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Introduction

The purpose of this paper, which is a continuation of [2, 3], is to prove further
results about arithmetic modular forms and functions. In particular we shall
demonstrate here a g-expansion principle which will be useful in proving a
reciprocity law for special values of arithmetic Hilbert modular functions, of
which the classical results on complex multiplication are a special case. The
main feature of our treatment is, perhaps, its independence of the theory of
abelian varieties. In that respect these developments may be considered as an
extension of Hecke’s thesis [13] and Habilitationsschrift [14]. We should also
mention a contribution of Sugawara [34]. More recently Karel has shown how
to apply such ideas to the classical case of elliptic modular functions in an
adelic setting [16].

To date the furthest reaching results in this area, beyond those in the
classical case, belong to a long list of distinguished contributors who have
freely used the known facts about elliptic functions, elliptic curves, and
abelian varieties, notably Hasse [11,12], Deuring [10], Shimura-Taniyama
[32], Shimura [28, 29, 30] (and many others), Taniyama [35], Shih [33],
Miyake [25], Milne-Shih [22, 23, 24], Deligne [8, 9], Borovoi [7], and Milne
[21]. The last mentioned work, which uses the preceding ones together with
results of Kazhdan [17, 18], contains very general results. It has recently been
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complemented by a work of Milne, still in unpublished form, written to put
the results of [18] on a firmer basis.

However, our purpose is to develop a theory independent of abelian
varieties based on the properties of the modular functions themselves and
thereby also, it is hoped, to learn more about these functions and their own
intrinsic arithmetic properties. The inspiration for this approach comes from
the paper Der Hilbertsche Klassenkérper eines imagindrquadratischen
Zahlkdrpers, Math. Zeitschr. 64 (1956), by M. Eichler, and it is to Prof.
Eichler that we wish to dedicate this article. In it we have relied most heavily
on the work of Hecke, the second paper of Hasse, the papers [27, 28] of
Shimura (for facts about CM-fields and reduction of algebraic varieties
modulo a prime), Deligne [8] (especially for topological properties of the
adelic double coset space), and Karel [16] (as will be explained later). We hope
these efforts, to be continued in subsequent publications, may be of some in-
terest to mathematicians in this field.

1. The Adelic Space

In this paper we generally follow the notation and conventions of [3]. For con-
venience we give some of the most frequently used notation. Let k be a totally
real number field with ring of integers o and [k: Q] = n > 1, let A resp. A(k)
denote the adele rings of Q resp. of k, and let I(k) be the ideles or group of
units of A(k), each supplied with its usual topology. The subscripts « and f
will denote the projections of an adelic object to its archimedean and non-
archimedean components respectively and the subscript + will indicate adelic
objects with non-negative archimedean components. Z resp. 5 will be the max-
imal compact subrings of Ay and of A(k)s respectively. We denote by 9 the
upper half complex plane Imz > 0, by $" its n-th Cartesian power, and by i.e.,
the point (i,...,) e d".

Moreover, G’ will denote the algebraic group GL, defined over £ and G will
be the group Ri,@G’ defined over Q. There is a canonical isomorphism ¢ of
G'(A(k)) onto G(A) and of G'(k) onto G(Q) such that if the integral structures
on G’ and on G are those associated to G'(3) = GL2(5) and to G(Z) (with
respect to suitable bases of the vector spaces on which G’ and G act), then
®(G'(3)) = G(2) (cf. [5]).

Z' is the center of G’ and Z = R,qZ’, that of G, and G+ (R)/Z(R) acts effec-
tively on ". If K« is the isotropy group of i.e in G+ (R) and K& = Ko NG (R),
one has

G+(A) = G4 (R)G(Ay) = P, (A)KSG(2) (1
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(the corrected form of §1.2(2) of [3]), where P = Rx,@P’ and P’ is the group
of upper triangular matrices in G'.

Let K be an open compact subgroup of G(Z) and denote by I" or I'(K) the
arithmetic subgroup G(Q)N'G.(R)-K of G.(Q), whose projection into
G+ (R) we also denote by I' or I'(K).

The space of left cosets of KKw in G4+ (A), Xk = G+ (A)/ KK, is the union
of countably many connected components, each one of the form

Xo = 0G4+ (R)K/KKe, w € G(Ay), )

X, being complex analytically isomorphic to $". The group G+ (Q) permutes
these components under left translation in G+ (A) and has finitely many orbits
among them, the stabilizer in G4+ (Q) of X, being I', = I'(°K). If we let
Ck(w) = G+ (Q)wG+ (R)K, then V, = I',\X, may be identified with

G+ (Q\Ck(w)/KKeos

and the collection of double cosets Cik(w) or components V,, is in natural one-
to-one correspondence with the set of elements of the group (cf. [8], Variante
2.5)

g+ [K] = I (k)/k * ko + det(K) = I(k)y/k/8et(IK),

where ko = @ kv, kv being the completion of k at the archimedean place
v, and det(K) is the group of det(k), k € K.
Define the double coset space Vi = G+ (Q)\Xk; this is a union

Vle = UwEﬂ Vwa Vw = Pw\Xw = Pw\t@n’ (3)

where Q is a finite set of indexing representatives of the orbits of G (Q)
among the components X,,. (Cf. [3].)

In this paper we consider properties of Vi in connection with arithmetic
automorphic forms and functions on G (A) with respect to K and study the
arithmetic properties of such functions by means of arithmetically defined
Eisenstein series on the components X,,. We follow the ideas and program of
[3] and [16], to which must be added a certain g-expansion principle and other
ideas related to [13, 14] and [11, 12], as well as properties of CM-types to be
found in [32, 28].

We generally adhere to the notation @(K), @(K, w), etc., of §1 of [3] for
the graded algebra of modular forms with respect to K, the forms of weight
w, etc.
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2. Special Points and Idelic Action

We follow here the pattern of §§1.2-1.3 of [16], taking account of differences
needed to accomodate the more general situation discussed in [3]. Therefore our
discussion will be abbreviated by making suitable references to [3] and [16].

The group G% (k) acts on ©" in a manner analogous to that in which
GL>+(Q) acts on $ by linear fractional transformations. If £ = (o1, ..., 0n)
is the set of isomorphisms of k onto subfields of R, if S = (‘f f) € G (k), and
@ =@,...,2,)€ ", then S(z) = (S°" - z1,...,8°" - 2,), where

8% - zj = (az; + B/ (y"zj + 8%).

We denote by K a purely imaginary quadratic extension of k. Then S =
= (Ef E) € G'(k) acts on K — k by linear fractional transformations, S- 7=
= (a7 + B)/(y7 + 6), 7€ K. Consider an imbedding

q: K = M>(k):2 X 2 matrices over k,

of K as a k-algebra such that g(1) = (§ ). By the Skolem-Noether theorem,
the representation g of K as a k-algebra is equivalent to the regular representa-
tion of K on itself and det(g(x)) = xX = Nk, (x) > 0. As a subgroup of G (k),
q(K ™) has precisely two fixed points 7, 7€ K — k, where 7is the complex con-
jugate of 7. Conversely, if 7€ K — k, then by taking 7, 1, as a k-basis of K
for the regular representation, we see that each 7€ K — k defines such an im-
bedding g = g, that its complex conjugate 7 defines the conjugate imbedding,
and that g(K ™) as a subgroup of G’(k) has precisely the two fixed points
7, 7. Thus we have a one-to-one correspondence between conjugate pairs of
imbeddings q of K in M>(k) and complex conjugate pairs 7, 7 of elements of
K — k.

By a lifting of X, or ‘‘type’’ for the given CM-field K/k, we mean a set
£ = & of extensions (51, . .., d,) of T to a set of n imbeddings of K into C
such that 6jlk =0j, j=1,...,n. If reK—k, there is a unique lifting

£ = £(7) defined by the requirement Im(6;(7)) > 0, j = 1, ..., n. Conversely,
given any lifting £, define the set Kz = {re K — k| Z(7) = £}.
If z=(71,...,7) € " is the fixed point of a non-central element of

G4 (k) = G+(Q), then [3] there is a uniquely determined purely imaginary
quadratic extension K = K; of k and re K — k such that if £(7) = (61, 62,
... ), then 7= 7%, j=1,...,n. Moreover, from our previous discussion
it follows that there is an imbedding g = g, of K into M>(k) such that z = (7)
is the unique fixed point of g(K*) C G4 (k) in $". In fact, the isotropy
subgroup of (7) in G’ (k) has to be a torus; since g(K) is a maximal com-
mutative subalgebra of M;(k), it follows that g(K *) is the full isotropy group
of () in G+ (k).
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In the future we view any point 7€ K — k as being imbedded into $" by
means of £(7), and write () for its image there. Having fixed the CM-
extension K, we refer to the set Kz of points (7) for 7€ K — k as the set of
special points of " relative to the extension K/k.

