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1. Introduction

Consider the functional
JE) = [o, |Doe| + & [ Xns10£dx = [0 Nx)o£dx’ (1.1)

where Qo = {x = (X', Xn+1), Xn+1> 0}, X' = (x1,...,Xn) varies in R, gis a
positive constant, A(x’) is a given function, |[\(x’)| < 1, ¢ is the characteristic
function of a set E, and E varies in the class

@ = {E C Qo; E has finite perimeter [|Dogl}. 1.2)
For a given positive number V set

Gy = (EeQ®,H""Y(E) = V]. 1.3)
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Problem (Ry): Find E in Qy such that
J(E) = min J(F).

FeQyp

For n = 2 this is precisely the sessile drop problem, i.e., the problem of a
capillary drop occupying the set E and sitting on in inhomogeneous plane
{Xn+1=0]}. The first term in J(E) is the energy due to surface tension, the
second term is the gravitational energy, and the last term is the wetting energy
with contact angle 6(x’) given by

cos f(x") = \(x", 0<0(x") <.

In (the homogeneous) case \ = const., a minimizer E can be found having
the form

E={x|x'| <p(Xn+1}

(see [11] [12]). In case A\ # const., existence of a minimizer £ was recently

established by Caffarelli and Spruck [4] under some mild assumptions on

A(x"). For a strictly curved bottom dQo, existence was proved by Giusti [10].
We shall restrict \ to satisfy

0<A<1; (1.4)
then one can show that E is an X, . ;-subgraph that is
E={x;0>2xy+1<u(x),x €S} (1.5)

for some function u with support S. In this paper we are interested in studying
the boundary aS of S; S may be conceived as the free boundary for the sessile
drop problem. We prove that, for the case n = 2, dS is regular; more precisely,

if N\eC™*% then dSeC™*!*e (1.6)
if N is analytic then dS is analytic;

the same holds for 3 < n < 6 under some «flatness condition.»
Our method is based on extensions of the results of [1] and [2] to the
minimal surface operator. To explain this connection, consider the functional

JO) = [0 /06 0 V0) dx 1.7

where © is, say, a bounded domain in R” and v varies in the class of H"*(Q)
functions satisfying a boundary condition v = #° on a portion 3,2 of 9Q;
u° > 0. If u is a minimizer, then (see [1]) formally

V- folx, u, Vu) — folx,u, Vu) =0 in QN {u > 0} (1.8)
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where z=u, p=Vu, and u =0,
Jo(x, u, Vu) - Vu — f(x, u, Vi) = 0 on the free boundary QNd{u > 0}. (1.9)

Taking in particular

SO, u,Vu) = 1+]Vu[2+§u2—p.u—)\(x) (u = 0), (1.10)
we get
. Vu .
dlvm—gu=—u in QN{u>0}, (1.11)
1
u=0, mz:xz on QNafu>0]}. 1.12)

(This incidentally shows that for a regular free boundary to exist one must
assume that |A\| < 1.)

Observe now that the functional (1.1) for E a subgraph (as in (1.5)) reduces
to the functional of the form (1.7) with f given by (1.10) and p = 0. The sessile
drop problem, however, includes a volume constraint H"*!(E) = V, which
can actually be replaced by adding a ‘‘penalty” term f.,(VE) into the func-
tional, where Vg = H"*!(E) for any E € G. More precisely, Caffarelli and
Spruck [4] introduce the functional

JF) = JF) + foVD)  (Fe@®)

where f.,(1) = (V — 0)/eo if t < V, foo(t) = 0 if £ > V and prove that if e is
positive and small enough then a minimizer E exists, Ve = V and E is a solu-
tion of problem (Qy). _

The methods of the present paper apply also to the modified functional J.
For the sake of clarity we shall first establish the regularity result (1.6) of the
free boundary for the variational problem involving (1.7), (1.10) and then
consider the sessile drop problem, indicating the minor changes in the proof.

The regularity of the free boundary for the variational problem for (1.7)
was established by Alt and Caffarelli [1] in case f(x,z,p) = | p}z (corres-
ponding to the Laplace operator), and by Alt, Caffarelli and Friedman [2] in
the case of general f(p) = F(|p|®) corresponding to quasi-linear uniformly
elliptic operator; the case f= |p|*> — Q(x)z with Q >0 was considered by
Friedman [5]. The main novelty of the present paper stems from the fact that
the quasi-linear elliptic operator corresponding to (1.10) is not uniformly
elliptic. Thus the crucial step is the proof that any minimizer u is Lipschitz
continuous.



64 Luis A. CAFFARELLI / AVNER FRIEDMAN

In §§2-4 we study the variational problem corresponding to (1.7), (1.10) and
establish regularity of the minimizer and of the free boundary. In §5 we shall
apply the results to the sessile drop problem as well as to other related
capillary problems.

