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The Ternary Goldbach
Problem

D. R. Heath-Brown

1. Introduction

The object of this paper is to present new proofs of the classical ‘‘ternary’’
theorems of additive prime number theory. Of these the best known is
Vinogradov’s result on the representation of odd numbers as the sums of three
primes; other results will be discussed later. Earlier treatments of these pro-
blems used the Hardy-Littlewood circle method, and are highly ‘‘analytical’’.
In contrast, the method we use here is a (technically) elementary deduction
from the Siegel-Walfisz Prime Number Theorem. It uses ideas from Linnik’s
dispersion method, together with Vaughan’s identity.

It is convenient to quote the Siegel-Walfisz Theorem here. (See Walfisz [17;
Hilfssatz 3] or Davenport [6; Chapter 22] for example.)

For any constant A > 0 there exists C(A) > 0 such that

> An) = —— + O(xexp(— C(A)(log x)?), (1.1)
n=I(mod k) d’(k)
uniformly for (I, k) = 1 and k < (log x)*.
We now state our results.

Theorem 1. For x > 2 define

Nym)= 2, (logp)logp"),
=x
pfp’=m
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where p, p' run over primes. Set

_ __ p-1
&om =2 11 <1 - 1)2> 1 <p—2>

plm
p=3
for even m, and &(m) = 0 for odd m. Then for any C > 0 we have

> |Na(m) — x&(m)| < x*(logx) ™ €.

2x<m=<3x

Corollary 1. For any C > 0 there are at most O(x(log x) ~ €) even integers
m < x which are not the sum of two primes.

Corollary 2. Every sufficiently large odd number is the sum of three
primes.

Corollary 3. There are infinitely many sets of three distinct primes in
arithmetic progression.

Corollary 2 is the famous result of Vinogradov [15] and [16]. Proofs of
Corollary 1 (via forms of Theorem 1) were given independently by van der
Corput [3], Eudakov [4], [5], and Estermann [8], all using Vinogradov’s
method. Heilbronn [9] also discovered the result independently. It is not clear
who was the first to state Corollary 3 explicitly.

Sharper versions of Corollary 1 have been obtained more recently by
Vaughan [13], and by Montgomery and Vaughan [12]. In particular, the latter
work proves that the exceptional set in Corollary 1 has cardinality O(x* ~?) for
some fixed positive 8. Our results are all ineffective, since the Siegel-Walfisz
Theorem (1.1) is itself ineffective. However, the estimate of Montgomery and
Vaughan [12] gives an effective version of Corollary 1, and hence also of Corol-
laries 2 and 3.

As a by-product of our argument we shall obtain the following version of
the ‘‘Barban-Davenport-Halberstam’’ Theorem.

Theorem 2. For any C > 0 we have

k 2

X
A(n) — ——| < x*(logx)®~ 3,
k=<x(ogx)—C I=1 nzs:x Q"(k)
(¢ k)=1 | n=Imodk)

Results of this type were first obtained by Barban [1], [2], and rediscovered
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by Davenport and Halberstam [7]. In [2] Barban obtained the asymptotic for-
mula

k

2

Li(x)
#(k)

= QLi(x) + O(x*(logx) ~*) + O(Qx(log x) ~*log(x/Q))

2

7I'(X; k1 l) -

for exp(c(log x)'’?) < Q < x (where A may be any positive constant, and c is
an absolute constant). Moreover, when Q = x, he showed that the right-hand
side may be replaced by

xLi(x) + E(Li(x))*> + O(x*(logx)~4)

for a suitable constant E. This work anticipated some of the results of Mont-
gomery [11; Chapter 17]. It should be noted that our proof of Theorem 2 does
not use the large sieve.

The techniques used in this paper draw on ideas from Linnik’s dispersion
method, and from Barban [2] and Hooley [10]. Vaughan’s identity [14] also
plays a crucial part. In addition we shall use the function

w(g)? wq)
A = —_— d = —_ ,
o) qgg o(q) dl(‘n?,'q) wd) qgQ o(q) o)

where c4(n) is the Ramanujan sum. The function Ag(n) is so constructed as
to copy A(n) in its distribution over arithmetic progressions.
We shall use the notation L = log x throughout the proof. The implied con-

stants in the O(.) and < notations may depend on A, B and C. In general they
are ineffective.

