r 0i C

ha; rihr; r 0i

2
> 0:

Therefore (3.3) holds.

3.5. Nefness of a vector of norm 0

Suppose again that we have a 2 N ıX \ SX .

Proposition 3.3. Let f be a non-zero vector in PX \ SX with hf; f i D 0. Then f 2 NX
if and only if Sep.a0

f
; a/ D ;, where a0

f
WD aC ha; f if .

Proof. First note that, since f 2 PX n ¹0º, we have ha; f i > 0, a0
f
2 PX , and hence

Sep.a0
f
; a/ makes sense.

Suppose that f 2 NX . Since a 2 N ıX , we have a0
f
2 N ıX and hence Sep.a0

f
; a/ D ;.

Suppose that f … NX . Then there exists a smooth rational curve C such that hf; ŒC �i < 0.
We put r WD ŒC �. Then we have hf; ri � �1. Since hf; f i D 0 and hf;ai > 0, there exists
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an effective divisor F on X such that f D ŒF �. Then C is an irreducible component of F
such that C ¤ F , and hence ha; ri < ha; f i. The intersection point of .r/? and the open
line segment

.a; f / WD ¹p.t/ D aC tf j t 2 R>0º � PX

is equal to p.t0/, where

t0 WD �
ha; ri

hf; ri
� ha; ri < ha; f i:

Since a0
f
D p.ha; f i/, the intersection point p.t0/ is located on the open line segment

.a; a0
f
/ � .a; f /. Therefore r is a .�2/-vector separating a0

f
and a.

3.6. Singularities of a normal surface birational to X

Suppose again that we have a 2 N ıX \ SX . Let h be a vector in NX \ SX , and let L be a
line bundle whose class is h. Then, for some large positive integer m, the complete linear
system jL˝mj gives a birational morphism X ! X to a normal surface X . See Saint-
Donat [25]. The surface X is smooth if and only if h 2 N ıX . Suppose that h … N ıX . Then
the singularities ofX consist of rational double points (see Artin [3]), and the set of classes
of smooth rational curves contracted by the birational morphism X ! X is equal to

¹r 2 Rats.X/ j hr; hi D 0º D Rats.X/ \ Roots.h? \ SX /:

3.7. Finding automorphisms from nef vectors of norm 2

Let a 2 SX be an ample class of X . Let h be a vector in NX \ SX with hh; hi D 2. By a
double covering, we mean a generically finite morphism of degree 2. By abuse of notation,
we write jhj for the complete linear system of a line bundle whose class is h. Then either
one of the following holds (see Saint-Donat [25] or Nikulin [22]):

(h1) The complete linear system jhj is base-point free and defines a double covering
�.h/WX ! P2, or

(h2) jhj has a fixed component Z, which is a smooth rational curve, and every member
of jhj is of the formZ CE1 CE2, where E1 and E2 are members of a pencil jEj
of elliptic curves such that hŒE�; ŒZ�i D 1.

These two cases can be distinguished by the following criterion. We put

E WD ¹e 2 SX j he; ei D 0; he; hi D 1º:

Since the quadratic part of the intersection form h i restricted to the affine hyperplane of
SX ˝R defined by hx; hi D 1 is negative-definite, the set E is finite and can be calculated
effectively.

Case .E1). If E D ;, then jhj is base-point free. In this case, we say that h is a polariz-
ation of degree 2, and denote by i.h/ 2 Aut.X/ the involution associated with the double
covering �.h/WX ! P2 given by jhj. Let

X ! X ! P2
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be the Stein factorization of �.h/, and let B.h/ � P2 be the branch curve of the finite
double covering X ! P2. We can calculate the set

Rats.X/ \ Roots.h? \ SX /

of classes of smooth rational curves contracted by �.h/. Hence we obtain the ADE-type
of Sing.B.h//, and the invariant part

¹v 2 SX ˝Q j vi.h/ D vº

of the action of i.h/ on SX ˝Q. Indeed, applying toX the theory of canonical resolutions
of rational double points due to Horikawa [12], we have a successive blowing up Y ! P2

of P2 such thatX! P2 factors through a finite double coveringX! Y , and the invariant
part is equal to the pull-back of the space SY ˝Q of the numerical equivalence classes of
curves on the rational surface Y . See [32] for detail. From this subspace, we can calculate
the action of the involution i.h/ on SX , because i.h/ acts on the orthogonal complement
of the invariant subspace as the scalar multiplication by �1.

Remark 3.4. The equality i.h/ D i.h0/ of involutions does not imply h D h0 in general.
See Remark 6.11, for example. The set of polarizations h of degree 2 that induce the same
involution i.h/ is in one-to-one correspondence with the set of blowing-downs of Y to P2.

Case (E2). Suppose that E ¤ ;. Then we have a unique element f 2 E such that

f 2 NX and z WD h � 2f 2 Rats.X/:

We can find this f by the methods in Sections 3.5 and 3.4. Then f is the class of a fiber
of a Jacobian fibration �WX ! P1, with z being the class of the zero section �WP1 ! X .
From these vectors f and z, we can calculate the Mordell–Weil group MW.X; �; �/ and
its action on SX by the algorithm explained in Section 4.

4. The action of a Mordell–Weil group on SX

In this section, we assume that the characteristic of the base field k is¤ 2; 3 for simplicity.
Let X be a K3 surface, and let a 2 SX be an ample class.

Let �WX! P1 be a fibration whose general fiber is a curve of genus 1. Suppose that �
has a distinguished section �WP1 ! X , that is, the pair .�; �/ is a Jacobian fibration. We
denote by � D Spec k.P1/ the generic point of the base curve P1. Then the generic fiber
E� WD �

�1.�/ of � is an elliptic curve defined over k.P1/ with the zero element being the
k.P1/-rational point corresponding to �, and the set

MW� WD MW.X; �; �/

of sections of � has a structure of the abelian group with � D 0. This group MW� is called
the Mordell–Weil group. The group MW� acts on E� via the translation x 7! xCE �

on E� , where � 2MW� is a section andCE denotes the addition in the elliptic curve E� .
Since X is minimal, this automorphism of E� gives an automorphism of X . Hence MW�

embeds in Aut.X/, and acts on the lattice SX :

(4.1) MW� ! Aut.X/! O.SX ;PX /:
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Let f 2 SX be the class of a fiber of �, and let z D Œ�� 2 SX be the class of the image
of �. Since the Jacobian fibration .�; �/ is uniquely determined by the classes f and z, we
sometimes write MW.X; f; z/ for MW.X; �; �/. The purpose of this section is to show
that we can calculate the homomorphism (4.1) from the classes f , z and an ample class a.

We review the theory of ellipticK3 surfaces, and fix some notation. Since hf; f i D 0,
hf; zi D 1 and hz; zi D �2, the classes f and z generate a unimodular hyperbolic sublat-
tice U� in SX of rank 2. LetW� denote the orthogonal complement of U� in SX . Since U�
is unimodular, we have an orthogonal direct-sum decomposition

SX D U� ˚W� :

Since W� is negative-definite, we can calculate the set

Roots.W�/ D ¹r 2 W� j hr; ri D �2º:

Hence we can compute

(4.2) ‚� WD Roots.W�/ \ Rats.X/

by Proposition 3.2. Let †� denote the sublattice of W� generated by Roots.W�/, and ��
the ADE-type of the root lattice †� . Here an ADE-type is a finite formal sum of the
symbols A`, D`, and E`. See, for example, Section 1 in [10] for the definition of ADE-
types of root lattices. Then we have the following proposition. The first part follows from
the definition of Rats.X/, and the second part follows from the classification of singular
fibers of elliptic surfaces due to Kodaira and Néron. See Chapters 5 and 6 in [27].

Proposition 4.1. The set ‚� defined by (4.2) is equal to the set of classes of smooth
rational curves that are contracted to points by � and are disjoint from the zero section �.
The vectors in ‚� form a basis of the root lattice †� , and their dual graph is the Dynkin
diagram of type �� .

Definition 4.2. The sublattice U� ˚ †� of SX is called the trivial sublattice of the Jac-
obian fibration .�; �/.

The following is of fundamental importance in the theory of Mordell–Weil groups of
elliptic surfaces. This holds, not only for K3 surfaces, but for elliptic surfaces in general.
See Chapter 6 in [27].

Theorem 4.3. Let Œ �WMW� ! Rats.X/ denote the mapping that associates to each sec-
tion � 2 MW� the class Œ�� 2 Rats.X/ of the image of � . Then the composite

(4.3) MW�
Œ �

�! Rats.X/ ,! SX !! SX=.U� ˚†�/

is an isomorphism of abelian groups.