We always assume in this paper that n < 6; this ensures the regularity of the
boundary of any perimeter minimizing set.

ADDED IN PROOF. Jean Taylor («Boundary regularity for solutions to
various capillarity and free boundary problems,» Comm. P.D.E., 2 (1977),
323-257) proved regularity of the free boundary surface in R3, using
Almgren’s approach.

2. The variational problem

A Borel function v(x) defined in an open set A C R™ is said to be of bounded
variation (BV) if ‘

L |Dv| = supUA vdivG; G = (G, . . ., Gm) € C(A),
|G)* = 3] GHx) < 1]
i=1
is a finite number. A Borel set E C R™ is said to have a finite perimeter in an
open set & C R” if
jﬂ |D¢>E| < o©

where ¢ is the characteristic function of E.

We denote by E* the one-sided Steiner symmetrization of a set E in R™
with respect to the plane IT = {x, = 0}; more precisely, E* lies in {x, = 0},
E*N {x' = x4} consists of a single interval 0 < X < X, (for any x$ = (9, ...,
x%-1)), where x = (X', Xm), X' = (X1, . . . , Xm—1), and

HYE*N{x' = x4}) = HEN {x' = xb}).
We recall [14] that if £ C {x» = 0} then
J‘{xm>0} |D¢E*| S J{xm>0} |D¢E| (21)
Consider a set
E = {x;xm <u(x),x' €S}

where x = (X', xm) € R™, x' = (X1, ...,Xm-1), and S is an open set in R™ ™!,
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For any open set A C S one defines (see [14])
[N+ 1Dul? dx’ = sup( [, (udiv G + Gp) dx’;
G=(Gy,...,Gm-1), Gie Ci(A), f} G}(x) <1},
- 2.2)
and then there holds ([14; Prop. 1.9 and (1.5)])
[axwDoel = [,N1+ |Duf ax. 2.3)

In particular, E has a finite perimeter if and only if # is a BV function.

Let © be a bounded domain in R” whose boundary is locally a Lipschitz
graph and let #° be a nonnegative Lipschitz continuous function defined on
d9Q. Let

So = {(X,Xn+1); x€ 02,0 < Xn+1 < u°(x)}

and denote by Kj the class of sets in @ x [0, ) with finite perimeter in
Q2 X (0, ), which coincide with So on dQ X [0, ). For E € Ko, let

Jo(E) = Inx(o,w) |Dé| + Jﬂx(o,uo) (8%n+1 = WeE — Jﬂx{x”+1=0}>\¢E (2.4)
and consider the problem: Find E such that

E €Ky, Jo(E) = lim Jo(G). 2.5)
GeKo

We assume that
g>0, p=20 (g, n are constants) (2.6)
and
A(x) is Lipschitz continuous, 2.7

0<\Mx)<1 in Q.

Theorem 2.1. There exists a solution E of problem (2.5), and E is a
bounded set.

Proor. Since Jp is clearly bounded from below, to prove existence for
(2.5) it suffices to prove that Jo is lower semicontinuous, or just that

jnx(o,m) |Doe| — jnx{x,,H:o})‘qu

is lower semicontinuous; but this can be established as in [10; Th. 1.2]. The
proof that a minimizer E is a bounded set is the same as in [10; Th. 2.3].
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Notice that if E is in K then, by (2.1), its onesided Steiner symmetrization
E* decreases the perimeter and strictly decreases the remaining part of J,
unless £* = E a.e. Thus for a minimizer E we must have that

E*=FE, 2.8)
We shall henceforth normalize E (as in [8; §3.1]) so that
0 < |Bo(X)N(2 X (0, )| < |Bo(X)| vX edE.

If X°€dE, X°eQ x (0, «) then take a small ball B = B,(X°) contained in
Q X (0, ). Clearly E is then a minimizer of

JG) = [,1Ddal + [, (exns1 ~ woc

in the class of sets which coincide with E on dB. Hence, by Massari [13] (recall
that n < 6), 0E is in C*>** in B and, in fact, since p, g are constants,

O0E is analytic in B. 2.9
In view of (2.8) we can write
E={(0Xn+1);0 < Xn+1 < u(x),xe} (2.10)

for some fuction u(x). In view of (2.3), u € BV(Q). Since E is a bounded set,
we also have that

ux)<C foral xeQ (C constant). 2.11)
Lemma 2.2. The function u(x) is continuous in .

Proor. Suppose u(x®) > 0. If u(x) is not continuous at x°, then from
(2.10) it follows that dF contains a vertical line segment. In view of the
analyticity of 0E, 0E must then contain the entire interval {x = x° x,+1 > 0},
a contradiction to the boundedness of E. For the same reason, if u(x°) = 0,
then u(x) — 0 if x — x°.

