REVISTA MATEMATICA IBEROAMERICANA
Vor. 1, N.° 1, 1985

Polynomial Invariants
of 2-component Links

K. Murasugi

1. Introduction

Let L = XUY be an oriented 2-component link in S3. In this paper, we
will define two different types of polynomials which are ambient isotopic
invariants of L. One is associated with a cyclic cover branched along one of
their components, and the other is associated with a metabelian cover of L.
These invariants are defined for any link unless the linking number, /k(X, Y),
is +1.

The invariants a;f, A defined in [5] can be considered one of the special
cases of our polynomial invariants. In fact, we can prove that a; depends only
on lk(X, Y); therefore, for all n, a;f coincides for two links with the same link-
ing number. (See Theorem 5.7.)

It should be noted that our metabelian representation of the link group dif-
fers completely from those studied in [2], [3], [9] or [10], where in most of
the cases there exist only finitely many metabelian representations. We will
prove in this paper that every 2-component link L with /k(X, Y) # +1 has
infinitely many metabelian coverings. In particular, if /k(X, Y) is even, then
the link group G(L) has a representation on the dihedral group of order 2 *!
for each £ > 1. (See Proposition 3.3 and Theorem 4.1.) Our polynomials are,
in fact, the covering linkage invariants associated with these (infinite) se-
quences of coverings.
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In this paper, some of the basic formulas involving Fox free differential
calculus [1] will be used without proofs, since they have already been proved
in [9] or are easy consequences of the results in [9].

2. Group Actions

Let F be a free group (of rank 2) freely generated by x and y.

Let P = Z[[1]] be the ring of formal power series over the ring of integers
Z. Denote by Sym(S) the group of permutations on a set S.

Associated with an ordered sequence s = {j1,/2,...,Jk,... ] of 1 or2isan
action ¢ of F on P; that is, a homomorphism ¢: F— Sym(P) defined as
follows:

¢(x)< i a,~t‘> =ap + i (a;i + 8(i)a;i_ 1)t
i=0 i=1

¢(}’)<.ZO aiti> =ao + Z (@ + (1 — 8())ai- Dt 2.1

i=1

where 6(i) = 1 or 0 according to ji =1 or 2.

Throughout this paper, we do not distinguish between an action
¢: F X P— P and the homomorphism ¢: F — Sym(P), associated with ¢, and
therefore the same symbol will be used.

ExampLeE2.1. Lets= {1,2,1,2,...}, wherejx = 1if and only if kis odd.
Then for f(f) = D, ait'e P,
i=o0

BIO) = f@) + 3 @t

U@ =f@) + .ZO @i 122,

Using Fox free derivative [1], we can now express the action®$ more pre-
cisely. The following proposition is essentially Proposition 3.1 in [9].

Proposition 2.1. Lets = {J1,/2,...,Jk, ...} be an ordered sequence of 1

or 2. For ueF, write ¢(u)< > aiti> = >, bit'. Then
i=o =0

(1) bo = ao,
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() Forg>1,

ou \° %u \° 0% °
bo=ag+ag_1|2L) +a,_ o —2% ) 4+ ... _ %% ) @2
= e e 1<3zq> T 2<az,,_1azq> +a°<azl---6zq> 2

where zi is x or y according to ji =1 or 2, and o denotes the trivializer.

For the proof, see Proposition 3.1 in [9].

Let F be the free group freely generated by {xr), Y7o |f(O)eP}. Let (DD}
be the Reidemeister-Schreier rewriting function of £ associated with the action
¢ ([4] or [9]). Dy: F— F is characterized by the following two properties:

For any f(f)e P and u, v e F,

(1) Drpx) =xr¢p and Drr(Y) = yro,
(2) Drry(uv) = Dy - Do v- (2.3)

The following properties will easily be proved from (2.3).

(1) Dy ™) = Do~ yo@) "
() If p(uv~ ") = 1, then Drpyv ™) = Dreu) - (Drpv) L. 2.4

Now let y: F— P be a homomorphism defined by ¥(xr¢) = 0 and ¥(¥r) =
=f(. ’

Proposition 2.2. Lets = {ji,j2,...,Jk, ...} be an ordered sequence of 1

or 2. For ueF and f(t) = Y, ait' € P, write yDyou = 2, bit'. Then
=0 i=0

1) bo = ao,
(2) For g > 1,

ou\° %u \°
bq=aq "a; -+-aq_1 azqay +

8% ° 37+ >°
t+a|l————F) +tal ——— |, 2.5
1<az2. . .azq6y> 0(6z1 ... 0zZ40y (2-3)

Wwhere z; is x or y according to ji =1 or 2.

For a proof, see Proposition 6.1 in [9].