If v is a fractional ideal of k and 7€ K — k, then Sy,, = v7 + 0 is an o-
module in K of rank two. Let ® = Ry(7) be its order, R = {xe K |x-S,, C
C S, +}, s0 that $y, - is a proper R-ideal in K. Let Z,(R) = {re K — k| Ro(7) =
=®]}, and Zo(R, L) = (1€ Eo(®R) | E() = £}.

Returning to the double coset decomposition

G+(A) = UQ G+ (QuG+ (R)K “

associated to the decomposition of the double coset space

Vik = G+ (Q\G+(A)/ KK = UQ Ve )
into its component varieties as in the preceding section, we recall from [3] that
the double coset representatives w may be chosen in diagonal form
W= (3’/ ‘1’), o' €I(k)y, lety = id(w’) !, and v, = v, X, = X». In particular
when K= G(2), let® =Qand w=6€6, 6= (§ 9), v=id(#) ' and &' =
= {§'|#€©6}. Then

G(A)r = 0L6Je G+(QHG(2). ©6)

For a fixed order R in K such that ® contains the ring of integers of k, and
for any 0 € ©, we define the set of special points on X, to be the set

Eo(R) = (60 - (1) €0G+(R)G(2)/KG(Z) | T € Brp(R)}. )

In other words, identifying " with Xy = 6 - ", Es(®R) is the set of special
points of " coming from elements 7 € Ey,(®) C K — k. Then define Zj, »(®R)
to be the subset of g e G, (R) such that g(i.e.) € Z¢(®R) and define the sets

Fa(®) = G+ (QE=(R)G(Z), where Eo(R)= 0U9 Eo,(®R) - 0.

We also let
Eo(®R,E) = (0 (1) eEo(®R) | E(r) = £}

and define Z4(®, £) and E~(®R, £) analogously. If K is an open compact
subgroup of G(Z), let Zx(®) be the image, via the canonical projection to
double cosets, of E4(®R) in V. In particular, if n is an integral ideal in o and
if IK = K(n) is the principal congruence subgroup of those k € G'(3) = G(Z) C
C M,(3) such that k — I, e n - Mx(3) (where I, = (é ‘1))), denote Vi by Vi,
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and Zik(®R) by En(R). Let WUn(®R) be the principal congruence subgroup mod
n of the group U(R) = R ™ of unit ideles, where ® is the closure of ® in
A(K)y, and let Cy(®R) be the group

Ca(®) = AKK) /K™ - AKK) - Un(R) @®)

of ray classes modulo n of proper ®-ideals. If 6 € © and 7€ Z,,(®R), and if g,
is the imbedding associated to 7 of K into M>(k), then we have

2:(Un(R)NKD™) C *K(w). ®

Let Ca(®) be the group of classes of proper fractional ideals of ® in K. Sup-
pose v €TI's = T'(°G(2)) and 7€ Ey,(®R), so that A, = o7 + o is a proper frac-
tional ®-ideal of K and so that if (as in [2]) we put Ry = (3 ‘.3_1), then
vy=(¢ §)eR. Then if 7'=v-7, a direct calculation shows that
A = o7 + 0= (cr + d) 'Y, therefore 7' also belongs to Ey,(R). Conse-
quently the ®R-ideal class of v + o is constant along the orbits of I'p, and
similarly if %, ~ %, then 7' € Ry* - 7 (linear fractional operation on the right-
hand side), so that I's has only finitely many orbits in ZE,,(®).
Let g€ G+ (A) and 7 = g(i.e). Denote by j(g) the double coset

G+ (Q)gG+(RG2)

to which g belongs. Let U be a proper fractional ®R-ideal of K. Since ¥ is
proper and its order contains o, ¥ is at every finite place ‘§ of K locally prin-
cipal as an Rg-ideal; hence, there is a finite idele o e I(K)r such that
A = KNAK)wa®. If ¥ is the p-ideal generated by A, as in [3], let
N = Ngi3l. Suppose g € Ea(®R) and that g = £0, £ € Ep,»(R), § €O, and let
(1) = &(@i.e) and A, = v7 + o with v = id(det(d)) " '. Let v G+ (Q) and write
g’ = vg. Then AU, is in the same proper R-ideal class as A,, = v171 + o with
v1 = pp, and 71 € Ey,(R) for some 6; € O, with v; in the same narrow ideal class
as v - N, and (71) = &1(i.e) for some &1 € Fo,, (R).

Lemma 1. With the notation just introduced, we may choose (11) = £1(i.€)
such that £(m1) = £(7), and then we have j(0:£1) = j(yq-(a™1)0%).

Proor. Of course it suffices to prove that
J(6:1£1) = j(g-(c™")09).

Let g = g.. If p is a prime ideal of o, let Ry, = ® ®,0, and define an R,-
module B, by By = ap(vp7 + 0p). Clearly (A,), = By for every prime ideal p
of o, thus B = AV, is the proper fractional R-ideal with localization B, for
every p, and N, as defined above, is in the same narrow ideal class as v; and



ArrTHMETIC HILBERT MODULAR FuncTions II 91

p- N. Then B is in the same proper R-ideal class as U, = v171 + 0, With
01 = e, and 71 € Ey,(R) for some §; € ©. Then by the calculations of §3.1 of
[3], we have

o1 = (A(r1, 1)/A(7, 1)) - NY - v. (10)

Since A(7, 1) = 2Im(7), this says the principal fractional ideals (Im(7)) and
(Im(71)) of k are in the same narrow ideal class, and therefore there exists a
unit n € o such that

E@m) = £@),

or, if we replace 7; by 71, which does not change the ideal v;, we may assume
that £(71) = £(7). Thus we may write

B =v1B + oB’,

with £(B/B’) = £(r1) = £(1). Therefore there exists P = (¢ §) e G (k) such

that
()-(2)

For each prime p of o, we have
By = v1pB + 0,B’
and also
By = VpapT + Opop;

therefore, there exists wy € 0, G'(0p)01p. say wp = Opypfip. such that

ol )= ()

pr<T> = (a;,-r) for each prime p.
1 Qyp

Then g(a), = w,P for each prime p. Therefore, g(oe™ ")y = P 0157y 65 !, or
since a € I(K)y,

i.e., such that

g H=Pilov8"', yeGQ),
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hence g(a™")0¢ = P7 '01v£ = P~ Potf1y. Now by (), Pwof(i.€) = £&1(i.€), so
that
J(g(a™1)08) = j(161) = j(6:1£1).

This proves the lemma. (Cf. [16: §1.2.4]).

Now Zo(R) = Upeo Zo,«(R) = Us Zo(®R). Then, following Karel [16], we
may introduce an action of the group I(K)r on the set ZEa(R) as follows:
Define a map

F: I(K)r x G+(Q) X E«(®) X G(Z) > G+(A) (11)

by F(y, \, £0, ) = Ngzi.e)(y ™ )E0w, where y € I(K )5, A € G+ (Q), £ € Eo,»(®R), and
w € G(Z). We first verify that F(y, \, £6, ) depends only on y and on the product
Abw € ZA(R). Suppose that Aéfw = N'E60'«w’ with analogous meanings for the
primed elements. By looking at the non-archimedean components, we see that

det(00' ~ ') € det(G'(3))det(G% (k)p),

so that 6 and @’ represent the same double coset in (6) and therefore 6 = ¢'.
Consequently

AN = £ Yoo "0 eT(CG2)),

the arithmetic group acting on Xj. Put v = N~ I\. Then & = yf so that
0&@i.e) = Oy-£'(i.e). The representation g,: K <= Ma(k) is defined by

qT(b)<;> - (l;’), reK—k,  beKk, (12)

and g, may be extended to a representation of A(K) into M>(A(k)), in par-
ticular to a representation of C=K@®@ R into M>(R). Therefore, if
S=(¢ %)eGLi (k)and S- 7= (ar + b)(ct + d)™', re K — k, we have

gs--=Sq.S” . (13)
Applying this with S = v we obtain
Ngra.o(r ™ DEOW =Ny 'gra.o(y ™ Dyetbe’ = My 'grao(y ™ DEb’ =
= Mys .0y~ D7 1050 = Mgra.o(r ™ DEYF 100’ = Ngea.o(y ™ Ebw,

since v/ ! = fww’ ~ 107!, This says, as claimed, that F(», \, £, ) depends only
on y and on the product ANfw.

