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1. Introduction

The purpose of this article is to show that electrons and protons, interacting
by Coulomb forces and governed by quantum statistical mechanics at suitable
temperature and density, form a gas of Hydrogen atoms or molecules. Let us
first recall elementary quantum statistical mechanics. (See [6].) We start with
a box @ C R?® and two parameters, 8 > 0 and p real, related to temperature
and density. The Hamiltonian for electrons x; . . . xx and protons y; ... ya in
Qis

HR N = —x18x — 128y + ) |5 — x| "1 +
Jj<k

DR D N BT R 7 AR ¢ 19 §)
j<k j,k

Here Hf n+ acts on wave functions y(x; . ..Xn, J1. .. yn"), antisymmetric in
the x; and yx separately, and satisfying Dirichlet boundary conditions on
QxQx...x Q. (The coefficients i, x> are related to the electron and pro-
ton mass, and one has x> ~ (31/2000). We pick units in which »; + x2 = 1.)

Now Hf - has eigenfunctions ¥n a1, ¥n.~"2,... With eigenvalues
Ewnn1, Ennv2, . .. . The basic idea of quantum statistical mechanics is to pick
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an (N, N', k) according to the probability law

exp[(N + N — BENNk]
Z

Prob. (N,N', k) = (1.2)
where Z is a normalizing constant (the partition function) which makes
Prob(N, N', k) sum to 1.

Once we have picked a ¥ = yw, n, x by (1.2), the probability density for find-
ing the particles at given positions is

dProb = l¢(x1 v o XNy Y1 .. .yN')IZdX1 e dedy1 v dny. (1.3)

In principle (1.2) and (1.3) give a complete probabilistic description of the par-
ticles in the box Q under given 8, u. The natural mathematical problem is to
describe how the particles behave for fixed 3, u as the box @ grows large. Up
to now, no rigorous results were known for this difficult problem. (See,
however, important ideas in Lebowitz-Lieb [7] on the asymptotic behavior of
the partition function Z, which is fundamental in thermodynamics.)

In this paper we introduce a new technique to understand the behavior of
(1.2) and (1.3). For suitable 3, p we can show that quantum statistical
mechanics leads to a dilute gas of isolated electrons and protons. Under an
assumption to be explained in a moment, we prove that a different range of
B, p leads to a gas of isolated Hydrogen atoms, while a third range of 8, u
gives a gas of diatomic Hydrogen molecules.

An estimate crucial for quantum statistical mechanics is stability of matter
(Dyson-Lenard [1], Lieb-Thirring; see [8]), which we state in the form

HR x> —Ey-(N+ N' — 1) with E,4 independent of N, N, Q. (1.4

The best value of the constant E, in (1.4) profoundly influences the outcome
of (1.2), (1.3). To get Hydrogen atoms, we need to assume:

We can take Ex<j; for N+ N'>2. (1.5)

Estimate (1.5) is well established by experimental observation of Hydrogen
crystals, but a rigorous mathematical proof will be hard to find. See Lieb [8]
for the best results known so far. To get Hydrogen molecules requires an
assumption even sharper than (1.5). For the rest of the paper, we discuss only
the monatomic Hydrogen gas. The discussion for diatomic molecules is essen-
tially the same, while the case of isolated particles is much easier.

In a later article [4], we generalize from Hydrogen to nucleii with higher
charges.
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2. Statement of the Theorem

Let us give a precise meaning to the idea of a gas of Hydrogen atoms. First
of all, the particles must arrange themselves in electron-proton pairs. So for
small € > 0 and large R > 1 we demand

All but at most e percent of the particles come in pairs {xx, yx} with xx an
electron, yx a proton, and

Ixk = 2|, |y = z| > R|xk — yxl 2.1)

for any particle z # xk, Vk.

Call such a pair {x,, y«} an atom, and define its displacement vector to be
& = xr — yx. We want the displacement vectors & to be distributed by the
probability law dProb = ce” !¥ld¢, as in the ground state of a single
Hydrogen atom. Hence, for E C R® we demand

Number of atoms with & € E
Total number of atoms

c[ge dg' <e 2.2)

Finally, we want the positions and displacement vectors of the different
atoms to be nearly independent. To formulate this, let p = (Expected number
of particles)/|2| be the density of the system, and subdivide Q into a grid of
congruent subcubes {Q,} of volume comparable to 1/p. Then subdivide each
Q. into two halves, Q, and Q. For E C R?, we study the events

eo: Q4 contains a single atom and nothing else; and the displacement vector
for that atom lies in E.

ea: Qb contains a single atom and nothing else; and the displacement vector
for that atom lies in E.

Let

Number of « for which e, occurs
- Total number of o
_ Number of a for which en occurs
B Total number of o
. Number of « for which eg, o both occur
pm= Total number of «

’

n

Then the idea of independence of distinct atoms is expressed by
|p* - p'p"| <e (2.3

If 2.1), (2.2), (2.3) hold, then we have the right to say that our system is
a gas of Hydrogen atoms. Under our assumption Eyx < %, we shall prove the
following.
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Theorem. Givene > 0andR > 1, there exist u, 3 50 that on a large enough
box Q, we have (2.1) with probability at least (1 — €). Moreover, for any
EC R3?, (2.2) and (2.3) hold with probability at least (1 — €).

To prove the theorem, we shall study the range of u, 8 given by —1/4 +
+8<u/B< —Ey— 8, B~ o, u— —oo. This corresponds to a temperature
small compared to that required to ionize Hydrogen atoms (~10° degrees K)
and density small compared to that of a solid. These conditions are certainly
reasonable for the study of a gas. In particular, we expect that if the density
increases from zero and the temperature stays fixed and low, then we shall see
first a gas of isolated electrons and protons, then a gas of Hydrogen atoms,
next a gas of diatomic Hydrogen molecules, and ultimately, we leave the low-
density regime. We make no attempt to derive practical values for 8, u.

Before passing to the proof of our theorem, we point out some respects in
which it ought to be sharpened. For a fixed € > 0 and suitable 3, p, the pro-
bability that (2.1), (2.2) or (2.3) is violated should tend to zero as |Q| tends
to infinity. Our theorem states that these probabilities are at most e. However,
B, n depend on ¢, so that e does not tend to zero for fixed 3, u as Q grows.
Thus, we know how the particles will look for suitable 3, u with probability
99 %, but we still have a 1 % chance of being utterly wrong, no matter how
large the box may grow. I hope this defect may be soon remedied. In the same
spirit, it would be interesting to show that no phase transitions occur in the
range of (B, p under study. (In particular, the transition from atoms to
diatomic molecules with increasing density occurs smoothly.)

Another point worth mentioning is that we have been speaking of scalar
wave-functions ¢, i.e., spinless electrons. It is trivial to change our proofs to
the case of spin-1/2 electrons and protons, but I hesitate to complicate matters
further. Of course, the analogue of our theorem for H>-molecules is stated in
terms of spinning electrons. We could also have defined the events €, e using
two different measurable sets E, F instead of a single E. There are also
variants of (3) involving events €y, e, €, . . . , €2 in place of €, €.

There is a small literature on thermodynamics, i.e., the behavior of
lim|g|~«1n Z/|Q|, for very low density. The reader should be warned that this
literature is not entirely correct. See Hughes [5] for a correct discussion.

Here is a very crude summary of the way our proof works. Suppose first
we look at statistical mechanics on a fixed large ball B of radius R. If B is held
fixed while the temperature and density are taken very small depending on R,
then it is easy to understand what will happen. In particular, for a suitable
balance between density and temperature, B will most likely contain no par-
ticles at all; but if it contains something, then most likely it contains exactly
one atom. This is where we use our assumption Ey < }.

Now take a huge box ©, and cut Q as in [7] into a huge number of balis
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{Bro} of various sizes Ry, and a negligible residual part. We shall compare
the real system with a much simpler fictitious system in which all forces bet-
ween particles in different Bk, are turned off. If the temperature and density
are low enough, depending on the Ry, then each Bk, can be analyzed by the
methods of the preceding paragraph. Since distinct Bk, do not interact in the
fictitious system, the statistical mechanics of that system will be easy to
understand. The point is to make the comparison with the real system. We
succeed in doing this by showing that each observable (i.e., self-adjoint
operator) A on the fictitious system induces an observable @ on the real
system, whose expected value (@) can be estimated in terms of 4. In par-
ticular, if A is «negative» in the sense that

Trexp{A + p(N + N') — BHiictitious} < Trexp{u(N + N') — BHriciitious ) »

then in the real system, (@) will be negative modulo small error terms. The
proof of this uses ideas from [2], [3], [7]. Once we can estimate (@), the game
is to pick A so that @ expresses detailed information about the real system.

The reader should be warned that our brief summary is inaccurate and over-
simplified.

Finally a fascinating problem about which almost nothing is known is to
understand why matter at high density and low temperature forms a crystal,
i.e., a configuration with long-range order. The frontier in our knowledge of
this question involves placing points x1, X2, . . . , X~¥ € R" to minimize a poten-
tial V = 2=« W(xj — x«). For certain special W, both positive and negative
results are available in two dimensions. Nothing is known about the three-
dimensional case. See, e.g., Radin and Schulman [9]. If these matters could
be settled and our present results sharpened, then maybe one could give a
rigorous proof that matter undergoes phase transitions. It will take a long
time to reach such deep understanding.

We now present our proof.

3. Notation

For Q C R3, define L%, ~"(Q) as the space of all square-integrable functions
Y(X1...xn, Y1 ... yn7) on @V N antisymmetric in the x’s and y's separately.
Define

HY % = -1 20y — 2 ;Ayk acting on L, ~(Q)
J

with Dirichlet boundary conditions, and

Hy n=HY R+ 2 6=l = + 25 =yl ™1 = 21— wiel 71
i<k i<k J.k
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Define

Li@ = Y, ® LA~ (D)
N,N'

leleutra.l(ﬂ) = Iz\f] @ LIZV, N (9)
Hi= 3 ®@H¥~
N,N’

Hitutral = HY | Laeutrat()

Zo(p, B, Q, N, N") = e*™*+N) Tr exp[ —fHy %]
Z(n,B,Q,N,N") = e*™*N) Tr exp[ - BHRN, n']
Zo(p, B, Q) = NZ]}W Zo(p, B, Q,N,N")

Z(p, 8, = NZN, Z(p, 8,92, N,N)

Zneutra](ﬂ, B, 9) = %: Z([L, B, Q,N, N)

If x1...x~n,¥1...yn are electrons and protons, then we sometimes write
Z1...2nv+n for a list of all the particles, with charges e(j) = e(z;)) = 1 if z; is
one of the yx, —1 if zj is one of the xj., If K(-) is a kernel on R?, and
X1...XN,V1...YN are electrons and protons, then define

1 .
VIK] = 2 2 ())e(R)K(zj — z4).
ik
In particular, the Coulomb potential is V[|x| ~'].
If A is an observable, i.e., a self-adjoint operator on L4(Q) then the ex-
pected value of A is

AetWN+N)-BH]
(45 _Tr(Ae )

Tr(e*®™+N) - BHY) )

In all that follows, p will be large negative and 3 will be large positive.