In this paper we are particularly interested in the group action associated
with a sequence {1,1,...,1,...} or {1,2,2,...,2,...}. Our approach,
however, is different from what we did in [9] and hence, we obtain different
representations of the link groups. To be more precise, we define two actions
g and 7 of Fon P.
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Definition 2.1. For f(f) € P, define
o) f(@) = (1 +0)f@®)

o) =f(® (2.6)
70/ (@) = f(@2) + f(0)¢
(@) = A + 0 f (@) — f(O)t. (2.7

Let P* be the set of power series f{¢) for which f(0) = 1. Then ¢ and 7 in-
duce actions of F on P*, since for any u € F, [o(u)f(©)l:i=0 = [t@)f([®)]t=0 = 1.
Furthermore, let g(¢) be an element of P and (g(¢)) the ideal of P generated
by g(¢). Denote by R the quotient ring P/{q(?)).

Proposition 2.3.
(1) o induces an action o of F on R.
(2) If q(0) = 0, then 7 induces an action 7 of F on R.

Proor. It suffices (and is easy) to show that (g(¢)) is closed under the
actions o and 7. )

Remark2.1. Let g(f) = X705t and let s, be the first non zero coefficient
of g(#). Then every element f(f) in R has a unique representative f(¢) of the
form: f(f) =@ + @t + ...+ at“+ ..., where @, ...,an-1 are integers,
and if s, is positive, then ar(k > m) is a non-negative integer less than s, but
if s, is negative, ax(k = m) is a non-positive integer greater than s,,. We call
this unique representative f(#) the normal form of f(z).

ExaMPLE 2.2. Let g(f) = 2 + 3¢. Then the normal form of f(#) = 3 + 6f —
— =32 +3t%is 1 + ¢+ .

Since Propositions 2.1 and 2.2 for ¢ = ¢ or 7 will be used quite extensively
in this paper, it will be convenient to state them as separate propositions.

Proposition 2.4. For ueF, write
a(u)< aiti> = >, bit' and T(u)<
i i=0

Then for any q >0,

ou\° u\’ 07" u\° 0%u\°
(1) bg=aq+ a;-1 Ix +ag-2 3l +...+a 9501 + ap F
du\° 0%u\°
(2) cg=aq+ ﬂq—1<a—);> +aq—2<5:y—2> +

XA u \°
+ GI<EF> + ao<<§x6-}F> . (2.8)

©

> a;ti> =D, cit'.
=0 i=0

M

0 i
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In particular, ao = bo = co.

Proposition 2.5. Let Df ) and Df ) be the Reidemeister-Schreier rewriting
Junctions associated with the actions o and T, respectively. For

f®O=> ait'eP,
i=0
write
YD n(u) = ‘ZO bit' and YDfp(u) = ZO cit'.
Then for g >0,
1) by=a %o 62u>°+ +a 0u o+a A
77 "\ oy 0xdy T 9x? gy \ ax%y ) °

ou\° d%u 0%u\° 37+ y\°
2 — ... — . .
@ ca= a"<3y> Tl ’< y2> Tt a‘<6y"> " a°<6x6y"> @9

3. Representations of a Free Group

For an integer n (positive, negative or 0), let

gn() = 3] <':>t =1+ -1

i=1

As usual,

<rlz> denotes n(n — 1)..i.'(n—:+ 1

Lemma 3.1. If m =0 (modn), then g.(f) = 0 (mod gx(?)).

A proof is easy.

Now let R(n) be the quotient ring P/{qg.(f)), and let R*(n) be the set of
elements f(¢) in R(n) such that f(0) = 1. Since g»(0) = 0, it follows from Pro-
positions 2.3 and 2.4 that ¢ and 7, respectively, induce actions ¢, and 7, of
F on R*(n). Let Q4(n) and Q4n) denote the orbits of 1 in R*(n) under o, and
7a respectively. Namely,

Qo(n) = {on(u)(1) |ueF} and QAn) = {(7.(W)(1)|ueF}.
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0. and 7, define homomorphisms

on: F = Sym(Q,(n)) and 71,: F— Sym(QAn)).

Proposition 3.2.
(1) on(F) is a cyclic group of order |n|.
(2) 7(F) is a metabelian group.

Proor. (1) Since (1 + 8" = 1(mod gn(f)), Qs(n) consists of exactly |n|
elements {1,1+¢ (1 + 0% ...,(1+H"~1}. Since ax(1 + t) = (1 + t)**1,
it follows that o(x") = 1, but o(x*) # 1 for 1 < k < |n|, and hence ox(F) is a
cyclic group of order |n|. '

(2) Let G = 74(F). As a special case of Proposition 9.1 in [9], we see that
G" = [G’, G'] = 1. Therefore, G is metabelian.

Generally, 2/(n) is not a finite set. Therefore, to obtain a finite representa-
tion of F, we need to ‘‘truncate’’ higher terms of f(¢). Let Ix +1 be the ideal
of P generated by t**! and gn(f). Let Re(n) = P/Ix + 1 and let R¥(n) be the set
of elements f(f) in Ri(n) such that f(0) = 1. An element of Ri(n) is a
polynomial of degree at most k, and it has the (unique) normal form of degree
< k. (See Remark 2.1.) Obviouly, 7, induces an action 7¢,, of F on Ri(n).