We can also see that F(y, \, £, w) belongs to Ea(®R). For this it suffices to
prove that

Gy~ DOE € Ea(®) (14)
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(noting that 6¢ = £0), and this is immediate from Lemma 1 since (in the nota-
tion of that lemma) 6, £; € Ea(®R).
Thus one has, in analogy with §1.2.5 of [16], a map

1K)y x Ea(®) = Ea(®), 15)

written as (¥, £) = y«£ for y € I(K)y, £ € Ea(R). One extends this to an action
of I(K) by defining the action of /(K ) to be trivial (which is appropriate since
Gii.e)e). £(i.€) = &(i.e) for every a € I(K)«). In this way one obtains an action
of the group I(K)/I(K)~ - K™ of idele classes, modulo the connected compo-
nent of the identity, on G+ (Q)Za(®)/K» and hence on the image of Za(®R)
in each of the double coset spaces Vi in (5). Now Vi = U,ea V, and it is easy
to verify that

det(gei.o(y ")) = Nea(y ™Y,  yelK). (16)

Hence, £ — y* £ moves a special point of the component X, to one of X,
where o € Q is defined uniquely by

det(w’) € N(y ~ Ndet(w)(k )rdet(K). a7

Also, for x € Un(R), g-(x) belongs to the group of units of Ry, which are
= lmodn, i.e., g-(x) € “IK(n), where 7 belongs to " and ® is the order of
70 + 0, and v = id.(det(w) ). Therefore if 7 = £(i.e) and ¢ = Néwn represents
a point of a component V,, of Vi, where K = IK(n), A € G+ (Q), and € K(n),
then g.(x~') = “»’ for some '€ K(n) and therefore x* ¢ = Ag.(x ™ Déwny =
= Awn', which represents the same point of Vi. This means that, as a
subgroup of I(K), the principal congruence subgroup Un(®) of I(K)s acts
trivially on the projection Z,(®R) of Za(®R) into V;. In other words, the ray
class group

Cu(®R) = Ru(K, ®R) = I(K)/I(K ) - K™ Un(R)

of K with respect to ® modulo n acts on En(®R). It is known already from
[3:83.1] that

E((R) = EI(CR) = Un Eu((R)/F;

is finite, where v runs over a set of representatives of narrow ideal classes of
k. Since the canonical projection of ¥V, onto ¥V = V; has only finite fibers, it
follows that Z,(®) is a finite set in which Rn(K, ®), of course, has only finite-
ly many orbits.

At the same time, the relation £(71) = £(7) from Lemma 1 implies that if
£eEZa(®R, L) and y € I[(K), then y* £ € Ea(®R, £). Thus, the action of I(K) on
Za(®) is also an action of I(K) on Ea(®, £) for each lifting £.
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The action described in [16], as well as that defined here, of the idele group
on the special points of the adelic double coset space, is, of course, closely
related to the action given in [31] of the idele group on the special values of
arithmetic modular functions.

3. Conjugation

We now formulate a generalization of results of §1.3 of [16] to cover our present
situation. The proofs, which parallel closely those of loc. cit., will be mostly
omitted. The purpose of these results is to effect, for each x = £6 € E-(R),
an extension of the k-algebra homomorphism g;g.) to an isomorphism of a
K-algebra

K=K+ K, 2=1, w=a foral aek,

with M, (k).

Let x = £0 € Ew, o(®R) and z = &(i.e). Then z = (+°, ..., 7°7) for some 7€ K
where £(7) = (61, . . ., 6n). For a € K, g(a) = g-(a) is defined by (12) of §2. We
define

-1 7+7 -1 x ,
q(a)=< 0 1 >=< 0 1>eG-(k),

where x = 2Rer ek and G- (k) = {M e G'(k) | det(M) < 0}. Then using (12)
we get

q(vg(a) = q(@q(v). 18)

Hence g, so extended to K, becomes a faithful k-algebra isomorphism of K
with M>(k). Then if x € Ma(k) satisfies g(a)x = xq(@) for all a € K it follows
that xq(1) centralizes g(K') C M>(k) and therefore xq(1) = q(b) for some b € K,
i.e., x = q(bu).

We identify « with the generator of Gal(K/k) and extend the action of I(K)
on

G+(Q\G+(A)/ K,

defined in §2, to an action of the semi-direct product I(K)~ = I(K) x Gal(K/
/k) defined by the exact sequence

{1} > I(K) = I(K)~ = Gal(K/k) = {1},
in the following manner. If x = £6 as above, and if w e G(Z) = G'(9), let

¥ (G4 (Q)xwKe) = G - (Q)g+(1)wXwKeo,
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where G_(Q) = G (k). It is easy to verify, just as in loc. cit., that this defini-
tion is independent of the choice of representative xw of the given double coset
mod G+ (Q)\/Kx; that if v is such a double coset, then

b*i*v=1*h*yp, belK);

that for each prime ideal p of the ring of integers o of k and 6 € ©, there exists
8, € °G’(o0p) such that 8,q(a)d; ! = (@) for all a € K, = K ® «ky; and then, in
parallel to the proof of Lemma 1.3.2 of Joc. cit., that

¥ (G+ (Q\EA(R)/Ks) = G+ (Q\EA(R)/ K.

In this way, one constructs an action of (K)~ on the space of double cosets
G, (Q\EA(R)/Kx. As in Section 2, this action commutes with right transla-
tion by elements of G(Z) and provides an action of

Ca(R)™ = Rua(K, R)™ = Ru(K, R)xGal(K/k)

on Z,(®R). (Note that complex conjugation permutes the ray classes modulo
the ideal n of o.)

At the same time, using the relations analogous to those described in the
proof of Lemma 1.3.2 of [16], one sees that the action of 7/(K)~ on the space
of double cosets preserves each of the sets

G+ (Q\Ea(®R, £)/Ke

and provides an action of Cy(®)~ on En(®, £) for each lifting £.

4. Modular Forms and Eisenstein Series

4.1. If K is an open compact subgroup of G(Ay), we form the graded
algebra [3: §1.2]

@(”() = @.- eZ,sza(le W)

of modular forms with respect to K on G+ (A). For given w, each element ¢
of @(K, w) induces on each component X,(=9") a holomorphic modular
form of weight w with respect to the arithmetic group I', and for the automor-
phy factor

J(g,2)" = jac(g, 2)", geG.(R), ze 9",

where jac denotes the functional determinant. In general we adopt the nota-
tion of §1 of [3] for the graded algebras of modular forms, the graded k-
subalgebras of those which are k-arithmetic, the graded algebra of
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homogeneous quotients of modular forms, and, in particular, for the ring of
modular functions, respectively arithmetic modular functions, with respect to
an open compact subgroup of G(Ay), or field of modular functions with
respect to an arithmetic group acting on $". As remarked in loc. cit., there
is a standard procedure for lifting a modular form or function with respect
toI', from " (= X,) to one on G (A) supported on the double coset Ck(w);
we denote this lifting map by A,. There is also a standard process, given by
a functor \, for lowering a modular form ¢ on G+ (A) of weight w with respect
to K to a family {f,}oco of modular forms of weight w, where f, is a
modular form on $" with respect to T',.

4.2, We now introduce Eisenstein series, following the constructions of
[2, 3, 16], and record some basic facts about their Fourier expansions and
behavior as transformed by elements of the Galois group & = Gal(Q.»/Q).

The Eisenstein series considered in [3] are constructed as follows: Let p and
b be fractional ideals of k representing respectively a narrow ideal class & and
an ideal class & of k. Let n C o be an integral non-zero ideal of o, and denote
by p; and p; respectively elements of by and of b such that

g.c.d.(o” " "p1, 57 o2, m) = (1).
Leta; = vb, az = b. One forms the series

(N(aia2))”

NGz + £ ©

Gw(zZ; p1; p2; b5 0; 1) = Lfe)

(Ma1a2))”

Leo+® NEz + B (e*)

Gii(z; p15 p2; b5 05 11) =
where in the first series the sum is over & = p;modna;, i = 1,2, modulo
multiplication of the pair ({1, &) by a totally positive unit = 1 modn, and
(%1, &) # (0, 0), while the conditions in the second summation are all these
conditions plus the condition

(06, 86) =, *)

where (,) stands for g.c.d. Letq = h(n) be the order of the group of ray
classes modn in £, let Cy, ..., C; be the distinct ray classes modn, and for
each/=1,...,q, letr; be an integral ideal in C; and prime to n, and x; be an
integer of k such that »; = 0 (mod r;) and »; = 1(mod n). Then the two sets of
Eisenstein series

{Gw(z; x1p1, mip2s brsosn) [ I=1,...,q) (e1)
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and
{G¥(z; xap1, mip2; brzosm) [ =1, ..., 4} (er*)

are linearly independent and span the same vector-space of complex-valued
functions on §". Each G, is a linear combination of the function G, and vice
versa, and the coefficients in these linear combinations are given explicitly as
special values of certain Dirichlet series (cf. [19], §2.2) denoted 6™ and 6.
Moreover, if one defines

Ey = (=2x)~""|Vd| " 'Gu,
then E,, has a Fourier expansion of the form

E\(z; p1, p2; b5 0; 1) = bo(o1, p2; b, 0, 1) +

szw—l
0 sgn(NED)NK2 ~ Ye(upr)e(Erpi2),
(@ — DN S ety - ETVEDNE oot
(63))] E1p>0

where (£1)n denotes that the summation over £; is, again, modulo multiplica-
tion by totally positive units = 1 modn, and e() = e*™ 7O, All the Fourier
coefficients in this expansion lie in Qngm. Moreover, the coefficients of the
linear combinations by means of wich the Ej,s are expressed in terms of the
G¥'s, or vice versa, all lie in Qng), and if o € Gal(Qnwm)/Q) is such that for
every N(n)-th root of unity ¢ we have ¢’ = %, seZ, (s, N(n)) = (1), and if ¢
is applied to all the Fourier coefficients of E,, the result is

Ew(z; p1, p2; 85 0; 1) = Ew(z; p1, Sp2; b; 0; ). 19

By means of calculations based on Klingen’s paper and in principle due to
Karel, we may show that, as a consequence of (19),

G#(z; p1, p2; b; 0;1)° = Gi(z;5 ™ p1, p2; b; v; ). (20)

This equation, which will be proved later, has a convenient formal interpreta-
tion for which we now prepare.