4. The Partition Function for a Single Ball

Fix a ball B of radius R, satisfying e*® < R < e, 0 < c; < ¢; < 1. We shall
estimate Tr exp[ —BH¥, 7). From (1.1), (1.4) and rescaling, we get

—x1(1 — 8)Ax — x2(1 = 8)Ay + V[|x| 71> —Ex(1 + C8) - (N+ N' = 1)
for N+ N'>2 and 0 < 5 < 1. Hence

HE N > —x18Ax — %208y — Ex(1 + CO(N + N' — 1).
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Taking 6 = 87!, we find that

Trexp[—BHR, n] < e®Ex* O+ N' =D Trexp(— HY X.)
eBEL+ O WHN'=1 (Tr exp(— HY:E)M(Tr exp(— HS: E)V
e

(ﬁE*+C) . (N+N’—1)_(CIB')N+N'

N INININ

C'exp[{(Ex + 3c1)B + C'} - (N + N' — 1)]
when N+N'>2. (4.1)

Next we look more carefully at Tr exp[—BHE 1]. First we use the textbook
separation of variables

Hf 1= =18y — 128y — |x —y| 71 = —(const)A; + (—Aw — |w| ™) (4.2)

where

xi X+ ws 1y
A A

z = center of mass = 3 w=x-—y.

ai V4w
For the Hilbert space L, 1(B) we have inclusions

L},1(B) C L*{(z,w)|z€ B, we B1) (4.3)
if B; is the ball about zero of radius 2R and By = B;

L},1(B) D L*{(z, w) | z€ Bo, we Bi} (4.4)

if B; is a ball about zero and By + B; C B. Hence we can derive upper and
lower bounds for Trexp[—BHT1] by computing I = Trexp[(const)GA; —
— B(=Aw — |w| "] on L*(B, x By). The latter breaks up as [77exp((const)BAz)
on L*(Bo)] - [Trexp(—B(—Aw — |w|™1) on L*(By)]. The first factor here
has the form (c|Bo|/B*?)(1 + 0(8™)), in"view of the eigenvalue asympto-
tics of the Laplacian on By (|Bo| > €***%). It remains to understand IT =
= Trexp(—B(—Aw — |w| ™)) on L*(B;). Write L*(B;) = Cyo ® X where o is
the ground-state eigenvector of — A, — |w| ~! with Dirichlet boundary condi-
tions on By, and X is the orthocomplement of yo. Now —A,, — |w| 1> ey
“Aw—[1/4(1-c3)], 0<c3<1 and —Ay— |W| "' >(cs—H on X, with
¢4 > 0. These estimates come from the elementary theory of the Hydrogen
atom. Taking c3 ~ ¢4/100 and averaging, we obtain ((— A, — |w| )y, ¥) >
= ((—c3hw + ¢s — DY, ¥) for Y€ X and c3, ¢s > 0. Hence by minimax,

Trexp(—B(—Aw — |W|~ Nlx) € Trexp(—B(—c3Aw + €5 — D|12@8y) <
! < el -calB

for large B, since |Bi| < €' with ¢; < 1. So II = e~ FE0 4+ O(el@/® ~celfy,
E, = lowest eigenvalue of — A, — |w| ™! with Dirichlet boundary conditions
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on B;. On the other hand, one sees easily that Ep = —% + O(e™%®). In
fact, comparison of —A, — [w| ™! on B; and on R® shows Ep > —1; while
the trial wave function y(x) = 6(x)e ~ "2, 6(x) = 1 for x e Middle half of B,
0(x) =0 on 3B, gives Eo < —1+ O(e™const-72dus(BD)  Therefore IT = e®* -
(1 + O(e™“®)), and so

I= ‘;ﬁ‘é' e®H(1 + 08~ Y), .5)

provided By and B; have radii bounded between e°?® and e*?, ¢; < 1.

From (4.2), (4.3), (4.5) we get Trexp(—BHE 1) < (c|B|/B¥*)(**(1 + CB™Y),
while (4.2) (4.4), (4.5) with By = B dilated by (1 — 87 !), B, = B dilated by a
factor 8! yields Trexp(—BHE 1) > (c|B|/8**)(e?*(1 — CB ")) with the same
c. That is

Trexp(—BH? 1) = B|3/2| e?41 + 0B~ ). (4.6)
Finally when (N,N") = (1,0) or (0,1) we have HF n»= H%%., so that

Tr exp(—BHR¥, ) < (c|B|/B8*%). Analogous estimates hold for (N, N’) =(2,0)
or (0,2). Hence we can make a table

Z(u,B,B,N,N)=1 if N=N'=0 @
2u+B8/4
=1 +0@B™Y) "eﬁm IB| if N=N=1 ®)
C 13
636;2 |B| if (N,N)=(1,0) or (0,1) ()
_ce*
<GrlEl it NN)=@0 o 0.2 ©)
< Cexp(uN + N') + [(Ex + 3e)B + C'- (N + N’ — 1)}
@)

if (N, N') is not one of the above. If Ex < }, then the quantity in braces in (d)
will be less than

1
’2p.+§—c’(N+N’—2) for B8 large and %<—Z+c”.

Here c’, ¢” are positive constants. Therefore, since e?® < radius B < e
with ¢; < 1, we have

c1B

1
Z Z(#’B,B,N;NI)<_Z(/'L5183B,1’ 1)
N+N'>2 B

for 8 large, g < —% +c”.



"’Hl. ATOMIC AND MOLECULAR NATURE OF MATTER 9

Bringing in (N, N’) =(0,0), (1,0), (0,1), (2,0), (0,2) also, we can find a
nonempty interval / of the form (-} + ¢", —1 + ¢”) so that if 8 is large
enough, ¢; is small enough, and p/8 €I, then

1
Z(p,B,B,N,N)y< —-Z(n,3,B,1,1) 4.7)
N+N'={0,0)0r(1,1) B
1
Z(p,B,B,1,1) <BZ(IL,B,B, 0, 0). (4.8)

So the grand canonical ensemble on B consists most probably of a vacuum; but
if it contains anything, the contents will most likely be a single Hydrogen atom.
From (a), (b), (4.7), (4.8) we get the important equation

Z(p, B, B) = exp(p|B| - (1 + OB~ 1)), “4.9)
where
const e+ B/
=g <1. (4.10)

Evidently, we may replace Z by Z,eutral in (4.9).

We shall need also the following generalization of the partition function.
Suppose we have balls B; . . . Bz, with e“?® < radius (Bx) < e°'® as before. Fix
a subset E C R? and a number ¢.

Define a Hilbert space L, 1(B1-. . . Br,) to consist of all square integrable
Y(X1, Y1, X2, V25 « « « s XLos VLo) SUpported in {xx, vk €Bi(k =1,...,Lo)}.

On this Hilbert space, define a Hamiltonian

Lo
H= 27 (=x1Ax, — %28y, — |X& — yk| ~ "), Dirichlet boundary conditions.
K=1

Thus, each Bx contains an electron and a proton which attract each other but
do not interact with the particles in the other Bk.
Next define an observable

G—[l if xx —yxeE for k=1,...,50 but not for k=so+1,...,Lo

0 otherwise

Then for ¢; and |¢] less than some small constant ¢(L) we have

Lemma 4.1. The trace of exp(iG — BIEI ) on L} 1(Bi...Bu,) is given by

Lo <const e?’4| By|

,83/2

with Go = ((const) [pe” ¥l dx)*o((const) fepe” ¥l glyyLo =50,

>e’G°(1 + 08~ Y + 0r?)

k=1



10 C.L. FEFFERMAN

Here OB~ ") means less than C(Lo) - B~ in absolute value, and similarly for
o).

We sketch the proof of Lemma 3.1. Again we can separate variables using
Zk = center of mass of xk, yx and wx = xx — yx. Then

tG — BH = +(const) 8 3 Ay, —
k
- B[Z(_Awk— |Wkl_l) - £G(W1 .. ~WL0):|
k B

with

1 if wi...ws,€E but wso+1...wLo¢E]

Glwr.... wro) = [O otherwise

As in the proof of (6), one can estimate Tr exp(tG — BI?I ) above and below by

Ly
kljl (%Ilzi—t IBk|> e PE(1 + OB~ Yy), 4.11)

where F is the lowest eigenvalue of

Lo
t
20 (=B = [we] ™) = ZG(w1. .. wip)
K=1 B
on a suitable product of large balls Bf x ... X Bi, about the origin.
If =0 then the wx decouple and £ = —1Lo(1 + O(e™#)). Perturbation
theory yields
< c(Lo).

2
oo v ool ()] e |

Substituting this into (4.11), we obtain the conclusion of Lemma 4.1, even
with a better error term than stated there.

5. Estimates for Coulomb Systems

Take an even approximate identity ¢x(x) of total integral one, supported in
|x| <1R, and set K(x,R) = |x| ™' * ¢g * ¢g. Then define

VirR(R) = 5 2 €( J)e(k)K(z; — zx, R) = “‘Long-Range Part of the
ok Coulomb Potential”.  (5.1)

N =
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Our goal in this section is to show that if X(-) is a kernel on R*® which behaves
roughly like |x| ™!, then V[K] < C(H# n + CN + CN'). Also if K(x) is sup-
ported in |x| > R, then V[K] is dominated by Vrr(R) + (small constant) -
. (Hf\’r, ~'+ CN + CN'). The precise statements are given by Lemmas 3 and 4
below.

Now fix nucleii y;...y~€R3, and let ¥(x;...xn) be antisymmetric of
norm 1. Let Q° be an enormous cube containing the system, take K> 1 to
be picked later, and make a Calderén-Zygmund decomposition {Q,} of Q°
~ as follows. (See [2]). We bisect Q° repeatedly, stopping at the cube Q, when
its triple Q¥ contains at most K nucleii. Thus, Q° = U, Q,, and

(a) QO contains at most K nucleii.
(b) Q¥* contains more than K nucleii, or else the cutting process would not
have reached Q..
(¢©) 0.NQ, # ¢ implies that the side lengths §,, 8, are comparable. Other-
wise, (b) for the smaller cube contradicts (@) for the larger.
(d) Call Q, active if Q, contains at least ¢ - K nucleii. Then
> 6tz ene
vactive v
To prove (d), say that Q, has good geometry if 6, ~ 6, for any Q, intersecting
Q¥*. We first check that

>y 8 tz2e > &L (5.2)
vactive vgood geom.
In fact, take Q, with good geometry and note that only a bounded number
of Q, can intersect Q;**. The pigeon-hole principle therefore shows that one
of these Qu must be active, by virtue of (b). Hence,
>, &'sc D st D) 6.7, which proves (5.2).
vgood geom. pactive pactive

vgood geom.