Lemma 2.3. For any ve BVQNC’Q), v =0, or ve H**(Q), v >0,
Jnx/l + | Do Ly > oy = jn 1+ Do -1) + jnl{»o} (2.12)
where 14 denotes the characteristic function of a set A.

PRrRoOOF. Suppose first that v € BV(Q)NC%Q). We can approximate v by
mollifiers v, such that (see [8] [14])

[aV1+ |Dvm|21,,—+j9\/1 + |Dv|* Iy
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forA=Ar={v>}]} (k=1,2,...)and for 4 = Q (notice that A is open).
Since vy, is smooth,

[o V1 + 1DV >0y = [ WT+1Dvnl* = ) + [ Tums0.  (2.13)
Since v is continuous,
Ly >0 2 Tws 1k
for any positive integer k, if m > mo(k). Hence
[o W1+ 1Dvml® = Dlp>0 > [ W1+ [Doal® = D> 10~
= [ W1+ Dvl* = DIws 1ag.
Since k is arbitrary,

' [9 1+ [Dv]? = DIwsoy < 1iminfj9 1+ [Dvm|? = DI, >0
m — oo

Using this in (2.13) we obtain
[o VI+ Dol Tusa < [ W1+ Do’ = D) + [ Tws . (2.14)

To prove the reverse inequality we approximate (v — 1/m)* by mollifiers
Umj(j — o) such that

jQ\h + |Dum,|21,4—»j9x/1 +|D( — 1/m)* |* In
for A = {v> 0} and for 4 = Q. Since Ij,,;>0 = Iw>o if j is large enough,

lim sup jn (V1 + [Dtmyl? = Dy 03 < lim sup jﬂ N1+ [Dmj]? = DIy =
J‘—’CO

J— o

= Jﬂ (\/l + |D(U_ l/m)+|2— 1)I{u>0}.

Noting that (2.13) holds for the smooth functions v,,; and taking a suitable
sequence j — co, we then obtain

[oVT+1D0 = 1/m)* PLivs o) >
> IQ 1+ |Dw—-1/m)* > =1)+ jn Ip>o.  (2.15)

If F={(x,Xn+1);0 < Xn+1 < U(x),x €}, then, by (2.3),

- .
In\/l +|Dw—1/m)"|* = jﬂx(l/m,w) |Doe| 7 IQX(O,@) | Do

as m — oco; the same holds with Q replaced by QN {v > 0}. Using these facts
in (2.15) we obtain the reverse of (2.14), which completes the proof of (2.12).
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If ve H"*(Q) then Dv =0 a.e. on {v = 0}, so that
W1+ |Dv)® = DIp—gy = 0,

which immediately yields (2.12) if v > 0.
We introduce the functional

Jo(v) = I V1 + |Dv|* Ly opdx + I <§vz - ;w> dx — j NX) >0y dx
Q Q Q

(2.16)
and the admissible class
K= {veBV(Q),v>0 in Q,uv=u’ on 4Q}. 2.17)
Consider the problem: Find u such that
ueK and Jo(u)= lglel;(l Jo(v). (2.18)

We shall find it convenient to work also with the functional

J) = J <1+ [Dv]? - dx + J <§v2 - ;w) dx +
Q Q

+ J (1 = Nw>odx. (2.19)
Q
Theorem 2.4. Let u be defined by (2.10) where E is a solution of problem

(2.5). Then u is a solution of problem (2.18), u € C°(Q) and
Jw) <Jw) VYveKNCQ). (2.20)

ProoF. Since Jo(u) = Jo(E) and
Jo(v) = Jo(G)

if G={(XXn+1);0 < Xn+1 < v(X),x€Q}, uis a solution of (2.18). The con-
tinuity of u was already established in Lemma 2.2, and (2.20) follows from
the relation ,

J) = Jo(v) if veKNC'Q)

which is obtained using Lemma 2.3.
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3. Lipschitz continuity

In this section we establish the Lipschitz continuity of the Solution u asserted
in Theorem 2.4.
We introduce the minimal surface operator

Dy

Lv=div—m—m=-—
\/1 + |Dv|?
and consider the Dirichlet problem

Lw—gw= —p in Bxo),
w=u on 0B.(xo) 3.1

where B.(xo) = {x; |x — xo| < €} and xo € Q. Set, for brevity, B = Be(xo).

Lemma 3.1. If e is small enough then there exists a unique solution w in
C***(B)NCB) of (3.1).

By standard regularity results it follows that w(x) is analytic.