Let Q«(n) be the orbit of 1 under 7, »; i.€., Q(n) = {7k, (W) |U € F}. Tic,n
defines a (transitive) homomorphism 7«, »: F — Sym(Qx(n)).

Proposition 3.3.
(1) 7x,2(F) is nilpotent of class at mos k.
(2) If n is a prime p, then 1 »(F) is a finite p-group.

(3) In particular, if n =2, then 7« o(F) is the dihedral group of order
2k + 1.

PRrROOF.

(1) follows from Proposition 3.2 in [9];

(2) since a proof will be done by an easy induction on ., the details will be
omitted. Note that (7, p(x))”k =1 and (7x,,(»)” = 1;

(3) denote X = 7, n(x) and Y = 7«,a(y). Then a straight-forward calculation
shows that for any f(¢) € P*

) X*(f(0) = fO mod I +1
@) Y(f(t) = f(ymod I + 1
(3) XY)X(f(t) = f(t)mod Iy + 1. 3.1)

Therefore, 7«,2(F) is a quotient group of the dihedral group

Da = (A,B|A¥ = B> = (AB)* = 1).
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But it is easy to see that they are, in fact, isomorphic. The details will be omit-
ted.

Remark 3.1. We can prove, further, that for a prime p,

{Tk.p[x,y, X =1
Tk, pl%s ¥, ¥y o, ¥ =1, (3.2)
k times

-1, -1
where [u1, uz] = uiuaug "uz ~ and [us, uz, ..., Uml] = [[u1, Uz, . . ., Um-1], Um].
In particular, 72, is isomorphic to the group

M(p) =,y | xP =yP =,y =1, [x, 3, x} = [x,y,y] = 1).

Remark 3.2. p-group representations of F obtained in Proposition 3.3 (2)
and (3) are quite different from those discussed in [9, §10] or [10, §§2-3].

4. Representations of Link Groups

Let L = XUY be an oriented 2-component link in S>. In this section, we will
define a homomorphism from the link group G(L) onto the group o,(F) or
Tk, n(F) for various n and k.

For the first group o.(F), such a homomorphism X,: G(L) = o,(F) always
exists, since g(F) is.cyclic of order |n|. In fact, let m, and m, be meridian
elements of X and Y, respectively. Then for any integer n, a mapping
Xn: G(L) = on(F) defined by

{En(mx) = gn(X)
Ta(my) = id 4.1)

gives a required homomorphism. However, it will be seen later that X, is only
interesting in our purpose when # divides /k(X, Y), the linking number between
X and Y.

On the other hand, the second group 7«,.(F) is not an obvious group. In
fact, 7«,»(F) is metabelian, but not abelian. Nevertheless, for any &, we can
find a homomorphism from G(L) onto 7, .(F) when lk(X, Y) is divisible by n.

In this section, we will prove the following theorem.

Theorem 4.1. Let n be an integer. Suppose lk(X, Y) =0 (modn). Then
for each k > 1, there is a homomorphism

Ti,n: G(L) = 7k, n(F) C Sym(Qu(n))
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such that Ty, n(myx) = 7k,n(x) and Tk, (my) = 76,n(y). n can be 0 only when
k(X,Y)=0.

Proor. Since there is no essential difference in proving the theorem we
may assume that » is a positive integer. Also we may assume w./.0.g. that
Ik(X,Y)>0.

Now, if k = 1, then 7« (F) is a cyclic group of order n, and the theorem
is trivially true. Therefore, we assume that k& > 2.

Let G(L) = {xi, yj | riy s>, 1 i<\, 1 <Jj<u be a “modified”” Wirtinger
presentation of G(L) in the following sense.

x1 and y; correspond to prescribed meridian elements m, and m,, respec-
tively, and relators are of the form

{ri = wxiui 'xi3h, I1<igh—-1

-1,-1
n=nx1m X1,

K
Su
where u;, vj are words in {x;, y;}, and n and £ represent longitudes of X and
Y, respectively, so that {xi,n} and {yi, &} form peripheral subgroups of
GWL).

Let F* be the free group freely generated by {xi, yj, ] <i<\, 1 <j<pu. As

before, F denotes the free group {x,y| ). Let p: F* —» F* and »: F* - F be
homomorphisms defined by

viyivi yidh, I1<j<pu—1
EnE il

p(x1) =x and p(y) =y
p(xiv1) =uxiui ',  1<i<N—1
p(j+1) = viv1vj I<j<pu—1.

{V(Xi)=x, 1<ig
v(y) =, 1<j<p.

Using p and », we define the third homomorphism
O+1=vp": F*—>F for k>0.