2. The distribution of Ag(n) in arithmetic progressions

In this section we investigate the properties of the function Ag(n), and show
that it mimics A(z). As a by-product we will establish Theorem 2.

We first note some well-known bounds that will be required from time to
time. We have

o(q) > qllogq)™',  o(q) <q(logq) 2.1)
and

kZ dk)) <KQogK)* "1, (t=1,2,3). _ (2.2)
=K
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Since d(ab) < d(a)d(b), we also have
2. (n,nd(n) = Za Z dn)< 2 a 2, d(ab) (2.3)

nsN alr nsN alr abs<N
(n,n=a

Slead(a) 2, d®)

b<N/a

< > ad(a)(Na~'(log N))

alr

< N(log N) >, d(a)

alr

< d(r)*N(logN),

by (2.2) with £ = 1.

Before starting the main part of the argument we shall put (1.1) into a more
convenient form, by weakening the error term to O(xL'~4). The condition
k < L* may then be dropped, since the sum on the left of (1.1) is automatical-
ly O + xk~Y)L). Moreover if (/, k) > 1 then p® = I(mod k) requires p|k.
There are then O(log k) available primes p and O(L) possible exponents e.
Hence

> Am<L?  ((Lk>1,k<x),
n=I[(mod k)
nsx
and clearly this is true also when k > x. After replacing A by A + 1 we can
now put (1.1) into the more useful form

-4 4
nEIUzn;Odk)A() Ek1¢(k)+0(xL ) (2.4)

nsx

uniformly for all &, /; here we have defined

(1, &Dn=1,
E""‘{o, k,1)> 1.

We now turn to Ag(n), and start by looking at its size. Using (2.1) we have
w(g)?
u(d
Z ¢(q) Z )
1
< ud —
an q=09(q)
dlq
< aogQ)2d< > q‘l>
din dds|Q
q

< (log Q) ’; d(d~'(log Q)).

|Ag(n)| =
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Thus

Ag(n) < d(n)(log Q). 2.5)

Next we show that in any given arithmetic progression the functions Ag(n)
and A(n) behave very similarly. It is convenient to write Ag(n) = Ag(n) — A(n).

Lemma 1. We have

S Aom) = -2 + O(QL?) + O(L(kQ) ™~ 'd(k)), 2.6)
n=1I{mod k) o(k)

n=sx
for (k,1)=1, and

>, Ag(n) <4 QL* + xL(kQ) ™ '(k, I)d(k) + xL =4, 2.7)
n=Il(mod k)

Sfor any I, uniformly for 1 < Q,k < x.

By definition we have

2
2 Aogm) = 3 ”—@—Zdu(d) # (n<x;dln,n=Imodk)}. (2.8)
n=1{mod k) a=0 ¢(q) alg
n=sx
The conditions d|n and n = I(mod k) are compatible only when (d, k)|/, in
which case they define a unique residue class to modulus kd/(d, k). Hence
(2.8) is

2
ZQ% ; du(d){(kd) ™ '(d, k)x + O(1)}
as r

2
N -G o< @>,
* 2 4(g) M@0+ 0 2 Lo

where r is the product of those primes p|g for which (p, k)|/. The error term
of (2.9) is O(QL?) by (2.1).
Since u(d)(d, k) is a multiplicative function of d we have, for u(q) # 0,

_ N _ (g, D)o((g, 1), qlk,
dzlru(d)(d,k)— }'Ir a-(p, k))—i 0, k.

We write f(q) = p(q)*u((g, D)d((q,1))/$(q), so that f(g) is multiplicative.
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Then
:ﬁ;‘c flg)= q%f(q) + 0( qZ“]c If(q)l) = (2.10
qsQ >0
= ;]f(q) +0(Q7 ' 2 gl f(@))
qlk qlk
= [T +f(p)+0Q" H (1 + p|f(D)).
plk plk
However

_ (p - 1)-1a Plk,P‘“,
f(p) - { —1! plk!pll'

" Hence (2.10) is

a(k)>

+0QLY + 0<x(kQ) Wk, (k) "(k))

k
Bergi* (Q

and (2.8) becomes

n) = E,
nﬂl(;n:odk) Ao(r) = Ex, I¢(k)
nsx
The estimates (2.6) and (2.7) now follow, using (2.1) and (2.4).
Our next lemma is an analogue of Theorem 2 for Ag(n). For convenience

we define

k

61(x’ kr Q) = Z

=1

2 AQ(n) (t=1,2).
n=l(mod k)
nsx

We then have:
Lemma 2. Let Q= L% and K< xQ~'. Then
kgxk' '81(x, k, Q) <3 xQ 2L’ (2.11)
Sfor any fixed B > 0.