0,NQF*#=¢
Next we show

& l=cd8 (5.3)
vgood geom. v
which together with (5.2) completes the proof of (d).
Observe that if Q, doesn’t have good geometry, then some Qy intersecting
J must be much bigger or much smaller than Q,. If Q- were much bigger,
then Q* C Q3, contradicting (a) and (b). Hence 8, < 10~ 35,, and 10°Q, C
C 10°Q,, where CQ = Q dilated about its center by a factor C. Now either
Oy has good geometry, or else we can repeat the process to find a Q,~ with
8,7 < 10735, 10°Q, C 10°Q,. Continue in this way until we reach a cube
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with good geometry. This must happen eventually, since there are only finitely
many cubes {Q,}. Hence for each cube Q, there is a Q, with good geometry
with 10°Q, C 10°Q,. So

I D I Y ( 2 side(Q)‘1><
v pgood geom.

w,v all dyadic Q
p good geom. 103Q, C 103Q

1030, C 103Q,
<C > &

¢ good geom.

which proves (5.3). Since (5.2) and (5.3) hold, we know (d).
We shall need the following estimate for functions on R>.

Lemma 5.1. If Q is a cube of side 6, and € L*(Q), then
1 K
J {‘* IVYE)* = 25 [x — y 'llvlf(X)IZ} dx >
Q 40 k=1

CK
> — (T + C(K)> 1¥172c0)- 5.9

Proor. Look first at the case 6 < 80(K) with 8o(K) to be picked in a
moment. Set

K
V)= 3 [x-xl™" and yo=10|7" [ v
k=1

Then
Jo VOOlyePdx <2 [ Vel dx +2 [ V[9(x) — Yol dx <
CK CK
<S5 [¥122 + 2 IQ V®)l¥(x) — Yol*dx, since |Q|™! JQ V) dx < =

The last term on the right is at most

2|V | L3r2gy - 1¥() = Yol o < CK3| VY| 320

by Holder and Sobolev. If 60(K) is small enough, then CKé < (1/40), and
Lemma 5.1 follows for 6 < 60(K). For a cube Q of side 6 > 6o(K), we just cut
Q into subcubes {Q%} of side ~60(K). We already know (5.4) for each of the
Q¢; summing over « completes the proof of Lemma 5.1.

Antisymmetry of the wave function enters via the following observation.

Lemma 5.2. Let L, denote the number of electrons x; in Q,. Then

LT o T L5 wv)

v =
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ProoF. Suppose first that ¢ is antisymmetric on QF for a cube Q C R? of
side 6. Then

||V¢||L2(QL) > L3 ZH‘P"LZ(QL) for L2>2.

This follows by expanding ¢ in eigenfunctions of the Neumann Laplacian on
Q*. Consequently, on I = Q,, X Q», X ... X Q,,, we have

1VY|Z2a) = C<LZZ Ly%8,? ) V122>

v

with L, = (number of »x equal to ») = (number of electrons in Q,) for
(x1...x~n) €l. This may be rewritten as

V15 > o (3 L7872 )00
\L,=2 L (1)

Summing over all possible choices of »;...rn, we obtain Lemma 5.2.

Next we compare the potential energy of point charges x1...Xn, Y1...YN
with that of a continuous charge density p(x) = 2re(k)or(x — zx). Here ox = 0
is a spherically symmetric smooth charge density of total charge +1, sup-
ported in a ball of radius (1/10)6(k), where 8(k) = 8, for the Q, containing zx.
Observe that

p(xX)o(»)
=yl

How do V[|x|~'] and WV(p) differ?

V) =~ | P22 xeay = Jlél %169 dE >

(a) V(p) contains ‘‘self-energy terms’’ of the form

1 - -
: J k(X — zK)er(y — k) dxdy

lx — ¥l

with no analogues in V[|x| ~']. The self-energy terms total at most
C2L(K+ L)/s,.
The mean-value properties of the Coulomb potential yield

® lzi—z| " '> j¢j(x — Z)er(y — 2x)
J - lx =

dxdy +
-1
+ ¢|zj — zkl X|zj— zk| < 10 = 28(k)

which we use when e(j) = e(k), j # k; and
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vi(x — z)er(y — zk)
lx — y|

() —Izj—zk|‘1>—j dxdy —

— 12— 2kl ™ X1z el < B0
which we use when e(j) # e(k).
From (a), (8), () we obtain

K+ L,
0y
+Cz Z >, in—Xkl—1+

v x;€Q, 0<|xj—xk| <1025,

feXN T3yl

v yj€Qy 0<|yr—yj| <10~ 25,

-2 2 2 =l

v Xj€Q, YKEQF (5'5)

Viix| == V) - C2J +

If v is active (see (d)), then by the pigeon-hole principle, some subcube of Q,
of diameter < 102, will contain at least ¢’K nucleii. Hence

1 . 1 cIIK2

5 lyi—y| ™" 2 .

2,vjer 0< |yk-yjl<10~25, 0y
Similarly, if L, > K, then

1 C"L%

ZXjeQ,, 0< |xx —xj| <1025,

Consequently, (5.5) implies

V[IXI'1]>[V(p)+CZ > > I — x| 1+

v xj€0, 0< |xx—xj| <8,"10—2

veX 33wl

v €0y 0<|yk—y;j| <10~ 25,

> 2

vactive 6» L,=K 6v

//KZ ”Lx%
+{ 2. ¢ -CY;

-2 2 2 b=yl

v Xj€Qy YkEQS (5.6)

K+L)]
5

v

Lemma (5.1) and (@) imply

1 CK
haz2n Y ¥ m—m*—x( +ca<>)Lu.

v Xj€Qy YkEQF v 5,,
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Adding this and the conclusion of Lemma 5.2 to (5.6), we obtain

1

— e+ VIX T2 [ V(o) +

+cd 2 2 X — x| =

v X;€Q, 0< |xx—xj| <10~ 25,

+c 2 2 lyi =yl =1

v yj€0, 0<|yx-yjl<10-25,

+L % -l

v X;j€Q, ykEQ.T

~p2 ny2
+ ch + Z c L CKL
v 61' L,=K 611
CK + CL,
— XNCKIL, = 2+
g
L,Zaz 5.7

Here we used (d) in the term with constant é. Now if K is-large enough, then
we have the elementary inequality

"nr2 ~
<CL5/36-2XL L+ "LiXy, = x + cK2> _CKL, CK+CL,
v v » = 6,, 6,,

5, 8,
I, K
~ CK)L,> —~EKK)L, + ca— + Ca . (5.8

To check (5.8), we note that ¢"L}x, -, + éK> — CKL, — CK — CL, > cL, +
+ ¢K unless L, ~ K. So (5.8) is obvious unless L, ~ K. If L, ~ K, then

CKL

,_(CK+CL)_cL,+cK
5

0 -8

14

573 -2
€Ly Xp, 200 © —

14 v

as long as 6, < 6o(K). So (5.8) is obvious unless L, ~ K and 8, > 6o(K). In this
last case, (5.8) is again obvious if we just take E(K) large enough. So (5.8)
holds in all cases.

Substituting (5.8) into (5.7) and recalling that >, L, = N, we find that

1 L, cK
g+ VX T+ BK) N > V(p)+zc Z—+c2
Ii—xel T+ 20 2 2 |yi—ye] ™1
Xj€0, 0< |xx— x| <1025, v yj€Q, 0<|yx—-yjl<10~25,

+2 2 2 h-xlTh (5.9

v X;€EQ, yyEQF
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The terms on the right are all positive, so (5.9) implies stability of matter. Now
let 6+ (z) = ming«j|zj — z¢| = distance from z; to its nearest neighbor. One
checks easily that

c

-1
S |Xj - Xk| +
zj electrons 6 + (Zj) X€Q, 0< |xk —xj] <1025,

in @y
- CK +L,)
+ 2 2 ey T

X€Qy ykeQF Oy

So (5.9) yields

1 -
¢ D (+@)T'S —=A+ Vx| "1+ EK) - N.
zj electrons 10
The analogous estimate for protons follows similarly (there are slight changes

because of the asymmetry between electrons and protons in the last term on
the right in (5.9)). Hence

1
Za;l(zj)<C<—-lT)Ax+ V[|x|‘1]+C-N>. (5.10).
7
From here on, we simply fix K large enough to make sure (5.9) holds, and we
denote K, E(K) simply by C.
Set 6(zj) = min(1, 6 +(z;)). Obviously, then,

ZB_I(Zj)<C<—%Ax+ Vx| "1+ CN + CN’>. (5.11)
J

So far, we have regarded the nucleii y; ...y~ as fixed. However (5.11) for
fixed nucleii implies the corresponding estimate for quantized nucleii, namely

>16"Yz) < CHY ~ + CN+ CN’), any QCR>. (5.12)
J

We did not even need the kinetic energy of the nucleii in (5.12). Estimate
(5.12) shows that in a quantum state ¥ of moderate energy, the particles are
not too closely packed.

Now we are aready to estimate V[K] in terms of Hi¥ n- for Coulomb-like
potentials K(-). Our assumptions on K are the following rather technical
estimates.

|0*K(¥)| < Clx| "'~ 1* for |a| <3 (5.13)
and all x outside the annuli @« = {||x| — R«| < Ro}, k=1,2,3,...

|0°K(x)] < CRo|x|"171®l for |a|<2 and all x. (5.14)
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Here 100 < Ro < R; < ... are fixed radii with Rk +1 > 100Rx and R; > R{°.

Lemma 5.3. For K satisfying (5.13), (5.14), we have
VIK] < C(HFN n+ CN + CN'). (5.15)

Proor. We first check that |[K(£)| < CJ£| ™% In fact, write K = Ko + Ki
with both terms satisfying (5.13), (5.14), Ko(x) supported in |x| < 2|¢| ™', and
Ki(x) supported in |x| > |£| ~1. From (5.13), (5.14) we get |Ko|z: < C|§| ™2,
|AK(x) — AK (X = )| L1any < C for |y| <(1/20) [¢] 7. Hence |Ko(®)| <
< ClE 72, |[e”f - 11Ku(H)|£]?| < C. Taking y = (1/20)¢]£] =2, we get |Ko($)],
|K1(8)| < C|£| ™2, so that |K(£)| < C|£| ™2 as claimed.