4.3. In [2] we calculated, in the special case of arithmetic groups commen-
surable with the Hilbert modular group, the explicit form of certain Eisenstein
series considered in [15]. These Eisenstein series are associated to a quintuple
€ = (G, P,p, K, s), where G is an algebraic group, P, a parabolic subgroup,
o, a one-dimensional character of P, all defined over Q, K is an open compact
subgroup of G(Ay), and s is a function on the double coset space

P+ (Q\G(A)/G+(R)K; @1
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and these series are constructed by means of a certain function ¢¢s: G(A) — C.
In this paper we extend the calculations of [2] to a more general situation and
show how, in our case, such series are related to those in section §4.2. The
construction of the series we consider also depends on a certain function

0c:G+(A)—>C
which satisfies

dc(bg) = dc(g), g€G+(A), beP.(Q),

where P is defined in §1, and

dc(gk) = pe(g)J(k=, i.€), ke € Koo,

where J(g, z) = j(g, 2)” for some integer w > 0, and finally

de(gx) = da(g), x e G'(d),
oa(b) = |p(b)|aw), beP.(A),

where p is the rational character, defined over k, on the group P’ of §1, such
that p(ﬁ 3) = (ad™')". Then one forms the series

Es(g) = > s(v&)os(v8), (22)
P ( QNG+ (Q)3y
where s is a Q-valued function on the double coset space (21), and the series
converges uniformly absolutely on compact subsets of G+(A) as long as
w > 2. We have

G+ (A) = LeJn G+ (QuG+ (R)K

and we may letQ = © - H, where H is a set of elements n € G(Ay) such that
id.(det(n)) runs over representatives of the narrow ray classes mod n contained
in the principal narrow class of k, say n=@ 9) for neH. (Here, for
x € I(k)y, id.(x) is the ideal of k naturally associated to x.) Moreover, for each
w e, we have

G:(Q= U Pi(Qerl.,

acA(w)
T = G+ QNG+ (R)K,
G:A) = U U P.(QawG:(RK.
)

wel aeA(w

We may write

v bo .
o= <Ca d¢,> € G (k) = G+(Q),
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and let s,, . be the characteristic function of the double coset
P, (Q)awG . (R)K.

We assume K is the principal congruence subgroup G’(5)(n) of G’(6) for some
integral ideal n of k, IKK = IK(n). Then we may assume each 6 € © is of the form
(3' ‘1’), where v = id.(0" ~!) is an integral ideal prime to n. Moreover, a full
set of representatives of the cosets C occurring in

L. (k)/kX ks + Un(d) (Un(d): units = 1modn of d)

for which the ideals of C belong to the narrow principal class, may be taken
as units #’ of the maximal compact subring § of A(k)s(which are 1 at the ar-
chimedean places), and therefore each » € H may even be taken of the form

_(m O
71—01,

with ' €. We need the following
Lemma 2. Let there be given two pairs (c,d) and (c’,d') belonging to
(vb, b) and such that
g.cd.(v lc,d)=g.cd. (v 'c',d) =0,

where b is an integral ideal prime to n. Assume (c,d,n) = (¢’,d’,n) = (1) and
that ¢'=c, d'=dmodn. Then there exists M"eRy\(n) such that
det(M") =1 and (¢, d)M"” = (¢, d’) (matrix multiplication on the right).

ProoE. Let a; = by, a2 = b; these are integral ideals prime to n. We know
([3], §2.3) that there exist a,a’€as !, b, b’ €ai ! such that if

S= <a b>, S = (a b ), then det(S) = det(S’) = 1.
c d ¢ d

Clearly M = S’ 'S belongs to Ry. We have S = S'M. Since (c,d,n) = (1),
there is (by strong approximation) a non-singular matrix 7 of determinant 1
in Ry such that modulo n we have (c1, d1) = (¢, d)T = (¢*, 0), (c*,n) = (1).
Since S = S’M, we have (¢, d) = (¢, d")M and (¢1, d1) = (¢, d)T = (¢', d)YMT =
=(c',d")TM' = (c*,0)mod n, where M' = T"'MTeR,*. We have, since
c¢'=c¢, d=dmodn, (¢',d)T=(c,d)T = (c*, 0)modn, hence (c*,0)M' =
= (c*,0)modn, and since (c*,n) = 1 and det(M’) = 1, we have

1 0
M’E< , 1)modn for some ' ev.
Y
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We want M, € R, such that (c1, di)M> = (c1, d1) and

M, = <1, O> mod n.
v o1

The case d; = 0 being easily handled as a special case, we assume c;d; # 0.
The matrices of the form

o i ldi(e = 1) wek
—dilei(e—1) 2 -« ’ ’

all fix (c1, dh), i.e., satisfy the second condition. Then the first and third condi-
tions are expressed by

ci'dif*ev !, di 'cif* ev, B* en, f* = —cf 'diy mod ci 'din,

where 8* = o — 1. Since b and v are prime to n and ' €y, it follows easily
from the Chinese remainder theorem that such a 8* € k exists, hence M, satis-
fying the desired conditions also exists. Then M'M; '=(§ {)modn in R,
and we have (c',d)TM'M;'T™'=(c,d)TM; T~ ! = (c1,d)M5'T" ' =
= (c1,d))T~ ' = (c,d), while at the same time M'M5 ' € Ry(n)™, therefore
M" = TM'M; 'T"'eRy(n) and, actually, det(M”)=1. Therefore,
M" €T'y(n). This proves the lemma.

With 4 € H of the form (8' (1’), 7' €0, 7 normalizes K(n). Let w = 6y and
let &, . be the Eisenstein series & on G (A) where € = (G, P, p, K(n), Sv, ).
Since s, o is the characteristic function of

P, (Q)awG + (R)K(n),
§.,a,w is supported on the union of translates by G- (Q) on the left of
Go,n(A) = wG+ (R)K(n),

hence the corresponding holomorphic Eisenstein series E,,, o, w i supported on
the union of translates by G.(Q) on the left of

Xo = 0G4 (R)K(n)/KaK(n),

which may be identified with $" on which I',(n) = I'(°K(n)) = I'(*K(n)) acts.
If v =id.(6' 1), I'(°K(n)) = I's(n), the principal congruence subgroup of the
group I'y, defined in [2]. The calculation in [2], §5.2, applied in similar
fashion to the present case shows that if

dy btx az 1 ar 1
o= € , a1 = vb, a2 =b,
Co do a az
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and det(e) = 1 (which implies (ai lco, a3 'ds) = (1)), then

N(ara2)”
@~ le,d) = b, c =co(ian), d=dama), ¢, dyi NE1Z + £2)™
= G¥(z; Cay do; b3 03 1),

Ew,a,w(Z) = (23)

because by Lemma 2, every pair (c, d) satisfying the conditions of summation
is obtained by applying an element yeTI'y(n) to the right of (ca,do):
(¢, d) = (Cas do)y. Therefore on the component X, = ", &, . w induces a
standard congruence Eisenstein series for the congruence group I'y(n), and in-
duces the function = 0 on any component not in the left translates of X, by
G+ (Q). Hence the coefficients of the Fourier expansion of this function on
each component X, lie in the field of N(n)-th roots of unity. Therefore, for
o € Gal(Qab/Q) such that {Fay = vy, (5, N(n)) =1, we need to find the
result of applying o to all the Fourier coefficients of these expansions.

5. Galois Action and Transformation Theory

5.1. The calculations in this section are based on Klingen’s paper [19] and
were suggested by Karel’s paper [16]. We keep the notation of §4.2 and, for
the greater part where there is no conflict, also that of §3 of [19].