(0 +1 will be called the Chen-Milnor homomorphism.)
Let T = 7,10k +1 be a homomorphism from F* to 7« .(F). Then T will
induce the homomorphism Tk, ,: G(L) = 1k, n(F) if

Tr)=1, 1<ig<\N, and T(s) =1, 1<j<p. 4.2)
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Now, Proposition 5.1 in [9] proves (4.2) except the last two relations
T(rn) = 1 and 7(s,) = 1. Therefore, it only remains to show that

T, x1=1 and TI§ ] = 1. 4.3)

Since one of the relations in (4.2) is redundant, it is enough to show that

Ty, x1] = 1.
For simplicity, write 6 +1(n) = A. Since 0k + 1(x1) = X, it suffices to prove
that '

Tk, n(hx) = T, n(xh). 4.4)

Denote u = hx and w = xh, and write

o

Tk,,,(u)<z aiti> = >, bit' and -rk,,,(w)<z aiti> = > ait'.
i=0 i=0 i=0 i=0

Then, since ap = 1, it follows from (2.8) (2) that for g > 1,

ou\° 0w\ [ o \°
(l) bq=aq+aq_1<5> +...+01<F> + <W> (4.5)

and

ow\° 97" 1w\° 3w \°
(2) Cqg=0aq+ ag-1 5 + ...+ @ ayq_l =+ axayq_l .

Now
r,,\ o r.\o o
dy ay’ r ay

[1], and (8h/3x)° = 0. Further,
Fu N\ _[a[% u\]°_( h \°
oxoy?~t) T lax\ay?"')|  \oxdy? !
Fw \° _[a[ & 'h\]|°_ a"‘lh‘°+ ah \°
axay?-1) T lax\Fay1)| T \gye? axay?-1) -
Therefore, it follows from (4.5) that

ou\° ow\°
bo=C0=1, b1=<a> = and C}—<a> —1,

and




130 K. Murasuat

and hence,
© © q Ih
Se= B oo+ 5 () 0= Sowrr B ()

Since ‘n devides m by the assumption, it follows from Lemma 3.1 that

5 <q'f 1>th0 (mod gx(1),

q=2

and hence

S e, q—thq (mod Ik + 1).
g=0

g=0

This proves Theorem 4.1.
Now, let g = 0« +1(§) and v = gy and z = yg. Note that (dg/dy)° = 0. Since
Tk, nl€, ¥1] = 1, we have 7k, n(V) = 7x,2(z). Write

Tk,n(U)< Z a;ti> = Z biti, ap =1
i=0 i=0
and
Tk,n(Z)(Z aiti> = Z Citi, ap = 1.
i=0 i=0

Then by (2.8) (2) we obtain
(l) a=bo=co=1 (46)

For g > 1,

'9v\° R AN % \°
(2)bq=aq+aq_1($ +...+a15)7;:7 + EW

and

az o aq—lz o aqz o
(3)cq=aq+aq_15) +...+a1F + &F .

Since (dv/dy)° = (3z/9y)° = 1, it follows that for g > 1,

() - (5 - ()
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3 \° d7g °+ 977 1g \°
axay?~1) ~ \oxay? ! oxoy?~?

3% o 3% o
<3x6y"'1> - <6x6y"‘1> )

Therefore, 7«, (V) = 7«,4(2) yields the following

and hence

and

Proposition 4.2. Letg = 0+ 1(§). Then for k > 1,

a o 62 o aq o
Bl (Z8 ) pa g —g_l 4+ . =0 (modIk+1).
ax dxdy axay? : 4.7

Remark 4.1. A homomorphism X,: G(L) — o,(F) is formally given as
follows. First, define a homomorphism X*: F* — g,(F) by

{E*(x,-)=a,,(x) for i=1,2,...,\ 8

Xy =id for j=1,2,...,n.

Then L*(r;) = X*(sj) = 1 for any i, j. Therefore, £* induces the homomor-
phism Z,: G(L) — a.(F). This rather obvious observation will be used in the
next section.

5. Covering Space (I) Cyclic Covering

In the previous section we found representations X, and 7, of G(L) on an(F)
and 7x, o(F).

To each finite representation ¢ we can associate a (unbranched) covering
space M. Let U(X) and U(Y) denote tubular neighborhoods of X and Y in
S3, respectively. Then the covering space M associated with ¢ is a compact
3-manifold with boundary consisting of tori.

Suppose we have a homomorphism

o:m(M)— A

from m1(M) to an abelian group A. Then ¢ induces the homomorphism ¢
from Hy(M) to A. The most characteristic element of H1(M) is a ‘‘longitude”’
¢ of each boundary torus of M. In many cases, such a ’’longitude’’ can be
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realized as a “‘lift’’ of a longitude ¢ of dU(X) or dU(Y), and then ¢(§) will
be an invariant of the original link type L. By taking 4 as the polynomial ring
Ry(n), we will obtain our polynomial invariants.

In this section, we define such polynomial invariants for a finite representa-
tion X,: G(L) = on(F) C Sym(Q.(n)).

Let M, be the (unbranched) covering space of §° — L associated with Z,,.
M, is in fact the n-fold cyclic covering space of S — X.

Let D, be the Reidemeister-Schreier rewriting function associated with the
action T*: F* — ¢,(F) C Sym(Q(n)), where T* is defined in Remark 4.1.
4.8).

