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On the sequence nŠ mod p

Alexandr Grebennikov, Arsenii Sagdeev, Aliaksei Semchankau and
Aliaksei Vasilevskii

Abstract. We prove that the sequence 1Š;2Š;3Š; : : : produces at least .
p
2C o.1//

p
p

distinct residues modulo prime p. Moreover, the factorials within an interval I �

¹0; 1; : : : ; p � 1º of length N > p7=8C" produce at least .1 C o.1//
p
p distinct

residues modulo p. As a corollary, we prove that every non-zero residue class can
be expressed as a product of seven factorials n1Š � � � n7Š modulo p, where ni D
O.p6=7C"/ for all i D 1; : : : ; 7, which provides a polynomial improvement upon
the preceding results.

1. Introduction

Wilson’s theorem represents one of the most elegant results in elementary number theory.
It states that if p is a prime number, then .p � 1/Š D �1 mod p. As one of its simple
corollaries, we note that .p � 2/Š D 1Š mod p, and thus not all the residues from

A.p/ WD ¹i Š mod p W i 2 Œp � 1�º

are distinct. Erdős conjectured, see [16], that this is not the only coincidence, i.e., that
jA.p/j < p � 2. Surprisingly, despite the long history of this natural problem, Erdős’
conjecture remains widely open though verified [18] for all primes p < 109.

At the same time, it is widely believed (see [2,6] and Section F11 in [12] ) that the ele-
ments of A.p/may be considered as more or less ‘independent uniform random variables’
for large p. In particular, it is conjectured that

jA.p/j D
�
1 �

1

e
C o.1/

�
p

as p !1. However, the best lower bound up to now is due to García [10]:

Theorem (García).

jA.p/j >
�r41

24
C o.1/

�
p
p:
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The strategy in [10] was to prove that A.p/A.p/ contains residues with certain prop-
erties, which forces the estimate jA.p/A.p/j > .41=48C o.1//p to hold; combined with
the observation �

jA.p/j C 1

2

�
> jA.p/A.p/j;

this yields the result. We improve it to the following.

Theorem 1.1.
jA.p/A.p/j > p CO.p13=14.logp/4=7/:

Corollary 1.2.
jA.p/j >

�p
2C o.1/

�p
p:

One of the natural ways to generalize this problem is to consider it in a ‘short inter-
val’ setting (see [8, 9, 13, 15]). Throughout this paper, we let p be a large enough prime,
and L and N will be integers such that 0 < LC 1 < LCN < p. Following Garaev and
Hernández [8], we define a ‘short interval’ analogue of A.p/ as follows:

A.L;N / WD ¹nŠ mod p W LC 1 6 n 6 LCN º:

As L will not play any role, we write AN for short. To bound the cardinality of this
set from below, it is usually fruitful to estimate the size of AN =AN , the set of pairwise
fractions, since we trivially have jAN j

2 > jAN =AN j. The first lower bounds on the size
of this set of fractions were linear on N (see [9, 13]), while Garaev and Hernández [8]
found the following logarithmic improvement.

Theorem (Garaev–Hernández). Let p1=2C" <N < p=10. Then, for some c0 D c0."/ > 0,

jAN =AN j > c0N log
� p
N

�
:

The strategy in [8] was to observe that AN =AN contains the sets X1; X2; : : : ; XM
defined as Xj D ¹.x C 1/.x C 2/ � � � .x C j / W L C 1 6 x 6 L C N �M º, and then
prove that the Xj are ‘large’, but their intersections Xk \Xj are ‘small’, which makes the
inclusion-exclusion formula applicable:

jAN =AN j > jX1 [X2 [ � � � j >
X
j

jXj j �
X
k<j

jXk \Xj j �
X
j

jXj j:

In the present paper, we give the following improvement of this result.