For each / =1, ..., h(n), let g; be an integral ideal in the ray class C;"*. In
our present notation, equation (20) on p. 186 of [19] reads (where Klingen’s
Vorzeichencharakter may be omitted since the weight is even)

h(m)

G3(z; p1,p230505m) = D) D) ”(%Gw(z,m,pz,bgz ;05 1),
=1 geC, 1N

and the Fourier coefficients of the Eisenstein series

172
T Gu(z; p1, p23 b3 03 11) = G (25 p1, P25 b5 0; 1) (24)
lie in Qny. The constant term of the series (24) is zero unless p; = 0 mod vbn,
but if this congruence holds, then necessarily (according to our original
assumptions) we have (6~ 'p2,n) = (1), and in that case, the constant term is
given as
aop1, p2; b; 0;1m) = (mi) ~*"Naiax)*AY> >, Nm)~*,
m= p2(ub), (M)

which belongs to Qnm by Klingen’s results. If o e @ = Gal(Q.»/Q) is such
that o({nay) = {Nay, then, by §2.2 of [3],

ao(p1, p2; b; v; 1)° = ao(p1, Sp2; b; v; 10).
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That is, for p€b, and (6~ p, n) = (1), one has

((Wi)—anN(ulaz)wAl/Z Z/ \ ‘;Vm—ZW)a —

m= p(nb)

= ((7i)™"N(a1a2)"AY?* >, Nm~ ™).
m = sp(nb)
(m)i

Let C be the ray class modulo n to which 6~ 'p belongs and define

ck@w,C) = > Ng~ .
geC

It is proved on p. 184 of [19] that the constant term may also be expressed by
ao(p1, p2; b; 03 1) = (mi) ~>"e(n)A*No” - £+ (2w, C),

where, of course, a slight modification is necessary in Klingen’s calculation
to take account of the fractional ideal v, and where e(n) is a rational number
depending on n and on the structure of the units group of k. Define

X(C) = (xi) ™ ""e(m)A"*No™ - £x(2w, C) =
— (7ri)_2w"N(a1 az)wAl/Z Z/ Nm—2w'
m=p(mb), (m)it

Then x(C)° = x(sC) and by [19] p. 186, line 3 from the bottom,

@ 1 if Cis the principal ray modn
2 ,cc-1< N‘2w>= . ’
tgl fil2w (2, HoNg 0 otherwise.

geCt

Here p is the ideal-theoretic Mobius function on integral ideals of k. This can
be written as

"o N —2wnal/2 -1 (7”-)2wn —2w
> (@)~ ?mAY2 . 2w, CCY) R >, w(@)Ng =
=1 geCr

_ {1 if C= H(n), the principal ray modn,
~ (0 if otherwise.

Use 6(C) to denote the last factor in large parentheses on the left hand side
of this statement. Then 6(C) belongs to Qnam) and the last equations read

h@) 1 if C= Hm)
-1 - ’
I§ X(CCHC) = {O if otherwise.

Applying ¢ € @ with s defined as above:

ha 1 if C=H@m)
-1 o _ H
Z:l X(SCCINED {0 if otherwise.
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Comparing these equations and using (21), p. 187 of [19] gives
0(Cy)° = 6(s~'C)).

According to Klingen

h(n)
Gi(z; p1, p2;b; 0511) = IZ 0(C)Gy¥ (z; p1, p2; Cib; v; ). (25)
=1

Applying o to the Fourier coefficients we get

h(n)
G¥(z; p1, p2; b3 051)° = D) (s~ 'CDG (z; p1, Sp25 Cib; 03 ),
=1

which, by the equation preceding (20) on p. 186 of [19], is equal to

h(n)
IZ 0(s~'C)G¥ (235 "p1, p2; 5~ 'Cib; 03 1) = Gik(z; 5™ 'p1, 025 b; 03 ).
=1

This proves equation (20) of §4.2.

Now by applying the above together with §2.3 of [3], it is easy to see that
if we apply o € & to the Fourier coefficients of the expansion of the holomor-
phic modular form induced on each component by &, .., we get the collec-
tion of holomorphic modular forms induced on each component by &, su, w,
where S« is an element of determinant one and congruent modulo Nk, o(nby)>
to

ao Sby
@ [+3 *o = N 2'
<s*ca d. ), s*s = 1 mod N, q(nby)

If we let6eZ> =@, and if for € = (G, P, pw, K, s) we define 6C = (G: P,
ows "@K, 6 - 5), where & - s(x) = s(u(8) ~ 'xu(6)), then linearization of the result
we have just obtained shows that if we apply & to the Fourier coefficients of
the expansions of M(€s) on all components X, the result is M(§ss). This is
analogous to Karel’s result in §2.2.1 of [16].

5.2. One may then proceed precisely as in [16] to establish an operation
: 8 = B(6)Es = R(w(3) ™ HEse

or Z* = @ on the Eisenstein series for K on G (4). (In this equation, p stands
for a homomorphism of Z* into the adele group as defined by

. (50
= (19
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in [16], and R(x) is the right regular representation of a group on the functions
on it.) Define & and \(Ec) to be F-rational, F being a subfield of Qup, if
B(6)&c = &g for all 6 € Gal(Qus/F).

With a fixed ideal n and K = KK(n), let §(n) be the graded subalgebra of the
algebra @(IK(n)) of modular forms with respect to K(n) generated by all the
Eisenstein series §s of weights w > 1, where G is defined as above. &g is a
linear combination with (arbitrary) rational coefficients (if s is Q-valued) of
the Eisenstein series &, ., w discussed above. We let ¢ be an element of the ring
of homogeneous quotients (with respect to its non-zero divisors) of &(n), of
degree zero, and form the transformation polynomial

Ts, K, 50(8)X) = XN + ZNau(g)X (26)
r<
as in [3], §2.1(23), where So € G(Af)ﬂRl, o € M(K, 0, {x}). By a straightfor-
ward generalization of Karel’s results ([16], §2.2.4) we have
B@RM)p = RIM)B(H¢, €0, MeG(Ay. (27)

Since o, is a symmetric function of functions R(Sj)¢ and the relation (27)
holds with M replaced by MS;}, it follows that also

B(E)RM)a, = R(M)B(6)xs. (28)

Using this relation in conjunction with Proposition 3 and its Corollary of [3],
we see that we have

Proposition 1. Let Q(K, Qqp) be the graded algebra of arithmetic modular
forms on G, (A) for K and let the operators (3(6) and R(M) (for M € G(Ay))
be defined on Q(K, Q) by the obvious extension. Then for every Y€
€ Q(K, Qqp) one has

R(M)B(@)Y = B(GRM)Y. (29)

Proor. For from the foregoing considerations this relation holds for a set
of generators of @(K, Q).

Corallary. Relation (29) holds for an arbitrary element  of the ring of
homogeneous quotients of elements of Q(K, Qgb).

Now the results of [16], §§2.3-2.3.4 have straightforward generalizations as
expressed in the following propositions.

Proposition 2. Q(K(n)) is the integral closure of &) in its graded ring of
homogeneous quotients and we have

@(K(n)) = (K@), Qnvey) ® C.
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Remark. The last statement follows since each Eisenstein series &, has
all Fourier coefficients in Q.

If Fis any subfield of Q.», define y € R(K, Qgp) to be F-rational if B(G)y = ¢
for every 6 € Gal(Qas/F). Denote the graded F-algebra of such modular forms
by @(K)F. Then we have:

Proposition 3. Let K = K(n). As a graded algebra over Qgup, Q(K, Qqp) is
generated by G(K)2.

Since for 6 € Qu, 6€®, we have B(6)(0Y) = 6°8(6)y, this follows, as
remarked in [16], from §14 of [6, AG]. Therefore

weQ

where V3 is the Satake compactification of V,, is an algebraic variety defined
over Q (but not irreducible over Qus, of course), and by the result of Borel
and Narasimhan referred to in §2.5 of [3], the set of cusps Vi — Vi is defined
over Q as well, while each component V# is defined over Qnm), and V,, is a
Q~nm— open subvariety of V.

The conditions for y € @(K, Qas) to belong to the Q-structure are equivalent
to the following: If weQ, let

Yu(2) = T a(p, w)e*™ 2, e mbde)?,

be the Fourier expansion of the modular form with respect to I',, = I'(°K) in-
duced by ¥ on X,,. Then for every & € Gal(Q.»/Q) = ®, one has

a(p, 0)° = a(p, p(6)w).

6. Splitting of the Class Polynomial

6.1. The multiplier polynomial. We consider the class polynomial

Py, g, (X) = H Py &, 5, 4(X)

defined for any order ® of K containing the maximal order of k¥ and an
arithmetic modular function ¢ for I';” holomorphic on all points of the set
Eo(®R) for given v, as defined in §3.3 of [3], and where

y
Poa.s.0(X) =TI (X - 6(0),

0i,...,0k being a set of representatives of the orbits of Iy in Zu(®, £). In
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case ® = O, the maximal order of K, it has been shown in [3: §3.3, Theorem
4] that Py, 0,4(X) € Q[X]. We shall show here, in a later section, that

Py,0,5,6(X) € K*(E)[X], (30

where K*(£)o is the totally real subfield of the reflex field K*(£) associated
to the lifting £ of T (cf. §§2, 6.2).

If Se G+ (A) = G4 (A(k)) and S written as a two by two matrix over A(k)
is @ 5, lety=ad— bcel,(k), a be the g.c.d. of ay, by, ¢, and dy, and
U = U(S) be the integral ideal a ~%». If ¢ € Q(K, w), define ¢ | S € R(°K, w) by
(0] S)(g) = ¢(gS) for g e G+ (A). Then, following the definition of §2.4(48)
of [3], put (where N = Ng,Q)

o||S=NW"-¢|S.