Next set K*(x)=|x|"! - cK(x). For c<1 wehave K#*{p}=
=3[ K*(x — y)o(x)o(y)dxdy > 0 for any charge density p. We shall prove

VIK*] > —C(HR ~ + CN + CN'). (5.16)

This means cV[K]< VI|x| '] + C(HN » + CN + CN'). Since evidently
Vx| 1 < H]{ZI,N’, (5.16) implies (5.15) and so proves Lemma 5.3.

To establish (5.16), we construct a suitable charge density o and compare
VIK#] with K#{p} > 0. To make p, first take an even, smooth function
¢(x), supported in |x| < } and satisfying [e@)dx =1, [ x"e(x)dx = 0 for 0 <
< || < 20. Then set ¢;(x) = [6(z)] ~*¢(x/5(z)), and define p(x) = X e(z)eix —
— zj). Comparing V[K*] with K* {p}, we first discover self-energy terms in
K* {p} with no analogues in V[K*]. These amount to C- >};6~ (z;). Next,
for distinct particles zj, zx we compare K *(z; — zx) with the analogous term
K* x ¢; % op(zj — zk) in K* {p}. These differ by at most

|K*(z; — z1) — K™ * ¢ * oilz; — zi)| <

; 3
< 2(61(?) +zi(|§k)) + C6@z) + 8@)’HE — 2,  (5.17)
=

where

H(x) = Ro|x| 73+ kZI Xi1x| - Rkl <2Ro*

(To check (5.17), just Taylor-expand K* about z; — zx to order 1 or 2, and
invoke (5.13), (5.14), and the moment properties of ¢.)
Consequently,
8(z) + 8(zw))?
VIK*] > K* (o) - C671(z) — ¢ 3 S+ 0@
J

= lzi—z?

-C Z]k (6(z) + 8(z0)*H(z; — z1).  (5.18)
J*
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To handle the last two terms on the right, set
Flx) = ; 87 @)Xy - 41 < /myacepr O = ; 87 @)Xy 41 < /mypeen
Thus
[F7=[6*<cX8™ @)
J
On the other hand,

8°(z))
6@ + |z — z)*

8(z) }
<C G(x — = F)dy|dx <
; Ix - i < (1/3)6(z)) [ (@) + |x - y* 0)dy

<CY j G(x)F*(x) dx
J JIx-zil<1/3)8@z)

(with F* = maximal function of F; see Stein [10]) = C [g3 GF*dx < (| G*)'"*
(fF**)** (by the maximal theorem) < C ;6 (z)). So

3
2 —_Z‘F\C'Zé '(z)-

Switching the roles of j and k, we conclude that

6z + 8(zx))’
ik z— ze*

<C”-26_1(zj). (5.19)
J

Similarly,

Z@HEG - ) <2 [ ot <crspaey OO s H* & = WF() dy] dx

with H™ (x) = maxw| <2H(x + w). So

28 @HE = 26) < [ [ GOH™ (v = )FO) dydx <
Js
< HH ||| |Gl |2s]|F a3 < € 22671 (z)-
J

Again switching the roles of zj, zx, we get

20 (8(z) + 8(zi))*H(zj — z) < C' 2587 '(z)).

Jrk
Put this and (5.19) into (5.18), and recall that K*{p} > 0. The result is

VIK*] > —C>;6 '(zj), which implies (5.16) by virtue of (5.12).
Lemma 5.3 is proved.
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We conclude this section by relating V[K] to Vir(R) defined by (5.1), when
K(x) is a Coulomb-like potential supported in |x| > R. Note that

1
Vir(Ro) = 3 756)_‘0(;')

dxdy >0,

where o(x) = 2 e(J)ero(x — zj). As before, assume 100 < Ro < R1 < Ry <
< ... with Rk+1> 100 Ry and R; > R{°. Now, however, let K(-) be a kernel
on R? satisfying

|0°K(x)| < Clx|~*~l¢l for |a| <2 andall x. (5.20)
|0°K(x)| < Clx| "'~ !¢l for |a| <4 andall x (5.21)

outside the annuli Gx = {||x| — Re| < Ro}, k=1,2,3,...

K(x) is supported in |x| = R;. (5.22)
Lemma 5.4. If K satisfies (5.20), (5.21) and (5.22), then

c
VIK] < CVir(Ro) + E—(Hz?r, N+ CN + CN'). (5.23)
0

PrROOF. Write K = K + K’ with K = K* ¢r, * ¢ry.
Then

_ 1 _ ) _
VIK] = 5 > R(zj — z)e(f)e(k) = 5 23 K(zj — zr)e(f)e(k) — lZK(O) =
21#k zj,k 2 J

1 1.
= Ej K(x — y)o(x)o(y)dxdy — EK(O) -(N+N)

with p(x) = Xje(J)oro(x — z;). Now K satisfies (5.20), (5.21), which are
stronger than (5.13), (5.14). In the proof of Lemma 5.3, we saw that |K(£)| <
< C|¢|~2. Also, K(0) = 0 by (5.22). Hence,

~ 1{ 5
VIR] = Ej R®I6®I*dt < C [ 18?158 dt =

_c J’ p()p(y) dx dy

= C"Vir(Ro).  (5.24)
lx — ¥

On the other hand, K* = RoK' satisfies (5.13) and (5.14). In fact, (5.14)
is immediate from (5.20), while (5.13) follows by writing 0*K*(x) =
= Ro [[0°K(x) — 0°K(x — »)I¢ro * ¢ro(¥)dy and  [0°K(x) — 3°K(x — y)| <
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r|y| - supo<r<1|Vd*K(x — £y)|. Here we recall that R; > R{°. Applying Lemma
5.3 to K*, we find that

Cc
VK< & (H# n + CN + CN).
0

Combining this with (5.24) and recalling that K = K + K’, we obtain (5.23).

6. A Swiss Cheese

Fixradii 100 < R; < R» < ... < Ry with Rg .1 > 100 Ry, and take a cube Q7
of diameter ~M'°Rys. For M between M/2 and M, we describe how to cut
Q% into balls of radii Ry, Rz, ..., Rz and a small left-over part.

First cut Q% into a grid {Q,} of cubes of side ~10R4z, and place a ball B,
of radius Rz in the center of each Q,. Next, cut Q* into a grid {Q;} of cubes
of side ~10R7-1, and place a ball B, of radius Riz- 1 in the center of each
O, which does not meet any of the balls already introduced. Continue in this
way until we have a family {Bx.} of balls of radius Rk < k< M) in Q*.
Finally, cut Q% into a grid of cubes {Q,} of side ~R;, and retain those Q.
which are not contained in any of the balls Bx,. In this way, we cover Q* by
balls Bk, and cubes Q.. Note the following properties.

Distinct balls Bk, Bk'or have distance > 50 from each other. 6.1)
> |Bra| <€~ M-P|0*| for 2< k<M. (6.2)
2 10al <M. (6.3)

Next suppose R? is cut into a grid of cubes {Q," }, all congruent to Q*. We
can translate our covering of Q% to cover each of the Q,", thus obtaining a
covering of all R? by balls Bx. of radius Ry, and cubes Q, of side ~R;.
We introduce a partition of unity 1 = Yxq 0%« + 2 6% with the following
properties.
Each Oko(X) = Ok(x — xko), Where xio is the center of B and 60x(x) is
spherically symmetric, supported in |x| < Rk, and satisfies |370x(x)| < C,

uniformly in k. (6.4)
Each 6.(x) is supported in {dist(x, Q.) < 1} = Q. and satisfies |076.| <
< Cry. (6.5)

It is easy to construct such a partition. One picks the 6 first so that
0k(x) = 1in |x| < R — 1, and (1 — 6%)*/* € C™. Then the 0, are defined, and
Sk 02.(¥) + ©*(x) = 1 for some smooth function . Finally, one defines 6 so
that X, 0% = ¢*. Recall that Bk, Qu, Ok, 0. all depend on M((M/2) < M <
< M). In all that follows, we will take radii R; < R, < ... < Ry so that
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e < Ryand Ry < e with 0 < ¢, < ¢; < 1to be picked later. Thus, M ~ (3,
and the results of Section 3 apply to all the Bxa.

7. Comparison with an Exploded System

Fix M and Q% as in the preceding section. Thus, R? is covered by balls Biy
and cubes Q,. Recall 0, = {dist(x, Q) < 1}. Define

Q,?:Q,:{D=Bka or Qu|D+ 7 meets Q for some 7eQ*}
Q”"=Q"={DeQ|D+7CQ forevery 7eQ"}.

For D € Q, define a vector £D) so that the translates D = D + &(D) are pair-
wise disjoint for distinct D € Q. Then define the exploded set Q% = Upeg D.
Often, we shall omit the superscript and just speak of Qer. On Qe we define
a two-particle potential

|z—2z'|"! if z,z7€eD with D =one of the Bia
0 otherwise.

K(z,z") = [

Thus, K = 0if z, z’ belong to different components of Q.y, or if both particles
belong to the same D with D = (,. For particles z;...zn+n" in Qey, with
charges €(1), ..., (N + N'), define the potential V., = %Z =k €(J)e(l)K(zj, zk)-
Then define the Hamiltonian

HEM = — 5 Ax — 1028y + Vex, acting on L3, y(Q2F

with Dirichlet boundary conditions. B

For fixed M and 7€ Q7 there is a natural injection 7 = +: L3(Q) = L3(Qey),
which we use to relate observables on Qe to those on Q. Preparing to define
¢, we set 0(x, D) = Oxa(X) if D = Bia, 0(x, D) = 04(x) if D = Q.. Thus, 0(x, D)
is supported in xe D, and Ypeq8*(x — 7,D) =1 for xeQ, re Q. Now we
define «. This means that for Y € L ~(Q) and £;...%nP1. .. 8 € Qex, We
have to define (1})(%1 . . . £~ . . . #a7). Each %; belongs to a unique Dj, so we
can write % = x; + £(D;) for xje D; and Dje Q. Similarly, we can express
Pk = Yk + E(Dk) for yx € Di and D € Q. We define

WEr... 2N 1. IN) =

N N
= I] 6xj— 7,D)) kH 0k — 7,Dk) - Y(x1. . . XN, Y1+ - . YNY).
=1

Here, the right-hand side is interpreted as zero if any of the x;...xn~y1... Y~
fail to belong to Q. This is an isometry from L% x(Q) into L, n(Qex).
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It is important to compare the Hamiltonian H#, »» with
k= Avgal (PYHEN, (2]

Here, Av., iz means an average over all 7e Q" and all M between M/2 and
M. A computation analogous to that in [3] shows that

b= —xu1Ax — 228y + VK] + G- 01N + x2N')

where

2 . p2
K(x) = |x| 7! Me —ek: bex)
2sk=m 4 ps

3
Me=dAvg| 3 |Brel/IQ" ]

a3dBraco+

G= —AvﬁAv,[ NG EDS OQAGQ(T):}
ko o

Here, 6 is as in (5.4). Note that unlike [3], we are able to treat electrons and
protons in the same way. Therefore, our potential energy term has exactly the
form V[K] without the extra error terms arising in [3].