Theorem 1.3. Let N be such that c5
p
p.logp/2 6 N 6 p. LetK WD p=N and letQ WD

N
p
p .logp/2 . Then

jAN=AN j>

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

pCO.p13=14.logp/4=7/ if N > c1p
13=14.logp/4=7;

pCO.p5=6K4=3.logp/4=3/ if c1p13=14.logp/4=7>N >c2p7=8 logp;
cNQ1=3.logQ/�2=3 if c2p7=8 logp > N > c3p

4=5.logp/8=5;
cNK1=2 if c3p4=5.logp/8=5>N >c4p4=5.logp/4=5;
cNQ1=3 if c4p4=5.logp/4=5>N >c5p1=2.logp/2:

where c; c1; c2; c3; c4; c5 > 0 are some absolute constants, whose values can be extracted
from the proof.
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Corollary 1.4. For N � p7=8 logp,

jAN j > .1C o.1//
p
p:

To derive Theorem 1.3, we continue the strategy from [8] as follows: using strong
results from algebraic geometry, we prove ‘best possible’ bounds jXj j> .1C o.1//N and
jXk \Xj j6 .1C o.1//N 2=p for prime k;j . Then we observe that bounds on setsXj and
their intersections imply they behave like independent random variables, and therefore the
size of their union is at least p C o.p/ (see Lemma 2.1), which implies that AN =AN has
size at least p C o.p/.

This strategy turns out to be helpful when proving Theorem 1.1 as well.
One of the nice applications of these results deals with the representation of residues

as a product of several factorials. It is not hard to see that the classical Wilson theorem
implies the following. Any given a 2 Œp � 1� can be represented1 as a product of three
factorials,

a � n1Š n2Š n3Š mod p

for some n1;n2;n32 Œp� 1�. The aforementioned conjecture on the ‘randomness’ of A.p/

implies that even two factorials are enough. However, if we add the additional constraint
that all the ni should be of magnitude o.p/ as p!1, it becomes not so clear how many
factorials are required. Garaev, Luca, and Shparlinski [9] coped with seven.

Theorem (Garaev, Luca and Shparlinski). Fix any positive " < 1=12. Then for all prime p,
every residue class a 6� 0 mod p can be represented as a product of seven factorials,

a � n1Š � � �n7Š .mod p/;

such that n0 WD max1�i�7 ni D O.p11=12C"/ as p !1.

During the last two decades, the number of factors in the last theorem was not reduced
even to 6. However, there were certain improvements on the value of n0. García [11]
showed that the theorem above holds with n0 D O.p11=12 log1=2 p/, while Garaev and
Hernández [8] relaxed it to O.p11=12 log�1=2 p/. Since our Theorem 1.3 improves the
bounds used in the latter proof, one can obtain a slight (again, polynomial) improvement
on the value of n0 by following the same proof.

Theorem 1.5. Fix any positive " < 1=7. Then for all prime p, every residue class a 6� 0
modp can be represented as a product of seven factorials,

a � n1Š � � �n7Š .mod p/;

such that n0 WD max1�i�7 ni D O.p6=7C"/ as p !1.

The remainder of the text has the following structure. In Section 2 we introduce some
notations and useful lemmas, in Section 3 we prove results on images of ‘generic’ poly-
nomials, in Section 4 we apply these results to polynomials Pj .x/ D .x C 1/ � � � .x C j /,
and, finally, in Sections 5 and 6 we prove Theorems 1.1 and 1.3.

1Indeed, one may easily verify that, depending on the ‘parity’ of the inverse residue b � a�1, we have either
a � .b � 1/Š.p � 1 � b/Š, or a � �.b � 1/Š.p � 1 � b/Š � .b � 1/Š.p � 1 � b/Š.p � 1/Š modulo p.
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2. Conventions and preliminary results

Here and below, p denotes a large prime number.
Whenever A is a set, we identify it with its indicator function

A.x/ D

´
1; x 2 A;

0; x 62 A:

Throughout the paper, the standard notations �, �, and respectively O and �, are
applied to positive quantities in the usual way. That is, X � Y; Y � X;X D O.Y / and
Y D �.X/ all mean that Y > cX , for some absolute constant c > 0.

A polynomial f 2 FpŒx� is decomposable if f D g ı h for some polynomials g; h 2
FpŒx� of degrees at least 2. Otherwise, it is indecomposable.