The proof falls into two parts. First we bound the sum on the left of (2.11)
in terms of

S= 2 &(xkQ),

K<ks2K
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and then we use Lemma 1 to estimate S. The second stage follows the idea

used by Barban [2]. Naturally it suffices to consider the case K = xQ~ 1.
For any j > 1 we have

J

<

=<
m=1

n=/(mod k) m=1 n=l+ mk(mod jk) n=1!+ mk(mod jk)

By summing over /(mod k) we deduce that
51(x, k, Q) < 61(x)jka Q)'

We proceed to average this over those j for which jk € (K, 2K]. Since the
number of such j is of exact order Kk~ ! we obtain

Kk™'8:1(x,k, Q)< 2, 81(x, h, Q).
K<hs=s2K

k|h
On summing for k < K this yields
KX k™ %100,k,Q < > dhix, h Q).
k<K K<h=s2K
To obtain an estimate in terms of S we apply Cauchy’s inequality, in conjunc-
tion with the case # = 2 of (2.2). This leads to
K 3 k™'8:(x, k, Q) < (K(og K))2( >0 éulx, A, Q)2>1/2. (2.12)
k=K K K

<hs2.
However, by Cauchy’s inequality again, we have
d1(x, h, Q)* < hdx(x, h, Q) < K&(x, h, Q),
and so (2.12) yields
> k7 8u(x, k, Q) < L¥25V2, (2.13)
k<K

We proceed to bound S. We have
&206k, Q)= 2 Ag(m)Ag(n)

?l,nsx
= 2 Ay +2 3 Ag(m)Ag(n). (2.14)
n<x m<nsx

klm—n

From (2.5) we have Ag(n) < Ld(n), whence Ag(n) < Ld(n). The diagonal
terms in (2.14) therefore total O(xL>), by the case ¢ = 2 of (2.2). It follows that

S=2 3, Ag(m)Ao(n) # {k,t;n — m = kt,K < k < 2K} + O(xKL?)

m<nsx

S=2 Y Y agm Y Agn) + OKKL).

1st<xK-1msx n=m(mod?)
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In the innermost sum 7 runs over a subinterval of (0, x], so that (2.7) of Lem-
ma 1 can be applied. This yields

S < xKL® + zt) 2 |Ao(m)| {(xL(tQ) ~ (¢, m)d(p)}. (2.15)

Note here that
xL(tQ)~'(t, m)d(®) > x(tQ) "' > x(xK " 'Q) !> xL B> QL* + xL 4,

on taking A = 2B, as indeed we may. Thus the second term on the right of
(2.7) is the dominant one.
We rearrange the double sum in (2.15) as
xLQ71 Y > |Ao(m) |t~ 1(t, m)d(t) < XLQ ™' D) |Ag(m))| ,Z t~1(t, m)d(d).
t m m=x =x
The inner sum is O(d(m)*L?), by (2.3). Thus, since Ag(m) < Ld(m) as before,
(2.15) becomes

S <xKL’ + xL3Q' 3 |Ag(m)|d(m)?
m=x

<xKL® + xL*Q~! ] d(m)?

m=sx
<xKL® + x*L"'Q7 !,

by (2.2) with ¢ = 3. Lemma 2 now follows from (2.13), given our condition
on K.
We can now derive Theorem 2. It follows from Lemma 2 that

k
x
k1 An) ———| <
k;K lgl nEI(%l:odk) ) (k)
k=1 n=<x
k x
< > kTt 3 > Aon) — —~| +xQ V2L,
K=k =1 |n=i{modk) (k)
k=1 n<x

By (2.6) of Lemma 1 the right hand side is
<xQ V27 +- 3 (QL?* + xL(kQ) " 'd(k)}
K=K

<xQ V2" + KQL* + xQ~ 'L}
<xQ~ V2L + KQL?,

on using (2.2) with # = 1. However

x
A(n) — ——| < xk™ 'L,
nsl(godk) () (k)
nsx
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so that
k 2
x
A(n) — ——
K=k I=1 nsz(%:odk) ) (k)
¢, Kn=1 nsx
k x
<xL > k7' 3] 2 A -
K=K =1 | n=i{modk) (k)
(k=1 n<x

<xL(xQ~Y*L" + KQL?)
< sza -C/3

on choosing K = xL =€, Q = LB, B =2C/3. This proves Theorem 2.