ProoF. Uniqueness follows from the maximum principle. Existence is
established in [7] in case g = 0; the proof in case g > 0 is similar and, for com-
pleteness, we briefly describe it. Denote the boundary values of # on 4B by
¢, and consider first the case where ¢ € C2**. By comparing w (if existing)
with =M (M constant) we find that

max |lw <M if M >sup|op|.

Hence |gw| < gM. We can now use [7; p. 285, Cor 13.5] (see (13.35), (13.36))
to deduce that

|Dw| < Co on 42
if € is small enough. By [7; p. 303, Th. 14.1] we then also get

|Dw| < Co in Q.
Thus £w is uniformly elliptic and then, by [7; p. 276, Th. 12.7],

[Dw]a, 2 < C.

Having thus established an a priori C'** estimate on w, we can apply [7;
p. 229, Th. 10.8] and deduce the existence of a C*>* *(B) solution of (3.1) in
case g € C2*~,
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Consider next the case where ¢ is only assumed to be continuous, and
approximate it uniformly by functions ¢, € C>* . By the maximum principle,
the corresponding solutions wy, satisfy:

| Wi — Wi |L=(@) < |¢m — bk|r=@aa)-

Hence wy,, = w uniformly in Q.
By [7; p. 346, Cor. 15.6] (or [3]), for any @' C C Q,

|DWm| < C in (C = C(') constant)

provided g = 0; the proof extends with small changes to the case g > 0. But
then also

[DWmla, 00 < C

and consequently, for a subsequence, wn, — w in C** %(B)NC°(B) where w is
the desired solution.

Lemma 3.2. The function u is an analytic solution of

Lu—gu=—p in {u>0}.

Proor. Suppose u(xo) > 0 and denote by w the solution of (3.1) where ¢
is sufficiently small so that B.(xo) C {u > 0}. It suffices to show that w = u.
Consider the family of functions war = w — M (M > 0). If M is large enough
then war < uin B = B(xo). We decrease M until we arrive at the smallest value
M, such that wa, < u. We claim that

M, = 0.

Indeed, if My > 0 then there must exist a point ¥ € B such that wa, = u at X.
Also,

LWrMy — 8Wmo= —p+8Mo in B.

Recall that (x, u(x)) represents a smooth surface, by (2.9), and observe that
the surfaces (x, u(x)), (x, waro(x)) are tangent at (¥, #(x)) and thus have a com-
mon normal ». Using a coordinate system (X, X, + 1) in which 7 is in the direc-
tion of the X,.i-axis, these surfaces can be represented in the form
Xn+1 = U(X) and X, +1 = W(X) respectively, and

LU - gU = —u(X),
LW - gW = —uX) + gMo
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in a neighborhood N of (X, u(X)), where g, i are the same functions in both equa-
tions and g = const. > 0. Indeed, if X = (%, X, +1) = TX where X = (¢, Xn+1), T
orthogonal matrix, e,+1 = (0,0,...,0,1)and é = Te,+1 = (b1, ..., bn+1), then

ngn+l¢G = ng' en+196 = Ig)?' épc = jgbn+lfn+ 196 + fg sz bixipc

i=1
for any set G in Ky. Due to this change in the functional J, (or J) we find that

g =bn+1g, 3.2)

iE) =p—g > bifi.

i=1

Notice that b, +1 > 0.

We now apply the maximum principle to U — W and deduce that My = 0
(and U = M in N), a contradiction. We have thus proved that M, = 0 and
w < u, and similarly w > u.

Later on we shall need to use radial solutions s = s(r) of

Ls—gs= —p inashell p<r<R, 3.3)
sS(R)=0 (3.4

where g, i are nonnegative constants and
&<, <l 3.5)

Rewriting (3.3) in the form

rn—lsl ’
() oo
S

we find that

rn - IS/ Arn
— =y — il (y constant)
V1 +s? r

where i = (1 + o(1)) (o(1) = 0 if g/i — 0). Thus a solution is given by

Nrt ™" — fir/n

S T e e

S(R)=0

provided + is chosen so that

(yr' =" = pr/n)* < 1.
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Since 4 is small,

1-n
i for p<r<R, s(R)=0

s'(r) ~ —
provided (yp! ™ ")? < 1/2. (3.6)

We now state the main result of this section.
Theorem 3.3. ueC%(Q).

Proor. Suppose the assertion is not true. Then we can find a sequence
X" = (", y™ with y™ = u(x™) > 0,
pm = dist(X™, free boundary) — 0
(the free boundary is the set d{u >0} X {x,+1=0}), and free boundary
points X™ = (¥™, 0) such that
m

Y
- X

X" = X" = pm,
|x

and dist(xm, 0Q) = const. > 0.