By Lemma 1 (loc. cit.), if ¢ € Q(K, w, R"), where R’ is a finitely generated
subring of a number field, then ¢ || S belongs to Q(SK, w, R"), where R" is in-
tegral over R’ in some finite extension of that field. (N.B. The second
sentence of the proof of Lemma 1 of /oc. cit. should be corrected to read:
“We may write for that weQ such that SeG,(A) and for each
W' €Q:w 'S = Siywk for some Sir € G+(Q), ke K.”” and then S’ replaced
by S, in the rest of the proof.)
Fix Sp = (Z ,’}) € G'(A(k)y) and suppose So € €(w1). We write

N
Ci(So) = KSoK = | SjK.
Jj=1

Then det(Ck(So)) C det(So)det(K), so that by §1, Cik(So) C Ck(w:) and for
each weQ, wCk(Sp) C Ck(wwy); therefore, wS;e Sjsww1K for some S}, €
€G+(Q),j=1,...,N. We introduce the so-called multiplier polynomial for
any non-zero-divisor ¢ € Q(K, w)

N
M, s,(8)(X) = II1 X - (11Si/8)() = X" + 12;\ w6, 50(&X, (1)
Jj= <N

where clearly us, 4, s, is @ modular function for KK, and on each component X,,,
it induces a modular function my, ¢, s,,» for I', defined by

)—w(N—I)

mi, ¢, s0,.(2) = Jj(g,i.€ w6, 50(&w),  zZ€9",

where g € G+ (R) is such that z = g(i.e). Let o; denote de #-th elementary sym-
metric function in N variables and observe that for each weQ,j=1,...,N,
and g € G+ (R) we have

(4] S)(gw) = B(gwS)) = d(gSjarbwr) = ¢(Sjuwguw1),
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hence, (¢ | Sj)u(g) = duwi(Siw=g), and therefore for ge G (R)

w,6,50,0(8) = on-1((¢ || S1)u(8)s - - - 5 (|| SN)u(£))/ D @)V ™'
= UN—I(d’wm(Siwwg)’ O d’wwl(S]IVmwg))d)w(g)I_NNQ[M(N_I)-

From this and from the definitions we have for z = g(i.e) € "

mM1,6,50,0@) = ON - 1((four || Si/fo)@)s - - - s (four || Sha/f)@))- @319

Now for the present, we assume So € G+ (Q)r and w; = 1, and fix the order
® Do in K and assume ¢ is non-zero at all the cusps and at all the finite
number of double cosets in Vi representing points of Za(®). Then on each
component X, = Xy, My, 4, 5o, i holomorphic at all the cusps and at all the
points of Ey(®R). Letf, be the modular form for I',, induced on X, by ¢.
Then as a polynomial with meromorphic coefficients on $”, the multiplier
polynomial takes the form

N
Mj,, s0,o(2)(X) = jl;g (X = NW)"(fs | Sjo/So)(2))-

We now wish to consider the roots of this polynomial for certain z € Z,(®R)
and for a conveniently chosen double coset Ck(So), for the particular case
K = G(2).

6.2. We refer to the notation of §3.3 of [3]. LetE = (61, . . ., 6») be a lif-
ting of X, where each d; is an injection of K into C. Let € © be one of the
double coset representatives appearing in (6), letw = 0, K = G(Z), and v =
= id.(det(w) " 1). Then, as in §3.3 of [3], we let 4’ = Ay, & be the number of or-
bits of Iy in Ey(9, £), and form the polynomial P, o &, Where ¢ is a Q-
arithmetic modular function holomorphic on o1, ..., 0k. Our purpose is to
show that for all such ¢ this is a polynomial with coefficients in the totally
real subfield K*(£), of the reflex field K*(£) = Q({Zoexn’ |7 € K }). Show-
ing this is evidently equivalent to showing that the image Ax(9, £) of Ex(0, £)
in Vi is a zero cycle rational over K*(£)o. Recall that Vi is itself defined over
Q.

To show this, we need to consider certain of the roots of

M, 50, 6()(X)

for £ € Ey(0), suitable C(So) = C@)(So), and a suitably chosen modular form
n with respect to I'y .

Let p be a prime ideal of first degree in o and unramified over Q such that
p splits, p = P - P in the maximal order © of K. Let L be the smallest Galois
extension of Q containing K and assume that the rational prime p contained
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in B does not ramify in L. Denote by P also the extension of P to an ideal
in the maximal order of L, and let H be the Galois group of L over K and G
be the (absolute) Galois group of L over Q. Let B = Q. - - - . Om be the fac-
torization of B into prime ideals in the maximal order of L, let f be the degree
of each of these over K, and /4 be the order of H. Then & = mf, fis the order
of the decomposition group of each £; over K, and is also the order of the
decomposition group of each £; over Q, since the absolute degree of P is 1,
and H permutes £, . .., Qn transitively; therefore, H consists of precisely
those o€ G for which ¢ carries any £); into the same or some other £,
1 £1i,j < m,sothatif e G — H, then the ideals ‘3 and ¢*B are prime to each
other. Let a be a positive integer such that B? is principal, say B* = (IT). Then
g € G — H also implies that IT and IT° are relatively prime to each other. Thus,
if £ = (61,...,6n) is any lifting of £ and if s denotes complex conjugation,
the elements

ne, ..., m-, s-1°,...,s-11°" (33)
are the images of IT under representatives of the distinct 27 = [K: Q] cosets
of H in G, and are therefore pairwise relatively prime. Let

Ne() = I 119,
el
and suppose £’ is some lifting of T to K distinct from £ and from s- £. If
oL, let £(0) = 6 be the element of £ which extends o to K. Let L’ be the
set of g€ X such that £(o) = £'(6) and " be the set of o€ such that
£(0) = s- £'(0); then & = Z'UL” and L’ and " are both non-empty. Let
M=ME)= J[I1°, M=M@E)= J]II.

oel’ ceXx”
Lemma 3. Ng(Il) = M- M’ and, under the assumption £' # £,s- £, we
have for any positive integer k
Ne(ID* + Ny-s([0)* # Ne(ID)* + Ni-s(ID)k.
Proor. The first assertion follows from the definitions of Ns(II), M,

and M'. Moreover we then see that N;.g(IT) = sM - sM’, Ng(II) =M - sM’,
N;s-5(IT) = sM - M’ and therefore.

Ne(ID¥ + Ns-£(IDF — Ne(ID* — Ny-g(I1) = MF — sMO)(M* — s - M%),

For the lemma to be fafse, one would have to have either M* = (s - M)* or
M* = (s - M")*. However, £’ and £” are non-empty. Therefore, by the discus-
sion preceding the lemma, neither equality can occur since the two sides in
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each case have distinct prime ideal factorizations in L because s is in the center
of G (since L is a CM-field) and takes any set of n of the 2n quantities in (33)
onto its complement. (This argument occurs in Hecke’s thesis [13], §12, for
the case when k is a real quadratic field, but the idea is the same.)

6.3. Let £€5(0, L) so that vé + o is a fractional ideal of the maximal
order O in K. (Cf. [3], §3.1) Since I1 € O, where Il is as in §6.2, we have
IIE = at + B, sIT- =o't + @,

II-1=~v&+6 SIT-1=+'£+ 6, (34)
where «, 8, o/, 8'€o, B, B'€v™ ", v, ¥ €v are such that aé — By = '8’ —
— By = Ngi(Il) = 7> 0, while g.c.d.(a,08,v" 'y, 8) = g.c.d.(c, 0B,
v~ 1,8 = (1). Let So, St€ R, be defined by

B o B , o Br
SO_(W 5>’ S_<7’ 6'>'

Then So, Ste To(w) (as defined in §3.1 of [3]) and (under linear fractional
operation) we have

So- (&) =S6-(5)=(H, (35

so that the image of (§) in V, = V; is a fixed point of the Hilbert modular
correspondence associated to Ty(w). Moreover, U(S) = (w) for all S e Ty(x).

