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The Concentration-
Compactness Principle
in the Calculus of
Variations.

The limit case, Part 1

P.L. Lions

Abstract

After the study made in the locally compact case for variational problems with
some translation invariance, we investigate here the variational problems
(with constraints) for example in RY where the invariance of R" by the group
of dilatations creates some possible loss of compactness. This is for example
the case for all the problems associated with the determination of extremal
functions in functional inequalities (like for example the Sobolev inequalities).
We show here how the concentration-compactness principle has to be
modified in order to be able to treat this class of problems and we present
applications to Functional Analysis, Mathematical Physics, Differential
Geometry and Harmonic Analysis.
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Introduction

We have studied in the preceding parts (P.L. Lions [20], [21]) variational
problems set in unbounded domains, where the unboundedness induces some
possible loss of compactness (a classical example of such loss of compactness
is the well-known fact that Rellich Teorem does not hold on unbounded do-
mains like RY for example). Roughly speaking we had to take care in [20], [21]
of the difficulty caused by the invariance of R" by the non-compact group of
translations.

We want to study here, in a systematic way, variational problems where not
only compactness may be lost because of translations but also because of the
invariance of R", say, by the non-compact group of dilations. This difficulty
was absent from [20], [21] since we were interested there in the so-called local-
ly compact case, while it is encountered there when studying the so-called
limit-cases problems, or problems with limit exponents (see below for concrete
examples).

Before giving examples and explaining the statements above, we would like
to mention that most of the problems considered below have their origins in
Geometry and in Mathematical Physics and have been studied by many
authors. In particular we refer to the fundamental studies of T. Aubin [3] on
the Yamabe problem; J. Sacks and K. Uhlenbeck [32], Y. T. Siuand S. T. Yau
[34] on harmonic mappings; and of K. Uhlenbeck [41], [42], C. Taubes [36],
[371, [38].

The dilations invariance of R" is a typical difficulty in the study of the ex-
istence of extremal functions in functional inequalities; indeed if A is a linear
bounded operator from a Banach space E into another Banach space F, one
may consider the smallest positive constant Cp such that the following ine-
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quality holds for all u in E;
|| Aul|r < Colul|£; ¢))

and one may ask whether the best constant Cy is obtained for some u. Now
if E, F are functional spaces, it is often the case that (1) is preserved if we per-
form a scale change that is if we replace u(-) by u(- /o) for o > 0. Of course
the question concerning Cop is equivalent to the solution of the following
minimization problems:

Minf{||u||s/u € E, ||Au||r= 1} )
or
Min{ —||Au||r/u € E, ||u||g = 1}; @)

and the invariance of (1) by scale changes is often reflected by the invariance
of ||-||e or ||-||r by changes such as:

u() — U'“u<;>
(0}

where o depends on A, E,F. And this invariance will imply compactness
defects on minimizing sequences of problems (2)-(2').
Let us give a few examples of such situations:

ExampLE 1. Sobolev inequalities.

Let 1 < p < N/m, m > 1 and let E be the Banach space consisting of func-
tions in LI(R") with ¢ = Np/(N — mp) such that all their derivatives of order
m are in LP(R"); E is equipped for example with the norm ||D™u||rr&™. The
so-called Sobolev embedding theorem (or Sobolev inequality) yields that E is
continuously embedded in F = LY(R"™). Therefore the question of extremal
functions in the Sobolev inequealities

[|u||aqemy < Co||D™ul|Lo@rm 3

is an example of the above framework—A being the injection of E into F. The
associated minimization problem is, for example,

Min“PN|D”‘u|”a’x/u €E, JPNlulqu= 1]. @)

One then checks easily that if we replace u by o ~™%u(- /) for any o > 0,
the two functionals occuring in the above variational problem are preserved
(this invariance being nothing else than the invariance of Sobolev inequalities
(3) with respect to scale changes).



148 P.L. Lions

ExampLE 2. Hardy-Littlewood-Sobolev inequalities.

Let 0<pu <N, 1< p<(N/(N - p) and let g satisfy: (1/p) + (u/N) =1 +
+ (1/q). The Hardy-Littlewood-Sobolev inequality then states

||K * u||Lageny < Col[ul|rrm,  vu € LP(R™) )
where K = 1/|x|*. The determination of the best Co is then equivalent to
Min[ — [ K * u|?dx/u e LP(RY), w117 dx = 1] (6)

(that is (2'), with E ='L?, F = LY, Au = K*u). Again the two functionals are
invariant by the transformation: u — o~ May(- /o) for all o> 0.

ExampPLE 3. Trace inequalities.

Let 1 <p<N,N>2, m>1andlet g be given by: g = (N — 1)p(N — mp) .
It is well—known that there exists a bounded linear operator A—called the trace
operator—from E = {ue L*(R¥N "' x R, ), D"ue LIP(RN"! x R,)} with o =
= Np/(N — mp) equipped with the same norm as in Example 1 into F =
= LY(R™~ 1) such that if u € D(R"), Au is the usual trace of w on RV~ ! x {0}.
For obvious reasons we still denote Au by u. In this context, problem (2)
becomes

Min[JPN_]XrR+ |D™ul? dx/u €E, (i, lu(x', 0) | dx’ = 1]. 0]

And again both functionals are preserved if we replace u by o~ ¥~ Y/4y(- /o).

There are of course may more examples of this type (some are discussed in
the following section). Let us now explain on these examples what we mean
by loss of compactness induced by the dilations group (or the scale change
invariance). This can be easily seen on the fact that, even if we know there
exists a minimum in (2), (2'), (4), (6) or (7), the set of minima is not rela-
tively compact in E: indeed if # is a minimum then ¢~ “u(- /o) = u, would
still be a minimum for all ¢ >0 (o= N/q in Examples 1, 2, a=
= (N — 1)/q in Example 3). Now if o = 0 or ¢ — «, u, converges weakly to
0 (which is not a minimum) and the probability |u.|? (or |u,|P) either converges
weakly as 0 — 0 to a Dirac mass or spreads out (vanishing in Lemma I.1 of
[20]) as o — oo. This loss of compactness may be also seen on the fact that g
in the various examples is a limit exponent and that if we consider only func-
tions with support in a fixed bounded domain and if g is replaced by a smaller
exponent, then the various minimization problems are standard consequences
of the Rellich theorem. Notice also that the set of minima in (2), (2°), (4), (6)
or (7) is also translation invariant therefore we also have the loss of compact-
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ness induced by the translation invariance, as we had in the problems studied
in [20], [21].

We present here a general method to solve variational problems (with con-
straints) where such difficulties are encountered, that is problems with limit
exponents or with a scale change invariance or problems like (2), (2’) in func-
tional spaces. In particular our methods enable us to prove that any minimiz-
ing sequence of problems (4), (6) or (7) is relatively compact in E up to a
translation and a scale change™. In particular there exists a minimum; this
last assertion has been proved in Example 1 for the particular case of m = 1
by Rosen [31], G. Talenti [35], T. Aubin [4] and in Example 2 by E. H. Lieb
[18] but all these works depend on the use of symmetrization and therefore
cannot be extended to cover fully examples 1-3. Let us mention a few other
applications of our methods.

EXAMPLE 4. Yamabe problem in R".

An important problem in differential geometry is the so-called Yamabe
conjecture or Yamabe problem (this problem will be explained in detail later
on, see Yamabe [44], N. Trudinger [39], Eliasson [14] and T. Aubin [3]). We
will come back below on the case when the problem is set on a compact
manifold but here we restrict our attention to R™-prototype of a complete but
non-compact manifold. We look for a positive function # in R solution of

] ad .
——(aij(x) —li> + kOGu = KuN*P’®N-D in RN, u>0in RY (8)
0x; 0x;

where a;;, k, K are smooth functions, (a;;) is symmetric definite positive. First,
if we look for a solution which vanishes at infinity, our general method
enables us to study completely the variational problems associated with (8).

Next, if we consider solutions which remain positive at infinity, we also
solve similar variational problems where we look for functions which con-
verge to a given positive constant at infinity. However in that case, we need
severe restrictions on k, K. In [28], Ni proposed a different approach of (8)
by the method of sub and supersolutions —that we recall in an appendix—
which gives a very general existence result. Roughly speaking, one can find an
interval ]0, i[ such that if 0 < u < j, there exists a minimum solution u of (8)
such that: u(x) = p as |x| = . We prove below that under quite general
assumptions, there exists a second solution u of (8) such that: u(x) > u(x) on
RY, u(x) = p as |x| = . This is achieved in the appendix by looking at the
problem satisfied by (v — u) and by solving the associated variational problem
by our concentration-compactness method.

@ Of course if p = 1 in Examples 1,3; L' has to be replaced by the space of bounded measures.
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ExXAMPLE 5. Nonlinear field equations.

In various domains of Mathematical Physics one encounters the following
nonlinear problem

—Au=fu) in RY, ux)—>0 as |x|— o )

(here to simplify the presentation, we take scalar functions ). Of particular
interest is the so-called ground state solution which, if it exists, is the
minimum of the following problem (see for instance Coleman, Glazer and
Martin [13], H. Berestycki and P. L. Lions [6])

I = Min [ j | Dul? dx/LRNF(u) dx = 1,ue L*NN-D(RM),
Du e L*(R"), F(u) e Ll(rRN)] ) (10)

where F(¢) = L; f(s)ds, N = 3 (to simplify). In view of both known existence

results on this problem (see the references above and their bibliographies), the
behaviour of F at 0 and at o is known to be determinant: more precisely in
all known existence results of a minimum in (10), F is supposed to satisfy

lim F()|z] =GN -2 Lo, lim Fp)|t| - V'V -2 <.
=0 ] > oo
Our method enables us to give a much more general condition for the
existence of a minimum in (10) which will cover both the situation above and
the case of the best Sobolev constant i.e. F(¢) = |¢|/*®~?, We assume that
Fe C(R), F(0) =0 and

iteR, F{)>0 and (11)
lim F* ()|t~ VN2 = 4 >0, lim Fr)t| VN2 =5>0"
|t] =04+ |¢] =0 (12)

(of course if a, 8 > 0, F"may be replaced by F); and we denotz by

I° = MinUPN|Du|2dx/fm,\,|u|2N/(N'2) dx = 1};

(cf. Example 1 above). Then we prove that any minimizing sequence (un) is
relatively compact in L*™ ® =~ D(R) (and F(uy) is relatively compact in L'(R"))
up to a translation if and only if

I < {max(e, B)} - VPN (13)

(if « = B8 = 0, (13) holds automatically). We also prove that, if we allow the
equality, (13) always holds, any minimizing sequence is always relatively com-
pact in L2 ®=2(RM) up to a translation and a scale change (and we can
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analyse what happens exactly when the minimizing sequence is not compact
up to a translation).

On those two examples, we see that the problem is not invariant under the
action of the group of dilations; nevertheless the underlying invariance of RY
by dilations plays a crucial role in our solution of such problems. But even
the full invariance of R" by dilations is not needed, only the local part of it
plays a role and this explains why our method also applies to problems set in
regions different from R™. These regions may be compact —in which case the
group of translations does not induce any more some form of loss of
compactness— as is the case in the following typical example of such prob-
lems.

ExaMmPpLE 6. Yamabe problem on compact manifolds.

Let (M, g) be some N dimensional compact Riemannian manifold, a general
open question is the determination of the class € of functions on M which can
be achieved as scalar curvatures of metrics g (pointwise) conformal to g. To
solve this problem, one introduces for some positive function # on M a new
metric given by: § = u* V'~ ?g; we assume N > 3. Then if we denote by A the
Laplace-Beltrami operator on (M, g) and by k the scalar curvature, one checks
(see [3]) that the scalar curvature of § is given by

4N -1

K= {—%Au + ku}u—(N”)/(N‘z),
Therefore K —a given function on M— belongs to C if there exists u solution
of

_4N-1)

N2 Au + ku = KuWN+*»Y® =2 in M,u>0 on M. (14)

And up to some multiplicative constants such a u exists if we find a minimum
of
1= nf[[,, |Vul® + ku?dV/ue H'OD), [, Ku¥2av=1], (15

where k, K are given functions in C(M).

Under natural assumptions on (—A + k) and K, we prove below that for
any minimizing sequence (u#,) weakly convergent to some u then: either u is
a minimum of (15) and (u,) converges in H' to u, or u = 0 and there exists
Xo € M such that

K(x0) = max K, |tn]| VN =2 - iy, |Vtdn|® = Bbxo
M

for some B > 0, and where o = 1/max K (the above convergence is for the
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weak topology of bounded measures on M). This immediately yields the
following result due to 7. Aubin [3]: if we have

I< (max K) ~(N-2/Npe (16)
M

(where I~ is given as in Example 5), then there exists a minimum in (15) (ac-
tually we prove that any minimizing sequence is relatively compact in H*(M)
if and only if (16) holds). And we refer to [3] for a sharp discussion of (16).