Remark 4.4. By the isomorphism (4.3), Shioda [33] (see also [27]) introduced a structure
of the positive-definite lattice (with a Q-valued intersection form) on the free Z-module
MW�=.torsion/. This lattice is called the Mordell–Weil lattice. The norm of the Mordell–
Weil lattice is very useful, for example, in finding good generators of MW� . See Sec-
tion 6.6.
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For a vector v 2 SX , we denote by s.v/ 2 MW� the section that corresponds to the
class v mod .U� ˚†�/2 SX=.U� ˚†�/ by the isomorphism (4.3). First, we will explain
a method to calculate Œs.v/� 2 Rats.X/ for a given v 2 SX .

We review the Kodaira–Néron theory of singular fibers of an elliptic surface in more
detail. See Chapters 5 and 6 in [27], [14, 15], [20], and Table in page 46 of [35]. Recall
that ‚� is the set of classes of smooth rational curves in fibers of � that is disjoint from
the zero section �, and that the dual graph of ‚� is the Dynkin diagram of type �� . Let

(4.4) ‚� D ‚1 t � � � t‚n

be the decomposition according to the decomposition of the Dynkin diagram into connec-
ted components. Then two elements r D ŒC � and r 0 D ŒC 0� of ‚� , where C and C 0 are
smooth rational curves on X , belong to the same ‚� if and only if � maps C and C 0 to
the same point. Hence the set ¹‚1; : : : ; ‚nº is in one-to-one correspondence with the set

¹p 2 P1 j ��1.p/ is reducibleº D ¹p1; : : : ; pnº

in such a way that p� 2 P1 is the point �.C / for ŒC � 2 ‚� . We put

�.�/ WD Card.‚�/ and �� WD the ADE-type of ‚� :

In particular, each �� is either A`, D`, or E`, and we have �� D �1 C � � � C �n. Recall
that †� is the root lattice generated by ‚� . Let †� be the sublattice of †� generated by
the elements of ‚� . We have an orthogonal direct-sum decomposition

†� D †1 ˚ � � � ˚†n:

The fiber ��1.p�/ consists of �.�/C 1 smooth rational curves

C�;0; C�;1; : : : ; C�;�.�/

such that‚� D ¹ŒC�;1�; : : : ; ŒC�;�.�/�º and that C�;0 intersects the zero section �. The dual
graph of

z‚� WD ¹ŒC�;0�º [‚�

is the affine Dynkin diagram of type �� . We number the smooth rational curves in z‚� as
in Figure 4.1.

The divisor ��.p�/ is written as

��.p�/ D

�.�/X
jD0

m�;jC�;j .m�;j 2 Z>0/;

where the coefficients m�;j are given in Table 4.1. We put

J� WD ¹j j m�;j D 1º:

We have 0 2 J� , and the class ŒC�;0� is calculated by

(4.5) ŒC�;0� D f �

�.�/X
jD1

m�;j ŒC�;j �:
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sf C�;0

C�;1 C�;2 C�;`�1 C�;`

cf cf cf cf cf: : :�������

PPPPPPP
A fiber of type A`

C�;1

C�;2
C�;3 C�;4

C�;0

C�;`�1
C�;`

cf
cf cc c cf

sf
�
�

Q
Q �

�

Q
Q

: : : A fiber of type D`

C�;0

C�;1

C�;2 C�;3 C�;4 C�;5 C�;6

sf
c

cf c c c cf A fiber of type E6

c C�;1
C�;0 C�;2 C�;3 C�;4 C�;5 C�;6 C�;7

sf c c c c c cf A fiber of type E7

C�;1

C�;2 C�;3 C�;4 C�;5 C�;6 C�;7 C�;8 C�;0

c
c c c c c c c sf A fiber of type E8

C�;0 is indicated by sf, and C�;j for j 2 J� � ¹0º is indicated by cf.

Figure 4.1. Reducible fibers.

(It is well known that m�;j with j > 0 are the coefficients of the highest root of the root
system ‚� .) Let ��.p�/] denote the smooth part of the divisor ��.p�/:

��.p�/
]
D

[
j2J�

C ı�;j ;

whereC ı�;j isC�;j minus the intersection points ofC�;j with other irreducible components
of ��1.p�/. By Kodaira–Néron theory, we can equip ��.p�/] with the structure of an
abelian Lie group. See Section 5.6.1 in [27]. (When we work over C, this group structure
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�� j D 0; 1; 2; : : : ; �.�/

A` 1; 1; 1; : : : ; 1; 1

D` 1; 1; 1; 2; : : : ; 2; 1

E6 1; 2; 1; 2; 3; 2; 1

E7 1; 2; 2; 3; 4; 3; 2; 1

E8 1; 3; 2; 4; 6; 5; 4; 3; 2

Table 4.1. Coefficients m�;j .

is obtained as the limit of the group structures of general fibers of �.) Then the set J� ,
which is regarded as the set of connected components C ı�;j of ��.p�/], also has a natural
structure of an abelian group as a quotient group of ��.p�/]. The element 0 2 J� is the
zero element. See Table 4.2, which is copied from Table in page 46 of [35], for the precise
description of the group structure of J� .

�� J� Group structure

A` ¹0; 1; : : : ; `º cyclic group Z=.`C 1/Z: the sum of a; b 2 J�

is c 2 J� such that aC b � c mod .`C 1/

D` .` W even/ ¹0; 1; 2; `º Z=2Z � Z=2Z

D` .` W odd/ ¹0; 1; 2; `º Z=4Z generated by 1 2 J� with ` 2 J�

being of order 2

E6 ¹0; 2; 6º Z=3Z

E7 ¹0; 7º Z=2Z

E8 ¹0º trivial

Table 4.2. Group structure of J� (see Table in page 46 of [35]).

Let †_� be the dual lattice of †� , and let 
�;1; : : : ; 
�;�.�/ be the basis of †_� dual to
the basis ŒC�;1�; : : : ; ŒC�;�.�/� of †� . We also put


�;0 WD 0 2 †_� :

For j D 0; 1; : : : ; �.�/, we denote by 
�;j the element 
�;j .mod †�/ of the discriminant
group A.†�/ D †_� =†� of †� . The following is the key observation for our method.

Lemma 4.5. The map j 7! 
�;j gives an isomorphism J� Š †
_
� =†� of abelian groups.

Proof. We compare Table 4.2 calculated in the Kodaira–Néron theory with the discrim-
inant groups †_� =†� of root lattices of type A`, D`, and E`. The order of †_� =†� is
classically known, and coincides with jJ� j. We equip the vector space Rn with the stand-
ard basis e1; : : : ; en and with the negative-definite intersection form hei ; ej i WD �ıij .
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(1) The case �� D A`.
We embed †� into R`C1 by ŒC�;j � 7! ej � ejC1 so that

†� D ¹.x1; : : : ; x`C1/ 2 Z`C1 j x1 C � � � C x`C1 D 0º:

Then we have


�;j D
1

`C 1

�
�

jX
kD1

.`C 1 � j / ek C

`C1X
kDjC1

j ek

�
2 †� ˝Q:

It is easy to check that j 
�;1 � 
�;j 2 †� . Hence j 7! 
�;j gives an isomorphism from
Z=.`C 1/Z to †_� =†� .

(2) The case �� D D`.
We embed †� into R` by

ŒC�;1� 7! �e1 � e2; ŒC�;2� 7! e1 � e2; ŒC�;j � 7! ej�1 � ej .j D 3; : : : ; `/;

so that we have

†� D ¹.x1; : : : ; x`/ 2 Z` j x1 C � � � C x` 2 2Zº:

The vectors 
�;j 2 †� ˝Q are given by


�;1 D
1

2

X̀
kD1

ek ; 
�;2 D �
1

2
e1 C

1

2

X̀
kD2

ek ; 
�;j D
X̀
kDj

ek .j D 3; : : : ; `/:

It is easy to see that 
�;0 D 0, 
�;1, 
�;2, 
�;` form the group isomorphic, via 
�;j 7! j ,
to the group J� D ¹0; 1; 2; `º described in Table 4.2. Note that, for j D 3; : : : ; ` � 1, the
element 
�;j is either equal to 
�;0 D 0 or equal to 
�;`.

(3) The case �� D E6.
Using the basis ŒC�;1�, . . ., ŒC�;6� of †� , we can write


�;2 D �
1

3
.3; 4; 5; 6; 4; 2/ and 
�;6 D �

1

3
.3; 2; 4; 6; 5; 4/ � 2
�;2 .mod †�/:

Hence we have †_� =†� D ¹
�;0; 
�;2; 
�;6º Š Z=3Z. Note that we have 
�;5 D 
�;2,

�;3 D 
�;6, 
�;1 D 
�;4 D 
�;0 in †_� =†� .