Next we use the above formulas to compare 4 with H¥, »~. Recall that the
radii for our Swiss cheese satisfy

e <R <Ry<...<Ry<e® with c;<1and M~ .
We have |G| < e~ “® by the geometric properties (6.1), (6.2), (6.3). Also with
6% * 6%(0)

My =
4
g‘ll'R[%
we have mx = 1 + O(Ri Y) so that 1 > e hemy = 1 — e~ P, again by (6.1),
(6.2), (6.3).
Now write
& = HR v + GGaN + 2N') + VIK; + K> — K3) 7.1
with
_ * Or(x _ _
Ki) = Z el TR OO 1 ek e, # gy
§7l'Rk

M
Ko@) = (2 Merme = Dl ™!

M
Ki(x) = Z; Nemmelx| ™1 * op, * op, -
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Here ¢g, is as in the definition (5.1) of Vrr(Rk). As in [3], we find that MK,
and e“°K; satisfy (5.13), (5.14) with Ro = 10°. Therefore, Lemma 5.3 yields
c Q 7 -1 Q r
VIKi] SM(HN,N' + CN+ CN') ~ CB™ '(Hnx,n+ CN + CN")
VIK2] < Ce™ ®(HF n + CN + CN').

From (6.1) we get 4 < H — V[K3] + C8~'(H + CN + CN"), so that

InTrexp(u(N + N') — B(H — VIK] + %(H +CN+ CNY)) <
InTrexp{w(N + N') — R} < AvizrIn Trexp (w(N + N') — BH* M),

The last inequality holds because Trexp{:*4.} < Trexp A for injections ¢ of
Hilbert spaces, and because A — In Tr exp 4 is convex; again, see [3]. We are
now regarding all operators as acting on L. Our estimate may be rewritten as

InTrexp{(x — C)N + N') = (8 + C)H" + BV[K3]} <
< AvizIn Trexp{p(N + N') — BH*M)

= AUA_Jln H _ Z(#’ 6) Bktx) ° 2 I(;[‘M ZO(”': 61 Q~01)’ (7'2)

Bka€QM

since the system is made of the non-interacting subsystems D, D € Q,’V’ . Now
(3.9) and its analogue for Zpeutrar Show that

Z(Il" B, BkOt) < Zneun'al(”" 6 + Cly Bkﬂl) * r(l“: Bs k) for some r(/"y B’ k) < 1,
while Zo(u, 8, Q) < exp(Ce*8~3?|Q4|). Hence (7.2) implies for some M
Trexp{(u — CYN + N') — (8 + C)H® + BVIK3]} <

< H _ (Zneutral(ll'; 6 + CI; Bkm) : r(#’ B, k)) * exp(Ce“B' 3/2 _ Z — |Q~w|)
Bra€@M QC (7.3)

By the method of Lebowitz-Lieb [7],
11 _ Zueutrai(n, B + Ci1, Beer) < Trexp{u(N + N') — (8 + C1)H?).

By € QOM
Moreover, the product

H Zneutral(M, 6 + C], Bkcx)

BiocQM\QOM
is absorbed by
H — r(”’x Ba k)’

BroeQM
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provided Q is big enough. (To be precise, we require that Vol{dist(x, Q) <
< €%} /Vol Q be less than a small constant depending on g, 8.) Therefore
(7.3) implies
Trexp{(x — C)(N + N) — (8 + C1)H® + BVIK;]} <
< Trexp{(p(N + N') — (8 + C)H®} - exp(Ce*B~>2 _ 3, _ |Qal). (7.4)

QaeQM

The last factor on the right is at most exp(Ce ™ #/“p|Q|) by (4.10). Consequently,
applying (7.4) to B = 8 — C1, we have

Trexp(u(N + N') — BH® + (8 — C)VIK:] - C'(N + N)} <
< Trexp{p(N + N') — BH®) - exp(Ce™ **p|2)),

which implies
(B — CVIKs] — C'N — C'N'y < Ce™#4p|0]. (7.5)
Recalling the definition of K3, we see that
VIKs] = %} M Vir(Ri) + O(R - (N + NY)),

the error arising from self-energy terms in Vzgr(Rx). Since Ri ' < e “2#,
estimate (7.5) yields

M
<k2_]l N VLR(Rk)> < g (N + Ny + Ce™#4p|Q|. (7.6)

Next, fix radii Ri< R;<...<Ryy<R;<R»<...<Rp, so that R{>
> e“2®, Rk +1 > 100Rk, R1 > (R4)*°, Rk +1 > 100Rk, Rys < e“®, M ~ 3, for
0 < 30c2 < ¢; < 1. Since the Rf give rise to an ensemble of Swiss cheeses, we
have the analogue of (7.6), namely

M
<k§_]1 Nemic VLR(R,;)> < % (N + Ny + Ce™#4p|Q| (7.7)

for Q large enough. We use (7.7) to study the Swiss cheeses defined by R; . . . Rar.
Our starting point is (7.1). As before, we know that V[K>] + G(1N + x2N') <
< e }(H" + CN + CN"). Since Vir(Ri) =0, (7.1) implies

A< HY + VIKi] + e ®(H® + CN + CN'). (7.8)
Now take Rop = any of the Rf, and define a cutoff function

1 for |x|>2-R{?
()= |0 for |x| <R{?
smooth in between |
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Then Lemma 5.4 applies to Mn(x)Ki1(x) if we use R§2, Ry, Rz, . . . in place of
Ri,R,, ... in (5.21). Moreover, Lemma 5.3 applies to e®(1 — n(x))K1(x).
Those Lemmas yield

C C
VInKil < — Vir(Ro) + —— (H* '
[n. 1]<MVLR( o)+MR0(H + CN + CN")

C
< 8 Vir(Ro) + e~ *(H® + CN + CN')

and V[(1 — n)K1] < e"®(H® + CN + CN"). Putting these estimates into (7.8)
gives

Cc
A< H+ 3 Vir(Ro) + e P(H® + CN + CN").

Recall that Ry here can be any of the Rk, and that the coefficients Nxmk
sum approximately to 1. Therefore by taking a weighted sum of the last in-
equality over all the Rf, we conclude that

C M
A< H+ E( > Nemnk VLR(R,;)> + e FH? + CN + CN). (7.9)
k=1

8. The Expected Value of Certain Observables

In this section, we explain how to estimate the expected value of certain obser-
vables @ on L%(Q) in terms of information on the exploded system. Suppose
for each 7, M we specify an observable Ae.(r, M) on the exploded system
L%(9%), and suppose

Tr exp{Aex(T, M) + ;L(N+ N’) — EH"M} <

< eSTrexp{u(N + N') — BH*M} for each 7, M 8.1)

Here S is a real number independent of 7, M; and 8 very near ( is to be deter-

" mined. There is an induced observable

@ = Av,, ml(M* Aorlr, M)

defined on LZ(Q).

Our goal here is to estimate (®). Later on, we shall pick Aex(7, M) so that
our estimate on (@) gives a strong hold on what most of the particles are do-
ing.
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M
Start with estimate (7.9). Setting Vir = >, MNemik Vir(Rk), we have from (7.9)
k=1

InTrexp{® + u(N + N') — BH® — CVir — e~ ®(H® + CN + CN")} <
<InTrexp{@ + p(N + N') — B&} < B
AvszIn Trexp{Aex(r, M) + p(N + N') — BH®M}.  (8.2)

The last estimate holds because Trexp(1*4:) < Trexp A for injections ¢ of

Hilbert spaces, and because 4 — In Trexp A is convex.
From (8.1) and (8.2) we obtain for at least one (7, M) that

Trexp{@ + u(N + N') — BH® — CVir — e"“*(H® + CN + CN')} <
< eSTrexp{u(N + N') — BH*M) =
=5 T _Z(uB. B _I1_Zo(wB,Ge).  (8.3)
0.€QM

Bro€QM

As in the discussion of (7.3), (7.4), (7.5), we know from (4.9), (4.10) that

Z(ﬂs Bs Bkcz) S Zneutral<ll's B + %7 Bka> ° r(I'L, 6! k)

with C' a fixed large constant and r < 1.
Also

_T1 . Zo(w, B, Oc) < exp(Ce™**p|Q),

0aeQ

as in Section 7. Hence, as before, an application of the Lebowitz-Lieb tech-
nique [7] shows that

Trexp{@ + u(N + N') — BH" — CVir — C'B~'(H® + CN + CN")} <
< eSTrexp(u(N + N') — (B + C'B~HH®} - exp(Ce™#*p|Q]).

In other words,

Trexp{u(N + N') — (B + C'B~HH® + [@ - CVir — C'B~(CN + CN)]} <
< [Trexp{uN + N') — (B + C'B~HH"}] - exp(S + Ce~**p[Q]). (8.4)

Now pick 8 near 8 so that 8 + C'3~! = 8. Then (8.4) implies

"

_ C
(®) < C{Vir) + 5

(N+ N'y + Ce=F|Q| + S.
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Recalling
_ M
Vir = kZ Nemg Vir(Rk)
=1

and (7.7), we get from the last inequality
C
B

In the sections to follow, we pick Aex(7, M) so that (8.1) can be verified and
(8.5) gives useful information.

(RY S+ - (N+N"Y+ Ce *%|Q|. (8.5)

9. The Density of the System

For fixed M the partition function of the exploded system is

Tr etV +N) = BH _ 11 Z(x,B, Bro) - 11 Zo(p, B, Ou) =
Q QaeQ

Bia €

{ (const)
= exp

63/2

e+ MBIl (1 + O(B”l))}’

by the results of Section 3. Hence for 0 < ¢ < 1, we know that

Trexp{ (N + N' = 25|Q|) + (N + N') — BH*} <
< eSTrexp{u(N + N') — BH®}, 9.1)

where
_ (const)e*+ (/4B s
p=(_—%/_2—-, S = CplQ|B! + 1. 9.2)
Writing
L3(Qer) =[ > @L%;,Nr(nex)] @[ > @L%«,N'(Qex)]
N+ N'=zp5|0| N+N'<p|Q]

and applying (9.1) with the two signs + for the two spaces in square brackets,
we conclude that

Trexp{t|N + N' — 2p|Q|| + u(N + N') — BH®*} <
< e Trexp{uN + N') — BH®}.
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This holds for each M. Moreover, the number operators N, N’ commute with
the injections M: L%(Q) = Li(Qex). So if we define

Aex(T’M) = t|N+NI - 25|Q||,

then @ = AU,—,M(Ly)*Aex(T, M)(Ly)] =t|N+ N' —2p|Q|| also. Therefore,
estimate (7.5) yields

H{|N+ N' - 25|1Q||) <%<N+ N'Y + CplQIB~ '+ ) <
<§<|N+ N = 2509]]y + CBIQIG + 7).