In fact, we present below more examples: in particular we will present the
recent results of H. Brézis and J. M. Coron on the Rellich conjecture [8] and
on harmonic maps [9] in the light of our systemtic tratment of such problems;
and we will explain how it is possible to recover the results of Jacobs [15] on
holomorphic functions by our general approach. ...

At that stage, we would like to explain the main lines of our method:
roughly speaking in all the problems listed above, the main difficulty —
created by the possible loss of compactness— is due to the fact that some
functional is not weakly continuous and that strong compactness is not a
priori available. Then, in the same spirit as in Parts 1 and 2 [20], [21] where
we explained what were the two possible forms of ‘‘non compactness’’ due to
unbounded domains, we investigate here what happens when passing to the
limit on those functionals along weakly convergent sequences. We use basically
some general compactness lemma which, roughly speaking, tells that weakly
convergent sequences are converging strongly except possibly at ‘‘isolated”’
points where Dirac masses appear in the densities of the functionals. And this
is of course a local property. A typical example is the following.

Lemma. Lef (), be a bounded sequence in W™ P(Q)* for some m > 0,
pell, N/m[, and a bounded smooth domain Q of R". We may assume that
un converges weakly in W™ ® to some u and that |u,|? converges weakly in the
sense of measures to some v, where ¢ = Np(N — mp)~'. Then there exist
(Xiz1in Q, (#)i=1 in [0, o[ such that

v=ul?+ > viby;, D1 < oo,
i=1 i=1

Actually we obtain more information on »;, x; and we show that any such mea-
sure » can be obtained as the weak limit of |u,|? for some bounded sequence (i)
in W™ ?(Q) weakly convergent to u. In addition such a result is not at all restric-
ted to Sobolev spaces but is based upon the underlying invariance by dilations.

Let us also emphasize that such a phenomenon of ‘‘energy’’ concentrations
at points was first observed by J. Sacks and K. Uhlenbeck [32] in the study
of harmonic mappings: see also Y. T. Siu and S. T. Yau [34]; S. Sedlacek [33]

If p = 1, we replace L'(Q) by the bounded measures on Q.
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for similar observations in the context of Yang-Mills equations and K.
Uhlenbeck [43] for a general presentation. Let us only mention that this lem-
ma is very simple and holds for arbitrary sequences (un).

With the help of such results, we are able to decide what happens to the
functionals if the minimizing sequence () is not compact. Roughly speaking,
u, breaks in two parts ¥ and (u, — u) = i, which ‘‘concentrates around the
isolated points x;”’. Then this enables us to conclude that all minimizing se-
quences are relatively compact if and only if some strict subadditivity in-
equalities hold, exactly like in [20], [21]. Those inequalities with equalities
allowed always hold and they involve, like in [20], [21], a notion of problem
at infinity which is essentially obtained by using the dilation invariance of RY
(or the local invariance for other domains) and concentrating a test function
around any fixed point of the domain.

In examples 1, 2, 3, those inequalities hold because of the homogeneity of
the problem and the conclusion is reached, while in examples 4, 5, 6, only one
of these collections of inequalities does not always hold and this explains the
role of the strict inequalities that we mentioned in Examples 5, 6.

Despite the generality of the argument and of the approach, we postpone
its general presentation until section III, while in section I we treat examples
1, 4, 5, in section II we treat examples 2, 3. Finally section IV is devoted to
various problems in compact regions like example 6.

The results presented here were announced in [25], [26] and combined with
those of P.L. Lions [20], [21] are the subject of lectures given at College de
France for the Cours Peccot.

Finally, it is a pleasure to thank H. Brézis and J. M. Coron for several
discussions and their interest in this work and to acknowledge that some of
the questions treated here are motivated by E. H. Lieb’s work [18].

Let us warn the reader that this work is divided in two parts: Part 1 consists
of Section I, while the remainder is contained in Part 2. Notations are iden-
tical for both parts.

I. Sobolev inequalities and extremal functions

I.1 The main result

Let m be an integer (to simplify) > 1, let pe[l, o[. If N>2, ¢ D(RY)
we denote by |D™¢(x)| any product norm of all derivatives of order m at
the point x. The classical Sobolev inequality states that if p < (N/m), g =
= Np(N — mp) ™! then there exists a positive constant Co such that for all
o € D(RY)

(Jiow 17 dx) V7 < Co( [ ID"™ " ) 2. 3)



154 P.L. Lions

We then denote by D™? the completion of D(RY) for the norm
[lull = ([ ID™el? ) 77,

actually for the special case p = 1, we consider directly D™ as the space of
u in LY(R™) such that D™u € Myp(R"). The Sobolev inequality then holds for
any ¢ € D™, In order to decide whether the best constant Co is achieved, we
have to determine whether the following minimization problem has a
minimum

I= Inf(jPNID’”ude/ue:D’""’, jRNlul"dx= 1); 4
(we will also write 7 = I; and I, will be the value of the infimum of the same

problem but with 1 replaced by \).

Theorem 1.1. Every minimizing sequence (un)» of (4) is relatively compact in
D™? up to a translation and a dilation i.e. there exist (yn)n in RY, (on)n in
10, o[ such that the new minimizing sequence iin, = o5 ' WUn(- — yn/on) is
relatively compact in D™7? for p > 1 and in L? for p = 1 (in this case |D™u,|?
is tight).

In particular there exists a minimum of (4).

In the case when m = 1, this result implies easily the
Corollary I.1. Ifm=1, p > 1, any minimum u of (4) is given by
ulx) = a‘N/qu1<'——Z> where yeRY, ¢>0
g

and ui(x) = {1 + bxP’P=-D}y@-N/P where b > 0 depends explicitly on p, N
and I below. Moreover we have

e —p '+ N/2QT(N) )N
I=x""N{(p- DN -p)~'}~¢ ”’”{
I'(N/pT'(1 + N — N/p)
Remark 1.1. The value I and the fact that u, 4; are minima were found by
G. Rosen [31], G. Talenti [35], T. Aubin [4] and this was based upon a sym-
metrization argument and some optimal one-dimensional bounds discovered
by G. A. Bliss [7].

Remark 1.2. Of course Corollary I.1 holds with the norm [Du| chosen to be
the usual norm on R".
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We begin with the proof of Corollary 1.1 using Theorem 1.1: by Theorem
I.1 we know there exists a minimum u of (4). Now by a simple use of Schwarz
symmetrization we see that v = u* is also a minimum and thus v, = 6~ 7 -
- v(x/0) is a minimum for all ¢ > 0. In addition, v, being spherically sym-
metric, v solves the O.D.E. form of the Euler-Lagrange equation associated
with (4) namely

N-1
—(p = D|vs|P vy ———r—~|v.’,]"‘1 =¢ ' for r>0
Ué(o) = O’ Vs 2 O’ vl’! < 0, UU(O) = U_N/q.

And remarking that for any constant 7, there exists a constant b (which can
be computed explicitly) such that the unique solution of this O.D.E. is given
by

Volr) = *{?/ P~V 4 prP/ P DYP-NVP

where p = (N — p)/(p(p — 1)). Computing the L? norm of v (or v,) one then
gets the values of b, /. Finally from the fact that both » and v = u* solve
the same Euler equation, we conclude as in A. Alvino, P.L. Lions and
G. Trombetti [1] there exists y € RY, u(y + -) = u*(-).

Theorem 1.1 is proved in the next section but we would like to explain the
general scheme of proof here. First of all we saw in P.L. Lions [20], [21] that,
if (u,) is a minimizing sequence of (4), a crucial quantity is the concentration
function of |ux|?. For technical reasons we have to consider the concentration
function of

m
on = Z |D’u,,|"f
j=0
where g; = Np(N — (m — j)p). We denote by L, = IRan dx, of course: L, >
2 [rn|Un|? + |D™unlPdx > 1 + I, and L, being bounded we may assume
without loss of generality that L, > L > 1 + .

In ““locally compact’’ problems the occurrence of vanishing (see [20], [21]
for more details) was easily avoided. On the other hand, here vanishing may
occur since the concentration function Q,° of u°(+) = 6~ ?u,(- /o) is given by

7(0) = Ou(t/0) for t>0,

(and playing with o = 0, > 0, one may build minimizing sequences for which
vanishing occurs). We will avoid vanishing by choosing (¢,). in [0, — [ such
that

Qn"(1) = 1/2 )
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(of course we could replace 1 by any R €]0, «[, 1/2 by any 6 €0, 1[) indeed
0r(1) = Qu(1/0) and Q, is a non-decreasing continuous function such that

0x(0) =0, 1 < lim Qx(2).
tTeo

In what follows, we will still denote by u, the new minimizing sequence u"
and by Q, the associated concentration function, hence we have by (17):
On(1) = 1/2.

The proof given in the next section is organized as follows: Step 1: Using
(17) and the concentration-compactness argument of [20] [21], we will show
that p, is up to a translation a tight sequence of bounded measures on R"; Step
2: Using again (17), we will check that u, does not converge weakly to 0; Step
3: we conclude by proving that u, converges weakly to u satisfying:
Jra|ul?dx = 1. Both Steps 2 and 3 will rely on a Lemma stated in section 1.2
and proved in section I.3.

1.2. Proor. In what follows we will denote by (u,) all subsequences extracted
from the original sequence (u,).
Step 1. In view of (17), if Qu(?) 7> Q(f) for some non-decreasing, non-

negative function Q on R, we have

0<1/2=0)< 0O <C, VI<I<+oo.

Applying the method of [20], [21], in order to prove that there exists (yn) in
RN such that pn(- — yn) is tight on R, we just have to show that dichotomy
cannot occur. In order to prove this claim, we assume that dichotomy occurs
and we will reach a contradiction since: I = N/?1, thus

I=5L<I,+ 11—, Vo €]0, 1]

(i.e. (S. 2) holds!). Therefore we assume that there exists & € ]0, L[ such that
forall e >0
Iy, € RY, 3R, Rx > 0, R,> Ry and R, .
_ " (18)
& - Jynwkop”dxl’ .[Ros x—ynl <R, PrOX S €

Let £, 7 e Cp™(RY) satisfying: 0 < £<1,0< <1, £=1if |x| <1, £=0if
x| =2,7=1if |x| > 1,9 =0if |x| < 1/2. We denote by &, = &(x — yn)/R1),
nn = 7((x — ¥x)/Rn) where R; > Ry is determined below. We then have

| Jiene 1D unl? dx = [ |D" Grtn) P dx = [ D" (nun) [P dx| < CXR + Xa) + €

provided n is large enough so that: 4R; < R,; and where

m-1 ) ) ) 1/p
o= < 2, UD™E|” + | D™ Y| Dlunl? dX> :
RN j=0
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Using Holder inequalities, we obtain

m-—1
X2 <C 3 ([en D™ Eal? + | D™~ Iu|? dx) PP
i=0
o o
) (J.Ros |x=yn|l <Rn |Dlu"|qj dx)p Y
where p;/p = (gj/p). We deduce in view of (18)
m-1
Xi<Ce 3 ([wr D™ ~8al7 + | D™ =P )22
j=
and
Ji D Teal? + |D" Il = [ | D" P 4 | D7yl
since (m — j)p; = N. We obtain finally
”RN D" unl? dx = [ |D"ub|? dx — [ |D™ul? dx| <CE” +9. (19)
where up = Eqihn, UZ = Nnlin.
Without loss of generality we may assume that

LRNIuJ]”dx7a, jwluﬁ]qu;»ﬁ

and 0<a,8<1, |B~ (1 —a) <.
We claim that for all e small enough | D™u}|,» remains for i = 1, 2 bounded
away from 0: indeed the above proof shows that

m
f Zo |D/uz|% dx — &I' < CEY? + )
J=

} J i |Du2|% dx — (L — &)| < C(eV” + ¢)
j=0

and & €]0, L[. Therefore let us denote by v > 0 some constant such that for
all € small and for all n: v < |[D™uz|%». Next, if for some sequence e 7 0,
the constant ax = a(ex) either goes to 0 or to 1, we deduce from (19)

IZ>2T1+ v — 6(ex)
where 6(f) >0 as t— 04; and this is not possible. On the other hand if

a2 a€]0,1[, B« ¢ 1 — a and we obtain from (19): I > I, + I -« and again

this is not possible.
In conclusion we have proved that there exists (y») in RY such that: Ve > 0,
3R €]0, o

L S |Dun|Y dx < e. (20)

x—yn|ZRj=0
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We still denote by (#n). the new minimizing sequence (#»)» obtained by
Gn(X) = tn(x + yn),  VxeRM.

Without loss of generality we may assume that u, converges weakly in D™?
and a.e. to some u € D™?; and that D’u, converges weakly and a.e. to D’u
in LY(RM).