(4) The case �� D E7.
Using the basis ŒC�;1�, . . ., ŒC�;7� of †� , we can write


�;7 D �
1

2
.3; 2; 4; 6; 5; 4; 3/:

Hence we have †_� =†� D ¹
�;0; 
�;7º Š Z=2Z. Note that we have 
�;1 D 
�;5 D 
�;7
and 
�;2 D 
�;3 D 
�;4 D 
�;6 D 
�;0 in †_� =†� .

(5) The case �� D E8. Trivial.
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A section � 2 MW� intersects ��1.p�/ at a single point sp�.�/, and the intersection
is transverse. Hence the intersection point sp�.�/ is a smooth point of the fiber, that is, we
have sp�.�/ 2 �

�.p�/
] . Thus we have the specialization map

sp� W MW� ! ��.p�/
]:

By the definition of the group structure on ��.p�/], the map sp� is a group homomorph-
ism. (See Section 5.6.1 in [27].) The inclusion †� ,! SX gives rise to the restriction
homomorphism SX ! †_� , which we write as

v 7! vj� :

For � 2 MW� , we have
Œ��j� D 
�;j Œ��;

where j Œ�� 2 J� is the index of the connected component of ��.p�/] intersecting � ,
or equivalently, containing the point sp�.�/. The kernel of the composite of SX ! †_�
and †_� ! †_� =†� contains the trivial sublattice U� ˚†� . Hence, by Theorem 4.3, the
natural mapping

(4.6) MW�

Œ �
�! SX

j�
�! †_� !! †_� =†�

is a group homomorphism. By definition, the following diagram is commutative:

(4.7)

MW�

(4.6)
�! †_� =†�

sp� # # o by Lemma 4.5

��.p�/
] !! J� ;

where the lower horizontal arrow is the natural quotient homomorphism.
Suppose that a vector v 2 SX is given. Then the class Œs.v/� 2 SX of the section s.v/ 2

MW� corresponding to v mod .U� ˚†�/ by (4.3) satisfies the following:
(i) hŒs.v/�; Œs.v/�i D �2 and hŒs.v/�; f i D 1. Hence, by the orthogonal direct-sum

decomposition SX D U� ˚ W� , we have Œs.v/� D tf C z C w, where w 2 W�
and t D �hw;wi=2.

(ii) Œs.v/� � v mod U� ˚†� . In particular, for each � D 1; : : : ; n, we have

.Œs.v/� � v/j� 2 †� :

(iii) For each � D 1; : : : ; n, there exists a unique index j.v/ 2 J� such that Œs.v/�j� D

�;j.v/. This j.v/ is the index j of the connected component C ı�;j that contains the
intersection point sp�.s.v// of s.v/ and ��1.p�/, and hence j.v/ is the image of v
by SX ! J� in the diagrams (4.6) and (4.7).

Therefore the following calculations compute the class Œs.v/�.
Step 1. Let v0 2 W� be the image of v by the projection to W� under the orthogonal

direct-sum decomposition SX D U� ˚W� .
Step 2. For each � D 1; : : : ; n, calculate the element ı�.v0/ WD v0j� mod †� of the dis-

criminant group †_� =†� , and find the index j.v/ 2 J� such that ı�.v0/ is equal to 
�;j.v/.
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Then the element v0j� � 
�;j.v/ of †_� belongs to †� . We calculate the integers ˛�;k such
that

v0j� � 
�;j.v/ D

�.�/X
kD1

˛�;k ŒC�;k �:

Step 3. We put

v00 WD v0 �

nX
�D1

�.�/X
kD1

˛�;k ŒC�;k �:

Then we have
Œs.v/� D tf C z C v00;

where t WD �hv00; v00i=2.
Next, we explain how to calculate, for a given vector v 2 SX , the isometry

g.s.v// 2 O.SX ;PX /

induced by the translation x 7! xCE s.v/ on E� by the section s.v/ 2 MW� , where CE
is the addition on the elliptic curve E� over k.P1/. Let m be the Mordell–Weil rank of �:

m WD dim.MW� ˝Q/ D rankSX � 2 �
nX
�D1

�.�/;

where the second equality follows from Theorem 4.3. We choose vectors u1; : : : ; um 2 SX
such that their images by

SX ! .SX=.U� ˚†�//˝Q

form a basis of MW� ˝Q. Then SX ˝Q is spanned by

(4.8) f , zD Œs.0/�, Œs.u1/�; : : : ; Œs.um/�, and the vectors ŒC�;1�; : : : ; ŒC�;�.�/� in‚�
for � D 1; : : : ; n.

Therefore, to calculate g.s.v//, it is enough to calculate the images of vectors in (4.8) by
g.s.v//. It is obvious that

f g.s.v// D f;

zg.s.v// D Œs.v/�;

Œs.u�/�
g.s.v//

D Œs.u� C v/� for � D 1; : : : ; m:

Hence it remains only to calculate the image by g.s.v// of the classes in ‚� . Note
that g.s.v// induces a permutation on the set z‚� D ¹ŒC�;0�º [ ‚� that preserves the
subset J� of classes of reduced irreducible components. By the method described in
Step 2 above, we calculate the index j.v/ 2 J� , which is the image of s.v/ 2 MW� by
the composite of sp� WMW� ! ��.p�/

] and ��.p�/] ! J� . The translation of ��.p�/]

by sp�.s.v// induces the translation of J� by j.v/. Checking each Dynkin diagram of
type A`, D` and E`, we see that this permutation of J� extends uniquely to a permuta-
tion of z‚� that preserves the dual graph. See Table 4.3, in which we abbreviate z‚� D
¹ŒC�;0�; : : : ; ŒC�;�.�/�º as ¹0; 1; : : : ; �.�/º. Hence the image of each element of z‚� by
g.s.v// is computed. Using (4.5), we can calculate the action of g.s.v// on the classes
of ‚� .
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�� J� j.v/ Permutation of z‚�

A` Z=.`C 1/Z a i 7! .i C a/ mod .`C 1/

D` .Z=2Z/2 0 id
.` W even/ 1 0$ 1; 2$ `; k $ `C 2 � k .2 < k < `/

2 0$ 2; 1$ `; k $ `C 2 � k .2 < k < `/

` 0$ `; 1$ 2; k $ k .2 < k < `/

D` Z=4Z 0 id
.` W odd/ 1 0 7! 1 7! ` 7! 2 7! 0; k $ `C 2 � k .2 < k < `/

2 0 7! 2 7! ` 7! 1 7! 0; k $ `C 2 � k .2 < k < `/

` 0$ `; 1$ 2; k $ k .2 < k < `/

E6 Z=3Z 0 id
2 0 7! 2 7! 6 7! 0; 1 7! 3 7! 5 7! 1; 4 7! 4

6 0 7! 6 7! 2 7! 0; 1 7! 5 7! 3 7! 1; 4 7! 4

E7 Z=2Z 0 id
7 0$ 7; 1$ 1; 4$ 4; 2$ 6; 3$ 5

E8 0 0 id

Table 4.3. Permutations of z‚� .

5. Borcherds’ method

5.1. An algorithm on a graph

We recall an algorithm introduced in [7]. Let .V; E/ be a simple non-oriented connected
graph, where V is the set of vertices andE is the set of edges, which is a set of non-ordered
pairs of distinct elements of V :

E �

�
V

2

�
:

We say that v; v0 2 V are adjacent if ¹v; v0º 2 E. The set V may be infinite. The assump-
tion that .V; E/ be connected is important. Suppose that a group G acts on .V; E/ from
the right. For vertices v; v0 2 V , we put

TG.v; v
0/ WD ¹g 2 G j vg D v0º;

and define the G-equivalence relation � on V by

v � v0 ” TG.v; v
0/ ¤ ;:

Thus we have two relations on V , the adjacency relation and the G-equivalence relation.
Suppose that V0 is a non-empty subset of V with the following properties.

(a) If v; v0 2 V0 are distinct, then v and v0 are not G-equivalent.
(b) If a vertex v 2 V is adjacent to a vertex in V0, then v is G-equivalent to a vertex

in V0.
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We put
zV0 WD ¹v 2 V j v is adjacent to a vertex in V0º:

Then, for each v 2 zV0, there exists a vertex u0.v/ 2 V0 such that TG.v; u0.v// ¤ ;.
Note that u0.v/ 2 V0 is unique by assumption (a). We choose an element h.v/ from
TG.v; u0.v// for each v 2 zV0, and put

(5.1) H WD ¹h.v/ j v 2 zV0º:

Proposition 5.1 (Proposition 4.1 of [7]). The subset V0 � V is a complete set of repres-
entatives of the orbit decomposition of V byG, and the groupG is generated by the union
of H and the stabilizer subgroup StabG.v0/ D TG.v0; v0/ of a vertex v0 2 V0.