Picking t = 8~ /2, we can absorb the first term on the right into the left-hand
side, leaving us with

(N +N'—2p|0||> < CB~'?5|Q].
Recalling (4.10), (9.2) and 8 + C’8~ ! = B8, we can rewrite the last estimate as
(N + N = 2|Q[[> < CBp|Q. 9.3)

Hence the total number of particles clusters around the obvious guess 2p|2|.
In view of (9.3), we can rewrite estimate (8.5) in the simpler form

(®R) SS+%pIQ|. 9.4)

Estimate (9.4) holds when @ = Av,, i(17")*Aex(r, M)(i) for Aex(r, M)
satisfying (8.1), with 8 + C'8~ ! = 8 and (8 near 8.

In addition to (9.3), we shall need to know later that if FC Q with Fy =
= {dist(x, F) < e°'*} having volume |Fy| < 87 !|Q|, then

(Number of particles in F) < C8™ 'p|Q|. 9.5)

To see this, let Aex(7, M) = [Number of particles in those D with (D + )N
NF # ¢, D e Q]. Since Aex(r, M) = 35, (z)) with

Fex =\ U(D| (D + DNF # ¢, D e QM},
one computes easily that ( M )*Aex(T, M )(L’,V’ ) = 2.j V(zj) with

V)= 2 A(x—1,D) = X:0.

D+ DNE#=
( DTE)QM ®

Hence @ = AU-,—M[( L’,V’ )*Aex(r, M )( L{Vi )] 2 (Number of particles in F).



THE ATOMIC AND MOLECULAR NATURE OF MATTER 29

On the other hand, for fixed 7, M we have

Trexp{Aex + p(N + N') — %} =
= H Z(V” B’ Bk) : QH ZO(I“: B: Qa) .

Bra€Q - o« €
Brka+1NF=¢ Qa+DNF=¢
H Z(I"'+1’B:Bk)' ,_H ZO(["'+1’E,Q~&)<
Bro€Q _ 0a€Q
Bka+DNF=¢ Qo +DNF=¢

<e’Trexp(uw(N + N') — BH®*) with S = Cp|Fx|,

by the results of Section 4. So (9.4) gives
. . C
(Number of particles in F) < (Q) SEpIQ| + Cp|Fx«l,

which proves (9.5).

10. Particles Form Atoms

The next application of the technique of Section 8 is to show that the vast ma-
jority of the electrons and protons pair up into ‘‘atoms’’. Our definition of
‘‘atom”’ is at first quite weak. For 0 < ¢’ < ¢” < 1, we define an atom of type
(c’,c") as an electron-proton pair {Xj,, Vko] With |Xjo — Yko| < €“® and
%0 — zil, |Yko — 21| > €™ for any particle z; other than Xjo, Yio.

To show that most of the particles belong to atoms, we use the observables

Ae(7,M) = >, _(Number of particles in Bia)XBeonot of ep-types

BkaEQM
= Z ,Aex(T, M’ Bka)
BkaeQM
where By, is of ep-type if it contains exactly one electron and one proton. For
a fixed 7, M we have
Tr CXp{Aex(T, M) + ,U'(N+ N,) - BHeXM} = _ HIVIZO(IL’ B’ Q~cx) :

Qo

11  Trexp{Aedr, M, Bro) + p(N + N') — BHB*},

Bro€Q
and

Tr exp{ Aex(t, M, Bro) + p(N + N') — BHE*,} =

Z(“yE’Bka, 19 1)+ Z Z(I'L'*' 19BaBkot1NsN,)'
(N,N)=(1,1)
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Hence the results of Section 4 show that
Trexp{Aex(r, M) + p(N + N') — BH*M} <
< eSTrexp{(u(N + N) — BH*M} with S = CB |2

Estimate (9.4) therefore shows that
C _ R
(@ <ol @ = Avr, ()  Aex(r, M)(2)]. (10.0)

Now we compute Q. It is convenient to work temporarily with operators
which do not necessarily preserve antisymmetry of wave functions.

First let us fix 7, M, Bke€Q™ and JC {1...N + N'}. Then define an
operator A; on Li(Qex) by

A aven) = 11 xg,, @) - 11 (1 = X3, @) - ¥ - . . 2N+ N).
jedJ J&J
We have
Wi ...2ven) = ] 0z — 7, D)Y(R1 - . . 2N+ N?)
J

for y € L3(Q), 2; = zj + &D)) with z;e D;, Dje Q’W. Hence

<AJL¢’ “P) = Z J- H 02(Zj -7 Bka)XDJ':Bka :

Dy...DN+ N’ JjeJ

I1 0%z — 7, D)xp o | W21 - . 2N e N) [P d2r . . dans N =

jéeJ
- H T1 Oalz - r)}[ I (1 - 63 — r)] :
jeJ jéJ
Wz caven)|Pdzr . dane (10.1)

Next fix 7, M, Bra € @™, and integers n, n'. We define A™ on Li((l‘g’) by

Number of electrons in Bie = 1

Ann,"l/(zl o ANeN) = X< > . ¢(21 . ZN+NY).

Number of protons in Bky = n’
Thus A™ = X,;A; over those J containing 7 electrons and 7’ protons. So
(10.1) implies

A = 3 TT 6Rabg— - TT (1 - 6al — )

Il =n jeJ jéJ

T kG- LA -GhGy-). (102
J

jelJ’

Hence, for
Aex(t,M,Bre) = >, (n+n")-A™

(n,n)y#=(1,1)
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we can prove that

Number of particles in the middle half of
*Aex(T, M, Bko)t > | Bko + 7, assuming at least two of those (10.3)
articles have the same charge

and

V*Aex(T, M, Bro) > x<There is exactly one particle in (Bko + 7),

and it lies in the middle half of (Bka + T)>' (10.4)

To check (10.3) and (10.4) we write down as a consequence of (10.2)

FAedr, M, Bia)e = 3, (| +|TD - T 6kl — 1) -
g7 j€J
L IIh=a,n
- I1 (A =6kl — 1)+ I 0ka(yi— 7 - II (1 = 6ka(yi— 7). (10.5)
T jer JEr

If Jo = {Jj| x; e middle half of Bk, + 7}, J6 = {j| y; € middle half of Bk, + 7},
then in the last equation, we restrict the sum to J D Jo and J' D Jj, and replace
|J| + |J'| by the smaller |Jo| + |J§|. If |Jo| or |J§| = 2, then we never have
(J1, |7")) = (1,1). Consequently,

L*Aex(T’MW(IJoI+!J(>I)GZ I bkt — D I1 (1 = 6falxj— 7)) -

c<Jo jeG JE€Jo\G
G'cc<Jy
- I Gkeyi—D- I (1 = 6kl — 7).
JjeG’ Jj€J0\G’

Here we use G = J\Jo, G' = J'\ Jj. Now the big sum on the right is simply
1, so (10.3) follows. To prove (10.4), suppose say xj, belongs to the middle
half of Bk, and no other particles lie in Bxo. Then we take J = {jo}, J' = ¢
in (10.5), and we find at once that (*Ae(r, M) > 1. The same argument
works if yj, is the only particle in Bxe. So (10.3) and (10.4) are proved.

For a fixed M we now sum (10.3), (10.4) over all Bxo € Q™, and then
average in 7. Recalling that the By, have radii between e and e, we con-
clude that

Av,[( L’TV’ )*Aex(T, MM ] =>c. (Number of particles z; for which at
least two particles zx, z; of the same
charge lie within distance

e/PF of 7)), (10.6)
and

AUT[(L{,W )*Aex(T, MM ] >c. (Number of particles which have
distance at least e*'® from all other
particles). (10.7)
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Average these estimates over M, and apply (0). The conclusion is
(Number of z; for which B(zj, ¢2°"?) contains at least two particles of

C
the same charge) < Eplm (10.8)

(Number of z; which have distance at least e/ from all

C
other particles) < Ep]Ql (10.9)

provided ¢’, ¢” are small. To derive (10.8), we take a Swiss cheese with
3¢2 =2c¢", while (10.9) requires a Swiss cheese with 3¢’ = 2¢c;. Now when
c'<c"”, (10.8) and (10.9) show that

(o)
{Number of particles not in atoms of type (c¢’,¢")) < Ep[QI. (10.10)

Comparing this with (9.3), we see that with probability nearly 1, the great ma-
jority of particles belong to atoms of type (c’, c").

Finally, if {x;,, Yx,} form an atom of type (c’, ¢”), then define the displace-
ment vector of the atom simply as 7 = Xj, — Vko-

11. A Special Observable

In this section we compute @ = Av, i7[(t,;)*Aex(r, M )LTM] for a special
Aex(7, M) which is picked so that @ will yield strong information on the posi-
tions of the particles. Then in the next section we shall compute (@) by the
method of Section 8.

To construct A..(7, M), we begin with a few simple definitions. Recall that
for fixed M, a ball Bk& is of ep-type if it contains exactly one electron and one
proton. Given 8 C ", we call § monatomic if exactly one of the D, De §
contains some particles, and if that D is of the form By, rather than ., and
if finally By, is of ep-type. If By, is of ep-type and contains the electron X,
and the proton y», then define the displacement vector F(Bia) = X, — Y»-
Similarly, if § C @ is monatomic with Bxq of ep-type, Bi« € S, then define
the displacement vector 7(8) = F(Bk).

Next, imagine Q is partitioned into disjoint cubes Qf, 03, ..., Qi of vo-
lume

A
Q7| =-> A a constant to be determined. (11.1)

0
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Here L is a fixed large number to be determined, and the number of distinct
sis ~(|2])/((\/p)L), which of course grows large with Q. A negligible part of
Q near dQ may fall to be covered by the boxes Qj.

Now for fixed E C R? and fixed 7, M, s, and for fixed sets Ji, J», J5 parti-
tioning {1,...,L}, we define an event & = &4+, M, E, J1, J», J3) as follows.

L
LetQj={DeQ|(D+7nCQj}, and Q= U Q-
=1

Then & means that:

Qj is monatomic with displacement vector #(Q5)e E for jeJi
Qj is monatomic with displacement vector 7(Q}) ¢ E for jeJ/,
Qj is not monatomic for jeJs.