The next result —that we will call below the second concentration compact-
ness lemma— is the crucial tool for the next two steps of the proof of
Theorem I.1. Before stating this result let us observe that if (u,). C W™ ?(Q)
for some smooth bounded region Q of R", by standard extension theorems we
may assume without loss of generality that (1), C W™P(R™) and |u,|? is tight
(even with some uniform compact support!).

Lemma L.1. Let (u). be a bounded sequence in D™* converging weakly to
some u and such that | D™un|” converges weakly to yand |un|? converges tightly
fo v where p, v are bounded nonnegative measures on RY. Then we have:

(i) There exist some at most countable set J and two families (xj)jes of
distinct points in R, (vj)jes in 10, [ such that

y= |l + 3 b @1
(ii) In addition we have
p= [D"ul? + EJ pibs; 22)
Sfor some u; > 0 satisfying
vP4 L wi/l,  for all j 23)
hence
_/§I Vf/ 7 < o0,

(iii) If v € D™P(RY) and |D™(un + v)|” converges weakly to some measure
ii, then ji — pe L'(R™); and therefore

i 2 D"+ 0 + 3 b
jeJ

@iv) If u =0 and: (j'd,u) < I(jdu)”/"; then J is a singleton and: v = vbx, =
= w(Iv*/?%) ™! for some v >0, xoe R".
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The proof of this lemma is given in the next section.

Remark 1.3. We claim that if u € D™?(R"), J is an at most countable set,
(xj)jes are distinct points in RY and (v))jes are positive numbers such that
Yjesv?/4 < o, then the measure » = |u|? + 3} jcsv;8y; is the tight limit of a
sequence |u,|? where u, converges in D™ to u. Hence, the above result com-
pletely characterizes the limits of |u.|? for weakly convergent sequences of
D™P. Of course u, converges in L7 to u if and only if » = |u|?; therefore the
loss of compactness (for the Sobolev limit exponent) occurs at a countable
number of points x; (with weights »; such 3 »#/% < o and p/q < 1).

To prove the above claim, we consider ¢ € D(RY) with [lel?dx = 1 (say) —
observe that we can take [ |D™¢|” dx as close to I as we wish — . Then for
any xo € RN, on = on = n™%(- — xo/n) satisfies

{j | D™ @nl? dx = I|D"’<p|” dx, quonl"dx =1

|n|? =050,  @n770 in D™P weakly.

Next for any finite subfamily J’ of J, we consider for n > no(J"): ¥n = 2 jer
V}/ 907, Supp ¢ are disjoint for je J'. Clearly we have

[1D™gl? dx = ( 3 u;’/q> [IDmof? ax < <Z uf’q> [ID™g]7 ax
jeJ’ JeJ
JI‘Pnlqu = 2%  |¥a? 2 viby,  ¥a0in D™P weakly.
jer jer

eJ
Increasing J' to J, we obtain by a diagonal procedure a sequence ¥, such that
JIDm Bl dx < (3, 70) [ 107l
. \JjeJ
Jl@nlqu—,{ 2 Vis Yn>0 in D™P weakly
jeJ

[Vnl? = 3 vjby,  tightly.

jeJ

We finally set: #, = u + ¥, and one easily checks that u, has the required pro-
perties. Actually one even checks that

D™un|? = |D™ul” + (| |D™o|” dx) >, vE/%y,.
J J
jeJ

We go back now to the proof of Theorem I.1:

Step 2. u,the weak limit of the minimizing sequence u,, is not identically 0.
Indeed, in view of (20), we may apply Lemma I.1 (extracting if necessary
some subsequences) and we know by (20)

jPNd,L =1, LRNdu =1. 24)
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Now if 4 = 0, we may apply part iv) of lemma I.1 and we deduce: » = };4 =
= by,, fOr some xo € RV.
On the other hand

1= > [ ualdx 7 1

this contradiction shows that u # 0.

Step 3. u, converges strongly to u.

Let us denote by o = [,n |u|?dx: by step 2 we know that « €]0, 1] and we
have to prove that o = 1. Suppose that o # 1, then applying Lemma I.1, we
see

oz=erN|uiqu, 2vi=1l-«

JjeJ

wi = Iv?, JRN |D"u|P dx < I — le-
je

Hence, we obtain

[ 1Dl dx ST = 3

jeJ
<I<l -3 y;’/‘?>
jeJ
< 1(1 - (Z v )Mf = Ia"
jeJ

while [~ |D™u|? dx > I = I = Ia”’?. The contradiction shows that « = 1
and we conclude easily.

Remark 1.4. We may rewrite the above argument in a way which clearly
shows the role of sub-additivity inequalities like (S.2). Indeed

I=I3> LRNID’”u|pdx+ SwEla+ I v 2+ 2 1,>0 (1),
jeJ

JjeJ JjeJ
since we know that Iy is strictly sub-additive and o + D, »; = 1.
JjeJ
1.3 The second concentration-compactness lemma

We now prove Lemma 1.1: we first treat the case when u = 0. The goal is to
obtain some reversed Holder inequality between » and p which will give the
various informations contained in Lemma I.1 via Lemma 1.2 below.

Let ¢ € D(RY), by Sobolev inequalities we have

([l 01l ax) 912 < ([ | D™ (oun) P dx) 7. 25)

The left-hand side member of (25) goes to ([rn|e|?dv)'/I'? as n goes to
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. Now the right-hand side member is estimated as follows
’ (LRN ID’"(qoun)I"dx) 1/p _ (LRN |§0lp|Dmunlp dx) 1/17‘ <

<CZ ([an D" o D )

And using the fact that ¢ has compact support and the Rellich theorem we
see that this bound goes to 0 as n goes to o. Therefore, passing to the limit
in (25), we obtain for all ¢ € D(RY)

([an Ll dr) 2 <1712 ([ o lol? i) 2. (26)
And lemma I.1 is proved in the case u = 0, by the application of

Lemma 1.2. Let p, » be two bounded nonnegative measures on R satisfying
for some constant Cp = 0

(Jawlel?@9) 74 < Co([en ol dn) 2, Vo e DR 26)

where 1 < p < q < +. Then, there exist an at most countable set J, families
(x)jes of distinct points in RN, (v))jes in 10, o[ such that

=, v;0x;, w=Co? ) Vf/qaxj.

JjeJ JjeJ

Thus, in particular

If in addition: v(R™)Y? > Cop(R™M?, J reduces to a single point and v =
= vbxo = v P/4CPp, for some xo € RN and for some v > 0.

Lemma 1.2 is proved below; we first conclude the proof of Lemma I.1. We
now consider the general case of a weak limit # not necessarily 0. Of course
(25) still holds and, if we denote by v, = u, — u, Brézis-Lieb lemma [10] yields
for all ¢ € D(RY) '

i Lol lunl® dx = [ ol nldx =[xl 7]0a]? dx

But, clearly, v, is bounded in ™7 and |va|? is tight; therefore applying what
we proved above we obtain the representation (21) of ». Next, passing to the
limit in (25) and using as before Rellich theorem we find for all ¢ € D(RY)

(jRN |¢|q dV) 1/qpi/p < (JRN |¢|p d[l,) vp C':’:iol (JRNIDm—i¢|p|Diulpdx> p,
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If ¢ satisfies: 0 < ¢ < 1, ¢(0) = 1, Supp ¢ = B(0, 1), ¢ € D(R™); we apply the
above inequality with ¢((x — x;)/€) for e > 0 and where j is fixed in J. We ob-
tain

v P < p(Blxs, )77 +

m-—1 .
_ _i X — Xj
+ C Z (Jv e—p(m i) Dm 1¢< J>
i=1 B(xj, €) €

Now we may estimate each term of the sum by Hoélder inequalities recalling
that D'u € LY(R™) (by Sobolev inequalities)

p (X —Xx; .
e—p(m—l)J Dm—1¢< J> ]DIUIde<
B(xj,€) €

. . p/qi . Cx\ |Pi (i -p)/qi
< I |D'u|?|D'u|? dx e~ Pm=0 J D”'"qp(—> dx>
B(xj, €) RN €

where pi = gip(gi — p)~ ', (gi — p)/qi = (m — i)p/N. Hence, we have

12 1/p
)D’u{"dx) .

p

m-—1 . p/qi
wVUYP < W(Bxj, )VP + C ) q |Du|% dx> '
i B(xj, €)

i=1
This implies that u({x;}) > 0 and

p= v, vjeld
and thus
w2 Z IVf/qaxj = p1.
jeJ

Since by weak convergence we also have: u > |D™u|? and since |D™u|? and
w1 are orthogonal, (22)-(23) are proved.

Finally to prove part iii) of Lemma I.1 we just observe that for all
e C(R™), ¢ 20

(ji?”‘Ple(”" + o) dx) - <.[|PN¢|Dmun|p dx) 1/pl <
(JrRNS”IDmUIPdX) vp,
Passing to the limit in n, we find

e ) = (fawth) |  (fuwsha)

where 7 € L (R™). And this shows that the singular parts of 7 and u are the
same; and we conclude.

We next turn to the proof of Lemma 1.2. We first remark that (26") holds
by density for all ¢ bounded measurable. Therefore we see that in particular
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v is absolutely continuous with respect to pi.e.: » = fu where fe LY (p). Since
»(A) < Cop(A)*P, vA Borel cC RV

we have in fact f€ L%(u). Next, if p = gv + o where g e LY (), o is a bounded
nonnegative measure such that if K = Supp ¢, »(K) = 0; considering g = 1xu
and taking ¢ in (26’) of the form 15y where ¢ is bounded measurable, we see
that without loss of generality we may assume that o = 0. We next denote by
vk = g%lg=nv, where a = g/(q — p). We are going to prove that v, is given
by a finite number of Dirac masses; this will prove that »1g<«) is a finite
number of Dirac masses for all k£ < o and letting k — oo, the claim on » will
be proved (since »({g = +}) =0).
To prove our claim on vk, we take in (26') ¢ of the form

/(g —
<p=g1 @ p)l(gsk)lp

where  is an arbitrary bounded measurable function. We thus obtain for all ¥

([ 1917 @) 70 < Co [ on 017 )2

(indeed: g7’ P1 < o = g77@ Pl < iyv).

This reversed Holder inequality now yields our claim on vx: a short proof
of this standard statement is the following. For any Borel set A the above in-
equality gives

i(A)"? < Covi(A)VP.

Therefore either vx(4) =0, or v(A) =6 = Cy »”“~P > 0. Since for each
xeRY, ve({x})) = limeo ! va(B(x, €)), we have for all xe RV

either wi({x}) =6, or 3e>0, vi(B(x, €)) = 0.
Thus there exists a finite number of distinct points x; in RY such that

w({x}) =26 Vvi<j<m
vi(B(x,€)) =0 for some €= e(x) >0, vx ¢ {x;/1 <j<m}.

Let K be any compact set in O = {x/x # x; for all 1 <j < m}, we have by
a finite covering of K by balls B(x, e(x)): v«(K) = 0, therefore »«(O) = 0; and
our claim is proved.

At this point, we have proved the representation of » and by (26") we have

p({x}) = Co Pv({x;} )7

Finally if »(R™)"? > Cou(R™)!/?, taking ¢ = 1 in (26") we see that »(R™)"/? =
= Cop(R™MY?; and using Hélder inequality we find for all ¢ € D(RY)

([n L1 @) 72 < Con(RYY? ( [pon l01di) 7
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where 6 = (¢ — p)/(pg). Observing that
v(RY) = CEuRY*? = {Con(R™’1'u(R™

we deduce from the above inequality: » = {Cou(R™)?}%. Therefore we have
for all ¢ € D(RY)

(Jrwlol*dr) e < v R ([iwlol? dv) /2.

And the above proof already shows that: » = >)/L; v;6y;, where m > 1, (x;)i
are m distinct points in RY and »; > 0.
We choose ¢ € D(RY) such that ¢(x;) = a; > 0; thus we find for all a; > 0

m 1/q/ m (g —-p)Ypq m 1/p
> ol > i S(Z ofvi| .
i=1 i=1 i=1

And this is possible if and only if m = 1.

Remark 1.5. Lemma 1.2 is of course valid in an arbitrary measure space and
the various conclusions hold provided one replaces points in R" by atoms...

1.4 Variants

We briefly mention here a few related problems and inequalities which can be
treated in a similar way. In particular in all the cases mentioned below all
minimizing sequences are relatively compact up to a translation and a scale
change; and the analogue of Lemma 1.1 holds in each case. The proofs being
very similar to the previous ones, we skip them.

i) Other norms in D™P(R").
Of course we may replace the norm on D™” by the following one
&) = |(—-A)’"/2u|ﬁp(,pn) if m is even
= V(=AD" 2y|fmn,  if m s odd.
We could in fact take any norm in ™7 but the particular one chosen above
is of interest since some additional information on extremal functions is

available (see Corollary 1.2 below) and since we have by easy integrations by
parts

&(u) = D%ul|?%-. 27
() |a§m| ulz 27)

if p =2, ue D™?(R™) —and we recover the previous norm! The existence of
extremal functions is determined by the following minimization problem

Inf (8(u)/u € D™P(RY), (L |u|?dx = 1}. (28)
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Corollary 1.2. Let (un). be a minimizing sequence of (28). There exist
Onmn in RN, (on)n in 10, [ such that the new minimizing sequence
fin = 07 " Un((- — yn)/on) is relatively compact in D™? (for p > 1, and in L?
Jor p =1). In particular the minimum is achieved. And if p > 1, for any
minimum u of (28), there exists y € RY such that ii = u(- — ) satisfies

(—A)%d is spherically symmetric, nonnegative and decreasing
in |x| for all « € N such that o < m/2.