On the line segment x™x™ we can clearly find a point ¥ such that
E™, u(X™) € Bo,,/2(X™ and |Vu(x™)|—0
if m— oo,

The surface y = Un(x), where

1
Un(x) = —u(x™ + pmx),
Pm

will be denoted by Sp. By [13], SmNB; - are uniformly C>** surfaces, for
any € > 0. Hence, for a subsequence,

SmNB1-¢—>SNB;
in C**“ sense, for any e > 0. Since
Lu—-—gu=—p in {u>0},
it is easily seen that
LUn — gnUn= —pm in Sy
where Sy, is the projection of S, on {x.+1 =0}, and

8m = gpfn, Um = UPm-
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It follows that
SNB; is a minimal surface, 3.7

and a graph x,+1 = U(x).
Denote by (Zm, Um(zm)) the point corresponding to (X™, u(¥™)). Then

IZm| S%a |DUm(Zm)| — oo if m— .
Unn(zm) = Ulzo)-

We may assume that z,, — zo. Then the tangent to S at Z° = (20, U(z0)) is ver-
tical. Since S in an analytic surface, it is then given in a neighborhood W of
Z° by

X1 =WX2,...,Xn, Xn+1) (3.8)

with dw/dxn+1 = 0 at Z° (here we have made a suitable rotation of the axes
X1, X2, ...,Xn). Denote by By a ball such that (xi, wixz,...,xs)e W if
(XZ, e ,x,,+1)eBo).

Since SNB; is xn+1-graph, it follows from the representation (3.8) that
OW/dxn+1 < 0 in By if, say, {U > 0} NW lies to the left of S.

Differentiating the minimal surface equation £Lw = 0 with respect to Xn+1
we find that dw/dx, +1 satisfies a linear elliptic equation to which the strong
maximum principle can be applied. Since dw/dx,+1 <0 in By, whereas
OW/dxn+1 =0 at Z° it follows that

d
Y —0 in B
axn +1
Consequently
X1 = WXz, . .., Xn) (3.9

in By and, by analytic continuation, the same holds throughout SNB;. Thus
SNB; is a cylinder whose generators are parallel to the x, 4 i-axis. Further,
since S is X, +1-graph, given by x,+1 = U(x),

Ux)=0 in {x1<wix,...,xs)}. (3.10)

We shall now derive a contradiction to the fact that # is a minimizer. We
can do it either (i) by working with u, or (ii) by working with U. It will be
instructive to describe both methods.

Method (i). Since S»NB;_.— SNB;_.in C***(for any e > 0), it follows
from (3.9), (3.10) that after rotating the x, + ;-axis by a small angle é we have,
in the new coordinate system which we again denote by x1, ..., Xn, Xn+1,

u(x) > Md(x™) in Beaum(x™) O0<o<1) @3.11)
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where d(x™) = dist(x™, d{u > 0}),d(x™) =0 if m— oo; here 1 -6 can be
taken arbitrarily small and M can be taken arbitrary large provided 6 is small
enough and m sufficiently large.

We rescale by d(x™) so as to obtain a new function u such that

u(x)>M in Bg(yo) (3.12)

where yo corresponds to a particular point x™ with m large enough, |yj =1,
its nearest free boundary point is at the origin, and the corresponding g, u
(which are in fact gd*(x™), pd(x™)) satisfy (3.5), so that the radial solution s
of (3.3) can be constructed as above.

Take a point zo in the internal Oy, with |z0] < (1 — 6)/2 and consider the
shell ¥ with center zo and radii

n=0-0/2, r=1-|z/+e (¢>0). (3.13)
Introduce the function
w=maw{u,s} (3.14)

where s is constructed as in (3.6) with p =r;, R=r; and r = |x — 20,.
In view of (3.12) and the smallness of 1 — 6, 1/M, we can choose the con-
stant + in (3.6) such that

uzs on f{r=r}
and
s'(r) 2 o, (3.15)
with o large; in fact,
g=0M,0)> o if M- o, 0—1. (3.16)
Notice also that
uz0=s on f{r=nrj,

and consequently w is an admissible function. Denoting by Jx the part of J
taken over the shell £, the minimality of » implies that

Je(u) < Je(w); (3.17)

here we used Theorem 2.4 and, for simplicity, we work with the original J
rather than with its scaled form.

We shall derive a contradiction to (3.17). For clarity let us first proceed in
a formal way.
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We have

Je(u) — Je(w) = L W1+ |Dul* =1+ |Dw]?)