So we let ¢ be a Q-arithmetic modular form of weight w = O0mod 2 and f,
be the holomorphic modular form with respect to I',, it induces on each com-
ponent X, and P, p, I, w, So, and S§ be as just now described. As S runs
over a set of representatives Sy, . . ., Snv of the right cosets of I'y contained in

Co(So) = Co(S6) = T'y SoT'y' (36)
then
us(@) = N ((f. | S$)(@)/f(2)) (37)

runs over the roots of My, s,,(z)(X) as functions of z € ", where we con-
tinue to assume f,, is non-vanishing on all £ e Z,(0). Let E = Ey(O) and
E(E) = Ev(9, £). By definition, £, | S takes the form

(fo | $)@) = fu(S - 2)i(S, 2)",
hence, if S = (¢ &), us(2) is equal to

N(ULdet(S))"fu(S - 2)ful@) " 'Nicz + d) ™ =
= Ni(@)?'ful(S - fu(@) 'N(ez + d) ™. (38)
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Let fi,...,fme MTy , O, {x}) be Q-arithmetic modular functions generat-
ing the field of Q-arithmetic modular functions with respect to I's” such that
each is holomorphic on

E(So) = EU To(So)E,

(T»(So) being the correspondence on V¥ associated to Cy(So) = Co(S§)), and
such that if £ €5 and ze€ " — E, then there is an index 1 <j < m such that
fjis holomorphic at z also and fj(z) # fj(¢¥). We may assume fi, . . ., fm are the
affine coordinates on an affine Q-open subset U of V¥ containing Z(So) and
all the cusps. Since V3 is a Q-normal projective variety, U is a Q-normal af-
fine variety and we may assume that if g is any Q-arithmetic modular function
regular at all £ € £(So) and at all cusps x, then g may be written as a quotient
of polynomials in f, . . ., fi» with coefficients in Q such that the denominator
does not vanish at any £ € E(So) or at any cusp x. Let uy, .. ., us be indeter-
minates (at first), define

m

Fuz) = 2] uifiz), z€9",

Jj=1

and define the polynomial
N
GW,M(X; {fl}) = lIl (X— Fu | Si)’

where Si, ..., Sn are as above and, of course, (F, | S)(2) = Fu(S2). Gr,« is a
polynomial in X, u,...,un whose coefficients are Q-arithmetic modular
functions holomorphic on %, hence, expressible as rational functions of
f1, ..., fm with non-vanishing denominators on =. By appropiate choice of ¢,
we may assume it does not vanish on Z(So), hence us; is holomorphic at every
point of E. We then form another polynomial

- N
X, ) = PauX) =TT (X = (us@) + FulSi2))

whose coefficients as a polynomial in X, uy, . . . , 4, are Q-arithmetic modular
functions holomorphic on Z, hence expressible as rational functions in
fi,...,fm with denominators that do not vanish for z = (§) € &.

For any (¢§) € &, say (&) = (¢°, ..., &™), £ K — k, we consider the system

of equations

@, (X + Fu(S*(8), f1(5), . - ., Sm(§) =0 (39
depending on u € Q", with S* = S or Sj. Now

So((8)) = So((9) = () (40)
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because of (35) (apply 6;€ £ to (35) for j = 1, .. ., n); therefore, F,((So(%))) =
= Fu((S6(8€))) = Fu((%¢)). So consider the roots of the polynomial ¥(X, u; (£))
defined to be

P, u(X + Fu(),£1(9), - . ., Sm()).

For all complex u = (u1, . . ., um), p = pso((§) and p’ = pg((£)) are roots of it.
Written out, we have

P u(X) =XV + ZNP,,(ul, vy Um D)X,
r<

where the coefficients of P,(ui, ..., Unm; Z) as a polynomial in u,, ..., u, are
Q-arithmetic modular functions of z € " having no singularities on the set =.
The roots of & .(X;(§) are pr((¥) + Fu((LE), L € Co(So), which equals
pr(§) + Fu(§) for all u if and only if L(§) is in the I'y -orbit of (£). But suppose
L' € Cy(So), so that det(L’) = n'm > 0 for some totally positive unit 5’ and so
that L' is everywhere locally a primitive element of the o-lattice R,. Suppose
also that L'(¢§) e 'y (§), L'(§) = 6~ (&), 0Ty or L(¢) = (¥), where L = gL’ =
= (3‘ 38), say, and det L = n7 > 0, 5 € 0+ . As before this implies there exists
M € C such that

M-t£=af+f
M= ~§+ 6. (41)

By assumption, £eE = Ey(0), so that Me O, and M -sM = ab — B¢ =9
(where, as usual, s is complex conjugation). Then the prime factorization of
M is of the form PB°-sP¢, b,c>0, b + ¢ = a. But if bc # 0, M would be
devisible by p, hence at the prime p, (5 %) would not be a primitive element
of the lattice Ry, contrary to definition of Cy(So). Hence (M) = PB* or sP*
and so we may assume M = II or s-II, hence L = Sp or S§; in other words,
L'eTly* - Soor L' €T’y - S6. Then the roots of ¥(X; u; (§)) as a polynomial in
X are

pr = pr(€) + Fu(L(§) — Fu(®), L € C(So).

If F.(LE) — Fu(%) is not identically zero as a function of u, i.e., if fi(§) = fi(L§)
for some i, 1 < i< m, then there is u € C" for which the above root pr will
not be equal to any root of

Y(X; 0; (8) = Mx 1, (X5 (8)-
Hence the only common roots of ¥(X; u; (£)) for all u are

B1 = PSos M2 = PSo (42)
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The values of u for which other roots in common with ¥(X; 0; (£)) exist then
form a proper Zariski-closed subset Z(£) of u-space depending on £. Therefore
there exists (uo) = (u1, . . ., Um)o € Q™ such that ¥(X; 0: (£)) and ¥(X : uo; ()
have monic g.c.d. of degree two having only the two roots u1, p2 in common.
Since the number of I'y -orbits among such (£) is finite, we may assume uo is
always the same. By the Weber-Perron theorem [32, 23], the monic g.c.d. of
these two polynomials has coefficients which are rational functions of
S1(®), ..., fm(§) defined over Q; thus,

p+ p2 = P(fi®)s . . ., fm()/QU15), - . ., Sm(8)), (43)

where the polynomials P and Q belong to Q[X7, . . . , Xa] and are independent
of £e & and Q(f1(%), ..., m(®) #0.

We now obtain expressions for the roots ui, p2. Take £ € K — k as above
such that (¢§) e E, A = v¢ + o being a fractional O-ideal of K, and let IT€ O be
a fixed generator of P? as before. We use the relations (34) and the fact, just
observed, that '

g.c.d.(a,08,9" 17, 8) = g.c.d.(&/, 08,0~ 1y, &) = (1).

Then II=~&+6,s-I1=+"- £+ &', and according to (38) we have (since
& =¢",...,if ¥ =(61,...,0n) and £€ E(X))

us(®) = N(m>"fu(S - 9 ()" T (8 +d°) "> =
GEX

— Nk/Q(W)szi(H)_zw — Nsi(n)ZW
because 7 = IT - sI1. Similarly, us(£) = N&a>; therefore,
p1 + p2 = NE(ID® + N.5(ID>,

which depends only on £ and II, and not on &.

As before, L is the Galois closure of K over Q. Then K*(£) C L and it is
known [25, §5] that L is a CM-field, too, and that the automorphism s of
complex conjugation is in the center of G = Gal(L/Q). For n € K, define
6(n) = Y55 1°. Then 6 is just the trace of the representation @ ;<56 of the
Q-algebra K. Therefore K*(£) contains all the determinants

Nz(n), neKk,

of that representation. This shows that p; and p» both belong to K*(£)
Moreover, pz = su1, hence p1 + p2 € K*(£)o. Now we have shown that

p1+ p2 = R(f1(9), . . . . fm(9))

and the left side is an element A(TI, £) of K*(£)o. We also write pi = pi(L),
i=1,2, for fixed II.
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Clearly Ey(9, £) = Eo(0, s - £). Suppose now that £’ is another lifting of
such that Ey,(0, £’) is non-empty and £’ = £, s£.

Proposition 4. If L' # £, s5- £, then AL, L) # AL £).

Proor. This is the same statement as that of Lemma 3 in different nota-
tion. Consider then the equation

AL L) = P(f1(®), - - -, fnEN/QUS1(D), - - . , fu(E))s

where P(X1, ..., Xm) and Q(X1, ..., Xm) € Q[X1, ..., Xm] and are indepen-
dent of £e =, and Q(f1(9), ..., m(£) #0 for all £€E. Let

Us(X1,...,Xm) = P(X1, ..., Xm) — AQL £)O(X1, . . ., Xm).

Then Us has coefficients in K*(£)o, and the set of points where it vanishes
cuts out a hypersurface section V(I1, £) on the Q-open affine subset U of Vi
such that V(I1, £) is itself defined over K*(£)o and such that V(I1, £) intersects
Ay(9), the image of Ey(0) in V¥, in the image Ao(0, £) of Ey(0, £) because
according to Proposition 4, V(II, £’) cannot meet A,(II, £) if £’ = £, s&. Ac-
cording to Theorem 4 of [3], Ax(O) is a Q-set (in the statement of that
theorem, the first = was mistakenly put in place of A). Therefore we have the
following theorem, due to Hecke in the case of real quadratic £,

Theorem 1. The finite zero-cycle A(9, £) on Vi is defined over K*(£)o.
Therefore if f is any K*(L)o-arithmetic modular function for T'y which is
holomorphic on Ey(9, %), then

Py 0,5, /(X) e K*(E)o[X].