The statement about the geometry of the minima is obtained as follows: let
u be a minimum of (28). We set

f=(=A)"u if m iseven, =(-A)"" Y2y if m isodd.

If m is even, fe€ LP(RY) and if m is odd fe L?(R") with p = Np/(N — p) (and
Vfe LP(RY)). If we denote by ¢* the Schwarz symmetrization of ¢, we in-
troduce v solution of

(-A)*v=f* in RV, ve LYRY),

with a = m/2 if m is even, o = (m — 1)/2 if m is odd.
Smoothing and truncating f, we see that we may apply (o« times) Talenti
comparizon theorem on linear elliptic problems to deduce

u*<v a.e. in RY,
In particular we have
oo Il = [ %4 dx < [ 0] dx
and
&) = LEle*l”dx = JRNIfI"dx =8) if m iseven
while
8() = [on [Vf*1P dx < [ [VfPdx = &) if m s odd.

Hence v is also a minimum of (28) and all inequalities are equalities. We then
conclude using the results and methods of A. Alvino, P.L. Lions and G.
Trombetti [1] (in particular the method with Green functions).

ii) Systems.

Let k£ > 1, we want to consider here systems analogues of Sobolev inequali-
ties (our motivation comes from the problem of nonlinczr icld equations —see
section 1.6 below). Let u € (D™P(RM)*; u = (u?, ... u*) with u’ e D™P(RY).
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We denote by
k .
8(u) = Zl jRN |D™u’|P dx.

Let F e C(R¥) satisfy: F(¢) > x > 0if ¢ # 0, F is homogeneous of degree g on
R¥. We deduce from Sobolev inequalities

([en P d) V4 < o) 29)

And the existence of extremal functions is determined by the following
minimization problem

Inf{&(u)/u € (D™ P(RM), LPNF(u) dx=1}. (30)

Exactly as before, any minimizing sequence is relatively compact up to a
translation and a scale change, and there exists a minimum of (30). In addition
the analogue of Lemma I.1 holds with |u,|? replaced by F(u,). The only
technical point we have to explain is why Brézis-Lieb lemma [10] still applies;
and this in an application of the following remark:

Lemma 1.3. The nonlinearity F satisfies for all a, b e R¥

|Fla + b) — F(a)| < ¢€l|a|? + C(|b]? + 1) 31)
for all e > 0.
Proor. Recall that F satisfies: [F(#)] < C(1 + |t|%) on R*. Hence to prove

(31), we may assume without loss of generality that |a| > 1, |a + b| > 1 since
if, for example, |a + b| < 1, we have

|Fla + b) — Fa)] < C + C( + |a|
<C+C1+ |b9

and (31) holds. Furthermore we may also assume that, for any 6 > 0 fixed:
|b| < 8|a|. Indeed if this is not the case we have

|Fla + b) — Fla)| < C(1 + |a+ b|?)) + C(1 + |a|?)
< C+ Clal? + C|bJ?
<C+ (Cs7 7+ O)|b|2.

But if |b| < 6|a|, we deduce

|a| — |a + b| 6 |b| o
<

- < ] x ’ < *
lla+ bl — lall <8lal, = 5= <75 ar b ST
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And we obtain

|F(a + b) — Fla)| =

4 a+b el 4
'”*”FQa+b0’”“FQmN

5] |la| = la+b]| _ 26
“la+ b| la+b]

a+b4 a
la +b| |a]

1 -6

Hence choosing 6 small enough, we find for any fixed e > 0

a+b a
Hvn) )
|Fa + b) - F(@)| < F<ﬁ>

<Clla+ 6]~ |al’| + lal*

€
—>

<
2

lla+ B ~ |al’] + 3 |a]”

< elal? + C.|b|7.

We next turn to some other extension to systems (again motivated by
nonlinear field equations): let £ > 1, let g; €10, g[ for 1 < i < k be such that:
>¥_1qi = q. We denote by 6; = gi/q. Clearly Holder and Sobolev inequalities
yield that for any u = (u?, ..., u*) e (D™ P(RM))*, we have

(J‘RN|u‘|q1 o uk| dx) e < Cotw)' P (32)

where

&u) = iﬁ (JNIPN |D™u'|? dx) 0

=1

In view of the homogeneity of the problem in each u;, the existence of ex-
tremal functions is equivalent to the existence of a minimum of

I= Inf{—JRNIuW‘“ w7 dx/u e (D™ P,
vl i<k, jw |D"ulPdx =1} (33)

We denote by I(\, ..., ) (for \; > 0) the value of the infimum where.the
constraints of norm 1 are replaced by

J‘ﬂ?f\’ }D’"u,-lp dx = >\i-

Clearly

*:J»

a’/p
1(>\1,...,>\k)=< x?"> I<0.

i=1
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Therefore we have
IA,..., ) <IO, ..., M)+ I =Ny, ..., 1 — )

for all A\; €(0, 1) such that

M=

0< Ni<k.

i=1

This strict sub-additivity inequality shows (cf P.L. Lions [21] and the
arguments above) that any minimizing sequence (), is such that: |[D™u}|? are
tight, TT%-; |uy|% is tight. And this enables us to argue as before, therefore
any minimizing sequence is relatively compact up to a translation (the same
for all u}) and a scale change and a minimum of (33) exists.

Remark 1.6. Of course in (28), (33) we may take any norm on D"”"? and the
choice may depend on ie {1, ..., k}.

iii) Fractional derivatives.
We first recall that a norm on W™ P(RY) for 0 < m, 1 < p < = is given by

o D*u(x) — D*u(y)|”
By = 3 D%l + “ | O 4 ay
| RN x RN

o= w0 ‘X—)’|N+Sp

where «p is the integer part of m and we assume: oo < m < o + 1; and
s = (m — ap). The Sobolev inequality still holds

]| Laqeny < Col|u||m, ps Yu e W"P(RM);

where ¢ = Np/(N — mp). But if we replace u by o ~¥%u(- /o) in this inequality
we find

¢l zaz < Cof 55 o= || D%ullfr +

lal = ao
+ [[1D=0ue) = D*ou)[Plx - y| =N dx dy} e,
Therefore sending o to 0, we find for all u e W™?(RY)
||u| | Lageny < Co8(u)'7? (34)

where

_ |D*u(x) — D*°u(y)|”
E(u) = JTPNx@N PR dxdy.

We then denote by D™?(R™) the space of functions u satisfying ue L9,
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&(u) < oo; it is a reflexive Banach space equipped with the norm &(u)'’”.
Exactly as before the best constant in (34) is achieved (and all minimizing
sequences are compact up to translations and dilations). In lemma I.1 which
still holds we have to replace |D™u,|?(x) by

[ 1D0un(x) = Dun(y)[?}x = | =¥+ dy.

Remark 1.7. Of course we may replace &u)"? by any norm on D™ ?(RY).

For example if p = 2 and if 4 is the Fourier transform of u#, we may take

{LEN ‘a(s)‘2|512m dE] 12
In lemma 1.2, |D™uy,|* is to be replaced by
IF— I(Emﬁ)'z-

iv) Convolution and Sobolev inequalities.
The general Choquard-Pekar equations (¢f. E. H. Lieb [19], P.L. Lions
[22]) use the following limit embeddings

(] we go l11CaN1 ) x = 31 == diedy) V9 < Col[D™ul 13 (35)
where m>1, 1l < p< o, 0 <a <N and ¢ is given by
2g = 2N — a)p(N — mp)~".

For example if p = g =2, m = 1 then o = 4 (and N > 5). All the results proved
above adapt to this situation and in particular Lemma I.1 holds with |u,|?
replaced by

4 7G0) - [ |t ‘O = ] .

v) Korn-Sobolev inequalities.

To simplify we will consider only N =3, p =2, m = 1. Let ue H'(R*>,
we denote by e;i(u) the linear deformations tensor; e;i(u) = ; {(Oui/dxj) +
+ (0u;j/0x;)}. A fundamental inequality in elasticity theory is the K6rn ine-
quality which yields the Korn-Sobolev inequalities: for all u € H'(R*)? we
have

[ul|zsmy < Cll|ull 2w + [|e@)] |23 )
where e(u) = {2, | e:i(1)|*}*/*. The same dimensional analysis (u(-) = o~ '>
u(- /o)) shows that in fact

||| 63y < Col|e()| | () (36)
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and thus (36) holds for all € (D"%(R*)? and ||e()||.2 is an equivalent norm
on (D%(R*)3. Therefore all the results given above still hold in that case.

vi) Time-dependent problems.
Let O = RY x R. Then Sobolev inequalities give in that case

[lullzae) < Collul],  YueD(Q)

m

where ||u||? = ||ui||frg) + ||Di"u||2s() (or any other equivalent norm, for
example if m = 2, p = 2, we may choose: ||u|| = ||u: — Au||r2). Here and
below wehave: m > 1,1 <p< (N+ m)/mand g = (N + m)p(N + m — mp)~ .
We then denote by D™ "(Q) the completion of D(Q) for the norm ||-||. The
existence of an extremal function is equivalent to the existence of a minimum
of

Inf{||u||?/ueD™P(Q), jQ|u|"dxdt= 1} (37)

Corollary 1.3. For any minimizing sequence (un)n of (37), there exist
((Pns t))n in Q, (on)n in 10, o[ such that the new minimizing sequence

~ —(N+m)/, = Vn - —In
On On

is relatively compact in D™ V?(Q). In particular there exists a minimum.

Of course there are many extensions that we skip such as:
Dfuel?,Dfuel?...

vii) Nonlinear embeddings.

We just give one example of many situations which can be treated by the
methods described above. Let u € (D*(RM)" with s = (N + 2)/4; then we
have

J\ 2 172
o= [ S(Sud) ol "<l 69

7 \T  0x

—such norms have been defined above even if s is not an integer. Such
equalities are interesting in the context of Navier-Stokes equations. Our
methods yield the compactness up to translations and dilations of all
minimizing sequences, the existence of extremal functions in (38) and infor-
mations on the weak convergence such as Lemma 1.1 (one replaces |u,|? by
|tn - VIttn]* . . ).

Another application of these methods to the existence of extremal funtions
for Sobolev-type inequalities is given in D. Jerison and J. M. Lee [16].
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1.5 Yamabe problem in RY

We already explained in the Introduction the motivation for the study of the
following equation

R T PN _ 4/N-2), N
,ZJ; P (au(x) an> + k(u = K(x)|u| u in R (39)

with N > 3. One is particularly interested in positive solutions of (39). We will
assume (to simplify) all throughout the section

aj=ai€ Cy(RY), ay—aj as |x|—>w
v >0, vxeRY, (ai;j(x)) = vIn (40)
k, K € Cp(R™), k— k>, K—K” as |x|— .

And our first approach of (39) will require either
Jo > 0, vu e D(RY),

ou ou
o Sty 24 2
iL,J

Bxi3%; + k(u? dx > o|Duli> 1)
suprvK >0, k°>0 or keLN*RY)

or

{5a>0, Kx)>a on RN @

k®>0 or keL™*RM

If one is interested in solutions of (39) which vanish at infinity, then a
minimum of the following minimization problem will provide such a solution

du du
I= f ii - 2 1,2 [RN,
In { neN%aj(x)axiax + k()u® dx/u e DV*(RY)

j

k(x)uzeL‘(fRN),j K(x)uzdx=1}- (43)
RN

Then if (41) or (42) holds, the class of minimizing functions is not empty and
minimizing sequences are bounded in D' 2(R"); observe also that if (41) holds
then £ > 0 and that if k® > 0, the minimizing class is included in A*(R") and
minimizing sequences are bounded in H*.

We have seen in the previous sections that if a;j, K are independent of x and
if k=0, then, if « is a minimum, & = ¢~ "%u(- /o) is still a minimum and
nothing may prevent losses of compactness for minimizing sequences due to
dilations (i.e. scale changes as above). Here of course, in general, the problem
is not invariant by those scale changes anymore but we have to decide when
and how the non-compactness in L? of a minimizing sequence (for
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q = 2N/(N — 2)) —i.e. when Dirac masses (as in Lemma I.1) do appear in the
limits of |u.|7— is avoided. Of course we have also to avoid the non-
compactness due to translations and we know (cf. [20], [21]) that this is done
using the problem at infinity

- U uodu ., 2N wj }

I = Inf 2 Gij—— + k*utdx/ue DV *(RY), K lu|9dx =1

RN 0Xi0X; RN
and T = +o if K°<0.
Here to avoid the non-compactness due to dilations we have to introduce

a different notion of problem at infinity: to this end we denote by

&) = j Zau(x)a a Y4 k(x)u?dx
J

J@) = [N KCO)|u|? dx.