In Section 4.1 of [7], we presented an algorithm to obtain V0 and H under the assump-
tion that .V;E/ and G have certain local effectiveness properties.

5.2. Period condition

In this subsection, we assume that the base field k is the complex number field C, and
introduce period condition on elements of O.SX /. The period condition is, however,
also defined when X is a supersingular K3 surface in positive characteristic. See, for
example, [17].

Let L be an even lattice, and let A.L/ D L_=L be the discriminant group of L. We
define a quadratic form

q.L/ W A.L/! Q=2Z

by q.x mod L/ WD hx; xi mod 2Z. This finite quadratic form is called the discriminant
form of L, which was introduced by Nikulin [21]. Let M be a primitive sublattice of L,
and N the orthogonal complement of M in L. Then we have natural embeddings

M ˚N � L � L_ �M_ ˚N_:

Suppose that L is unimodular, that is, L_ D L. Then the submodule

L=.M ˚N/ � A.M/ � A.N/

is a graph of an isomorphism A.M/ Š A.N/, which induces an isomorphism

�LW q.M/ Š �q.N /:

Nikulin [21] proved the following.

Proposition 5.2. Suppose that L is unimodular. Let GN be a subgroup of O.N /, and
let q.GN / � Aut.q.N // denote the image of GN � O.N / by the natural homomorph-
ism O.N /! Aut.q.N //. Then an isometry gM of M extends to an isometry gL of L
such that its restriction gLjN to N is an element of GN if and only if the action of gM
on q.M/ belongs to q.GN / via the isomorphism Aut.q.M// Š Aut.q.N // induced by
�LW q.M/ Š �q.N /.
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We apply this result to the primitive embedding of SX into the even unimodular lattice
H 2.X;Z/ of rank 22 defined by the cup product. Let TX denote the orthogonal comple-
ment of SX in H 2.X;Z/, which we call the transcendental lattice of X . Then H 2.X;Z/
induces an isomorphism

�H W q.SX / Š �q.TX /:

Note that TX is the minimal primitive submodule ofH 2.X;Z/ such that TX ˝C contains
the period H 2;0.X/ D C!X � H 2.X;C/ of X , where !X is a non-zero holomorphic
2-form on X .

Definition 5.3. We put

O.TX ; !X / WD ¹gT 2 O.TX / j gT ˝C preserves H 2;0.X/º:

Then we say that gS 2 O.SX / satisfies the period condition if the action of gS on q.SX /
is equal to the action on q.TX / of some of gT 2 O.TX ; !X / via the isomorphism of the
finite quadratic forms �H W q.SX / Š �q.TX / induced by H 2.X;Z/.

By Proposition 5.2, we see that an isometry gS 2 O.SX / extends to an isometry
of H 2.X;Z/ preserving the period H 2;0.X/ if and only if gS satisfies the period con-
dition. By Torelli theorem [24] (see also Chapter VIII of [4]), we obtain the following.

Theorem 5.4. We put
G WD Im.Aut.X/! O.SX ;PX //:

Then g 2 O.SX ;PX / belongs to G if and only if g preserves NX and satisfies the period
condition.

Example 5.5. Suppose that rankTX � 3 and assume that !X is very general in the period
domain Q in P�.TX ˝ C/. (See Chapter VIII of [4] for the definition of the period
domain.) Then we have

(5.2) O.TX ; !X / D ¹˙1º;

and hence gS 2 O.SX / satisfies the period condition if and only if the action of gS on the
discriminant group A.SX / is 1 or �1.

We give a proof of (5.2). The period domain Q is an open subset (in the classical
topology) of a smooth quadratic hypersurface in P�.TX ˝C/, and hence we have

dim Q D rankTX � 2 > 0:

For 
 2 O.TX /, let V
;� � TX ˝C denote the eigenspace of 
 with eigenvalue � 2 C. If

 … ¹˙1º, then dimV
;� < rankTX and hence P�.V
;�/\Q is a proper analytic subspace
of Q for any �. Since a countable union of proper analytic subspaces of a positive-
dimensional connected complex manifold cannot cover the total space, we have (5.2)
for !X very general in Q.

Suppose moreover that �1 2 O.TX ; !X / acts on A.TX / non-trivially (that is, the
abelian group A.TX / Š A.SX / is not 2-elementary). By Proposition 5.2, there exists
no isometry gH of the overlattice H 2.X; Z/ of SX ˚ TX such that gH jSX D 1 and
gH jTX D �1. Since Aut.X/ acts on H 2.X; Z/ faithfully, the natural homomorphism
Aut.X/! O.SX ;PX / is injective.
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Remark 5.6. For supersingularK3 surfaces, we have to prove (5.2) in a different method,
because the period domain is a subvariety of codimension > 1 in a Grassmannian variety.
See [17].

5.3. Tessellation by L26=SX -chambers

Let L26 denote an even unimodular hyperbolic lattice of rank 26, which is unique up to
isomorphism. We choose a positive cone P26 of L26. A standard fundamental domain
of W.L26/ was determined by Conway [8] by means of Vinberg’s algorithm [36].

Definition 5.7. A vector w2L26 is called a Weyl vector if w is a non-zero primitive vector
of L26 contained in @P 26 (in particular, we have hw;wi D 0 and hence Zw � .Zw/?)
such that .Zw/?=Zw is isomorphic to the negative-definite Leech lattice.

Definition 5.8. Let w be a Weyl vector. A .�2/-vector r 2 L26 is said to be a Leech root
with respect to w if hw; ri D 1. We then put

C.w/ WD ¹x 2 P26 j hx; ri � 0 for all Leech roots r with respect to wº:

Theorem 5.9 (Conway [8]). (1) The mapping w 7! C.w/ gives a bijection from the set of
Weyl vectors to the set of standard fundamental domains of W.L26/.

(2) Let w be a Weyl vector. Then the mapping r 7! C.w/\ .r/? gives a bijection from
the set of Leech roots with respect to w to the set of walls of the chamber C.w/.

Definition 5.10. We call a standard fundamental domain of W.L26/ a Conway chamber.
Hence P26 is tessellated by the Conway chambers.

Suppose that we have a primitive embedding

� W SX ,! L26:

Replacing � by �� if necessary, we assume that � maps PX into P26, and regard PX as a
subspace of P26:

PX D �
�1.P26/ D .SX ˝R/ \P26:

Definition 5.11. An L26=SX -chamber is a chamberD of PX that is obtained as the inter-
section PX \ C.w/ of PX with a Conway chamber C.w/.

The tessellation of P26 by the Conway chambers induces a tessellation of PX by
the L26=SX -chambers. By definition, the nef-and-big cone NX , which is a standard fun-
damental domain of W.SX /, is tessellated by L26=SX -chambers. In other words, the
tessellation of PX by the L26=SX -chambers is a refinement of the tessellation by the
standard fundamental domains of W.SX /.

Definition 5.12. We define a graph .V; E/ by the following: the set V of vertices is the
set of L26=SX -chambers contained in NX , and the set E of edges is the set of pairs of
adjacent L26=SX -chambers.

Let G be the image of the natural homomorphism Aut.X/! O.SX ;PX /. Suppose
that

(5.3) the period condition for g 2 O.SX / is that the action of g on the dis-
criminant group A.SX / be 1 or �1.
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See Example 5.5 for a case where this assumption is satisfied. Then, by Proposition 5.2,
every element g 2G extends to an isometry ofL26. In particular, the action ofG preserves
the tessellation of PX by the L26=SX -chambers. Since the action of G preserves NX , we
obtain the following.

Proposition 5.13. If (5.3) holds, then G acts on the graph .V;E/.

Definition 5.14. Let D D PX \ C.w/ be an L26=SX -chamber. For each wall w of D,
there exists a unique defining vector v of w in the dual lattice S_X that is primitive in S_X .
(See Definition 2.2.) We call this vector v 2 S_X the primitive defining vector of the wallw.

Note that a Conway chamber has infinitely many walls. For the graph .V; E/ to have
local effectiveness properties in [7], it needs that each L26=SX -chamber has only a finite
number of walls. We consider the following assumption:

(5.4)
The orthogonal complement of SX in L26 cannot be embedded in the
negative-definite Leech lattice.