Now let A(0) = UnA4,(0) and A(0, £) be respectively the images of UsZo(O)
and of UnEs(9, L) in Viz) = Us V& and if n is any integral ideal of %,
let An(O) and A,4(9, £) denote respectively the corresponding images of the
same sets in V). Since Ax(0O) is the pre-image of A(O) under the canonical
morphism w: ViEm — V@ (defined via inclusion of double cosets), and 7 is
defined over Q with respect to the Q-structure defined earlier on Viw, it
follows that as an algebraic zero-cycle on Vi, An(O) is defined over Q,
while A,(0, £) is defined over K*(£)o.

Let L(£) be the minimal field containing K*(£) over which each of the
points of 4(0, £) is rational and L.(E) be the minimal field containing K*(Z)
over which each of the points of 44(O, £) is rational. Each of these is a nor-
mal extension of K*(£) because it is the splitting field of a polynomial over
K*(£). in fact, each is an abelian extension. Let G(£) = Gal(L(£)/K*(£)) and
Gn(£) = Gal(Lo(£)/K*(E)). Then, following the same idea as utilized in
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Hecke’s thesis, one may see that G(£) is isomorphic to a certain subgroup of
the group of those ideal classes C of K for which Nk« (C) lies in the narrow
principal class of k. In [16] there is a generalization of the same idea for the
classical (one-variable, n = 1) case (of elliptic modular functions) to the situa-
tion where one considers modular functions for principal congruence
subgroups of the modular group and the extension of an imaginary quadratic
field which their special values generate, which is closely related to Hasse’s
paper [12]; one of Karel’s results [16] says that, without using the theory of
elliptic functions as such, one may show such extensions are abelian (cf. §5
of [16]) with Galois group isomorphic to a subgroup of a certain ray class
group. It is possible, using the results we have proved, and without using the
theory of abelian varieties, to show that G,(E) is also abelian and isomorphic
to a subgroup of the ray class group mod n of K. We intend to provide further
details of this in a later paper.

One may also obtain the reciprocity law for the extension Ly(£)/K*(£), in
form very similar to that of Shimura (with some possible modifications con-
nected with the units of k). This is already indicated in Karel’s paper. To deal
with the reciprocity law we need a certain g-expansion principle to be proved
in the next section. Other details will be supplied in a subsequent publication.
We should like, however, to emphasize at this point the important influence
on all these developments of Hecke’s original ideas.

7. A g-expansion principle

We use the notation of [1]. In particular, I denotes an arithmetic group acting
on a rational tube domain €, V = I'\g, and V* is the Satake compactification
of V. Let k be a number field and make the Assumptions 1’ and 2’, p. 649
of [1], namely that

(1" AYT) = REY(M ® «C

for some positive integer do, where @2(I") denotes the graded algebra of
modular forms for I of weights = 0 mod dp having the coefficients of their
Fourier expansions at o in k, and

@) If feQk, (), then only finitely many primes
divide the denominators of the coefficients of the Fourier expansion of

Sflat ).

Denote by o the ring of integers of k. Then according to Theorem B, loc.
cit., there exist a positive integer dp and a finite set & of prime ideals of p such
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that if F = 0[& "], then the graded algebra @¥°.(I") of modular forms (with
respect to I') of weights = O0mod dy having all Fourier coefficients in R is
finitely generated as graded algebra over R, and in fact by a finite set
(bo, b1, . .., bu) of elements of weight do. Since the modular forms with
Fourier coefficients in R actually span the graded algebra of all modular
forms as a vector space, we may trivially replace R by any larger finitely
generated subring of k.

Let £ € ¥ be a point where all k-arithmetic modular functions holomorphic
at £ take values in a fixed algebraic number field K/k (of finite degree over
k). In other words, the image x of £ in V* is a K-rational point of V*, V*
itself being defined over k C K.

If fis a k-arithmetic modular function, or, equivalently, a rational function -
on V* defined over k, and if y € V*(K) for some finite extension K of k, we
say f is defined and finite modyp at y, for a prime ideal p of k if:

a) fis defined and finite at y in the usual sense (and then f(¥) € K); and

b) y belongs to a k-open affine subset U of V* such that for some system
al, ...,anm of affine coordinates on U, «i(y),...,am(y) are inte-
gral over the valuation ring of p in k and f may be expressed in the
form

f=Plai,...,am)/Q, . ..,owm),

where P(Xi,...,Xum) and Q(Xi,...,Xum) belong to o[Xi,...,Xuml
and are such that Q(ai(y), ..., am(»)), which belongs to K and is in-
tegral over the localization o, of o at p, is not divisible (locally) by any
prime ideal ‘B extending p to K. (In particular, f(») is integral over

o)-)

According to [32, §§9-10; 27, 4(ii)], for every prime p of k, V* defines a
p-variety. Let us fix some covering of V* by a system of affine coordinate
neighborhoods (in the Zariski topology). Then by Proposition 23 of [32], for
almost all p these provide a covering by affine coordinate systems of the p-
variety associated to V*. By the nature of the definition of p-variety, for fto
be defined and finite mod p at y € V*(K), it does not matter which system of
affine coordinates for the p-variety one uses for the criterion for fto be defined
and finite mody at y € V*(X). Then we have:

Theorem 2. Let x € V*(K) be the image of £ € $. Then there is a finite set
&' of primes p of k with the following property: Let f be a k-arithmetic
modular function for T'. Suppose y is a prime ideal of k, p ¢ @', and suppose
fis defined and finite mod yp at x and defined and finite at the image ® of the
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cusp at « in V*, and such that all the coefficients of the Fourier expansion
of f at © are in the maximal ideal of the valuation ring of p. Then

J(x) = 0mody,

the congruence being taken in the intersection of the valuation rings of K con-
taining .

ProoF. With by, ..., bu e Qr,(I")4, being as before, we may assume,
possibly after adding a finite set of primes to S, that bo = 1 mod &1 for some
suitably large L and that bo(£) # 0. (Cf. [1], Proposition 2.) The congruence
means that, in a suitable ordering, all Fourier coefficients of by corresponding
to indices less than a certain bound (i.e., all the early terms in the Fourier
series) are zero, except for the constant term which is 1. Then oo, £ € V*(by),
the affine open subset of V* on which bg # 0.

Let aj = bj/bo, j=1,...,M, so that oy, . . ., s is a system of affine coor-
dinates on V*(bo); then all the coefficients of the Fourier expansion of each
ajarein R, j = 1,..., M. The system of affine coordinates ajy, . . . , aa deter-

mines the structure of an affine R-scheme on V*(by), and for all but a finite
number of primes p their reductions mod p are a system of affine coordinates
on a neighborhood of any specialization ref p of x on the reduction mod p of
V*(bo). We may assume «;(£), aj() all belong to the integral closure of R
in Q. The statement that f is defined and finite mod p at £ means that

f=P(C¥1,...,OlM)/Q(O[l,...,OZM)=(P/Q,,

where P and Q are polynomials in M variables having p-integral coefficients
in R such that Q(£) # 0mod ‘B for every prime P extending p in the field
generated over k by the coordinates {oj(£), aj(0)|j =1,...,M]}. Then

O, .. .,omn)f = Pla, . . ., o) = by YNP*(bo, by, . . ., bu),

where P*(Xo, X1, ...,Xum) is a homogeneous polynomial of degree N in
M + 1 variables. Thus

bYO(a, . . ., am) f = P*(bo, ..., bu,

which is a modular form of weight Nd,. By hypothesis the Fourier coefficients
at oo of b5'Q(a1, . . . , ang) all lie in R, and those of fin pR. By inverting a finite
set of primes, we may assume R is a principal ideal domain ([20], Prop. 17,
p. 22). Let 7 be a generator of pR: pR = w - R. Then the Fourier coefficients
of ¥~ 1P*(by, ..., ba) all lie in R. This means, by the choice of by, . . ., b,
that we may write

P*(bo, . .., ba) = - P*(bo, . .., bu),
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where P* is a homogeneous polynomial of degree N with coefficients in R.
Then

f=m-by "P*(bo,...,bm)/Qa1, . ..,0m) =
=7 Pi(o,...,am)/0al, ..., am),

and P, is a polynomial in M variables with coefficients in R. Therefore,

S =7 Puar(®), ..., om(8))/Qs(®), ..., am(8) =
T Pi(a1(®), . . ., am(8)/QE)

which is clearly an expression = Omodyp. Q.E.D.

8. As a Convenience to the Reader

We list here some minor corrections needed in [3] as a predecessor to this
paper:

In the line immediately preceding equation (49) of 2.4 (of [3]), M2(Z) should
be M ().

On the next page after that in the fourth line of the proof of Lemma 2,
following the last = sign there should be

N
U ““'KSjer' NG +(Q)r-

j=1
And on still the very next page after that, the second displayed equation,
line eleven from the top, should read

a,.(z) = on- V(fwwl(si;l 4 RN sfwwl(SIIVZ:I - 2)).

These corrections are in addition to other needed corrections pointed out
in the course of this paper.
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