We recall that for any integer d > 0 and a 2 Fp , the Dickson polynomialDd;a 2 FpŒx�
is defined to be the unique polynomial such that Dd;a.x C a=x/ D xd C .a=x/d . There
is also an explicit formula for it:

Dd;a.x/ D

bd=2cX
iD0

d

d � i

�
d � i

i

�
.�a/ixd�2i :

For a positive integer j , define the polynomial

Pj .x/ D

jY
iD1

.x C i/:

Given a set A and a polynomial P 2 FpŒx�, denote by P.A/ the set ¹P.a/ .mod p/ W
a 2 Aº.

A key lemma to estimate the union of sets is the following.

Lemma 2.1. Let A1; A2; : : : ; An be finite sets, and let a > b be positive integers, such
that the following properties hold:

• jAi j > a for all i ,

• jAi \ Aj j 6 b for all i ¤ j .

Let A WD A1 [ A2 [ � � � [ An. Then

jAj >
a2

b

�
1 �

a

nb

�
:

Proof. Let S D
P
i6n

P
a2AAi .a/ > na. Observe that

S2 D
�X
a2A

�X
i6n

Ai .a/
��2

6 jAj
X
a2A

�X
i6n

Ai .a/
�2
D jAj

X
a2A

X
i;j6n

Ai .a/Aj .a/

D jAj
X
i;j6n

jAi \ Aj j 6 jAj
�
S C .n2 � n/b

�
;

which implies

jAj >
S2

S C .n2 � n/b
>

.na/2

naC .n2 � n/b
>

na2

aC nb
D
a2

b

1

1C a
bn

>
a2

b

�
1 �

a

bn

�
:
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3. On images of generic polynomials

The two following results seem to be well known, yet not explicitly written in the literature
(see [4, 5] for more information on related questions); we prove them here for the sake of
completeness.

Lemma 3.1. LetP 2 FpŒx� of degree d be such that .P.x/�P.y//=.x � y/ is absolutely
irreducible over Fp , and let I be an arithmetical progression in Fp . Then

jP.I/j D jIj CO
�
jIj2p�1 C d2

p
p .logp/2

�
:

Lemma 3.2. Let P;Q 2 FpŒx� of maximal degree d be such that P.x/ �Q.y/ is abso-
lutely irreducible over Fp , and let I be an arithmetical progression in Fp . Then

jP.I/ \Q.I/j 6 jIj2p�1 CO.d2
p
p.logp/2/:

We postpone their proofs until the end of the section, and formulate some helpful
results, which are only to be used in this section.

Given P;Q 2 FpŒx�, let us define �.P;Q/ 2 FpŒx; y� as

�.P;Q/.x; y/ WD

8<:P.x/ �Q.y/; if P ¤ Q;
P.x/�P.y/

x�y
; if P D Q:

Let us also define

J.P;Q/ WD #
®
.x; y/ 2 Fp � Fp W �.P;Q/.x; y/ D 0

¯
:

Lemma 3.3. GivenP;Q 2 FpŒx�, suppose that �.P;Q/ is absolutely irreducible over Fp .
Then

J.P;Q/ D p CO.d2
p
p/;

where d is the degree of �.P;Q/.

Proof. We recall the modification of the classical Lang–Weil result [14], with an error
term due to Aubry and Perret [1]:

Theorem (Lang–Weil). Let Fq be a finite field. Let X � A2Fq be a geometrically irredu-
cible hypersurface of degree d . Then

jX.Fq/ � qj 6 .d � 1/.d � 2/
p
q C d � 1:

Since �.P; Q/.x; y/ is absolutely irreducible over Fp , its set of zeros is (by defin-
ition) a geometrically irreducible hypersurface, and therefore the Lang–Weil theorem is
applicable. This proves the lemma.

Given a subset I � Fp , let us define

JI.P;Q/ WD #¹.x; y/ 2 I � I W �.P;Q/.x; y/ D 0º:

We need the following lemma, whose proof is already contained in [8], but we write it
down explicitly here in full generality.
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Lemma 3.4. Let P;Q 2 FpŒx� be such that �.P;Q/ has no linear divisors. Let I be an
arithmetical progression in Fp . Then

JI.P;Q/ D
jIj2

p2
J.P;Q/CO.d2

p
p.logp/2/;

where d is the degree of �.P;Q/.