Now the set S,= {Dfg(x), Dfp) |1 <i<M1<j<p,f(D)eQ(n)
generates a free group F and 71(M,) has a presentation {S,: R,, U,) where
R = (DJe(rd, D) | 1 i<\ 1<J < f() €)) and U, = (D (1),
S eQ(n)}.

Theorem 5.1. Let n be an integer. Suppose lk(X, Y) = 0 (mod n). Then for
k =2 1, there exists a homomorphism ®,: 71(M;) = Ri(n) such that for any

f(®) € Qu(n),
Do(DfHx1) =0 and 2D}, () = f(O).

Remark 5.1. n can be 0 only if /k(X, Y) = 0, and then M, is an infinite
cyclic covering space of §° — X.

ProoF oF THEOREM 5.1. To prove the theorem it suffices to define a
homomorphism ®¥: FF — Ri(n) such that ®}3(w) = 0 for we R, or U,.

Now let F, be the free group freely generated by a set {xr¢), yre | f(H) € Q(n)},
and let Y, be a homomorphism from F, to Ri(n) given by

Yolxrw) =0 and Yo(yrw) = (0. (5.2)
Using ., we define, for f(f) € Qy(n) and for any i, j,

{M(ﬂb}‘&)(xf)) = Yo DF w0k + 1(x) (5.3)

PHDFH () = Yo DF )bk + 1(3))-
Note that
DHDF 0 (x1) = YeDf 0k 4 1(X1) = Yo DF ) (¥) = Yolxr0) = 0,
and

‘i’j(ﬂ)}k(‘;)()’l)) = ¢U§D;(z)0k+ 1On) = %53}’(1)(}’) = Y,(Vrw) = f(),
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and therefore, ®# satisfies (5.1). We will prove further, for any u € F*,
‘P:S)}F(L;)(“) = ¢aina(t)0k+ 1(#). 5.4

A proof will be done by induction on the length /(u) of u.
If l(u) = 1, then u = xi*! of y#!. If u = x; or yj, (5.4) is trivially true. Sup-
pose u = x;i 1. Since on(Xi) = on(Bk + 1(x)), it follows from (2.4) (1) that

PrDFH ) = PHDE - 1) T
= Y [D, - 1yl + 1G] 7
= Vo[ D 0k + 1000~ i+ 16D 1
= Y DF iy Ok + 1(x) 7!
= Yo7k + 1 (X7 ).

Similarly, (5.4) holds for u = y; *.

Now suppose (5.4) holds for any element u with /(4) < d. Let w be an ele-
ment of F* with /(w)=d. Then w=ux*' or uy/' for some u with
lu)=d - 1.

Consider the case w = ux;. Then

o7 5)}‘5)(“’) = o7 33}%(“"1’)
= ‘I’:[(S)}k((;) u) - (S)U*n(u)f(t)(xi))]
= &7 SD}R(Z)(U) + ¢§®::(u)f(t)(Xi)
= Yo D700k + 1(8) + Yo D7, yry O + 1(x)
= 1/’0[3);(1)9k+ (@) - 5DZ,,(u)f(t)Gk +1(6)].
Since 0,(u) = o4(0k + 1()), the last expression becomes

Vol D7y (0k + 1(1) - Ok + 106))] = Yo DF0y0k + 1 (uxi). (5.5

Since similar computations provide the proofs for other cases, the details
will be omitted.
Now we must show
q’?(SD}W(z)’i):O, i=1,2,...,\

a . (5.6)
qD;k(S)}k(t)Sj) =0, J=12,...,p.

First consider r; = uixui 'xivY, 1 <i<\. Since Ok +10xi +1) = Ok + 2(Xi + 1)
(mod Fy +») by Proposition 5.1 in [9], Propositions 2.5 and (5.1) in [1] imply
that

VeDF0k + 1(Xi + 1) = YoDFy0k +2(Xi +1).
Since Ok + 2(Xi + 1) = Ok + 1(uix1ui” ) by the definition, we obtain

4 %0 -1
‘ij)}:(t)(XH D= ‘1’3‘3);(1)(141')51”1 )s
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and hence
PX[( f(t)(x1+1))( f(t)(uixlui_ l))_l] =0
which is equal to
PrDFo i s 1(uixiui )~ =0,

by (2.4) (2).
Similarly, we can prove ®7D7)(s;) = 0 for j # p.
Now it remains to show that

(1) ®¥DfH[n, x11 =0, or .
() ®5DFG[E 3] = (5.7

Since o[£, y1] = id, (5.7) (2) is equivalent to

BIDfo (E1) = B5DF; (019, (5.8)

To prove (5.8), we compute both sides separately. Note that 0+ 1(y1) =y
and o,(y;) = id. Then

P5DFH(Er1) = BF[DF5 (D) - Divaro ()]
= 27D/ (5 + 2T DI wr0()
= 5D (8) + Yo DGurmbk +1(¥1)
= ®7D;H (5 + (D (D).