+ j [<5u2 _ ,u.u) - <§w2 - W)] - j (1= Nlu=o.  (3.18)
= \2 2 >

For Vu = b, Vw = a we shall use the identity

b—a)-a

‘\/1 bz" 1 2—( — =

+ B> =1+ |a e
_ A+ 16HA + |a®») - (1 +a-b) .
V1+a* 1+ |a*V1+ B>+ 1+a-b)

By convexity, the right hand side is always > 0; however on the set {u = 0}
(where, formally, Vu = 0), we have the stronger inequality

|a*

> .
N1+ |aP N1+ ]a? +1)

Thus we obtain from (3.18)

[ V(u—w)-Vw

J A1+ |[vw]?

n SIZ

Jrnw=0/1+ s?NV1+ 5%+ 1)

L) o)

rn

- :(1 = Nl =0 (3.19)

Je(u) — J=(w) 2

Since, formally,

Vu—w)-VYw . _ WMo —
s NIVl —L(u w)Ls L(u w)(—gs — )

= L (u— w)(—gw-—p) (3.20)
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and

g 2

g 2_&
2u

_gw —'_(u_W)ZZO,

(u— w)(—gw) + >

we obtain
S/Z

J, - J; >
2 = W) Lﬂ{u=0} [\/1 + 5?1 +s%+1)
>0 by (3.15), (3.16)

—(I—X)]

(provided M is chosen large enough and 1 — 6 is chosen small enough, depend-
ing on A) which is a contradiction to (3.17).

In order to carry out the preceding argument rigorously, we approximate u
first by (u — €;)* and then by mollifiers v;,x = (4 — €)* * 7« in a neighborhood
of £. Note that

[oV1+1D@ - ) P < [ N1+ |DuP?

and

L:\/l + |va,k|2“’I2\/1 + |Du — ) |?
if

[eVT+ D@ -e)* =0

(which we may assume to be the case, by slightly changing the radii of I).
Since also

Iy, v > 03 < Itu>0)

if k is large enough (depending on ¢;), we may choose a sequence u; = vj, k()
such that

Iyi>0 < Iy >0} (3.21)
and
fzx/l + [Duy? < jgx/l + |Dul* +1;,  n;—0. (3.22)

Setting w; = max(s, «;) and observing that w; = u; on dS, we can proceed as
before (but this time rigorously) to establish that

SIZ

J(u~)—J(w-)>j [
BT ) snt-0 VT + 521 457 + 1)
;cj Iu-oy, ©>0. (3.23)
z

-1-NM|2
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On the other hand, by (3.21), (3.22),

Jr(u) > lim sup Jx(w))

J o
and by the lower semicontinuity of the perimeter

J=(w) < lim inf Je(w)).

jmeo
Thus, taking j— co in (3.23) we find that
Je(u) — Je(w) > 0, (3.29)

a contradiction to (3.17). This completes the proof of the Lipschitz continuity
by method (i).

Method (ii). Here we work directly with the blow up limit U. First we
must establish that the subgraph Ey of U is a minimizer. The proof is similar
to the proof of [2; Lemma 3.3] which asserts that the blow up limit of u, with
respect to B,,,(x™) is a minimizer. However, in that lemma it is given that
|Vum| < C, which is not the case here. In our case one can easily show that
the perimeter of the subgraphs of u, and of v + (1 — )(um — uo) are uniformly
small outside the set {n =1} and then proceed as in [2], using the lower
semicontinuity of the perimeter.

Suppose now that Ey lies in {x1 < w(x2, ..., Xs)}. Since w is analytic, the
set SN{x,+1 >0} is regular and we can therefore repeat the proof of (3.24)
working directly with the set S and with the set 75, the subgraph of s (where
s is now a radial solution of the minimal surface equation). The calculations
are in fact simpler as well as rigorous (i.e., there is no need to justify the for-
mal calculations by approximation).

The blow up limit £y may have, however, another portion E> in {x; > w}
(we denote the portion in {x; < w} by E;). By what was said in the preceding
paragraph, we have, analogously to (3.24),

Je(E\UTs) < Je(EY). (3.25)

In order to derive a contradiction to the minimality of the set Ey it suffices
to show that

Je(E1UE>UTy) < Jo(E1UER). -~
But this follows from the well known inequality

Per(E>UT;) < Per(E») + Per(Ty).
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4. Regularity of the free boundary

Let Q' be a subdomain of Q and let M be a positive number larger than the
Lipschitz coefficient of u in Q'. Define

S(N1+t-1 if 0<1<M,
F) = — t— M)>?
() \/T+t-1+6%—([—-—3\4) if t>M,

if € is positive then the function f(p) = F(| p|2) satisfies, for some 8 > 0 and
all peR", £eR",

n ()
2 S < 1 2,
BlE| i,j2=1_—apiapj B &

BlpI> <folpdp, | f0)| <B7 ' P,
Blp|* <fp) < B~ pl% 4.1)

and these are precisely the conditions which are needed for the results in [2].
Consider the functional