Proof. We recall the statement of Lemma 1 in [8] (originated in [3]):

Theorem (Bombieri, Chalk-Smith). Let .b1; b2/ 2 Fp � Fp be a nonzero vector, and let
f .x; y/ 2 FpŒx; y� be a polynomial of degree d > 1 with the following property: there is
no c 2 Fp for which the polynomial f .x; y/ is divisible by b1x C b2y C c. Thenˇ̌̌ X

.x;y/2Fp�Fp W
f .x;y/D0

e2�i.b1xCb2y/=p
ˇ̌̌

6 2d2p1=2:

In what follows, we will need a bit of discrete Fourier transform in Fp . Given a func-
tion f WFp ! C, we define its discrete Fourier transform Of WFp ! C by

Of .r/ D
X
x2Fp

f .x/ e�2�i rx=p:

One can easily verify the inverse Fourier transform formula:

f .x/ D
1

p

X
r2Fp

Of .r/ e2�i rx=p:

We also need the following well-known result. Let I be a (finite) arithmetic progression
in Fp . Then X

r2Fp

j OI.r/j � p logp;

where IWFp ! C is interpreted as the characteristic function of the set I � Fp .
Let us consider I as a characteristic function of a set. Then

JI.P;Q/ D
X

.x;y/2Fp�Fp W
�.P;Q/.x;y/D0

I.x/I.y/ D
X

.x;y/2Fp�Fp W
�.P;Q/.x;y/D0

1

p2

X
r1;r22Fp

OI.r1/ OI.r2/ e
2�

.r1xCr2y/
p

D
jIj jIj

p2
J.P;Q/C

1

p2

X
.r1;r2/¤.0;0/

OI.r1/ OI.r2/
X

.x;y/2Fp�Fp
�.P;Q/.x;y/D0

e
2�i

.r1xCr2y/
p :

The last summand can be bounded as

1

p2

X
r12Fp

j OI.r1/j
X
r22Fp

j OI.r2/j max
.r1;r2/¤0

ˇ̌̌ X
.x;y/2Fp�Fp W
�.P;Q/.x;y/D0

e
2�i

r1xCr2y
p

ˇ̌̌
� .logp/2

p
pd2:

This completes the proof.
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Now, let us turn to the proof of Lemma 3.1.

Proof. Clearly, jP.I/j 6 jIj. Let us obtain a lower bound. The Cauchy–Bunyakovsky–
Schwarz inequality implies

#¹.x; y/ 2 I � I W P.x/ D P.y/ºjP.I/j > jIj2;

Clearly,

#¹.x;y/ 2 I � I WP.x/DP.y/º D jIj C JI.P;P /6 jIj C jIj2p�1CO.d2
p
p log2p/;

where we applied Lemmas 3.4 and 3.3. Deriving the lower bound on jP.I/j completes
the proof.

Now we prove Lemma 3.2.

Proof. By Lemmas 3.4 and 3.3,

jP.I/ \Q.I/j 6 JI.P;Q/ D
jIj2

p2
J.P;Q/CO.d2

p
p log2 p/

6
jIj2

p
CO.d2

p
p log2 p/:

4. Properties of the polynomials Pj

Let us start with the following simple lemma.

Lemma 4.1. For a given integer j , 5 6 j < p, the polynomial Pj .x/ 2 FpŒx� is not
equal to ˛Dj;a.x C b/ C c for ˛; a; b; c 2 Fp . Moreover, if j is prime, then Pj .x/ is
indecomposable.

Proof. The second assertion is clear since degPj D j . The first assertion can be proved
by a straightforward comparison of the first five leading coefficients of these two polyno-
mials.