On the other hand,

PIDFH (18 = Br(Df )1 Do)
= &7 Dfpy1 + BIDFH(H)
=f(t) + 5D f(t)(f)

Therefore, it suffices to prove
SO =0o())f()  (modIk+1). (5.9

Since m = lk(X, Y) = 0 (mod n), it follows from Lemma 4.1 that g.(f) =0
(mod g.(£)). Also, since 0on(§) = 0a(x™), a(x™)f(@®) =1+ O"f(@) =1
(mod gn(?)).

This now completes the proof of Theorem 5.1.

A straightforward computation of the relation ®5Df, [, x1] = 0 yields the
following
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Corollary 5.2. Lei h = 0k +1(n). Then
i 3q * l_h th +1
g=0 \0x%9y

Remark 5.2. (5.10) can be considered as the ‘‘dual’’ form to (4.7).
Now before our polynomial invariants are introduced, we need a few pro-
positions.

0 (modli+:y). (5.10)

Proposition 5.3. For any f(t) € Qs(n),
q’frkiDi"U(”]) ‘1)*5Df(t)(77)-

ProOOF. Let u = 0k +1(n). Then ®;DF; (1) = ¥eDF0)0k + 1(n) = YoeDF(1).
For f(¢) = Z ait' € P*, write Y,D3(u) = Z bit' and ¥oDfy(u) = Z it
=0

Then Proposition 2.5 yields, since ao = 1,

=) oo +1 o
W Sori=3 (aq ”) 4
i=0

a=0 \0x%9y
© i © © aq+1uo . o0 aq+1uo
1= , O BT A — | 9. (5.11
@ Sor= Bl 5 (5) 0] + 2 (Gemy) e o
By (5.10), for j > 0,

© 97 +1 .
Z <axqay> "1=0  (modgn(®)

and hence,
Sibiti= D, it (mod ga(0)).
i=0 i=0

This proves Proposition 5.3.

Proposition 5.4. For any f(t) € Qs(n),

P}, (8) = f(OI2I DT (¥)].

Proor. Since f(¢) € Q,(n), f(¢) is of the form (1 + )" for some 0 < r < n.
(We assume that n is non-negative.)
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Write
P7DF (&) = YeDF i +1(8) = ‘Zo cit' and ®7DIE) = YoDk+1(5) = .ZO bit'.

Denote w = 0k +1(£). Then Proposition 2.5 yields again

: © b . © aq+1w oq
it = ,
o Sor= 3 ) 1 and

qg=0

) © aq+1 . '
()] Zc,t = ZaJ[ 2 ( ,,ay> "*’]- (5.12)

Since
. - B\
fO=Q0Q+t =2 at' and <__‘_v> =0,
i=0 dy

it follows from (5.12) (1) (2) that

Definition 5.1. Let n be an integer that divides lk(X, Y). Then for any in-
teger k > 1, define the polynomials 7{(f) and £°(t) in Ri(n) by

() = ®*DF(n), and
E(7) = ®EDT(Y). (5.13)

Theorem 5.5. For any k> 1, 3@ and {f)EP®),f(H) €Q(n)} are
invariants of an oriented link type L.

Remark 5.3. For any u € F, 0k + 1(4) = 0 + 2(u) mod Fy ; 2, and hence, for
any / > k,

72(0) = () (mod Ix + 1)
£ = £ (mod I + 1) (5.14)

Since k can be taken arbitrarily large, these invariants are formal power
series.
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Corollary 5.6. Suppose Ik(X,Y)=n#0. Let X7 ,ait' be the normal
form of 3. Then for any i >0, a; = a}*, where a} is the invariant defined
in [5].

Now, as we did in [4] or [9], these invariants can be interpreted as the ‘‘link-
ing number’’ between one component of the lifts of X or Y and the
characteristic link defined in [9]. Using this geometric interpretation, we can
obtain more information on n{”(¢).

Let X and Y= YoU...UY,_ be the lifts of X and Y, respectively, in
the covering space M, associated with the homomorphism X,: G(L)—
— Sym(Q4(n)).

Theorem 5.7. Suppose lk(X,Y) =rn, n> 0. Then, for any k > 1,

() = r{(';) + <’22>t + .+ <Z>t"‘1}. (5.15)

In particular, the invariant a;* defined in [5] is completely determined by the
linking number Ik(X,Y).

Proor. By [4] or [9], the characteristic link associated with the linking
function or the homomorphism ®,: w1(M;) = Ri(n) is a 1-cycle

n-1

Y= (1+0'Yi in H(Y;R(n)),
i=0

and Y bounds a 2-chain D in C2(M,; R(n)). Then by [4], 3%°(¢) = Int(X, D),
where Int denotes the intersection number. Since X bounds a 2-chain €in M,,
Int(X, D) = Ik(X, Y) = Int(C, ¥). Obviously, Int(C, ¥i) = r and hence

n—-1 n
WO =r2 (1+t=r), <'f>tf"1.
i=0 ji=1\J
This proves (5.15).
Corollary 5.8. If lIk(X,Y) = 0, then for any n and k, 7{°(t) = 0.