Then for any fixed point y € R", we consider for u e D'? or H!

&'(u) = lim &(0 = Mu((- - y)/0)) = f Z au(y) (X)— () dx,  (44)

a—0
T3 = lim Jo ™M u((- = 9)/0)) = [ KO)|ul” dx, 43)
I3 = Inf(&5@)/u e D"*(RY), J5 ) = 1) (46)

and Iy = + if K(¥) < 0. We could say that 73 is the value of the infimum
of the problem ‘‘at infinity at y’’. We finally introduce

I” = Inf{Iy/y e RN} 47)

Observe that I’ — I as |y| = o, and thus: I° < 1.
In the particular situation at hand 75 and I* may be computed using dila-
tions, homogeneity and symmetry arguments

I7 = K* (») ™% det(a;(»))""1°
where I° corresponds to the best Sobolev exponent
I° = Min{ [ |Vu|* dx/u € DVXRY), [ion 47 dx = 13.
Therefore

17 = Inf (K*(y)~*?det(ay(»)""™}1°. (43)

yeRN
The above construction of I easily yields

I<r 49
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and if we denote by I, Ix the values of the infima of the same minimization
problems but with 1 replaced by A > 0, observing that

h=X1, I =N
we deduce from (49)
I=L<I,+1I7-., va €]0, 1. (50)

Therefore condition (S. 1) (of [20], [21]) holds if and only if I < I®. By
analogy with [20], [21], we expect the

Theorem 1.2. We assume (40) and (41) or (42). Let (u,)n be a minimizing
sequence of (43).

i) If I<I®, (un)n is relatively compact in D> (R™) (and in H'(R"), if
k* > 0). In particular there exists a minimum and any minimum is, when
I> 0, a positive solution of (39) up to a multiplicative constant.

If I = I, there exist minimizing sequences which are not relatively compact
in DLHRY).

(i) If I=I< Iy for all y € RY, and if (un)n is not relatively compact, there
exist (Yu)n in RY, (on)n in 10, o[ such that: |yn| 2 o, o7V un((- — ya)/on) is
relatively compact in D"*(R"). In addition if k™ > 0, 0, > . And there exist
such sequences (U,)n.

iiiy If I = I < I, u, converges weakly to 0, |u|?, |Dun|* are tight. And if
we denote by C = {y e RN, I = I} and if |un|? converges weakly to some
measure v, we have

v = K(»)6y for some yeC;
3A0n;, 7 0, 3V, Y/ Onk e and
O Un((+ + Y1)/ 0n,) is relatively compact in D!+ 2(RY).

And such sequences (un), exist for any y € C.
iv) If I = I = I® = I} for some y € R then the conclusions of either ii), or
iii) hold for subsequences. And both cases occur.

We see that, even when compactness is not available, parts ii), iii), iv) describe
exactly the phenomena involved. We will not explain here how to check the
condition: I < I”. Let us just mention that this is by no means easy and one
may use the techniques of T. Aubin [3] (see also H. Brézis and L. Nirenberg
[12]): this method is illustrated in the example following the proof of Theorem
1.2. Let us also observe that if (42) holds and k = pko for some ko < 0, ko # 0,
ko€ LN?, then I < I for p large. Of course if 7 <0, then I < I”™!
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ProoF oF THEOREM 1.2. In all cases (4), is bounded in D!'? and if k*° > 0,
(un) is bounded in H'. Depending whether k* = 0 or k® > 0, we consider
pn €LY (R™) given by

pn = |Vtn|® + |un|? O pn=|Vu|* + |un|? + ui.

Applying the arguments of P. L. Lions [20], [21], we conclude that p, is tight
up to a translation if vanishing does not occur: indeed observe that we have

I=L<I,+5L_-. VYac]0,l[.
Now if vanishing occurs i.e.

VR < oo, Sup Br p,,a'x—">0; (51)

yeRN y+
we have clearly

”RNK(x)lu,,r’dx - K”jPNlu,J"dxl < ClxsluapR |K(x) — K| + CjBR |un|? dx;

aunaund B Z Uau,,au,, xl <
ox; 0x;

<C2 sup. |aiji(x) — af| + CIBRIVun|2dx;

i,j x| =

[jPNk(x)u,%dx~ LRNk""u%dx| c sup |k(x) — k=| + C LBR ul dx

x| =R
if k°>0;
< Clk| |~z - gy + CR(IBR Iunl"dx)”".
Therefore choosing R large and then n large, we see that vanishing implies:
IzI=r.

In a similar way if p, (or a subsequence) is tight up to a translation y, such
that |ya|— o, then I = I = I". Therefore if I < I, we have

Ve > 0,3R < o, Vn, Lx|>Rp,,dx<,e.

We now complete the proof of Part i) of Theorem 1.2. We may now assume
that (un)» converges weakly to some u (and a.e.)® We first show that u # 0O:
if it were the case we would have by Lemma 1.1

lu"|q_> Z Vkaxk
) keJ

for some at most countable set J of distinct points xx in RY and of positive
real numbers »¢. In addition we have the:
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Lemma 1.4. Let a; = ajie Co(R™) and assume (a;) >0 on R™. If un—>u
weakly in DVXRM) and |un|? is tight, we know by Lemma 1.1 that:
|un|? = |u|? + 2kes vibu. Extracting if necessary a subsequence, we may
assume that

Jfor some positive bounded measure p., then

ou Jdu _
Zau(x) 3% 3% kZJ Y = DN10det a;; (k) oy
j e

This lemma is proved after the proof of Theorem 1.2. Of course it is valid

with various adaptations in any D7,
Now if we go back to the proof of Theorem 1.2, we see that

I> > ¥~ 2N det a;;(xi))N + lim f k(Gou? dx

keJ

1< D) K()ve.
keJ

”Q/\/

Next we claim that:
LRle|u3 dx— 0.
Indeed if £* > 0, since u, 3> 0 in L?(Bg) strongly for all R < « by Rellich

theorem and p, is tight, we see that u, > 0 in L?*(R™) and our claim is proved.
On the other hand if k* = 0 and thus k € L""?, we remark

LRN |k|uz dx < jBR |k|uz dx + C||k||L~v2mwn - Bry < MJ‘BR ug dx +

+ Cl[(|k] = M) ||t~y + ClIK||v2@n - Ry

and we conclude choosing R large, then M large and finally » large.
Therefore (52) yields

1> 3 vV~ 2"M1%det aii(x)N
ked

1< Z K(xk)vk.
keJ
On the other hand since I < I and I” is given by the formula (48), this implies
that J reduces to a single point xp which is a minimum point of
K~ ?4det(a;)*’" i.e. a minimum point of ;> and I = Iy, = I*. Of course if
I < I®, this is not possible and u # 0.
We next conclude the proof of part i) of Theorem 1.2 by showing that
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frvK|u|?dx = 1. Let us denote by o = v K|u?| dx. By Lemma 1.4 we know

qu 9 i
I> j Say0 2 Y ax £ 3T VDN det ayGa))N + j Kk(GOuZ dx
RN 7 ox; dx; keJ n Jr~y

l=a+ Z vie K(xk);
keJ

and exactly as before we prove that
jn?N k(x)u? de —> jﬂ? ~kCou? dx.
Hence, we have

I>8w) + > v~ 2N det a;j(xe)) Y
kedJ

1—a= D) mK().
kel

Using (48), we deduce

I>8w) +I° Z V;(N—Z)/NK+(xk)(N—2)/N
keJ

> 8(u) + 1”{ S K (xk)}W-ZW = 8w + I
keJ

where
B=2mK ()=>1- a.
keJ

If « <0, 8> 1and we obtain: I > 8(u) + I” > I, a contradiction with the
large inequality 7 < I which always holds.

If o <1, we find: 7> &) > I, > I, another contradiction.

Finally if o €]0, 1[, we find

]:]128(1,{)+11°°_a21a+1?°—a

and this contradicts (50). And part i) is proved.

To prove part ii), we observe that from the second part of the proof that,
in the situation described in ii), either p, ‘‘vanishes’’ or p, is tight up to a transla-
tion y, such that |y,| > . In the first case p.(- — ya), for some arbi-

trary y, satisfying |ya| W 0, “‘vanishes”” and by the arguments given above
iIn = un(- — yn) in both cases is a minimizing sequence of I. If k* = 0, we ap-
ply Theorem I.1 and we conclude. If k& > 0, remarking that I = (K*)~ @~ ~2/N[,

k= [on i dx 20,

and thus (K%)~ V' ~2/Ng, is also a minimizing sequence of /o. And applying
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Theorem 1.1 we find (z,), in RY, (0x)» in ]0, [ such that
fn = 07 N U0n((- = 2n)/0n)
is relatively compact in D!?(R™). And this implies
0<6< j o @) dx = a7 NgY j o U2 dX

therefore o0, 7> +. And part ii) is proved.

Part iii) is easily deduced from the above arguments: we just need to observe
that if u, = 0, |ua|? = K(»)éy, then (i), is @ minimizing sequence of I° and
by Theorem I.1 we conclude easily. Finally part iv) is a consequence of the
proof already made.

Remark 1.8. Of course if we know that there does not exist a minimum of 7,
then the conclusions of Parts ii), iii), iv) hold. In particular this is the case when

(a;j(x)) =2 (@), Kx) <K%,  k(x)=k".

Proor oF LEMMaA 1.4. We take the notations of the proof of Lemma 1.1 and
we have for all fixed k€ J and for all e >0

d X — Xk 0 X — Xk
e L e it e B

of X — Xk Oun Ouy <
- o ot dx| <8
LN¢ ( € >{§a’ 0x; axj} dx’ ©

where 6(e) denotes various quantities (ind. of n) which go to 0 as € goes to 0.
But Supp ¢ C B(0, 1) and a;; is continuous, hence

of X — Xk Oun Oun
—— (X)) — —— =
LN¢: < € Xgaj(x) 0xi 3xj} &
d X — Xk 0 X — Xk
s i ) )

_ q
¢<x x") |u,,|"dx>.
N €

W(B(xk, €) = —8(e) + I°(det ay(xe)) Vv¥/?.

> —8(e) + To(det aij(xk))l/N<j‘
R

And sending n to o, we deduce

We conclude letting € — 0.
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ExampLE. We want to mention a simple situation where I < I”. We take
k = 0. Observe that if a;; does not depend on x for all i,j, the minimum is
achieved if and only if K(x) = K* > 0. Indeed if K = sup K, any minimum u
of I will satisfy

8w =I<I%,  (supK) [n [u™ V"2 dx>1

and this contradicts the choice of 7”.

Now we take for example: a;i(x) = a(x)éj, 0<a<a(x), Kx) <1
K(x) = K=, a(x) = a” as |x| = . We will assume N > 5 and we may always
normalize K, a by assuming K(0) = a(0) = 1 (the choice of the origin is ar-
bitrary).

In order to try to prove I < I, it is natural to use the extremal functions
of I =1° ie. udx)= (e + |x|»~¥~?/2, This method was first used by
T. Aubin [3] (see also H. Brézis and L. Nirenberg [12]). We compute

|y?

— (N — 72 I P4 W-2)
8(”5) - (N 2) <ffRNa(ey)(1 + ly|2)Ndy>e

Jwd) = e N [ K@) + [y dy
And if a is twice differentiable at 0, we deduce easily (using symmetry
arguments for the first expansion terms)
&) = e_(N_Z)I°||u1||Lq +

(N-2) ,_ _ _
+ e - Zaijyiyj>!y|2(l+|y|2) Ndy + o(¢* ™M)
1]

S = €[] |ge + ez‘”j (S )@+ )V dy + 0@
R ij
where

d%a *K

axian, V= axiaxj ©).

ajj =

Since I < &(u)J(ue)~ N ~=2"N, we conclude that I < I by choosing e small
enough provided

J <Zaijyiyj>|y|2(l+ Iylz)’Ndy<CoJ (ZKuy,y, (1+|y|2) Ndy
RN \i,j

(recall that the origin is arbitrary !), where

Co = 2(N(N = 2)|[u1]|12)

It is possible to treat more general potentiels k: one possible extension relies
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on the following result. If N > 3, we have
[u|?|x| 2 dx <4 |Vu|® dx vu e DI HRY) (53)
BN x (N _ 2)2 BN ’

(this classical inequality is sometimes called the ‘‘uncertainty principle’’!).
Hence if we consider for o > —((N — 2)?/4 the coercive quadratic form

uZ
() = j IVul? + o dx,
RN | x|

we may study the question of the existence of an extremal function for the best
constant of the Sobolev embedding when D! %(R") is endowed with the norm
sw)? i.e.