3. Application of Vaughan’s identity

In this section we use Vaughan’s identity to estimate the sum

o= 3 (3 Apm)Am - n)).

2x<m=3x \n=<x

Here we shall take Q = L® with a large constant value for B. The identity
states that for any u, v > 1 we have

> f(mWA(m)=Si— S, - Ss,

v<ns<N
with
S = ; CN SZA]W (log Nf(cr),
S 2,0 2 SN, ce= 21 20 WA,
cn=k
Ss = g) g d: Amf(rn),  dr= Xl] (). 3.1
m=<N csu

We shall take N=3x, u=Q, v=xQ % and

Ag(m — n), m-x<n<m,
Jm) = { 0, otherwise.
We proceed to estimate
Ei = Z lsll s
m

fori=1,2,3.
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To bound S; we use partial summation in conjunction with (2.7) of Lemma
1. This yields

2, (QogNf(re) = 2 (log )Ag(m — rc)
r<N/c (n—x)/csr<m/c
<LMax| 3 Agls)
y=<x |s=m(modc)
s<y

< L(xL(cQ) ™ (c, m)d(c)).

Note that, as before, the second term on the right of (2.7) dominates the other
two, since A can be taken arbitrarily large. It now follows that

Li<€ Y, > xL¥cQ) (¢, m)d(c).

2x<ms3x csu
However (2.3) yields
>, ¢~ Y, m)d(c) < d(m)*(log u)* < d(m)*L.

csu
Moreover

>, d(m)* <xL?

2x<m=3x
by (2.2) with ¢ = 2. Combining these estimates yields
I <x’L°Q~ . (3.2)
We turn next to X,. Since

lek] < D2 A(m) =logk < L,
nlk

we have

S;<L >

ksuv

=L 3

k suv

Ag(m — kr)‘

(m-x)/ksr<m/k

2 Ao
n=m(modk)
nsx

As m runs over the interval (2x, 3x], each congruence class (mod k) is covered
O(xk ™) times. It follows that

Ta<Lx X k™ '1(x, k, Q).

k=uv
We may now apply Lemma 2 to obtain

EZ < XZQ_I/ZLS.
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Lastly we examine X3. We split the ranges for r and » into intervals
re(U,2U], ne(V,2V], where U= u2’, V = v2/. Since the corresponding
subsum is empty unless

x<4UV, UV < 3x, 3.4)
there can be only O(L) pairs of values U, V to be considered. It follows that

i<l D, >, An) Ud,f(rn)

2x<ms=3xV<n=s2V U<r=2
for some U, V. Since A(n) < L we can use Cauchy’s inequality to obtain

2<LxVL? Y, | >, dfn)|? (3.5)

m,n | U<r=s2U

=xVL* >, dnd, D, ZZVf(rln)f(rzn)-

U<ri=2U 2x<m=3x V<n=

The innermost sum here is

S(r1,r2, m) = >, Ag(m — rin)Ag(m — r2n),
nel

where [ is the interval

I= (V,zV]n[T—_—X,ﬂ>n[m _X,T>.

r r r r

Let us first suppose that r; = r». Then, by (2.5), we have

S(ri,ri,my<L >, d(s).

s=m(modri)
s<x

As before, if we sum over m, the residue classes (modr;) are each covered
O@ri ') = O(xU™ 1) times. Thus (2.2) with ¢ = 2 yields

> 8(r1i,ri,m) < xU'L 3] d(s)*> < x*U™'L°. (3.6)

s=x

We now examine S(r1, 2, m) when r; < ra, the case r; > r, being essentially
identical. We write r = r — r; and j = m — ran. Then

218(r1, r2, m) = >, Ag(m — rin)Ag(m — ra2n) 3.7
= 2180(j) 23 Ag(j + rn),
J n

where the conditions 2x < m < 3x, n e[ translate as 0 < j < x and

ne(V,2VIN(—=j/r, (x = j)/rIN(@2x — j)/r2, (3x = j)/r2].