Corollary 5.9. £°(0) = 0 and n{°(0) = k(X, Y).

Proor. By Remark 5.3, £7(0) = £”(0). Since 6:(¢) = x™, m = lk(X, Y),
we have

£ = SEDIE) = YeD0:1(9) = Yo DIE™) = 0.

Therefore, £(0) = 0. The second part follows from (5.15).
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Suppose /k(X, Y) = 0 and take n = 0. Then, since ga(£) = 0, £(?) is a ra-
tional function on ¢. Furthermore, if we let s = 1 + ¢ and express £2(¢) as a
Laurent polynomial on s, then it is essentially the n-function defined in [6].
In fact, we can prove the following theorem

Theorem 5.10. Suppose that Y is contractible S* — X. Let n(L, X, Y;s) be
the polynomial defined in [6]. Write £(f) as a Laurent polynomial &(s) on
s =1+ t. Then for a sufficiently large k,

&) = (L, X, Y;s),

where A = B means that A and B are equal up to a unit in Z[s,s™'].
A proof follows from the definition of £2(f) and Theorem 2 in [7].

6. Covering Space (II) Metabelian Covering

In this section, we consider the other representation Tk, n: G(L) — Sym(Q«(n))
and the covering space Mr of S* — L associated with Tk, ».

Theorem 6.1. Let n be an integer and suppose lk(X, Y) = 0 (mod n). Then
for each k > 1, there exists a homomorphism

q’-r: (ST: RT> - Rk(n)
such that, for any f(¢) € Qx(n),
2D x1) =0 and  2(Dfpy1) = f(0), (6.1)

where §D}"(T,) denotes the Reidemeister-Schreier rewriting function associated
with Tk, » and S; = {Df5 (%), Df) 11 <i<N 1 <J < p, f() € Uln)}) and
R: = (Df(r), Dfy () | 1 <IN 1 <J < f(2) € Qlm) ).

Proor. We can use the same argument employed in the proof of Theorem
5.1 using the Reidemeister-Schreier rewriting functions D), Df, and homo-
morphisms &7, y, instead of Dfy, Df, $5, ¥o. What we need to prove
here is the formula (6.2) below corresponding to (5.7) (1).

BIDF (1) = BFDJe, (xim). 6.2)
First we compute both sides separately. The left hand side is
&7 Df o (1x1) = YD1 - DI, uervX1)
= ®7D7HM) + BTDT e C1)
= F }k(‘;)("l)
= ¢T®}(t)0k +1(n).
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On the other hand, the right hand side is

= ®7DT, oo
= VD7 L corele+1(n).

co

To compare these terms, letu = 0k +1(n) and f() = D, ait’.
i=0

Write
UDFobe+1(n) = 20 bit' and  ¥.D% crbe+1(n) = 2 it
i=0 i=0

Then by (2.9) (2), we have, since ap = 1,

(1) bo = <a—”> — m = (X, Y)
ay

(2) For g > 1,

b — ou o+ aZu o+ s 8u o+ aq+lu- o
2= %\ 5y 9a-1\ 5,2 R Y oxay?)

139

6.3)

Now 7x,,(x) =f() + t =1+ (1 + a1)t + 27, ait' and hence, (2.9) yields,

again,

@ a=01+ al)<gff>
Y

+
Sl
2R
<R
\./Q

(3) For g =22,

ou\° *u\° 07" 'u\°
cq=aq5 +aq_1 5}7 +...+GZW +

% \° 7% w\°
ou LA I 4
+(1+a1)<ayq> +<6xay"> 6.4)

Therefore, for g > 1, ¢q — by = (8%u/3dy?)° and hence

© © © ai o
D5 bat? — D ct? = 2] <—‘f> t.
qg=0 q=0 ay

i=1

() =(“7")=(7)
ay') i T\

Since
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for i > 1, it follows from Lemma 3.1 that

© ai o © .
2 <—u:> t= 2 <r:-1>tl =gm()=0 (mod gn(2)),

i=1
and therefore,
Z bq[q - Z C[th = 0.
qg=0 g=0
This proves (6.2).
Proposition 6.2. For any f(t) € Q(n),
P7DT(n) = BTDF, (). (6.5)

PrOOF. Let f(f)= X7 oait’ and write ®FD#(n) = X7 ob;s' and
BFDFL () = X o cit’. Then by (2.9) (2) we have, for ¢ > 0 and u = 6k + 1(1),

aq+1u o

ou'\° o*u\° o\’ (97t u\°
2) Cq = aq<’$> + aq-1<5)7> +...+ a1<5d> + <5xayq> . (6.6)

Therefore, bp = co = m = lk(X, Y) and

© © o ou\° 62u>0 (aqu>0‘§
cqt? — byt = ag\ — | +ag-1lz=) +...+a|l =) (7
qgo ! qgo ! qgl{ q<3y> ! 1<3)’2 \ay*

- ./'21 aj[ ig;l (r?)t”j_ I:I

=0 (modg.(?)),

since for j > 1,

g]l <r;1>ti+j-1 =0 (mod gn(?)).