This holds, for example, if the orthogonal complement contains at least one .�2/-vector.

Proposition 5.15 ([31]). Suppose that (5.4) holds. Then each L26=SX -chamber has only
a finite number of walls. If D D PX \C.w/ is an L26=SX -chamber obtained by the Con-
way chamber C.w/ associated with a Weyl vector w, then we can calculate the primitive
defining vectors of walls of D from w. Moreover, for each wallw of D, we can calculate a
Weyl vector w0 such thatD0 D PX \C.w0/ is the L26=SX -chamber adjacent toD across
the wall w.

Thus, under assumptions (5.3) and (5.4), the local effectiveness properties in [7] hold
for .V;E/ and G, and we can apply the algorithm in Section 4.1 of [7] to .V;E/ and G.

Remark 5.16. The amount of the computation of this method is estimated by jV0j D
jV=Gj, that is, the number of the orbits of the action of Aut.X/ on the set of L26=SX -
chambers contained in NX .

In practice, it seems that Borcherds’ method carried out without using computer (for
example, [16]) can only deal with the case where jV0j D 1. Some cases with jV0j> 1 were
treated in [31], where V0 is of size about 103 � 104. However, the geometric description
of the generators of Aut.X/ was not given for these cases. We also have observed some
cases where jV0j is too large for Borcherds’ method to terminate in a reasonable time (for
example, [13]).

In the case of the present article (see Section 6), we have jV0j D 7. Since this is not so
large, we have managed to obtain geometric generators.

Remark 5.17. It has been empirically observed that jV0j is small when the orthogonal
complement of �WSX ,! L26 contains a root lattice as a sublattice of finite index.

6. Computation of Aut.Xf;g/

In this section, we prove Theorems 1.1 and 1.2. For simplicity, we write X for the K3
surface Xf;g . Recall that the polynomials f and g in the defining equation (1.2) of Xf;g
are assumed to be very general. We use this assumption throughout this section.
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6.1. The lattice SX

First, we describe the lattice SX and the nef-and-big cone NX . Let H � X denote the
pull-back of a line of P2, and let us put

h WD ŒH � 2 SX :

The singular locus of the branch curve B.h/ D ¹f 2 C g3 D 0º � P2 of the finite double
covering Xf;g ! P2 consists of six ordinary cusps Np1; : : : ; Np6, which are located at the
locus defined by f D g D 0. Hence the singularities ofXf;g consist of six rational double
points p1; : : : ; p6 of type A2, where pi is located over Npi . Let E.C/i and E.�/i denote the
exceptional curves that are contracted to the point pi 2 Sing.Xf;g/ by the desingulariza-
tion X ! Xf;g . We put

e
.C/
i WD ŒE

.C/
i � 2 SX and e

.�/
i WD ŒE

.�/
i � 2 SX :

Let � � P2 be the conic defined by gD 0. Then � passes through the six cusps Np1; : : : ; Np6
of B.h/. Hence the strict transform of � in X is a disjoint union of two smooth rational
curves �.C/ and �.�/. We put


.C/ WD Œ�.C/� 2 SX and 
.�/ WD Œ�.�/� 2 SX :

For each i 2 ¹1; : : : ; 6º, the curve �.C/ intersects one of E.C/i or E.�/i and is disjoint from
the other. Interchanging E.C/i and E.�/i if necessary, we can assume that

h
.C/; e
.C/
i i D 1 and h
.C/; e

.�/
i i D 0

hold for i D 1; : : : ; 6. Then we have the following (see also [29]).

Proposition 6.1 (Degtyarev [9]). The Q-vector space SX ˝Q is of dimension 13, and is
generated by the classes

(6.1) h; e
.C/
1 ; e

.�/
1 ; : : : ; e

.C/
6 ; e

.�/
6 :

The sublattice SX;0 of SX generated by the classes in (6.1) is of index 3 in SX . The lat-
tice SX is generated by SX;0 and the class 
.C/.

By Proposition 6.1, a vector v of SX ˝Q is uniquely determined by the list of inter-
section numbers

hv;hi; hv; e
.C/
1 i; hv; e

.�/
1 i; : : : ; hv; e

.C/
6 i; hv; e

.�/
6 i:

Moreover, an isometry g of SX is specified by the images of the classes in (6.1) by g. For
example, the involution i.h/ associated with the double covering �.h/WX ! P2 defined
by jhj is given by

hi.h/ D h; .e
.C/
i /i.h/ D e

.�/
i ; .e

.�/
i /i.h/ D e

.C/
i .i D 1; : : : ; 6/:

The vector a 2 SX ˝Q defined by

(6.2) ha;hi D 8; ha; e
.C/
i i D 1; ha; e

.�/
i i D 1 .i D 1; : : : ; 6/
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is a vector of PX \ SX , and satisfies

ha; ai D 20; Roots. a? \ SX / D ;; Sep.h; a/ D ;:

Hence a is ample (see Section 3.1). By this ample class a, we can specify the nef-and-big
cone NX in PX .

Next, we investigate the period condition of X . We consider the moduli space M

of lattice-polarized K3 surfaces .X 0; �0/, where X 0 is a K3 surface and �0 is an isometry
H 2.X;Z/ŠH 2.X 0;Z/ that induces an embedding SX ,! SX 0 . Then M is covered by the
period domain Q� P�.TX ˝C/. If .X 0; �0/ is very general in M, then we have SX D SX 0 .
Looking at the lattice SX D SX 0 , we obtain the following.

Proposition 6.2 (Degtyarev [9]). If .X 0; �0/ is very general in M, then there exist homo-
geneous polynomials f 0 and g0 of degree 3 and 2, respectively, such that X 0 is birational
to the double plane defined by w2 D f 02 C g03.

Remark 6.3. The following naive dimension count may help in understanding Proposi-
tion 6.2: the dimension of the parameter space of pairs .f 0; g0/ of homogeneous polyno-
mials of degree 3 and 2 modulo linear transformation is equal to

dimH 0.P2;O.3//C dimH 0.P2;O.2// � dim GL.3;C/ D 7 D rankTX � 2 D dim Q:

See also [29] for the proof of Proposition 6.2.

Since f and g are very general, we see that X is very general in M, and hence
we can assume that !X is very general in the period domain Q. Therefore, by (5.2) in
Example 5.5, we have

(6.3) O.TX ; !X / D ¹˙1º:

The discriminant group A.SX / of SX is isomorphic to Z=2Z � .Z=3Z/4. Hence, using
Example 5.5, we obtain the following.

Proposition 6.4. The natural representation of Aut.X/ on SX is faithful.

We will consider Aut.X/ as a subgroup of O.SX ;PX / from now on. By Theorem 5.4
and (3.1), we have the following.

Proposition 6.5. An element g 2 O.SX ;PX / belongs to Aut.X/ if and only if g acts on
A.SX / as 1 or �1, and Sep.a; ag/ D ; holds.

We introduce an auxiliary group M , which makes the descriptions of NX and Aut.X/
much easier. Let M be the subgroup of O.SX ;PX / consisting of elements g satisfying
hg D h and

¹e
.C/
1 ; e

.�/
1 ; : : : ; e

.C/
6 ; e

.�/
6 º

g
D ¹e

.C/
1 ; e

.�/
1 ; : : : ; e

.C/
6 ; e

.�/
6 º:

Then M is isomorphic to Z=2Z � S6, generated by the involution i.h/ and permutations
� 2 S6 given by

h� D h; e
.C/�
i D e

.C/
i� ; e

.�/�
i D e

.�/
i� :
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For each g 2 M , we have a D ag , and hence M � O.SX ; NX /. The discriminant form
q.SX / of SX is isomorphic to�h 1

2

i
;Z=2Z

�
˚

�h 4
3

i
;Z=3Z

�˚3
˚

�h 2
3

i
;Z=3Z

�
:

Here .Œ˛�;Z=mZ/ denotes a cyclic group A D h
i of order m generated by 
 equipped
with the quadratic form qWA! Q=2Z such that q.
/ D ˛. The natural homomorphism
O.SX / ! Aut.q.SX // maps M to Aut.q.SX // isomorphically. Note that �.h/ acts on
A.SX / as �1. Hence we have

M \ Aut.X/ D ¹1; i.h/º:

Remark 6.6. By means of the methods in Section 3.4, we can make the list of classes of
smooth rational curves C on X with hŒC �;hi D m for each non-negative integer m. The
size �.m/ of this list is as follows: whenm is odd, we have �.m/D 0, whereas form even,
we have

m 0 2 4 6 8 10 12 14 : : :

�.m/ 12 17 0 492 720 492 8292 8730 : : :

For i; j with 1 � i � 6, 1 � j � 6, and i ¤ j , let `ij � P2 denote the line passing
through the singular points Npi and Npj of the branch curve B.h/, and let Q̀ij � X be the
strict transform of `ij . The �.2/D 17 smooth rational curves onX of degree 2with respect
to h are the lifts �.˙/ of the conic � � P2 and the curves Q̀ij .