J'(v) = J F(|Vv|®) dx + j <g v? — ;w> dx + j (. =MNlps>epdx
@ o' \2 Q'

and the admissible class
Ko = {veH"*@),v>0,v=u on 3Q}.
Noting that
N1+ [P F(Vu]?) if veKa,
N1+ [Vu? = F(Vu]>) in @,
it is clear that
J'(w) < J'(v) vv e Kq'. 4.2)

Set

P(x,v) =20v% — p. (4.3)

N |09

For any ball B = By(xo) in ', let v be the solution of

—divfp(Dv) + Py(x,v) =0 in B, v=u on 0B,
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where f(p) = F(| p|. Since P, = gv, we can apply the maximum principle to
conclude that v > 0. It follows that v (when extended by u into @'\ B) is in
Kg'.

Using the above remark we can now extend all the results of [2] to the pre-
sent problem (4.2). (Note that in [2] f satisfies the conditions in (4.1) and
P = 0; see also [5] where F(p) = |p| and P # 0). In particular, the following
theorems are valid:

Theorem 4.1. If n =2 then (i) if \e CX“ then the free boundary is in
Ck+12 (i) if N is analytic then the free boundary is analytic.

Theorem 4.2. Let 3 < n <6 and let D be a domain with D C Q. There
exist positive constants a, 3, go, 7, C such that for any free boundary point
x° in D the following is true:

If in some coordinate system

u(x) =0 in By(x0)N {xn — x5 > 0p} (4.4)
where x° = (x0, ..., x0), 0 < 00, v < 7006%%, then d{u > 0} N B, 4(x0) has the
form xn = g(x') (x' = (X1, ...,Xn_1)) With ge C"* and

xl _ fl [+3

|Dg(x") — Dg(x")| < C‘

Further, ge CK* 27 if \e C*" and g is analytic if \ is analytic.

The condition (4.4) is called the flatness condition. In general, not assuming
flatness, one can assert for the set S of singularities of the free boundary that
H""1(S) = 0.

5. Applications

Consider a capillary drop on a horizontal inhomogeneous plane Qp = R"; the
contact angle 6(x) is non-constant in general. To study this problem we intro-
duce the functional

Jo(G) = [y, IDda] + [, 8%+ 166 = [,0 M6 + e V) (5.1)
where Qo = Qo X (0, ©), A\ = cos b, Ve = H""(G) and

1
——(=V) i
Fl) = 6O(t ) if <V

0 if t>V  (e0>0)
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where V'is prescribed positive number (the volume of the drop). Caffarelli and
Spruck [4] proved that there exists a set E C Qp such that

Jo(E) = minJ(G), G C Qo; (5.2)
G

furthermore, E is a bounded set and
Ve=V

provided e is small enough. (Notice that since Qo is unbounded, Theorem 2.1
is not applicable to this situation.) As in §2, E is a subgraph of a function
Xn+1 = u(x) with support S, say.

We may consider £ as a minimizer in a smaller class Kq:

GeKg if GCQx][0,o) and
G coincides with 92 x {0} on 9Q X [0, =), (5.3)

where Q is any bounded domain which contains the set S; the integral faQo in
(5.1) is replaced by fong,, =0}

Because of the presence of the term f.,(V), we cannot apply the results of
§§2-4 directly to the present problem. However, going over the various
arguments we discover that all the results remain valid with some modifica-
tions, as we shall now explain.

The fact that oE = dEN {Xxn+1 > 0} is in C*>** can be established by the
method of Massari [13] (see also [12] for regularity of doE when the volume
constraint is imposed as a side condition); the analyticity of doE follows from
the existence of multipliers (see [6] [9]). We can now establish the continuity
of u(x) as before.

In any open set S C {u > 0} there exists a point xs such that the tangent to
JF at (xs, u(xs)) is not vertical; thus u(x) is analytic in some ball Bs with center
Xs.

Take a smooth nonnegative function us(x) with support in Bs such that
fus(x)dx = 1. For any { e Ci(Bs) and for any real €, |e| small enough, the
function u + €{ — e(j{)us is an admissible function having the same volume
V as u. From the inequality

Jeo<u + el — E(Jf’)us) 2= Jeo(4)

we then obtain

Vu- V¢ >
Lt - dx=0 5.4
LS < Tt vl gu§ — ps§ | dx (5.4
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where

j < Vil - Viis + guu >dx
us = —_— s .
Bs \W1 + |Vu|?

Taking u + eus — eus — eus as an admissible function with S’ another open
set with its corresponding us and ugs’, and e any small real number, we find that
ps' = ps. Further from J,(u + eus) = Jeo(u) (e > 0) we find that us > 0. Thus

p = ps is independent of S, and p > 0. 5.5)
From (5.4), (5.5) we deduce that
Lu—gu= —p in Bs. (5.6)

By using local coordinates we can actually obtain a «parametric» form of
(5.6) valid throughout doE, whereby g, u are to be replaced by g, i (cf. (3.2));
this however will not be needed.