Io = Inf{ @) /u € DVA(RY), J}\w |u VN =D gy = 1}, (54)

Theorem 1.3. For any minimizing sequence (un)n of (54), there exists (on)n
in 10, o[ such that the new minimizing sequence i, = o5 ™ 2"Mu,(-/0s)
satisfies:

i) If o < 0, i, is relatively compact in D' *(R™) and thus a minimum of (54)
exists.

ii) If a = 0, there exists (yn)n in RY such that ii.(- — y») is relatively com-
pact in DV3(RY) and if & > 0, | ya| = . In addition if « > 0, I* = I° and no

minimum exists.

The proof of Theorem 1.3 is very similar to the above proofs and we will
skip it. Let us just mention that if v.(-y,) is relatively compact in D**%(R™),
and if |y.| >  then

LEN]vn|2[x| “?dx—0,

Next, we explain without even stating a theorem, what is one possible exten-
sion of Theorem 1.2. Take, to simplify, a;j=6;, K=1, and ke Co(RM
satisfies

lim k)|x|* = a> -

lx| = 4
Then we set: I® = I (thus I* = I° if o > 0). With these notations we can
prove that if I < I, all minimizing sequences are relatively compact while if
I = I”, there is a least one minimizing sequence which is not relatively com-
pact —and we may analyse as in Theorem 1.2 what are the possible losses of
compactness.
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At this point let us observe that everything we did concerned positive solu-
tions of (39) which vanish at infinity and if we go back to the original motiva-
tion of the Yamabe equation (39) —given in the Introduction— it is not clear
that the new metric —basically given by |u|*' "~ ?qa;;— is complete (and in
general it is not complete). On the other had if we consider positive solutions
of (39) such that: u(x) >« on RY for some « > 0; the new metric will be
automatically complete. This is why in the remainder of this section we will
consider bounded solutions of (39) positive uniformly on R™. At this stage,
let us mention the work of Ni [28] (see also [29], Kenig and Ni [17]) where,
in the particular case a;j(x) = é;, kK =0, general results are obtained by the
elementary method of sub and supersolutions. This approach is recalled in the
appendix where we also explain how it is possible to obtain twice more solu-
tions —and this is done by variational arguments involving our general
method. Here, we present still another approach which in the special case
afore mentioned does not cover the full generality of Ni’s results since more
severe restrictions are made on K but on the other hand we obtain additional
information on the solution and the approach also provides a general way to
check the assumptions necessary in order to apply the method of sub and
supersolutions of Ni.

We consider the following minimization problem

I = Inf{8W)/u — cce DV XRY), J(u) = \} (55)

where o > 0, N > 3 are fixed. &, J still denote the same functionals and we
assume
aij=aicCo(RY); >0  (a5(x) = vIn (40"

k,Ke L'\RMNCy(RY); K>0 on RY (56)
We define the energy at infinity exactly as before, but since K = 0, we have

P = Min {(K* ()~ %det{a;(y)} N} 1°. (48"

yeRN

Theorem I.4. We assume (40") and (56):
i) Every minimizing sequence of (55) is relatively compact in X = {o +
+ v, ve DVXRM)} if and only if

L<Is+ -, vB e [0, \[. (S.1)
ii) If we assume in addition
37> 0,Vp e D(RY),  &(p) = v|De|t2mm (57)

then there exists Ao > 0 such that: I is decreasing on [0, \o] from — to b,
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and 1, is increasing on [\o, + [ from I\, to +. In addition there exists a
unique o1 € Hiso(RY)NBUC(RM) satisfying

d de1 .
_ | @002 ) + ki = RN
IZJ o, <a 769) 6x,~> + k(x)¢1 =0 in (58)
p1>0 in RV, p1—a as |x| -

and &(p1) = ho,  Je1) =X, o1 —aeDVHRY).
iii) Furthermore if N€10, o[, (S.1) holds and there exists a unique
minimum of (55), ux € X which satisfies

d 6u>\
— 3 (@952 ) + k@ + O KuN /N =D _ 0 ip RN
§axi <a,(x) axj> ()un + O\ Kuy in (59)
uxe BUC(RY), wu>0 on R, w—a as |x|— w;

where 0), is a positive Lagrange multiplier. In addition u, is the unique solution
of (59) (in Hi. say) and 0y decreases continuously on 10, ho[ from +oo to 0,
while u\ increases continuously from 0 to ¢, on RY.

iv) Finally there exists 6 > 0, such that for A € 1\o, Ao + 6], (S. 1) kolds. In
particular there exists a minimum uy of (55) which solves

d d

-3 <a,-,-(x) ﬂ) + k(Oun = KuN /N =Dy RN (60)
i,j 0Xi 0x;

and uy € XNBUC(RM), uy— o as |x| = o; where 0y is a positive Lagrange

multiplier.

Remark1.9. Assumptions (56), (57) may be relaxed but the main assumption
k, K € L'(R") subsists. In part i), we have: [y = +o and I, = +oasa— 0.,
hence the strict inequality in (S.1) holds for « small.

Setting vy = 0" ~?”*uy and using the variant of Ni’s method given in the ap-
pendix, we find the

Corollary 1.4. We assume (40"), (56), (57). Then for any p > 0, there exists
a unique solution u of

-3 9 <a,~j(x) 2?—) + k(u + KxuW+PN-D -0 in RN

i 0x; 0x; (39)
ue Hipc(RMYNCHRY), u>0 on RY, u-pu as |x|— o
and u increases continuously in p, u < (u/c)¢1 in RN, u — pe DV3(RY).

There exists po > 0, such that:
i) for p > po, there does not exist a solution u of (39) such that:

u € Hb(RMNCy(RY), u=0 in RY, u—pu as |x|— .
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ii) for 0 < p < po, there exists a solution u of (39) in Hiso(RM)N Cyp(RY) satis-
fying: u—pas|x| = o, u> @/a)er >00n R, u — pe D*(RY) and u is the
minimum positive solution of (39) in HibcNCy converging to p at infinity. In
addition u increases continuously with p on R".

Proor ofF THEOREM 1.4. We will prove part i) since it is a straightforward
repetition of arguments given before provided we show that if (u.). is a
minimizing sequence of (55) then u, — o is bounded in D'2(RY). Indeed if
Un = (up — o), since J(u,) = \ and K> 0 on RY, we find:

||tn||L2vv -2 + |[Un] |28/ -28r) K CR, VR < .
Next, in view of (40'):

v|Dua|}2 < C + ZJRN|k|a|vn| dx + LRN |k|v? dx
< C + C||vn||2vnv-» + JFEN/BR |k|vzdx
<

C+ CHU,,||L2N/(N—2) —+ ||klILN/z(neN_BR)l|v,,||12_2N/(N—2)

and we conclude using Sobolev inequalities and choosing R large.

We next prove part ii): we first show that L — +© asA\— 0, or A > + .,
Indeed if I\ remains bounded when A — 0, the above argument shows that
{(veDVARY), &+ v) < h + 1, J(a + v) €]0, 1[} is bounded. Hence there
exists v, bounded in D *(R™) such that J(e + va) > 0. Since K > 0 in R, this
yields: v, = —a in measure locally, and this contradicts the boundedness of
Un in DVARY) since —a & DIARY).

Next, if A\ = +o and I < C, there exists v, in D'*(R") such that

E(a + vn) <G J(a + vn) 3 +o0.
But
&(t + vn) = y|Dun|t2 — C — C|Dvy|12

hence v, is bounded in D!**(RY) and this contradicts the assumption on
J(a + vn).

Next, denoting by Ao( > 0) an absolute minimum of the continuous function
(A — 1,), we show the monotonicity properties of I.: we first observe that if
A €10, Mo satisfies

I\ = min{I,/n€]0,\]}, for some \>\,

then necessarily A = N\o. Indeed, clearly for such a A, (S. 1) holds. By part i),
there exists a minimum ¢ of I, which is a local minimum of & on X, therefore
@ solves (58) and by standard regularity results ¢ € BUC(R™). We now prove
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the uniqueness of such a function ¢ proving thus the equality between \ and
No. Remark first that necessarily ¢ > 0 on R".
Indeed for R large enough, denoting by

ad d
A= — Z‘— <aij(x) 5_;> + k
J

07 0xi
Ap=0 in Brg, >0 on 0Bgr (60)

and (57) implies that the first eigenvalue of operator 4 on Hg(Bg) is positive.
We may thus apply the maximum principle to (60): ¢ > 0 on Bg.

Next if ¢, € Hioc NBUC solve: Ap = Ay = 0 in RY, o, = « as |x] = o,
we show that ¢ = ¢. Indeed for R large enough we have

a—e<p,y<a+e on 0Br

where e = ¢(R)— 0 as R — co.
Since (60) holds for ¢, ¥ and since we may apply the maximum principle,
we obtain

o+ e o+ € —
p=2y, ——VY=¢ on Bg;
o — € o —€

and we conclude letting R — o (e(R) — 0).
At this point we have proved that

Lo<h<lI, if 0<u<A<ho
Next if u > N\ = Ao, for each € > 0 fixed, there exists ¥ € X such that
h<8W) <1, +e J(w) = p

and considering @ = 6u + (1 — )¢, for 0 € [0, 1], we find 0 € [0, 1] such that:
J(i) = \. On the other hand since u — ¢; € D 4(RY)

&(@) = &(p1 + 0(u — ¢1)) = &(p1) + 6°6(u — ¢1)
and &(#) is strictly convex with respect to #. Hence we find
h< &) <08m) + (1 — 0)8(p1) <O+ €) + (1 — Oy

and this yields: Iy < I,. Next if Iy = I,, clearly Is = I, = I, for all X € [\, ] and
thus (S. 1) holds for X €]\, u[. Therefore for X € ]\, u[ fixed, there exists a
minimum ¢ of I which is clearly a local minimum of & on X, hence
@ = @1, A = ho. The contradiction shows: L, < I < I, if Ao <\ < p; and part
ii) is proved.
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We now prove part iii): the properties of I, we proved imply easily that (S.1)
holds for A €]0, Ao[. Therefore there exists a minimum u of I, (¥ € X) and
observing that if for some ¢ € D , (RY): jRNKIul‘”(N'Z)uga dx > 0, then for ¢
small enough

Eu—tp)=21,>1,, forsome pel0,A\[|.

This shows that the Lagrange multiplier (—#8,) is strictly negative and thus u
(e XNBUC(R™)) solves (59). The remainder of part iii) is proved by showing
that for each 6 > 0, there exists at most one # = iy solution of

Au + 0K|a[¥ Y g =0 in R", i1 € XNBUC(RM). (61)

and that g > ilg, if < 6. We first observe that # > 0 on R™: indeed for R
large enough: @ > (a/2) if |x| > R. Next we have

A+ 0K|a|* NP5 =0 in Br, #@>=(x/2) on 4dBr

and \i(4 + 0K|a|* V=2, H}(Br)) > M(A, H3(Br)) > 0; therefore applying
the maximum principle, we find # > 0 in Bg.

Next, let u, v be two solutions of (61) corresponding to # > 6’ > 0: we just
need to prove that u < v on R". Indeed for R large enough: 0 < o — € <
Su,v< o+ eondBg, withe=e(R)—>0asR— . Let w= (o + €)/(ax — €))v,
we have

o+ € _
Aw + QKW+ V=D 5 — (4 + KoV TPV D)
o —€

+
> A0+ GRONTD/V-D) 0 on B
a—€

and w > u on dBg. Applying the maximum principle once more we conclude:
w > u on Bg.

We finally prove part iv): we just have to prove that (S. 1) holds for (\ — o)
small, positive. Let A > Ao, if (S. 1) does not hold there exists u €10, A\[ such
that

IN =I,l +I)f°_#.