6.2. Automorphisms of X

By the method in Section 3.7, we find many automorphisms of X from nef vectors of
norm 2. Among them, we have the following automorphisms:

type (a): the involution i.h/,

type (b): 90 involutions i.hIJ / associated with polarizations hIJ of degree 2 such that
hhIJ ;hi D 6 and that Sing.B.hIJ // is of type A3 C A5,

type (c): 12 involutions i.h˙˛ / associated with polarizations h˙˛ of degree 2 such that
hh˙˛ ;hi D 4 and that Sing.B.h˙˛ // is of type A2 C 5A1,

type (d): 360 involutions i.h˙J / associated with polarizations h˙J of degree 2 such
that hh˙J ;hi D 14, and that Sing.B.h˙J // is of type D4 C A5, and

type (e): 360 translations associated with sections e.˙/j of infinite order of 120 Jac-

obian fibrations �WX! P1 defined by .f� ; z�/D .f˙I ;e
.˙/
i /with hf˙I ;hi

D 4 such that MW� is torsion-free of rank 4 and that the reducible fibers of �
are of type D4 C A3.

See subsections below for more precise descriptions of these automorphisms. We will
show, by Borcherds’ method, that these automorphisms generate Aut.X/.
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6.3. Primitive embedding SX ,! L26

To apply Borcherds’ method, we embed SX into L26 primitively. Let R0 be a negative-
definite root lattice of type A1 C 6A2 with a basis

(6.4) ˛; ˇ
.C/
1 ; ˇ

.�/
1 ; : : : ; ˇ

.C/
6 ; ˇ

.�/
6

consisting of roots that form the dual graph as in Figure 6.1.

c
˛

c
ˇ
.C/
1

c
ˇ
.�/
1

c
ˇ
.C/
2

c
ˇ
.�/
2

: : : c
ˇ
.C/
6

c
ˇ
.�/
6

Figure 6.1. Basis of R0.

Let
˛_; ˇ

.C/_
1 ; ˇ

.�/_
1 ; : : : ; ˇ

.C/_
6 ; ˇ

.�/_
6

be the basis of the dual lattice R_0 that is dual to the basis (6.4). Then

R WD R0 C Z
�
ˇ
.C/_
1 C � � � C ˇ

.C/_
6

�
� R_0

is an even lattice whose discriminant form is isomorphic to�q.SX /. Recall that the natural
homomorphism O.SX /!Aut.q.SX //mapsM to Aut.q.SX // isomorphically, and hence
is surjective. Therefore, by Nikulin [21], there exists a unique (up to the action of O.SX /)
even unimodular overlattice of SX ˚R in which SX and R are both primitive. Taking this
unimodular overlattice as L26, we find a primitive embedding

� W SX ,! L26:

We consider the tessellation of NX � PX by the L26=SX -chambers associated with this
primitive embedding. Let .V; E/ be the graph of L26=SX -chambers contained in NX
(see Definition 5.12). By (6.3) and Propositions 5.13 and 5.15, we see that the group
G D Aut.X/ � O.SX ;PX / acts on the graph .V; E/, and we can apply the algorithm in
Section 4.1 of [7].

Remark 6.7. Primitive embeddings of SX into L26 are not unique. In fact, the genus
of negative-definite even lattices containing the isomorphism class of R consists of 26
isomorphism classes.

The image �.a/ 2 P26 \ L26 of the ample class a 2 SX defined by (6.2) satisfies

(6.5) Roots..Œ�.a/� ,! L26/
?/ D Roots..�WSX ,! L26/

?/ Š Roots.R/;

where Œ�.a/� is the sublattice of L26 generated by �.a/. Hence a is an interior point of an
L26=SX -chamber, which we denote by D0. Moreover, we have

Sep26.�.a/; �.h// D ;;

where we denote by Sep26 the set of separating .�2/-vectors in L26. Hence the class h is
a point of D0. We choose a vector Qa 2 PL \ L26 that satisfies

Roots..Œ Qa� ,! L26/
?/ D ; and Sep26.�.a/; Qa/ D ;:
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Then Qa is an interior point of a Conway chamber C0 such that ��1.C0/ D D0. We can
calculate a subset of the set of roots Qr of L26 such that C0 \ . Qr/? is a wall of C0, either
by Vinberg’s algorithm [36], or by calculating Sep26. Qa;v/, where v 2 P26 \L26 are ran-
domly chosen vectors. If this subset is large enough, these roots Qr span L26 ˝ Q and
hence the Weyl vector w0 of the Conway chamber C0 is calculated by solving the equa-
tions hw0; Qri D 1.

Remark 6.8. The ADE-type of the roots in (6.5) is A1 C 6A2. Hence the hyperplanes
perpendicular to these roots decompose R˝R into 2 � 66 regions. Therefore there exist
exactly 2 � 66 Conway chambers C such that ��1.C/ D D0.

Thus we prepared all the data necessary to start the algorithm of Section 4.1 in [7] to
calculate a complete set V0 of the representatives of V=G and a finite generating set of
G D Aut.X/. We executed this algorithm. The computation terminated and yielded the
following.

Proposition 6.9. The set V0 consists of the following seven L26=SX -chambers:

D0; D
.1/
1 ; D

.2/
1 ; D

.3/
1 ; D

.4/
1 ; D

.5/
1 ; D

.6/
1 :

We will describe each of these L26=SX -chambers in V0, and during the description,
we present automorphisms in the set H defined by (5.1).

We use the following convention. Let D be an L26=SX -chamber, and let C be a Con-
way chamber such that ��1.C/ D D. Let w be the Weyl vector of C. For a wall w of D,
let v 2 S_X be the primitive defining vector of w (see Definition 5.14), and we put

n.w/ WD hv; vi; a.w/ WD hw; �.v/i; h.w/ WD hh; vi:

These rational numbers are useful in classifying walls.

6.4. The L26=SX -chamberD0

The initial L26=SX -chamber D0 contains the ample class a in its interior. The stabilizer
subgroup of D0 in G is ¹1; i.h/º. The group M leaves D0 invariant. The chamber D0
has 110 walls, and the action ofM decomposes the walls ofD0 into four orbits o1, o2, o3
and o4 of sizes 2, 12, 6 and 90, respectively. The data of these orbits are given in Table 6.1.

size n a h

o1 2 �2 1 2 
.˙/

o2 12 �2 1 0 e
.˙/
i

o3 6 �3=2 3=2 1 isom with D.˛/1
o4 90 �2=3 3 2 isom with D0

Table 6.1. Walls of D0.

The orbit o1 of size 2 consists of .
.˙//? \D0. The orbit o2 of size 12 consists of
.e
.˙/
i /? \D0. Hence the L26=SX -chamber adjacent toD0 across a wall in o1 or o2 is not

contained in NX .
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The orbit o3 of size 6 consists of the walls .v˛/? \ D0 whose primitive defining
vectors v˛ are given by

hv˛;hi D 1; hv˛; e
.C/
i i D hv˛; e

.�/
i i D

²
1 if i D ˛,
0 if i ¤ ˛.

LetD.˛/
1 be the L26=SX -chamber adjacent toD0 across the wall .v˛/? \D0. ThenD.˛/

1

is contained in NX , but is not G-equivalent to D0, and any two of D.1/
1 ; : : : ; D

.6/
1 are not

G-equivalent to each other. Hence these chambersD.˛/
1 (˛ D 1; : : : ; 6) are added to V0 as

new representatives of V=G.
The walls wIJ in the orbit o4 of size 90 are indexed by ordered pairs .I; J /, where I

and J are subsets of ¹1; : : : ; 6º satisfying jI j D jJ j D 2 and I \ J D ;. The primitive
defining vector vIJ 2 S_X of wIJ 2 o4 is given by

hvIJ ;hi D 2;

hvIJ ; e
.C/
i i D 0; hvIJ ; e

.�/
i i D 0; if i … I [ J ,

hvIJ ; e
.C/
i i D 1; hvIJ ; e

.�/
i i D 0; if i 2 I ,

hvIJ ; e
.C/
i i D 0; hvIJ ; e

.�/
i i D 1; if i 2 J .