Finally, we set A&(r, M) = xg, and Aex(r, M) = 35 Aéx(1, M). For fixed
7,M,s, we compute 1*A5:. To do so, look first at an arbitrary potential
V(Z1...%n+N) defined on (Qe)V* ™. By definition of « = ¥ we have

(V, ) =V, ¥y for YeLk n(Q), (11.2)
with
N+ N
Vz1...2v4N) = >, 11 6%z — 7, D)) -

D;y..DN+N'EQI=1
P+ ED), ..., ave N + EDN+n?).  (11.3)

Assume now ¥ has the special form

V.. iven) = T xys@ - I1 xeqyp@ - Wanied — (1.4)
jeg P jeg
for a collection 8§ C Qand § C {1,2,..,N + N'}. Then in (11.3) we can carry
out the sum over the D; for / ¢ J, obtaining

V... zn) = [ > 1 6% — 7, DYW(z; + EDy);j € 9)] :

Dje8 for jed jed

- II ( 2 0@ — T,D))- (11.5)

I ¢9 \D ¢9

LetF = F(r,M, 8) = [@QS(Q" + T)] U { U (x| dist(x, dBka + 1) < e’-'/*}]

Bro€S

for ¢ smaller than the constants ¢, ¢; for our Swiss cheese. Later we will use
the observation

AV Xpo 77.5,®) S e~ ¢ for any x. (11.6)
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For now, we continue to fix 7. Assume that none of the particles z; lies in F.
Then one checks easily that for z ¢ F,
2 2@ —1,D)=1-Xgs@ with G8)= U (D+1).
Des Des

Moreover, if z ¢ F then we have z — 7€ D, for a unique D, € Q, and we have
0(z — 7,D) =1 if D = D,, 0 otherwise.

Setting v(z) = z + &(D;) for z ¢ F, and putting the above remarks into (11.5),
we obtain

Vzi...2ven) = ,Q Xoesy @) - II}g (1 = Xg @) - Wyz)jed)  (11.7)

when z1...2v+n €F.
Now specialize to the case

L
$=Q'=U Qj
Jj=1

W(%j;j € 9) = characteristic function of the following event: After deleting all
the particles Z; with / ¢ 9, we find that

() Q5 is monatomic with displacement vector in E for j e J;
() Qj is monatomic with displacement vector not in E for je J,
() Q5 is not monatomic for j € Js.

Thus V defined by (11.4) is the characteristic function of the event
&sN {2 e (Upes D) precisely for those jed}, while for z; *..2vsn €F =
= F(1, M, Q°), equation (11.7) shows that V is the characteristic function of
the following event:

(@) zje G(Q’) exactly for jed.

(b) For jeJi, in Qj there is a unique D with D + 7 containing some par-
ticles; that D is a ball Bk, D + 7 contains a single electron x, and a
single proton y,; and x, — y, € E.

(¢) For jeJ,, in Q] there is a unique D with D + 7 containing some par-
ticles; that D is a ball Bk, D + 7 contains a single electron x, and a
single proton y,; and x, — y, ¢ E.

(d) For j e J3, it is not true that in Qj there is a unique D with D + 7 con-
«taining some particles, that D being a ball Bk, with D + 7 containing
a single electron and a single proton.

Sum this information over all subsets 9 C {1,2,...,N + N'}. Thus for fixed
7, M, s we see that

For Z1...2v+N € F(1,M, Q") (11.8)
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we have *A45,(r, M), = V = characteristic function of the event defined by
(b), (¢), (d) above.

To clarify the meaning of this event, pick two small constants 0 < ¢’ < ¢”,
and assume all the particles in U%- ; O belong to atoms of type (c’, ¢”) in the
sense of Section 9. We can pick ¢’,c” sothat 0<c¢'<é<c<c1<c’ <1,
where € is the constant in the definition of F above, and ¢, ¢, are the constants
related to the radii of the balls in the Swiss cheese (e°® < radius (Bka) < e'?).

Assume also that there are no particles within distance e*"? of 3Q; for
J=1,...,L. Under our assumptions, (b), (¢), (d) above are equivalent to

(b) For jeJi, Qjcontains exactly one atom, and its displacement vector
lies in E.

(c)’ For jeJ,, Qjcontains exactly one atom, and its displacement vector
does not lie in E.

(d) For jeJs, Qj fails to contain a unique atom.

Call this event &;. Here, ‘‘atom’’ means ‘‘atom of type (¢’, ¢”’)’’; and (b),
(¢), (d) are equivalent to (b)’, (c¢)’, (d) provided:

() No particles lie in F(r, M, Q°).

(-) All particles in |J Qj belong to atoms of type (c’, ¢”).
Jj=1

L
() No particles lie in E; = |J {dist(x, Q}) < e*"?}.
j=1

So for a fixed 7, M, s, we know that ()*As(r, M)M = V, where V = Xe,
under the three assumptions just given.

Even without any assumptions, (11.2) and (11.3) show that 0 V<1
always, since A5,(r, M) has the form V = characteristic function of an event.
Consequently, we know that |(:7)*Ad(r, M)(i7") — Xg,| < X5 (Number of
particles in Qf not belonging to atoms of type (c’, ¢”')) + (Number of particles
belonging to F(r, M, Q%)) + (Number of particles in Ej).

Average this over translates 7, and use estimate (11.6) with § = Q°. The
result is [Av[(:})*As(r, M)(i7)] — Xg,| < 207=1 (Number of particles in Qf
not belonging to atoms of type (c’, c")) + e~ 8, (Number of particles in U= ; Q)
+ (Number of particles in Ej). (Here we used X, 7 q5(*) =0 for x ¢ Uk=1 Q).

Summing this over s and averaging in M, we have for

@ = Avs, () * Aex(r, M)(H)]

the estimate |®@ — Xisxe:] < (Number of particles not in atoms of type
(¢’, ")) + (Number of particles in Us Es) + e~ *(N + N').



36 C.L. FEFFERMAN

Since |Us Es| < e™“#|Q|, estimates (9.3), (9.5), (10.10) imply
C — _ —
K@) — (2 Xe| < Eolﬂl for @ = Avar(Y)*Aex(r, M)H].  (11.9)

Recalling that &; is the event described by (b)’, (¢)’, (d)’ above, we see that
(2isXg,> carries a lot of information.

12. The Expected Value of the Special Observable

In this section we fix 7, M and compute Trexp{tAedr, M) + p(N + N') —
— BH®™} for |t| <1 and Aex(7, M) as in Section 11.
Recall the definitions of Qf and Q°, and define

Q,ex[ra = Q\LJ[Q;;= {DEQ|D+ T
meets some dQj or lies within diam(Qj) of dQ}.

Let

05, = O( U D) EIL:JI Q1.

1=1\DeqQj

We first note that H** and Aex(7, M) both break up as sums H** = X Hox +
+ Hee;fﬂl

Aex(T, M) = ZAZX’
s

with AS,, HS acting on L3(Q5,) and HE™ acting on

Li( U D).

DeQextra
. Consequently,

Trexp{tAex(r, M) + p(N + N') — BH®*} =
= TI Trexp{tAs: + p(N + N*) — BHS: | LA(Q5)} -

II ZwB. B I Zo(w B, Q) (12.1)

Bra€Qextra Qa €Qextra

From Section 3, we know that the terms from Qs contribute a factor

e

for large 3, Q.
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Fix s. We shall introduce some definitions to help us compute the right-
hand side of (12.1). ‘

N(D), N'(D) denote arbitrary assignments of a non-negative integer to each
DeQ’

Ni(D), Ni(D) denote arbitrary assignments of a non-negative integer to
each De Qj.

Evidently, each N(D), N'(D) induces N(D), Ni(D) for each /. We say that
N(D), N'(D) is monatomic for Qj, or equivalently that N;(D), Ni(D) is
monatomic, if Ny(D) = Ni(D) = 0 for all D e Qj except for a single ball Bky
(called the active ball in Qj) with Ni(Bka) = Ni(Bke) = 1.

® denotes an arbitrary assignment of a ball B € Qjto each / € J1{|JJ>. Define
a set E(N(D), N'(D)) = {(z1...zv+n~) | Each zje Qi and each D contains
N(D) electrons and N'(D) protons, DeQ’}. Given a ® and given
(Ni(D), Ni(D)) for [ € Js, there is an induced

Ni(D), Ni(D) if De Qj with [e J5] 1,1 if
ND),N'(D)= | DeQj with le J;UJ, and D is the (12.2)
ball assigned to / by ®; 0, 0 otherwise.

We give the resulting set (N(D), N'(D)) the name &(®, (Ni(D), Ni(D Nies).

Note that (12.2) is the most general N(D), N'(D) which is monatomic for
all le J1UJs.

Now define subspaces of L(Q5,): X(N(D), N'(D)) = space of ¢ € L3(Q5y)
supported in &(N(D), N'(D)) X(®, (Ni(D), Ni(D))es;) = X(N(D), N'(D))
with N, N’ defined by (12.2).

We have

!

Li@%) = 2, @ XMND),ND),
N(D), N'(D)

and therefore

® = Trexp{tAsx + p(N + N') — BHe: | L3(2)} — Trexp{u(N + N') —
— BH&| L3(®) =

>, [Trexp(tAsx + u(N + N') — BHS: | X(N(D), N'(D))} —
N(D), N'(D)

— Trexp{u(N + N') — BHex | X(IN(D), N'(D))}] =

2, ®(ND),N'(D)).
N(D), N'(D)

Let us recall how Ag; behaves. For (z1...zn+n) € E(NV(D), N'(D)), we
note that Qj is monatomic if and only if Ny(D), Ni(D) is monatomic.
Therefore, A =0 and so ®(NVD),N'(D))=0 unless Ni(D), Ni(D) is
monatomic precisely fo / € J;UJ2. Such N(D), N'(D) are given by (12.2), with
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(Ni(D), Ni(D)) not monatomic for any /e Js. If N(D), N'(D) are given by
(12.2), we write ®(®, (Ni(D), Ni(D))ies;) for ®(N(D),N'(D)).