We first observe that p € ]\, A[: indeed I > 5, and if p €10, N\o[, Ip + -, >
> b + -, > by + -5, = I\ Next we claim that (S. 1) holds for ,: indeed
for n€]0, u[

Ui+ - )+ K-, >+ K_zz2h=1+K-,.
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Therefore there exists a minimum u, of I, and one proves easily that u, > 0
in R and u, — « converges strongly in D*2(R™) to ¢1 — « as u — Ao. Observ-
ing that u — No when X\ — Ao, we conclude the proof of part iv) as follows: we
denote by 42 = \ — p and we consider ¢ € D 4 (R") such that

N+2
N-2

jRNK¢§N+2)/(N—2)¢dx= 1’

obviously (N +2)/(N = 2) [y Ku{* ' Dpdx=0,~1 as p—>h. We
introduce v, = u, + k6, ‘¢, clearly v, € X and

N+2
Jw) = Jw) + ~F j KU TN D gy dx = b= N
R

N-2
&(v,) < 8(u,) + Ch

for some C independent of A4 €]0, 1[. The properties of I\ as a function
of N then yield: L < &(v,) < &w,) + Ch=1,+ Ch. On the other hand:
I, = I, + If; and we reach a contradiction for 4 small enough since I’ =

= [FRN-/N,
1.6 Nonlinear field equations and limit exponents

As we explained in the introduction, one is interested in the so-called ground
state solution of

—Au=f@) in RY, ux)—0 as |x|—oo; )

where u is (for example) a scalar function. The ground state is determined
through the minimum, if it exists, of the following minimization problem

I'=Inf{[ v |Dul® dx/ | N Fu)dx = 1,u e D" *RY), Fw) e L'RM}  (10)

where N > 3, Fe C(R), F(0) = 0. For more details concerning the relations
between (9) and (10), we refer to H. Berestycki and P. L. Lions [6].
We assume

IteR, F§)>0 1n

lim F* @)t~V -2 =qa>0, (12)

[t =0+

lim F*()|t| VN2 =8>0;

[t] = o0
and we denote

8() = [on [DulPdx,  J@) = [\ F)dx.
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If ug(-) = o~ N 2Ny(. /0), &(us) = &(u) and
Jus) = o™ [ Flo™ V™2 Nu(x)) dx.

Therefore

(1) = B [ion UV P dx as 004,
while

J(us) = o JIRN |uN-Ddx as g +oo.

And this yields
I<TI° = Inf(8w)/y jRN lu| NN gy = 1, u e DHHRN))
with y = max(a, 3); or
ISI® =~ (N-2)/Np0 (62)

of course if y=01i.e. « =03 =0, I = + and the inequality is strict.

Theorem 1.5. Under assumptions (11), (12), any minimizing sequence (tn)n Of
(10) is relatively compact in DY *(R™) up to a translation if and only if: I < I*.
In particular if this strict inequality holds, there exists a minimum of (10).

Remark 1.10. If v =0,1<I” = +o and we recover the most general exist-
ence result —for the ground state— due to H. Berestycki and P. L. Lions [6],
H. Brézis and E. H. Lieb [11]: in [6], this result was proved by a symmetriza-
tion argument which does not show that all minimizing sequences are relatively
compact up to translations. Of course if ¥ = 0, we are in the locally compact
case and the result of P. L. Lions [21] also applies to that particular situation.
Let us also mention that the fact that minima of (10) yield ground states of
(9) is due to Coleman, Glazer and Martin [13] —see also [6], [21]—. Except
for a particular case (covered by the result above) due to F. V. Atkinson and
L. A. Peletier [2] obtained by an O.D.E. method, the above result is the first
where F is allowed to behave like |¢|*""®™ =2 near 0 or at infinity.

Remark 1.11. Combining the method below and those of P. L. Lions [21],
we could treat as well x-dependent functionals or higher-order functionals. Let
us also mention that the same result holds if u takes its value in R™ (m > 1),
then we just need to assume (11) and

lim FY*()Fo()"'=a >0

|t|_’0+
lim F*O)F1(t) " '=8>0 (63)

[t] > oo
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where Fy, F; are continuous, positive on R” — {0}, homogeneous of degree
2N/(N — 2); I” is given in this situation by

I° = Min [Inf{ IRN |Vul? dx/u e (DV2(RN)™, jPNFi(u) dx =1}].
i=0,1
Observe that both infima are achieved by the results of section I.4.

Remark 1.12. If a = 3 =+ >0, then by Theorem 1.1, there exists uo such
that

o € DV HRY), 8uo) = 17, [ oMV Pdx =471, uzo0.

i) If F(6) = ~|t] N~ and F(®) = y|t|™~?, then I<I®: indeed we
observe that, choosing by dilation %y the maximum of u, large enough, we
may assume

(e Fltto) dx > 1, 8(uo) = I*.
Let vo(-) = uo(-/N) with
NN = [onFluo)dx > 1
then J(uo) = 1 and 7 < 8(uo) = NV~ 28(uo) < I”.

ii) If F(O) < || V=2 and F = y[t|* %2, a similar argument shows
that there does not exist a minimum of (10).

Remark 1.13. If a =y =8, a >0 and if for some 7 >0
FO) > ot ®™-2 for tel0,t)] (or te[—to,0])

and F = o|t|*™=2 on [0, to], considering ¢~ “~2"Nyy(- /g) with uo as in
Remark I.12 and ¢ large enough, we deduce from the argument given above
that I < I”.

Remark 1.14. By looking carefully at the proof below, we see that if 7 = I
and if (un). is not relatively compact in D 2(RY) then

i) if « < B, there exist (on), in 10, [, (Jx)n in RY such that: on - o,
in = 07 Y Nu((- — yn)/on) is relatively compact in D2 and the limits of
its converging subsequences are minima of 7%;

ii) if « > 8, the above still holds but with o, > 0;
iii) if o = @3, the above still holds but (o). is arbitrary.

Remark 1.15. Of course, if we are only interested in finding a (non trivial)
solution of (9), we may use the maximum principle and assume: f= F’,
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Fe CY(R) (for example), (11), and if ¢ = inf(¢ > 0, F(¥¢) > 0) we assume
in addition

lim Fr@)|f| N N-2=4>0
[t -0+

either 3¢y > ¢+, f(¢+) <0, or lim Fr@|f MWD =8>0

[t| >+
and

either 3¢ > ¢, f(=¢-) >0, or lim F*()|t] "2M¥-2 =8>0.
|t] >

We now turn to the proof of Theorem 1.5: first we observe that (u,). is
bounded in D! 2(R") and F(u,) is bounded in L!, for any minimizing sequence
(Un)n.

Indeed, since &(u») is bounded, Vu, is bounded in L? and u, is bounded in
L?N/WN=2) Byt (12) implies the existence of a constant C >0 such that:
F* () < Clt)*™®™ =2, hence F* (un) is bounded in L' and using the constraint,
the bounds claimed are proved. The proof below will use the concentration-
compactness method of P. L. Lions [20], [21] with the sequence:

pn = |Vtn]? + |ta) V=D 4+ | Flun)|

We may of course assume that: j'nezvp,, dx > M > 0. In what follows we will
still denote by u, all subsequences we extract. With these preliminaries, we
prove below: Step 1, p, does not vanish; Step 2, dichotomy does not occur;
Step 3, weak limits are non trivial; Step 4, we conclude.

Step 1: p, does not vanish.
Indeed if p, vanishes i.e. if (in particular) there exists R €]0, oo[ such that

sup
yeRN

dx 30

y + B P"

then we denote by G(¢) = (F(t) — v|t|/**®~?)* and we claim that
Gun) >0 in L'(RM.

To this end we just need to observe that G satisfies

lim G(@)|t| N2 =0, lim G@)|t]"*MV-2 =,
]tl_'°+ ]t]—»w

Therefore, using Lemma II1.2 of P. L. Lions [21], we deduce that G(u,) 7> 0 in
LYRM).
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But this yields

limyj |un VN "D dx > 1, 8(un) 7 1
n RN

and this contradicts the strict inequality 7 < I*. Hence if I < I*, vanishing
does not occur.

Step 2: Dichotomy does not occur.

In view of the concentration-compactness lemma (Lemma I.1 in P. L. Lions
[20]), we check that dichotomy does not occur. To this end we first remark
that if we replace 1 by A > 0 in (10) and if we denote by I, the corresponding
infimum, then

L= Inf{&u <P7’T’> / Jw) = 1,u e DV *RY), F(u) eLl} = -2y

therefore the subadditivity inequality (S. 2) holds
I<Iy+1I_g, va €], 1]. (S. 2)

We now prove —as in P.L. Lions [20], [21], see also P.L. Lions [23],
[24]— that dichotomy does not occur by contradiction. We will use a variant
of the explicit dichotomy .procedure of [20], [21] in order to cover the full
generality of functions F: the idea of this variant was given to us by H. Brézis
(see also H. Brézis and E.H. Lieb [11]). If dichotomy occurs we find
a €10, M[ such that for any fixed e > 0, there exist (¥x)» in RY, 0 < Ro < ,
R, in ]Ry, + oo satisfying

pndx — (M- a)| <e

—_al < I
”yn+BRop"dx O‘l S6 |x=yn| = Rn

(64)

’ Undx < € R, > oo.
JRoslx—y,,lsR,. n =0 ™ n

If we still denote by (u.)» the minimizing sequence translated by y,, we are go-
ing to “‘cut’’ u, in two pieces such that both functionals &, J split in the sums
of the corresponding functionals.

To this end, we introduce for A > 1, R €]0, [ the mapping: Tx = x if
|x| <R, Tx =X — (\ — 1)Rx|x| ™!, and we set ux(x) = un(Tx). We now com-
pute J(us), &(un)

Ju) = [ cn Flm dx + [ Flun(T)) dx
= [ ax Pl dx + [ Fun()6() dy

with ¢(3) "1 =M\ + RT3 =WV 2\ if [y 2R
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Hence we deduce
. c )
| ) = [\, Flun) dx| <5 (65)

Next, we compute &(un)
8ud) = Lxlstun[deJr LxlzRWT-Vun(Tx)lzdx

and

R
Tij =Ny + (N = 1) 75 (xix; — 8yslx]?),
x|

therefore

Jlxl eIV Vu(Tx)|> dx < C\ Ly‘ - |Vun(y)|*(y) dy

<C |Vun|?dy + CO\ — A\ — DR/R)* N

Rn=|y|=R

if R < Ry, with Ry =} (Rx + (\ — )R). Thus we obtain

Ix|=R

lS(u,l,)— [ |Vu,,|2dx| < Ce+ CO\— (A= DR/R)' N
if ROSR<Rn, Ra=1Ru+(\-1R).

And thus choosing R = Ry, \ large enough, we find for n large

{|J(u,1) ~ J g Pl dx| < ¢, &)
|8h) = [\ < g, IVt x| < Ce.
We build #? in a similar way: we consider the mapping
Sx=px if |x| <R, =x+(p— DRx|x| "' if |x| >R,
where u > 1, R > Ro; and we denote by: uz(x) = un(Sx). We have

Joui)=p N | Fun(»))W¥() dy

with $(») "' = (1 + (& — DR|S™ |~ YN~ 1. Therefore if uR < Rx

Fundy + |

[¥|=pR |¥| =pR

2 -N
|7 = [,y 2, FenONdy| SCuN 2 1) [Fa) dy +

+ Cl(1 + (= DR/Ry) NP —1];

where R, = R, — (u — DR.
On the other hand, we have

&um) =p~ N2 Lyl < | Vttnl> dy + f|x| _ o |VS - Vu(Sx)|* dx
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and

R
Sij= 0+ (k= I)W(lezﬁij = XiX;).

Therefore if uR < R,

Lx,zR |VS - Vun(Sx)|* dx — jlyl o R [Vu,,(y)zldyl <
< Cu LRS Iy <Rn |Vu,,(y)|2d_y +

+ {112, 17SG™) - VusGIHO) = |Vuta2 ()] .
2 R 2
SOk fypaiyan, Vinl? @y + Clu= D+ [ o Vil (1900) — 1]} .
Finally we obtain if Ro < uR < R,
]a(uz)—j |Vu |2dy| <O N+ Cu+Clu-nE 4
" Iyl=pr 1770 S p’ p R,

+C{1 -+ (p-DR/R)" NP} (69

Combining (68), (69) and choosing y = 1/Ve, R = Ry we deduce finally that
for n large enough

|J@d) = [,/ o, Fn dy| < Ce, o
|8Gi2) = [, &, [Vunl* dy| < CVe.

We may now conclude: indeed if J(us) - B, we claim that 8 —which de-

pends on e— belongs to ]0, 1[ and remains bounded away from 0 or 1 as e goes
to 0. Indeed if B = B. - B = 0, this means that:

lim lim &(uz) > 1,
€ n

while (67) and (70) yield

lim lim &(u2) + lim lim §(u}) < I;
€ n € n

and we reach a contradiction since

li;ml_iES(u,,) > 0.
€ n
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If this were not the case we would have

n

a = limlim pndx = limlim | F(un)|dx
e n vPRo e n vBko

n

= limlim | |F(u?)|dx

n
=limlim | —Fu?) + 2F* (u2)dx = 0.

LY

If B 2 B < 0, then for € small and n large, J(u7) < 1 and we deduce from (67)
and (70): J(u»?) < 1 and &(u2) < I, and this is not possible.

Finally if B. > B > 1, we argue as before replacing u7 by us. Thus we may
assume that (. 2 B €10, 1[. We then deduce from (67) and (70) for e small

I'> lim &(u3) + lim 8(u3) — CVe > Is = 11z — 8(¢)
-n n

where 6(¢) 0 as e > 0., and this contradicts (S. 2).