For given k; j (possibly equal), we define the polynomialQkj .x;y/ as Pk.x/�Pj .y/
divided by all possible linear factors. If k D j , we denote this polynomial by Qj .x; y/.
One can show that, for k; j < p � 2,

Qkj .x; y/ D

8̂̂̂<̂
ˆ̂:
Pk.x/ � Pj .y/ if j ¤ k;
Pj .x/�Pj .y/

x�y
if k D j; j is odd;

Pj .x/�Pj .y/

.x�y/.xCy�j�1/
if k D j; j is even:

Lemma 4.2. The polynomial Qkj .x; y/ is absolutely irreducible over Fp for .possibly
equal/ primes 2 < j; k < p � 2.
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Proof. First, consider the case j D k. Recall the following theorem of Fried [7], later
modified by Turnwald [19]. We adapt it for the field Fp and for polynomials f of degree
less than p.

Theorem (Fried–Turnwald). Let f 2 FpŒx� be a polynomial of degree n, 4 < n < p.
Consider the polynomial

�.x; y/ WD
f .x/ � f .y/

x � y
�

If f is indecomposable, and it is not equal ˛Dn;a.x C b/C c for some ˛; a; b; c 2 Fp ,
then �.x; y/ is absolutely irreducible.

The application of this result to the polynomial Pj (along with the Lemma 4.1), with
the explicit check for j D 3, gives the result.

Next, consider the case j ¤ k. Recall the statement of Theorem 1B in [17]:

Theorem (Schmidt). Let

f .x; y/ D g0y
d
C g1.x/y

d�1
C � � � C gd .x/

be a polynomial in KŒx; y� for some field K, where g0 is a non-zero constant. Denote

 .f / D max
1�i�d

deggi
i

and suppose  .f / D m=d , where m is coprime to d . Then f .x; y/ is absolutely irredu-
cible.

Noticing that  .Qkj / D k=j gives the result.

Clearly, if j > k are odd primes, Lemma 4.2 is applicable, and Lemmas 3.1 and 3.2
imply the following:

jPj .I/j D jIj CO
�
jIj2p�1 C j 2

p
p.logp/2

�
;(4.1)

jPj .I/ \ Pk.I/j 6 jIj2p�1 CO.j 2
p
p.logp/2/;(4.2)

where I is a finite arithmetic progression in Fp .

5. On the inequality jA.p/A.p/j > p C o.p/

Now we prove Theorem 1.1.

Proof. Let "1; "2 > 0 be dependent on p, but separated from zero. Set

N WD bp1�"1c; M WD bp"2c; � WD log logp= logp;
ı WD min."1; 1=2 � 2"1 � 2"2 � 2�; "2 � "1 � �/ > 0:

Let I be the set of odd numbers not exceeding 2N �M , and let Yj WD Pj .I/. Clearly,
jIj D N CO.M/. Set

A WD ¹1Š; 2Š; : : : ; .2N /Šº [ ¹.p � 2N/Š; : : : ; .p � 2/Š; .p � 1/Šº mod p:

Clearly, AA � A.p/A.p/, and from now on we work with AA.
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From Wilson’s theorem, it follows that yŠ.p � 1� y/ŠD .�1/yC1 mod p. Therefore,
y being odd implies 1=.p � 1 � y/Š D yŠ mod p. Let j 6 M . Then

AA � ¹.y C j /Š.p � 1 � y/Š j y C j < 2N; y is oddº
D ¹.y C j /Š=yŠ j y C j < 2N; y is oddº D ¹Pj .y/ j y C j < 2N; y is oddº:

This implies Yj � AA for all j 6 M .
By equations (4.1) and (4.2), implied by Lemmas 3.1 and 3.2, we obtain the following

(note that ı 6 "1; 1=2 � 2"1 � 2"2 � 2� now plays a role):

jYj j>NCO.Np�ı/; jYk \Yj j6
N 2

p
CO.N 2p�1�ı/; k¤j odd primes below M:

Set
A WD

[
j

Yj for primes j 6 M:

We have reduced the problem to showing that jAj > p C o.p/.
Let us apply Lemma 2.1 with

a WD N.1CO.p�ı//; b WD
N 2

p
.1CO.p�ı//; n�M= logM � p"2�� :

Notice that by definition of ı, which includes ı 6 "2 � "1 � �, the inequality a=bn� p�ı

holds, and therefore

jAj >
a2

b

�
1 �

a

bn

�
> p.1CO.p�ı// D p CO.p1�ı/:

Now our goal is to maximize ı subject to

(5.1) ı 6

8̂<̂
:
"1;

1=2 � 2"1 � 2"2 � 2�;

"2 � "1 � �:

Solving this system, we obtain optimal parameters "1 WD1=14� 4�=7 and "2 WD1=7� �=7,
giving ı D 1=14 � 4�=7. This completes the proof.