56 D.R. HEATH-BROWN

By (2.7) of Lemma 1 we have

21 80(j + rn) < xL(rQ) ™ \(r, j)d(r),

since, as before, the middle term on the right of (2.7) dominates. Now, by
(2.5) and (2.3), equation (3.7) yields

2, 8(r1, r2, m) < xL(rQ) = 'd(r) 2 |A0())|(7, ) (3.8)
m Jjsx

< xL*(rQ)~'d(r) 2 d()(r,j)

jsx
<x’L*(rQ)~ 'd(ry’
=x’L*r - r|7'Q 7 d(n - r|)?®,  (n#r).

It is clear from the definition (3.1) that |d,| < d(r). Moreover, since (3.4)
requires that

U<xv™!=0Q%=L%%,
we have

drn<r¥®® <L, (r<U).
Hence, using (3.5), (3.6) and (3.8) we find

I3’ < xVL4< > |a|Ax*UT Lt +
U<r=s2U

+ Z ldrldr2|x2L3lr1 - r2|—lQ_1d(|r1 - rzl)3>
U<ri=s2U
ryL#Er
< XVLAOALS + x2L2Q ™ 'Tir — | ™ Y)
< xVL*2LS + x*L°UQ™ 1)
<x4L10U_1 + x4L13Q—1
<x*'LPQ
This last estimate may be combined with (3.2) and (3.3) to give

LI+ I+ T3 <x’Q 1218, (3.9

4. Completion of the proof of Theorem 1 and its Corollaries

To complete the proof of Theorem 1 we need to know about

2. Ao(m)A(m — n) @.1)

n=sx
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for 2x < m < 3x. By the definition of Ag(n) in conjunction with (2.4) this is

u(g)*
du(d A(m — =
2o 6(q) 52 M@ 21 Am =)

IISX

o M9 dud) < Sl >
=¥ 20500 a4 i@y Bt O\ 2 S 2

Since du(d)¢(d) ™ Ea, m is a multiplicative function of d, the innermost sum
in the main term is

I <1 P ) M@p(g. m)((g, m)
:‘l!‘rln p-1 1 7))

if g is square-free. Moreover the error term is

<xL™4 3, U(q)<xL2 0<xQ!
q<Q¢( q)

by (2.1), since we may take A = 2B + 2. It follows that (4.1) is

w@u((g, m)e((g, m)) -

* 2 o) T O =
_ DM@, m)sgm) | @ L
=x2] #(a)’ < 2, o )2> + 060

The main term here is

1 1
l1—— 1 =
"J&( (p—1>2>ﬂ< +(p—1>> x&(m)

and first error term is O(xQ ~ 'Ld(m)?) by (2.3), since

@m) _(q,mq)
#(g)* q’

Now, using (3.9) together with the case ¢ = 2 of (2.2), we see that
2 2 AmA(m — n) — xS(m)

2x<m=3x|n=sx

< XZQ—I/ZLS + XZQ_ 1L4 < xZQ— 1/2L8.
Since the number of prime powers p® < 3x with e > 2 is O(x'’?) we have

SIAmAm -n)= Y, (logp’)logp”) + Ox"*L?).
n<x p'=x
.
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Thus
> |Na(m) — x&(m)| < x*QV2LE,

2x<m=3x

and, as Q = L® with B arbitrary, Theorem 1 follows.
The corollaries require little comment. Since

1

p>2

whenever m is even, there can be only O(xL ~€) even numbers m counted in
Theorem 1 for which N,(m) = 0. This gives Corollary 1. Next let » be odd,
and take x = n/3. Then the numbers #» — p, for odd primes p < x, are all even,
and there are asymptotically xL ~! of them. Since only O(xL ~ €) such numbers
can have N>(n — p) = 0 there must be at least one solution of n — p = p’ + p”,
if n is large enough. This proves Corollary 2. Similarly, since the number of
integers m = 2p in the range 2x < m < 3x is asymptotically %xL ~1 and only
O(xL ™) such integers can have Na(m) =0, there must be solutions of
2p =p’' + p"” with p’ < x. Since this entails p’ # p(# p"), Corollary 3 is
proved.
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