Therefore, from Step 1 and the above contradiction we deduce, using the
concentration-compactness lemma of P.L. Lions [20], [21] that, if I< I,
there exists (yn)» in RY such that p,(- — y,) is tight

Ve>0,3R<w,vn>1, |, __ owdi<e. (71)

We still denote by u, the new minimizing sequence u,(- — y,). We may assume
that u, converges weakly in D'%(R™) and a.e. on R" to some u € D"*(RY)
(and F(u) € L'(R™) by Fatou’s lemma).

Step 3: u0ifI<I”.

If u = 0, then we claim that G(u») = (F(tn) — v|un|* ™~ ?)* converges to
0in L'(R™). Indeed since F(¢) < C|t|*™~?, we may find, using (71), R large
enough such that

LxlzRG(un)dXSe, vn > 1.
Now on Bg, we use the fact that u, >0 in L'(Br) and that
GO < et]MN-D + Ct, vteR.

Therefore the claim is proved and we show exactly as in Step 1 that we reach
a contradiction with 7 < I,
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Step 4: Conclusion.

We first assume that 7 < I and thus u # 0. We just need to show that
J(u) = 1. Of course J(u) < 1, since &(u) < 1.

By lemma 1.1, we know there exist (vx)xex €10, o[, (X¢)xex in RN —where
K is at most countable and the points xx are distinct— such that

IunIZN/(N—Z) 7 |u|2N/(N—2) + ; Vkaxk in iD’(fRN)

and

fRNIunIZN/(N‘Z) dx - JRNIu'IZN/(N'Z’ dx + 2, vk.
k

We claim that

1 = lim J(un) < J@W) + B D] vk. (72)
n k

We first choose R —using (71)— such that for all n > 1
Lx!aR |F(un)| + |un|™ V=P dx < e,
(1o [F@L + [N "D dx < e

>, w<e
k:xi € BR

To simplify the notations we assume that xx € Br, Yk € K. We next apply
Brézis-Lieb [10] to obtain

[ FC@tn) ~ F@) — Flutn = )] dx 3 0;
this is possible in view of the following observation: Ve > 0, 3C. > 0
|F(a + b) — F@)| < ela®™®~? + (1 + |p]2M*-2)
for all a, b e R. Then (72) is proved provided we show

IiijBRF(un —u)dx < 6; Vi.

But we already know that: |u, — u|* ¥~ = 3, yiés, and by the same
proof as in Step 3, we conclude

lim jBRF(u,, —u)dx < limBIBR |tn — u| NN =D dx = B; Vi.
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Using (72) and Lemma 1.1, we finally obtain

ISJ(M)"'ﬁZVkQJ(u)-I-'yZVk
k k

I3 80+ 1S V-9 > 8wy + [o<2 pk>(N—2)/N'
k k

If J(u) <0, 2k v =1/y and

I> IO<Z Vk)(N-Z)/N> IOy—(N—Z)/N___ I
3

Hence o = J(u) €]0, 1] and if a €]0, 1]
I I+ 0%~ V-2N1 - )N=2N - [+ IT_

But this contradicts the condition (S. 1) which holds here if 7 < I*. Therefore
o =1 and the compactness is proved.

On the other hand if 7 = I°, we build a sequence (un) such that F(u,) € L',
J",RNF(u,,) dx 1, &(un) 7> I” and u, is not compact even up to a translation.
Indeed if v = o > 8, and v > 0, we consider uo € Co(R") satisfying (cf. section
I.1)

o jw luo N -Ddx =1,  &uo) =I".

We set u, = n~ W =2/Nyy(- /n) and we check easily the above properties. On
the other hand if y = 8 > « and 8 > 0, we take (). in D(RY), such that: Supp
Un = B, |Vtn|? = I%60, Bfrn |un|* V=P dx = 1. Again it is easy to check
the above properties. And Theorem 1.6 is proved.

Remark 1.16. Using the particular quadratic structure of &(and the x-
independence of the functionals) one may give in Step 4 a slightly simpler
argument: indeed if u, > u, then

'{S(u,,) —8n—u)=2 LRNVu,, -Vudx — JPNWu]zdx? &(w)
J(un) — J(un — u) 5> J(1)

and if J(u) €10, 1[ we simply use (S. 2) to conclude.
However this argument is very dependent on the special structures of &, J
and fails completely if & is x-dependent or if

8u) = IRN|Vu|2dx is replaced by jRN|Vu|"dx for p=2!
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I.7 A remark on Moser’s treatment of the limiting case of Sobolev
inequalities

We want to discuss here a few properties of functions in W3 V(Q) where Q is
a bounded open set in RN and N > 2. Clearly the Sobolev exponent becomes
infinite but W§'™(Q) is not embedded in L=(Q). It is possible to check that if
|Vu|~vey < 1, there exists some « > 0 (independent of %) such that

jn exp{a|u/MV =D} dx < C.

This was proved by N. Trudinger [37] (see also S. I. Pohozaev [30], T. Aubin
[5]...). This estimate was sharpened by J. Moser [27] who proved that if
an = No¥ N~ where wy is the volume of S¥ (for example o = 47) then we
have

jﬂ exp{an|u|¥N -V} dx < C|Q| (73)

and ax is the best constant in the following sense: exp(a|u|™ ™ =) e LY(Q) for
any o > 0 but an is the biggest constant such that exp(a|u|™® = V) is bounded
in L(Q) independently of . In other words W¢:™(Q) is embedded in the Orlicz
space determined by ¢(¢) = exp{an|t|¥ ™~ V}.

A natural question is then: is this embedding compact? The answer is no:
indeed, if for example Q is the unit ball, we consider (u,), defined by

n N-1/N
un(x) = fu(—NLog |x|); fn(t)=<al> . if 1<n,

W-1)/N
n .
= <—-> if t>n.

an
Clearly
|Vin| v = NV~ oy -y J:If,’,(t)l”dt
e () e
0o \OoN n
and

Jexp {auninl™ NP} 10 = on- N [Cexplan(fu@) NP — 1) dt >
> wN_lN-lj:exp{n ~t}dt =wn_ 1N~ ..

Since u, >0 a.e. and weakly in W{™(), the embedding is not compact.
Observe that |Vu,|V — 8 in D(Q) and exp{an|uaV Y~} = ¢y for some
c>0.

The following result shows that this is the exceptional case
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Theorem 1.6. Let (un)r, C W3 N(Q) satisfy: |Vun|yay < 1. Without loss of
generality we may assume that u, 3 u, | Vitn|? — 1 weakly. Then either p = x,
Jfor some xo € @ and un > 0, exp(an|un|™' N ~P) = ¢y, for some ¢ > 0, or there
exists a > 0 such that exp{(an + )|ua|~'® =} is bounded in L*(Q) and thus

exp{an|un|V NP} > explamu|VN P} in LYQ).
In particular this is the case if u # 0.

Remark 1.17. We also deduce from this result that except for ‘‘small weak
neighborhoods of 0°’ the embedding is compact and the best constant oy may
be improved.

PROOF OF THEOREM 1.6. We first treat the case when u = 0. Let £ C'(Q),
we have using Rellich theorem

|V Cun) B = [ |(VEun + £VunV dx > [ |€]N d

since u, Z;,O (strongly). Without loss of generality we may assume that
|Vin| v = 1 (consider vy, = un|Vun|;~), hence [dn =1 and Supppu C Q.

We first observe that if (eC'(@), £>0 and [|¢¥dp=1, then
exp{an|ua|Y¥ =1} is bounded in LF({¢> 1+ 8}) for p=ps>1, 6§>0. In
particular exp{an]|ua|" ¥~} converges to 1 in L({£>1 + 8}) for any
6> 0. Indeed |V(¢un)|z~ > 1 and

j o €xp { o £un| V'V = V|V (Eun) | N DY dx < C.
thus for any v e€]1, (1 + 8™ ®~Y)[ we have for n large enough

J(Ezl+6) exp {any|ua| VN PYdx < C. (74)

Next if u = 6, for some xo € @, taking & with £(xo) = 1, £>1on o — {x0},

and remarking that Vu,— 0 weakly in L™(Q) and thus u,— 0 weakly in
Wi NQ), we deduce

exp { an|un|V® "V} - cby, for some c>0.

On the other hand if p is not a Dirac mass, we claim that we can find Fi, F>
compact contained in @ such that

uw(F1), l(F2) €10,1] and F,UF, = Q.
Indeed if x is not a Dirac mass, there exists F compact contained in Q such
that: u(F) = 0 €]0, 1[. We denote by O = RY — F, O, = {xe RY, dist(x, F) > €}.
Clearly —considering u as a measure on R™ supported in 2— we have:
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w(0) =1— 60 =1im Tu(Os). Hence, there exists ¢ small enough such that:
el0

w(Oe) €10, 1[.

Then if F1 =QNO¢, F,=QNO0,, clearly FiUF, =0 and p(Fi)=1-—
— (09 €10, 1[, p(Od) < w(F2) S w(0).

But we may now consider &, & € C1(Q) satisfying

£,£20, &H=11+pF)" ) on F,
L=30+pF)"") on F,
j'éldu=l, JEzdu=l.

And using (74) we deduce that for some v > 1, we have for n large enough
and thus for all n > 1

jﬁ exp {any|ua|V PV DYydx < C
[ explanylua N~ Pydx < C

and we conclude.
We next consider the case when u#0 and N=2: we claim that
Un = exp{az|un|?} converges to v = exp{au?} in L”(Q) for

p<p=Q1-|Vui)' (P= -+ if |Vulrz=1).
Indeed we have
Un = exp{aau? + 2u(un — u) + (Un — u)*]} = VDD,

where

v=expf{oau®} €LUQ) (Vg<®),  Un=exp{202u(un — u)}
converges to 1 in LY(Q) (Vg < ). Finally remarking that

Cn= Jn |V(un — w)|>dx=1— Zjﬂ Vun - Vudx + Iﬂ |Vul*dx 3 2,
we obtain

lexp(a2Ca H(un — w)*} |11 = [0/ "1 < C

and we conclude easily.

Finally if u#0 and N > 3; we claim that v, = exp{an|u.|"® P} con-
verges to v = exp{an|u/M¥ V) in LP(Q) for p<p = (1 — |Vu|y)~ VD,
Since v, > v a.e., we just need to prove that for all p <p

exp{anp|un|V V1) dx < C  (inf. of n). (75)
Q
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By standard symmetrization argument we may assume that Q is a ball, u,, u
are spherically symmetric, non increasing with respect to |x|. Without loss of
generality we may assume that Q is the unit ball and we consider —following
Moser [27]— fn defined on ]0, o[ by

un(x) = fl(—=NLog |x]),  u(x)=f(—NLog|x|);

Jfu, f are continuous, non decreasing and f,(0) = f(0) = 0.
In addition we have for all @ > 0

1= fﬂ [Vun|Ndx = N¥ ™ tan-1 f:lf,’,(t)lth
[qexplalun¥ N DY dx = N~ o1 [Texplal fu®|V @D — 1) dr.

We next consider g.(¢) = (f»)*(?) the decreasing rearrangement of f; on ]0, oo
and we set: fu(t) = Lt) gn(s) ds, tin = fu(—NLog |x|). Then we have

jn |ViZo|Ndx = NV~ lon_; mf;,(z)lth =NV"lon_4 j:if;,(t)|th =1

() = [, enls) ds > [ M ps) ds = ua(0,  vxeq.

In addition f; — f weakly in L™(0, ) and thus we may assume that g, = g
weakly in L™(0, «). And if @, - if weakly in W§°™(Q), then

jﬂ [Va|Ndx=N""won_1 j:|g(t)|th >NV"lon_y j:|f(t)|th = jﬂ |VulN dx

Hence, we just need to prove our claim for the new sequence 4, i.e. we may
assume without loss of generality that not only u., u are spherically sym-
metric, non increasing but f7, is non increasing i.e.

1
U + —un<0 on 10,1].
|x|

But this yields that Vu, is relatively compact in L? (e < |x| < R — ¢) for all
p < o, ¢ >0 —where R is the radius of 2. Hence we may assume that Vu, —
— Vu a.e. in Q.

All these reductions enable us to adapt the proof made below in the case
N = 2. Indeed using Brézis-Lieb lemma [10], we deduce that

|V — w)|Eneay 77 1 — | Va2V
thus for 6 > 0 small enough and for n large enough
(o explanp(l + 8)|un — ulVN"Pyax < €

while exp {an|u|¥ ¥~} e L9YQ) for all g < o; and this proves (75) and the
theorem is proved.
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Remark 1.18. In fact we have proved that:

i) if u # 0, then exp{a|u,/""®™~P} is bounded in LYQ) for 0 < o <
< an(l — |Vu|Zn) "N =D,

ii) if u is without atoms, then exp{a|u.|®~ P} is bounded in L'(Q) for
all > 0.

In fact, we can prove by a close examination of the above proof that if we

consider § = max u({x}) and if § € [0, 1] then exp { cr|u,|¥" ™~} is bounded in
xeQ

LY(Q) for 0 < o < an(l — )" V=D,
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