Proposition 6.3. Tk, .(§) = id.

PROOF. Let w = 0i+1(§) and write Tk, o(5)(X0 o ait’) = X5, bit', where
ao = 1. Then by (2.8) (2),

aw\e 37 1w\ ° 9w o
by=aq+ ag-1 5}; +...+a ayq-l + axay"" .
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<6iw>" <(6w/6y)"> ) <6w>°
3 . =0, since {(—) =0
ay i ay

. aqw o
bg=aq + W:f .

By Proposition 4.2 (4.7),

However,

Therefore,

w \°,
Zl E?F t?=0 (mod gn(D)
q=

and hence

5o~ St = 3 (2020 moaqo).
q=

q=z0 qg=1 B;a}q—

Proposition 6.4. For any f(¢) € Q«(n),
QFDY(8) = PFDF; ().

Proor. The details will be omitted, since a proof can be obtained, using
similar computations shown in the proofs of Propositions 6.2 and 6.3.

Definition 6.1. Let n be an integer that divides Ik(X,Y). Then for any
integer k > 1, define the polynomials 7°(f) and EP(f) in Re(n) as follows:

() = 21D (),
00 = 20T 6.7)

Theorem 6.5. For any k> 1, 70°(f) and EP(f) are invariants for an
oriented link type L.

Remark 6.1. As is stated in Remark 5.3, for /> k, 7{"(t) =7
(mod Iy + 1) and E7(f) = EM(¢) (mod Ik + 1), and therefore, these invariants are
formal power series.

Now, it follows from Proposition 7.1 in [4] that these invariants also can
be interpreted as linking numbers between two cycles in the covering space M,
associated with Tk, ,. Since Tk, (¢) = id, every lift £ of a longitude ¢ of Y in
M., is a simple closed curve in M, and hence, £{’(f) is interpreted as the
intersection number between £ and a 2-chain in C>(M;; Ri(n)) which bounds
the characteristic link. On the other hand, 7, »(n) may not be an identity, and
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therefore, a lift 7 of a longitude 5 of X in M, may not be a closed curve. Let
r be the smallest positive integer such that T«, »(y") = id. Then Proposition 6.2
shows that for any f(f)eQ(n), ®rD};n") =r®F¥DT'(n) and therefore,
®FDF () = 7() can be considered the ‘linking number” between a
““longitude’’ of a covering torus and the characteristic link in M.

Corollary 6.6. Suppose Ik(X,Y)=n#0. Let > ,ait' be the normal
form of 3(¢). Then @ = n and a; = h}, where h} is the invariant defined in

[5].

Corollary 6.7. If the Alexander polynomial of L is 0, then all invariants
7(2), &), 7(9), &) vanish.

Corollary 6.8. E?(0) = 0 and 7{”(0) = Ik(X, Y).

Proor. The proof of the first part is similar to that of Corollary 5.9. On the
other hand, 7{”(0) = 7°(0) and 7(1) = D) = ¥-Dibi(n) = ¥-DIY™) =
= Y. (yT") = m, since 70,,(y) = id and 6:1(y) = y™, where m = lk(X, Y).

Finally, we study the behavior of these invariants under simple transforma-
tions of the link. The following two propositions are easy to prove, and
therefore, the details will be omitted.

Proposition 6.9. Let L' be the mirror image of an oriented link L. Then
for any n and k,

1O = =10
EO(r = — &P
O = -,
EO(Or = —EP(Or.

Proposition 6.10. Let L* be the link obtained from L by reversing the
orientation of one component, X say. The n for any n and k,

{ni"’(t)u = -0
ED(Ls = EP(OL.

7. Examples

In this section, we compute our invariants for two simple 2-component links.
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Example 1.Torus link of type (6.2).

Y

- GL) =<xy:In,x] =1, [£,¥] = 1)
x where 7 = x~ 'yxyxyx~! and
£ = xyxyxy 2.
-

Ik(X,Y) =3 and A(x,y) = 1 + xy + x*%.
Let n =3 and ga(¢) = 3t + 3t> + £3. Then for k > 4.

m@ =3+ +28+1¢*
G =t>+28 ++*

w@)=3+2+28+1¢*
E(t) =12 + 283 + 4.

Example 2. Whitehead link.

- G(L) =< y:In,x1 =1, [£y] = 1)
X ‘ > where n =y~ 'xyx " 'yxy " 'x~! and
1

E=x"yxy layxTly L

Ik(X,Y)=0and A(x,y) = (1 — x)(1 — ).
Let n = 3 and g3(¢) = 3t + 3¢ + ¢3. Then for k > 4,

n(t) =0
@) =t*+263 + ¢
{ﬁk(t) =t2+288+¢*
&(t) = 0.
Let n =0 and go(f) = 0. Then for any £ > 0,

{ﬂk(t)=0
G@O=0+D""'-2+0+D
=2+ -
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