Now fix ®& and (Ni(D), Ni(D))icss, with none of the (Ni(D), Ni(D))
monatomic. Let Bj...Br, be the balls assigned to /e J;UJ, by &, with
B ... By, coming from J; and By + 1 . - - Br, coming from J>. We can compute
P(®, (Ni(D), Ni(D))ies;) using Lemma 4.1. For, A%, and H;, restricted to
X(®, (Ni(D), Ni(D))Less) are observables on a system composed of two non-
interacting parts, namely Bj ... B, and

2=(U U D).
leJ3 DeQj
The Hamiltonian breaks up as a sum of the Hamiltonian of Lemma 4.1 acting
on B, ... Bi,, and an exploded Hamiltonian on Q72. The observable A3, refers
entirely to B, ... Bi, and in fact agrees with G in Lemma 4.1. Therefore, we
can write

Trexp{tASx + p(N + N') — BHzx | X(®, (N(D), Ni(D))ies)} =
= Trexp{tG + 2Lop — BH | L},1(B1 . . . BLo)} -

II Z(m, B, Bka, Ni(Bka), Ni(Bka)) -
leds BkaEQf

II Zo(g, B, Qas NilQa), Ni(Qa))

. ] (12.4)
QaGQf

and the first term on the right can be evaluated using Lemma 4.1. In fact, we
have from Lemma 4.1 that

Trexp{/G + 2Lou — BH | Liy(B:...BLy)) =
= Trexp{2Lou — BH| L1,1(B: . ..Bry)}e"“°(1 + O + B~ 1),

with
= = 1xl gx)%0 = Ixl gyyLo = so = — gy —
Go = (c fEe dx)*(c L_Ee dx) s So = IJll, Lo — s0= ‘J2|

Substituting this into (12.4), then taking ¢ = 0 in (12.4) and subtracting, we
obtain

B(N(D), N'(D)) = (tGo + O(t* + B~ 1) - Tr{u(N + N') —
~ BHe| XIND), N'(D)}  (12.5)

if (Ni(D), Ni(D)) is monatomic precisely for /e J1UJz; ®(N(D), N'(D)) =0
otherwise;

Go = (const [Ee‘ ¥ dx)1!(const LEe‘ ¥l g2l (12.6)

In (12.5) we wrote /Go + O(¢%) for (e’® — 1).
Now set
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Zeomic(y, 8, Q) = > II Z(w, B, Bka, Ni(Bka), Ni(Bks)) -
Ni(D), Ny(D) monatomic Bia€Q3

- II Zo(s, B, Qas Ni(Qa), Ni(Qo))  (12.7)
Qaer

Znon - atomir:(“’ B, Qj) = Z (same pI'OdllCt). (12.8)

Ni(D), Nj(D)not monatomic

Since the trace on the right in (12.5) breaks up as a product of terms cor-
responding to the different Qj, we find that when (12.5) is substituted into
(12.3), we get

®=(tGo+ O +87Y) JI Z%™(n,B,Q0-

leJi1UJ>
- IL Zron-etomieu, 6,0, (12.9
eJs

It is easy to compute Z*°™¢ and Z"°"~@omic_In fact

ZatomiC(”', B, Q3 = Z Z(p, B, Bka, 1,1) = Z o(1 + OB~ 1))|Bkal
Bra€Q3 Bra€QY

(by Section 4)

= ol Q] - (1 + OB
=1+ 06~

(see equation (11.1)).
On the other hand,

ZatomiC('u, B’ Q,Sl) + Znon —atomic(#, B’ Qs;) —
= H Z(/'Ls B; Bka) s H ZO(PL’ ﬁs Q~a)
Bra€Qj 0a€Qf
(by (12.7), (12.8))
= exp{p|Qf| - (1 + OB~ 1)} = expA(1 + OB~ 1)),
by (11.1) and Section 4 again. It follows that

zron-atomic(y, 8, Q) = (e* — N + OB~ Y2y,
aslongas B~ W <\ <100. (12.10)

Substituting our formulas for Z?%°mic  znon-atomic intg (12.9), we get

® = (tGo + O@F* + B~ /2)) - \1U2l(er — \)M3l, (12.11)
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We have also
Trexp{u(N + N') — BHS, | L3(Q5))) = ) II Z(g,B, Bko) -
kae_s
T H ZO(I"’ B, Q~oz) =

Qa€Q°

L
= eXD{P 2 |Bre|- (1 + 0(6_1))} 'CXP{0<3_IP Z|Q1Ll>}
Qs =1

Bia €

(by Section 4)

L
= eXp{p 121 |071(1 + OB~ 1))K =M1+ 0@~ 1/2))},

provided (12.10) holds and S is large enough, depending on L. Combining this
and (12.11) with (12.13), we get

Trexp{tASy + u(N + N') — BHS, | LA(Q5)) =

N [JJ1UT2| / N A 73]
= <1 + tG()(?) ¢ > + oW+ 87y

- Trexp(w(N + N') — BHex | Li(@) ), (12.12)

where O(t* + 3~ '%) means less than Const(L)- (> + 8~ '/?) in absolute
value. Substituting (12.12) into (12.1) now gives

Trexp{tAex(r, M) + p(N + N') — BH®} < e5Trexp{u(N + N') — BH**}
(12.13)

with
S = (Number of different s)[tGo(re ~M)M1972I(1 — e " MV3! + O@F? + B~ V?)].

Here, the number of different s is

Q
9] + error tending to zero as Q gets big = M(1 + OB 1Y), say.
(x AL
-L
o

Applying (8.1) and (9.4) with A..(7, M) replaced by tA.x(r, M), we see that
(12.13) yields

(@) < #(Number of different 5)Go(re ~MM1972l(1 — \e MMl 4

plﬂl 2 -1/2 -1
+>\—L0(f + 8 ) + OB~ "p|Q).
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Taking ¢t = +6~/?°, and comparing with (11.9), we obtain
(X5 Xe,> = (Number of different s)[Gohe ~M)M1972l(1 — \e MMl + OB =129
(12.14)

with Gy given by (12.6), and &5 defined by (), (c¢)’, (d) in Section 11.

13. Proof of the Theorem

The idea is to use (12.14), together with a simple quantitative form of the law
of large numbers, which we now set down. Suppose we have independent ran-
dom variables Xj...Xz, with Xj =1 with probability p, X; = 0 with pro-
bability 1 — p. Then E(e®’) = e'p + (1 — p) = exp(pt + O(t?)), uniformly in
p €0, 1]. Consequently, E(e'®'* -+ *X0) = exp(Lpt + O(Lt?)), so that

Xi+ ...+ X
Prob {—‘Ti >p+ 5} < exp(Lpt + O(Lt?) — tL(p + §)).

Picking ¢ = (small const)s, we obtain

X1+ ...
Prob {%% >p+ 6} < exp(—cézL).

Applying this also to Xj=1 - X}, p’ =1 — p we obtain

Xi+... +X
Prob{‘g L 26}<exp(—c62L). (13.1)

I —=p

We apply this to a probability space defined as follows.

The points of the space are functions f:{1...L} — {1, 2,3}. Thus, each f
gives rise to subsets J1 = {/| f(/) =1}, .= {I| fU) =2}, J3 = {I| f() =3}.
We fix E C R, and define the probability of f as Prob(f) = (s Xe,) /(Num-
ber of s), where &5 is the event defined by (), (¢)’, (d) in Section 10.

Formula (12.14) shows that Prob(f) differs by at most C(L)/8Y*° from
Prob’(f), defined by picking each f(/) independently with probabilities

Prob’(f(/) = 1) = (const jEe' K dax) e ™ = p;
Prob’(f(/) = 2) = (const LEe' X dxyhe ™) = p2
Prob’(f(I) =3) = (1 — he™ ™ = ps.

Since the probability space contains only 3* points, it follows that

|Prob(8) — Prob/(8)| < % (13.2)
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for any event & in the probability space. We apply this to the event

e ﬂ <Number of / foz which f(/) = 1> ol > a}-

From (13.2), and (13.1) applied to Prob’, we conclude that

Prob(€) < exp(—cé°L) + %

Now Prob(&) has a simple interpretation.
We define

1 if Qf contains an atom of type (c’, ¢”) and no other par-
X = ticles, and that atom has displacement vector in E
0 otherwise

Then

(Number of s with |>f_; Xf — p1L| > 8L)

Prob(8) = (Number of s)

Hence,

> 6L> < <exp(—c§f) + BC%> .

- (Number of s)

L
<Number of s with | >, X/ — piL
=1

Since

<

> X7 — p1L(Number of s)‘> < (8L)(Number of s) +
s,/

+ L<Number of s with ‘ZXIS —-pL|> 6L>,
l

it follows that

<

> X7 — piL(Number of s)|> <
s

< (Number of s)<6L + Lexp(—c8L) + 5—1(,1;%)

or, since L(Number of s) = (Number of boxes Q7)) = Ny,

<

Now take 6 small first, -then pick L so large that exp(—c§°L) < 8, then pick

> < No(6 + exp(—c6*L) + C(L)B~29). (13.3)

IZXIS — p1No
.S
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B so large that C(L)8~?° < 6, and finally pick Q@ so large that all our
estimates are valid for the 8 we picked. In that case, (13.3) becomes

< ZI,SXIS

(Number of /, s)
B large enough and © large depending on (.

Taking E = R? in (13.4), we find that the number of boxes Qf containing
exactly an atom of type (c’, ¢”) is (p1 + O(8'?)) - Np with probability > 1 —
— 62, For E=R? and \ <1, our defining formula for p; becomes
P; =\ + O(\?), while Ny = Number of s, = (|Q|/(\/p)) + (error tending to
zero with large Q) = (o|Q|/N) - (1 + OQ\'%) certainly. So (13.4) in this special
case gives (|(Number of (F containing exactly an atom of type
(', ") - pl@I + OOD))) < (38/NplQ].

So if we take \ < €!® and & < \?, then we find with probability at least
(1 — ¢) that the number of Q; containing exactly an atom of type (c¢’, ¢”) is
p]|Q|(1 + O(¢)). However, we already know that with probability > 1 — ¢, all
but at most eo|Q| of the particles belong to atoms of type (c’, ¢”') and the total
number of particles is 2p|?|(1 + O(¢)). So with probability > 1 — O(¢), we
know that all but O(e) fraction of the particles come from atoms of type
(c’, ¢") which form the sole contents of one of the Q. Returning to the general
case of E C R3, we look at (13.4) and realize that with probability > 1 — O(e),
2, s Xi = (Number of atoms with displacement vectors in E) + O(e - Number
of atoms), while

> < 39, (13.4)

- D

Dp1 - (Number of s,/) = (const jEe' ¥l gx)(Number of atoms) +
+ O(e - Number of atoms).

Therefore, (13.4) implies that with probability > 1 — O(e), the fraction of
atoms having displacement vectors in E is within O(e) or (const Lze‘ ¥l dx).
So we know (2.1) and (2.2).

The same technique also proves (2.3). We simply pair up the boxes Q; into,
say Q3j-1, O3, and define random variables

1 if both Q3;_1, Q3; contain exactly a (c¢’, ¢”)-atom, and the
Y= displacement vectors of both atoms lie in E,
0 otherwise.

Using Y7 in place of the X7, we obtain in the notation of (2.3) that
p* = [(const jEe' ¥ dx)he "% + O(e)

p',p" = [(const | _e™ " dx)he ™™ + O(e),
E
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all with probability > 1 — e. This time, we need not take A small. These last
equations imply (2.3). The proof of our theorem is complete.
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