6. On the inequality jAN =AN j > p C o.p/

We turn now to the proof of Theorem 1.3.

Proof. Let I WD ¹LC 1; : : : ;LCN �M º, andXj WD Pj .I/; j 6M , with parametersN
and M depending on the case.

Case 1. N � p13=14.logp/4=7.
For this case, one can apply the same argument as in the proof of Theorem 1.1 to

obtain the desired bound.
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Case 2. p13=14.logp/4=7 � N � p7=8 logp.
As in the proof above, we write N D p1�"1 and set M D bp"2c for "2 > 0. Observe

that now "1 is fixed, but "2 is not.
Arguing as before, we obtain jAN =AN j > p CO.p1�ı/, where

(6.1) ı 6

8̂<̂
:
"1;

1=2 � 2"1 � 2"2 � 2�;

"2 � "1 � �:

Let us set "2 WD 1=6� "1=3� �=3. Observe that "2 > 0, since "1 6 1=2� �. From here
we obtain that ı D min."1; 1=6 � 4"1=3 � 4�=3/ D 1=6 � 4"1=3 � 4�=3 works. Notice
that ı > 0 as long as "1 < 1=8 � �.

This concludes the proof in the case N � p7=8 logp.

Case 3. p7=8 logp � N � p4=5.logp/8=5.
Let R be a positive integer, to be chosen later. Let M be a number with exactly R odd

primes below it. Clearly, M � R logR.
Applying Lemma 3.1 to Pj for an odd prime j below M , we have

jXj j > N CO.N 2p�1 C j 2
p
p.logp/2/� N if M 2

� Q.

Therefore, summing jXk \ Xj j and applying Lemma 3.2 to Pk ; Pj for odd prime k
below j , we obtainX
k<j

jXk \Xj j �
N 2

p
RCRM 2pp.logp/2 � N if R� K;R3.logR/2 � Q:

Therefore, setting R WD Q1=3.logQ/�2=3, we obtain

jAN =AN j > jX3 [X5 [ � � � j„ ƒ‚ …
firstR odd primes

�

X
k<j;odd primes

jXk \Xj j � jX3j C jX5j C � � �„ ƒ‚ …
firstR odd primes

� NR;

which completes the proof in this case.

Case 4. p4=5.logp/8=5 � N � p1=2.logp/2.
We follow the same line of argumentation as in [8], but with modified bounds on the

sets Xj and their intersections.
From now on we work with all j , not just primes. Clearly, J.j /; J.k; j / 6 pj , and

therefore the estimates

JN .j /; JN .k; j / 6
N 2

p2
pj CO.j 2

p
p.logp/2/

hold, as in [8].
As in the proof of Lemma 3.1, we apply the Cauchy–Bunyakovskii–Shwarz inequality:

#¹.x; y/ W Pj .x/ D Pj .y/; 1 6 x; y 6 N �M ºjXj j > .N �M/2;
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from where we obtain

jXj j >
N 2

N C JN .j /
> N CO

�N 2j

p
C j 2

p
p.logp/2

�
8j 6 M:

For Xk \Xj , we have the bound

jXk \Xj j 6 JN .k; j / 6
N 2

p
j CO.j 2

p
p.logp/2/ 8k < j 6 M;

as in [8].
Clearly, we have jXj j � N as long as M � K;M 2 � Q.
Clearly, we have

P
k<j jXk \Xj j � N � jXj j as long as M 2 � K;M 3 � Q.

Therefore, similarly to [8], we conclude that

jAN =AN j >
X
j6M

�
jXj j �

X
k<j

jXk \Xj j
�
�

X
j6M

jXj j �MN;

where we set M WD min.
p
K; 3
p
Q/, which gives the desired bound.
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