The L26=SX -chamberDIJ adjacent toD0 across the wall wIJ isG-equivalent toD0. An
automorphism gIJ 2 G that maps D0 to DIJ isomorphically is given as follows. Let hIJ
be a vector of SX ˝Q defined by

(6.6)

hhIJ ;hi D 6;

hhIJ ; e
.C/
i i D 0; hhIJ ; e

.�/
i i D 0; if i … I [ J ,

hhIJ ; e
.C/
i i D 1; hhIJ ; e

.�/
i i D 1; if i 2 I ,

hhIJ ; e
.C/
i i D 0; hhIJ ; e

.�/
i i D 3; if i 2 J .

Then hIJ 2 SX and hhIJ ; hIJ i D 2. We confirm Sep.hIJ ; a/ D ;, and hence hIJ 2 NX .
The complete linear system jhIJ j is proved to be fixed-component free by the criterion in
Section 3.7. The involution i.hIJ / associated with the double covering �.hIJ /WX ! P2

given by jhIJ j maps D0 to DIJ isomorphically. Therefore

i.hIJ /
�1
D i.hIJ / 2 TG.DIJ ; u0.DIJ //

in the notation of Section 5.1, where u0.DIJ / D D0. These involutions i.hIJ / are the
involutions of type (b) in Section 6.2.

Remark 6.10. Suppose that I D ¹i1; i2º, J D ¹j1; j2º, and

¹1; : : : ; 6º � .I [ J / D ¹k1; k2º:

Then the smooth rational curves onX contracted by the double covering �.hIJ /WX! P2

are as in Figure 6.2, where Q̀j1j2 is the curve given in Remark 6.6. In particular, the singular
locus of the branch curve B.hIJ / is of type A3 C A5.

Remark 6.11. We have vIJ i.h/D vJI , hIJ i.h/¤ hJI , and can confirm that the involution
i.hIJ

i.h// D i.h/i.hIJ /i.h/ is equal to i.hJI /.
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c
e
.C/
j1

c
Q̀
j1j2

c
e
.C/
j2

c
e
.C/

k1

c
e
.�/

k1

c

.�/

c
e
.�/

k2

c
e
.C/

k2

Figure 6.2. Exceptional curves of �.hIJ /.

6.5. The L26=SX -chamberD.˛/
1

The stabilizer subgroup of D.˛/
1 in G is ¹1; i.h/º. On the other hand, the group M acts

on the set ¹D.1/
1 ; : : : ;D

.6/
1 º transitively. Let M˛ be the stabilizer subgroup of D.˛/

1 in M .
Then M˛ is isomorphic to Z=2Z � S5. The chamber D.˛/

1 has 110 walls, and the action
ofM˛ decomposes the walls ofD.˛/

1 into seven orbits o01; : : : ; o
0
7. The data of these orbits

are given in Table 6.2.

size n a h

o01 1 �3=2 3=2 �1 back to D0
o02 2 �2 1 2 
.˙/

o03 5 �2 1 2 Q̀
˛ˇ .ˇ ¤ ˛/

o04 10 �2 1 0 e
.˙/
ˇ

.ˇ ¤ ˛/

o05 2 �3=2 3=2 1 isom with D.˛/1
o06 30 �1=6 7=2 3 isom with D.ˇ/1 .ˇ ¤ ˛/

o07 60 �2=3 3 2 isom with D.ˇ/1 .ˇ ¤ ˛/

Table 6.2. Walls of D.˛/1 .

The orbit o01 consists of a single wall, and the adjacent L26=SX -chamber across this
wall isD0, which means that this wall is a wall in the orbit o3 of walls ofD0 viewed from
the opposite side.

The orbit o02 of size 2 consists of .
.˙//? \D.˛/
1 , the orbit o03 of size 5 consists of

. Q̀˛ˇ /
? \D

.˛/
1 with ˇ ¤ ˛, and the orbit o04 of size 10 consists of .e.˙/

ˇ
/? \D

.˛/
1 with

ˇ ¤ ˛. The adjacent L26=SX -chambers across these walls are therefore not contained
in NX .

The orbit o05 is of size 2. One of the walls in o05 is defined by a vector vC˛ 2 S
_
X

satisfying

hvC˛ ;hi D 1;

hvC˛ ; e
.C/
˛ i D 2; hv

C
˛ ; e

.�/
˛ i D �1;

hvC˛ ; e
.C/

ˇ
i D 0; hvC˛ ; e

.�/

ˇ
i D 0 .ˇ ¤ ˛/;

and the other wall in o05 is defined by the vector

v�˛ WD .v
C
˛ /
i.h/:
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The adjacent L26=SX -chamber DC˛ across the wall .vC˛ /
? \ D

.˛/
1 is G-equivalent to

D
.˛/
1 . Indeed, the following automorphism i.hC˛ / 2 G maps D.˛/

1 to DC˛ isomorphically.
Let hC˛ be the vector defined by

hhC˛ ;hi D 4;

hhC˛ ; e
.C/
˛ i D 2; hh

C
˛ ; e

.�/
˛ i D 0;

hhC˛ ; e
.C/

ˇ
i D 0; hhC˛ ; e

.�/

ˇ
i D 1 .ˇ ¤ ˛/:

Then we have hC˛ 2SX and hhC˛ ; h
C
˛ iD2. We confirm Sep.hC˛ ;a/D; and hence hC˛ 2NX .

The complete linear system jhC˛ j is proved to be fixed-component free by the criterion in
Section 3.7. Then we can confirm by direct computation that the involution i.hC˛ / asso-
ciated with the double covering �.hC˛ /WX ! P2 given by jhC˛ j induces D.˛/

1 Š DC˛ .
It is obvious that the automorphism i.h�˛ / WD i.h/i.h

C
˛ /i.h/ maps D.˛/

1 to the adjacent
L26=SX -chamber D�˛ across the wall .v�˛ /

? \D
.˛/
1 . Therefore we have

i.h˙˛ / D i.h
˙
˛ /
�1
2 TG.D

˙
˛ ; u0.D

˙
˛ //

in the notation of Section 5.1. These involutions i.h˙˛ / are the involutions of type (c) in
Section 6.2.

Remark 6.12. The branch curve B.hC˛ / of the double covering �.hC˛ / has the singularit-
ies of type A2 C 5A1. The exceptional curves over the singular point of type A2 are 
.�/

and e.�/˛ , whereas the exceptional curves over the singular points of type A1 are e.C/
ˇ

for

ˇ ¤ ˛. In particular, the involution i.hC˛ / interchanges 
.�/ and e.�/˛ .

The description of the orbit o06 is rather complicated, and hence is postponed to the
next subsection.

We describe the orbit o07 of size 60. Suppose that ˇ 2 ¹1; : : : ; 6º and F D ¹i1; i2º �
¹1; : : : ; 6º satisfy i1 ¤ i2, ˇ ¤ ˛ and ¹˛; ˇº \ ¹i1; i2º D ;. Let v.C/

ˇF
2 S_X be the vector

defined by

hv
.C/

ˇF
;hi D 2;

hv
.C/

ˇF
; e
.C/
i i D 1; hv

.C/

ˇF
; e
.�/
i i D 0 if i 2 ¹˛; ˇº;

hv
.C/

ˇF
; e
.C/
i i D 0; hv

.C/

ˇF
; e
.�/
i i D 1 if i 2 F ;

hv
.C/

ˇF
; e
.C/
i i D 0; hv

.C/

ˇF
; e
.�/
i i D 0 otherwise:

We then put
v
.�/

ˇF
WD
�
v
.C/

ˇF

�i.h/
:

The orbit o07 consists of walls .v.C/
ˇF
/? \D

.˛/
1 and .v.�/

ˇF
/? \D

.˛/
1 . The adjacent L26=SX -

chamber D.˙/

ˇF
across the wall .v.˙/

ˇF
/? \ D

.˛/
1 is G-equivalent to D.ˇ/

1 . We put A WD
¹˛; ˇº, and consider the polarization hAF of degree 2 defined by (6.6) with I D A and
J D F . The involution i.hAF /, which is an involution of type (b) in Section 6.2, maps
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D
.ˇ/
1 to D.C/

ˇF
isomorphically, whereas the involution i.hFA/ maps D.ˇ/

1 to D.�/

ˇF
iso-

morphically. (See Remark 6.11.) Therefore we have

i.hAF / D i.hAF /
�1
2 TG.D

.C/

ˇF
; u0.D

.C/

ˇF
//;

i.hFA/ D i.hFA/
�1
2 TG.D

.�/

ˇF
; u0.D

.�/

ˇF
//;

in the notation of Section 5.1.