We shall now extend Lemma 3.2. Take any point X° = (x°, u(x%) with
u(x®) > 0 and let Bs(x°) be any ball such that u(x) > 0 if x € Bs(x°). We shall
prove that u is a smooth solution of

Lu—gu=—p in Bsx°. 5.7
Introducing the analytic solution w of

LEw—gw=—p in Bs(x%,
w=u on 0dBsx°, (5.8

it suffices to show that w = u. Proceeding as in the proof of Lemma 3.2, we
perform, at the same point in the same argument as before an orthogonal
transformation (¥, X,+1) = 7(x,Xn+1)- The surfaces xn.1 = w(x) and
Xn+1 = U(x) become X, +1 = W(X) and X, +1 = U(¥) respectively, ((X,Xr+1) =
= (0, 0) corresponds to point (x, X, +1) = (X, #(X))) and it remains to show that
the analytic functions W, U in some ball B,(O) with center O = (0, 0) satisfy

LW - gW = —ux), (5.9
LU-gU= —ji(® (5.10)

where f, £ are given by (3.2).

By the manner by which the transformation 7 changes the functional J (see
the paragraph containing (3.2)) it is clear how the corresponding Euler equa-
tion changes, namely, (5.8) changes into (5.9). Similarly by choosing S a small
ball about X, (5.6) yields

LU -gU= —ux)
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in a small ball B5(%s) contained in B,(O); by analytic continuation it then
follows that (5.10) holds throughout B,(O).

Having proved (5.9), (5.10), we can now complete the proof of Lemma 3.2
as before.

We next proceed to establish the Lipschitz continuity of u, as in §2. If we
use Method (i) then the proof is the same since the terms f.,(¥V£) cancel out
when we compare J,(#) with J.,(w). On the other hand, if we use Method (ii),
then f.,(#) must be replaced by

. t
ﬂo(t) = lim f50<;7[ + Ve — VEﬂBpm(Xm)>-

m— oo m

Having proved Lipschitz continuity in compact subsets of 2, we next
trucate V1 + ¢ as in §4 and consider the functional

Jéo(v)=j F(IVv|2)dx+j gvzdx+j (1 = Nlp>qdx + foo(Vo)  (5.11)
Q Q Q

where
Vo= H" "1 {(X,Xn41);0 < Xns1 < 0(), xeQ}.

and proceed as in [2].

The proof of non-degeneracy remains the same and so do all the results of
[2]. However, in checking the various details one must pay attention to the
term feo(V2). If Vy = Vi then fo(Vy) = feo(Vy) and these two terms cancel out.
If however V, < V, then

Jeo(Vo) = feo(Vi) + OV — V3). (5.12)

This causes some changes in the proofs, usually trivial ones. The only slightly
significant difference occurs in Theorem 4.3 of [2] where one takes v = u —
— min(u, €¢). The error in (5.12) must now be controlled by o(r?). We recall

that
j ¢= 0<p2/log 8)
Bp r

2
Vi—Vo| <C|-2— +72|e, and e=Cr;

so that
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taking p = r® with 6 < 1, 1 — 4 small, we get

1 - C
= co(Vi) = feo(V0)| < 3 for some g > 0.

We can now proceed as in [2] and obtain the extensions of Theorem 4.3,
namely,

1 1
—ZJ (V)2 — |Vu|)* < C/log=
B.N{u >0} r
where
1
O*)? = X 1.

The rest of the proof of theorems 4.1, 4.2 is the same as in [2]. We can
therefore state, for n = 2:

Theorem 5.1. The free boundary of the sessile drop problem is in C¥+1:¢
if \e C*®, and it is analytic if \ is analytic.

Remark 5.1. Consider the minimization problem for the functional
Qo CR", Qo= Qo X (0, o))

Jol(G) = on |Doc| + jQOngw 196 —
B jﬂox{o} AbG — janox(o,w) XQSG + feol G) (5.13)

with G C Qo, N = cos 8, A = cos f. This functional is similar to (5.1); the addi-
tional term j \éc represents the wetting energy on the lateral boundary of the
tube Qo. The minimization problem models capillary fluid in the tube Qo with
a given volume V. If V is small enough then a portion of the bottom will
remain dry. Theorem 5.1 immediately extends to the present case (with n = 2)
showing that the boundary of the dry portion of the bottom is analytic.

The results of this paper also extend to functionals in which ; gv?is replaced
by more general functions P(x, v), provided P, > 0.
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