6.6. The orbit o0
6

In the following, for a sign � 2 ¹C;�º, let N� denote the opposite sign: ¹�; N�º D ¹C;�º.
First, we define automorphisms g0�Ij and g00�J .

Let I be the set of ordered triples

I D .¹i1º; ¹i2; i3; i4º; ¹i5; i6º/

such that ¹i1; : : : ; i6º D ¹1; : : : ; 6º. We have jIj D 60. For a pair of � 2 ¹C;�º and I 2 I,
we have the configuration of smooth rational curves as in Figure 6.3.

ee
. N�/
i2

ee
. N�/
i1

e

. N�/

ee
. N�/
i3

e e. N�/i4
e 
.�/

ee
.�/
i5

e
Q̀
i5i6

ee.�/i6

ee.�/i1

�
�
�
�

@
@
@
@

@
@

@
@

�
�

�
�

((((((((
hhhhhhhh

Figure 6.3. Configuration for a Jacobian fibration.

Then

f� WD f�I WD e
. N�/
i1
C e

. N�/
i2
C e

. N�/
i3
C e

. N�/
i4
C 2
. N�/ D 
.�/ C e

.�/
i5
C e

.�/
i6
C Q̀i5i6

is the class of a fiber of an elliptic fibration �WX ! P1 with

z� WD z�I WD e
.�/
i1

being the class of a section.
Thus we obtain a Jacobian fibration � with the zero section z� , and its Mordell–Weil

group
MW� WD MW.X; f� ; z�/ � G D Aut.X/:
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Calculating the set ‚� D Roots.W�/ \ Rats.X/, we see that the ADE-type of the redu-
cible fibers of �WX ! P1 is D4 C A3. Hence the rank of MW� is 4. Since the trivial
sublattice of �, which is of rank 9 generated by the classes of the ten curves in Figure 6.3,
is primitive in SX , we see that MW� is torsion free. A Gram matrix of the Mordell–Weil
lattice MW� (see Remark 4.4) is

3

4

2664
3 �1 �1 �1

�1 3 �1 �1

�1 �1 3 1

�1 �1 1 3

3775 :
The numbers n.s/ of elements with small Mordell–Weil norms s in MW� are given as
follows:

s 9=4 3 21=4 6 : : :

n.s/ 12 14 16 30 : : :

Among these, we have the following sections of �:
• The six smooth rational curves Q̀j1j2 , where j1 2 ¹i2; i3; i4º and j2 2 ¹i5; i6º, satisfy
h Q̀j1j2 ; f i D 1, and hence they are sections of �. Their Mordell–Weil norms are 9=4.

• The three smooth rational curves e.�/j , where j 2 ¹i2; i3; i4º, also satisfy he.�/j ;f i D 1,
and hence they are sections of �. Their Mordell–Weil norms are equal to 3.

These 6C 3 sections Q̀j1j2 and e.�/j generate MW� .

Definition 6.13. For j 2 ¹i2; i3; i4º, we denote by g0�Ij the automorphism of X obtained

as the translation by the section e.�/j 2 MW� . This is the automorphism of type (e) in
Section 6.2.

Let J be the set of ordered 4-tuples

J D .¹i1º; ¹i2; i3º; ¹i4; i5º; ¹i6º/

such that ¹i1; : : : ; i6º D ¹1; : : : ; 6º. We have jJj D 180. For a pair of � 2 ¹C;�º and
J 2 J, let h�J be the vector of SX ˝Q defined by

hh�J ;hi D 14;

hh�J ; e
.�/
i1
i D 1 and hh�J ; e

. N�/
i1
i D 0;

hh�J ; e
.�/
i i D 4 and hh�J ; e

. N�/
i i D 0 for i D i2 and i D i3;

hh�J ; e
.�/
i i D 0 and hh�J ; e

. N�/
i i D 5 for i D i4 and i D i5;

hh�J ; e
.�/
i6
i D 5 and hh�J ; e

. N�/
i6
i D 4:

Then h�J 2 SX and hh�J ; h�J i D 2. We confirm Sep.h�J ;a/ D ;, and hence h�J 2 NX .
The complete linear system jh�J j is proved to be fixed-component free by the criterion
in Section 3.7.

Definition 6.14. We denote by g00�J the involution i.h�J /. This is the involution of type (d)
in Section 6.2.
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Remark 6.15. The smooth rational curves onX contracted by the double covering �.h�J /
associated with jh�J j are as in Figure 6.4. In particular, Sing.B.h�J // is of typeD4CA5.

e
e
. N�/
i2

e

. N�/

e e. N�/i1
e
e
. N�/
i3

e
Q̀
i5i6

e
e
.�/
i5

eQ̀i4i6 ee.�/i4
e

.�/

HHHH

��
��

Figure 6.4. Exceptional curves of �.h�J /.

We now describe the orbit o06 of walls of D.˛/
1 . The size of o06 is 30. Suppose that

ˇ 2 ¹1; : : : ;6º andF D¹i1; i2º� ¹1; : : : ;6º satisfy i1¤ i2, ˇ¤ ˛ and ¹˛;ˇº \ ¹i1; i2ºD;.
Let u WD uˇF 2 S_X be the vector defined by

hu;hi D 3;

hu; e.C/˛ i D 1; hu; e
.�/
˛ i D 1;

hu; e
.C/

ˇ
i D 0; hu; e

.�/

ˇ
i D 0;

hu; e
.C/
i i D 0; hu; e

.�/
i i D 1 if i 2 F ;

hu; e
.C/
i i D 1; hu; e

.�/
i i D 0 if i … ¹˛; ˇº [ F :

The orbit o06 consists of walls .uˇF /? \D
.˛/
1 . The L26=SX -chamber D˛ˇF adjacent to

D
.˛/
1 across the wall .uˇF /? \D

.˛/
1 isG-equivalent toD.ˇ/

1 . An automorphism g˛ˇF 2G

that maps D.ˇ/
1 to D˛ˇF isomorphically is given as follows. We put

K WD ¹1; : : : ; 6º n .¹˛; ˇº [ F /:

Then we have

(6.7) g˛ˇF D g
0
CIˇ � g

00
CJ D g

0
�I 0ˇ � g

00
�J 0 ;

where

I D .¹˛º; K [ ¹ˇº; F / 2 I; J D .¹ˇº; K; F; ¹˛º/ 2 J;

I 0 D .¹˛º; F [ ¹ˇº; K/ 2 I; J 0 D .¹ˇº; F;K; ¹˛º/ 2 J:

Therefore we have
g�1˛ˇF 2 TG.D˛ˇF ; u0.D˛ˇF //

in the notation of Section 5.1.

Remark 6.16. The equality (6.7) was found by trying small combinations of the auto-
morphisms of type (a)–(e).
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6.7. Proof of Theorem 1.1

Any two distinct elements of V0 are not G-equivalent. Any L26=SX -chamber that is con-
tained in NX and is adjacent to an element of V0 is G-equivalent to an element of V0.
Hence, by Proposition 5.1, the set V0 is a complete set of representatives of V=G.

As the set H defined by (5.1), we can take the set consisting of the identity element 1,
all involutions of type (b) and (c), and the automorphisms g�1

˛ˇF
, where g˛ˇF is given

by (6.7) and is a product of automorphisms of type (d) and (e). The stabilizer subgroup
StabG.D0/ of the initial element D0 2 V0 is ¹1; i.h/º. Hence, by Proposition 5.1, the
group G D Aut.X/ is generated by the automorphisms of type (a)–(e).

Remark 6.17. This generating set is very redundant.

6.8. Proof of Theorem 1.2

We prove that G D Aut.X/ acts on Rats.X/ transitively. Let r be an arbitrary element
of Rats.X/. Since r defines a wall of NX , there exists an L26=SX -chamber D contained
inNX such that r defines a wall ofD. We have an automorphism g 2G such thatDg 2 V0.
By the description of walls of the representative L26=SX -chambers in V0, we see that rg

is one of the 12C 2C 15 smooth rational curves e.˙/˛ , 
.˙/, and Q̀ij . The action of i.h/
gives e.C/˛ $ e

.�/
˛ and 
.C/ $ 
.�/. By Remark 6.10, the involution i.hIJ / of type (b)

interchanges e.C/j1
and e.C/j2

(see Figure 6.2). By Remark 6.12, the involution i.hC˛ / of

type (c) interchanges 
.�/ and e.�/˛ . As was shown in Section 6.6, the elliptic fibration
X ! P1 given by f�I has sections e.�/j and Q̀j1j2 , and hence they belong to the same
G-orbit. Therefore these 12C 2C 15 smooth rational curves are in the same G-orbit.
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